WO2022226901A1 - 底盘护板、车载撞击检测系统及撞击检测方法 - Google Patents

底盘护板、车载撞击检测系统及撞击检测方法 Download PDF

Info

Publication number
WO2022226901A1
WO2022226901A1 PCT/CN2021/091035 CN2021091035W WO2022226901A1 WO 2022226901 A1 WO2022226901 A1 WO 2022226901A1 CN 2021091035 W CN2021091035 W CN 2021091035W WO 2022226901 A1 WO2022226901 A1 WO 2022226901A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
signal
detection sensor
vibration detection
entity
Prior art date
Application number
PCT/CN2021/091035
Other languages
English (en)
French (fr)
Inventor
焦旭
Original Assignee
焦旭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 焦旭 filed Critical 焦旭
Priority to PCT/CN2021/091035 priority Critical patent/WO2022226901A1/zh
Priority to CN202180001817.9A priority patent/CN113329915A/zh
Publication of WO2022226901A1 publication Critical patent/WO2022226901A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0861Insulating elements, e.g. for sound insulation for covering undersurfaces of vehicles, e.g. wheel houses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the present invention relates to the technical field of mobile device protection equipment, in particular, to a chassis guard, a collision detection method and a vehicle-mounted collision detection system.
  • the bottom of the car chassis often exposes key parts of the car such as the lower edge of the water tank, the engine bottom case, the gearbox bottom case, and the drive shaft.
  • the electric vehicle chassis is often equipped with a battery pack. These parts should be repaired in time after being hit to avoid safety problems. Especially in electric vehicles, there is a high risk of damage to the battery from being hit on the underside of the battery pack.
  • a chassis guard plate can be installed on the chassis of the vehicle to prevent the impact from directly hitting the key parts and causing greater damage to the vehicle.
  • the guard plate can also prevent the sand and gravel from flying and hitting key parts when the vehicle runs in a poor environment, affecting its service life.
  • the added guard plate can protect key parts such as the water tank, engine, gearbox or battery pack. Compared with the price and function of key parts, even if there is a collision, there will be fewer users Concerned about the damage of the guard plate, but the damage of the guard plate affects the safety of the chassis.
  • the chassis guard plate is not damaged. The car is already at risk, and the existing technology cannot achieve a more comprehensive inspection of the guard plate, which will cause the user to be at a certain risk.
  • the present invention provides a technology that can comprehensively detect the chassis guard plate, thereby improving the safety of the vehicle.
  • a chassis guard comprising: a guard body; a vibration detection sensor array disposed on the guard body, the vibration detection sensor array comprising: A plurality of vibration detection sensor groups arranged vertically and horizontally in the predetermined area are used to output the vibration signal characteristics of each part of the guard plate entity; and a signal collection board; wherein, the output of the vibration detection sensor in the vibration detection sensor group The end is connected with the corresponding signal collection board; the ground end of the vibration detection sensor in the vibration detection sensor array is electrically connected with the shield board to realize common ground.
  • a plurality of the plurality of signal collection boards are connected through a bus, and the vibration signal is externally output through the bus.
  • the number of the shield entities is multiple, each shield entity is provided with the signal collection board, and the signal collection boards on adjacent shield entities are connected through a bus.
  • the outer shape or the predetermined area of the protective plate entity corresponds to a protected member disposed above the chassis, and the protective plate entity is installed below the protected member.
  • it also includes a temperature sensor disposed on the shield entity for detecting the temperature of the protected component installed on the chassis, and a fan disposed on the shield entity for cooling the protected component an array, the signal of the temperature sensor is input to a signal processing device, so that the signal processing device controls the fan array to work according to the signal of the temperature sensor.
  • it also includes a water level detection sensor located on the chassis guard, the water level detection sensor outputs a signal to a signal processing device, so that the signal processing device can determine whether the guard body is involved in water and whether Send door unlock signal, sunroof open signal and/or window open signal.
  • a vehicle-mounted collision detection system comprising the above-mentioned vehicle chassis guard, and further comprising a signal processing device connected to the signal acquisition board, the signal processing device according to the The rate of change of the vibration signal feature identifies whether the fender entity is impacted, wherein the vibration signal feature includes one or more of a frequency feature, an energy feature, an amplitude spectrum feature, and an amplitude feature.
  • the signal processing device is configured to obtain the installation position corresponding to the vibration detection sensor according to the installation position relationship between the vibration signal and the vibration detection sensor, and to obtain the installation position corresponding to the installation position according to the installation position. Threshold, according to the characteristics of the vibration signal and the corresponding threshold to determine whether the body of the guard plate is hit.
  • the signal processing apparatus is specifically configured to, in response to a rate of change of a first vibration signal characteristic of a first vibration detection sensor in the vibration detection sensor array exceeding a first threshold, detect the first vibration Whether the change rate of the second vibration signal characteristic of one or more second vibration detection sensors adjacent to the vibration detection sensor exceeds a first threshold, and in response to the change rate of the second vibration signal characteristic exceeding the first threshold, determine whether the The fender entity was struck.
  • the signal processing apparatus is specifically configured to detect the first vibration in response to a rate of change of the first frequency characteristic of the first vibration detection sensor in the vibration detection sensor array exceeding a fourth threshold value It is detected whether the first amplitude characteristic of the sensor exceeds a second threshold, and in response to the first amplitude characteristic exceeding the second threshold, it is determined that the fender entity is hit.
  • the signal processing device is further configured to detect that the first vibration signal characteristic of the first vibration detection sensor in the vibration detection sensor array is lower than the adjacent one of the first vibration detection sensor The second vibration signal characteristics of or multiple second vibration detection sensors, and the difference between the second vibration signal characteristics and the first vibration signal characteristics is greater than a third threshold, it is determined that the first vibration detection sensor is faulty, and the first vibration detection sensor is shielded.
  • the vibration signal characteristic of the vibration detection sensor is further configured to detect that the first vibration signal characteristic of the first vibration detection sensor in the vibration detection sensor array is lower than the adjacent one of the first vibration detection sensor.
  • the second vibration signal characteristics of or multiple second vibration detection sensors, and the difference between the second vibration signal characteristics and the first vibration signal characteristics is greater than a third threshold, it is determined that the first vibration detection sensor is faulty, and the first vibration detection sensor is shielded.
  • the vibration signal characteristic of the vibration detection sensor is further configured to detect that the first vibration signal characteristic of the first vibration detection sensor in the vibration detection sensor array is lower than the adjacent one of the first vibration detection sensor
  • the signal processing device is configured to acquire the environmental information of the fender entity according to the frequency characteristic and a preset vibration environment frequency threshold.
  • the environmental information includes water wading information and water wading depth information
  • the signal processing device is specifically configured to compare the frequency characteristic with the preset water wading environmental frequency threshold, and determine the Whether the fender entity is wading, and the wading depth information of the fender entity is obtained according to the frequency characteristics, wherein the wading environment frequency threshold is the vibration from the fender entity when the chassis is immersed in water and running. Detects frequency characteristics measured on the sensor.
  • the signal processing device is further configured to, according to the information of the temperature sensor, detect the first protected member exceeding the temperature threshold, and control the fan array according to the position of the first protected member The target fan rotates to dissipate heat to the first protected member.
  • the signal processing device is further configured to acquire the noise frequency of the target fan according to the rotational speed information of the target fan, and to detect the frequency of the vibration detection sensor located near the target fan according to the noise frequency
  • the feature is filtered, and according to the change rate of the filtered vibration signal feature, whether the fender entity is impacted is identified.
  • an on-board controller connected to the signal processing device and an on-board display screen connected to the on-board controller are further included, and the on-board display screen is used to display the position where the shield entity is struck.
  • a Bluetooth module connected to the signal processing device is further included, and the Bluetooth module is configured to send the information of the signal processing device to the mobile terminal, so that the mobile terminal can display the impact of the shield entity. Location.
  • a collision detection method for the above-mentioned automobile chassis guard plate comprising the following steps:
  • vibration signal features output by the vibration detection sensor array on the shield entity, wherein the vibration signal features include one or more of frequency features, amplitude features, energy features, and amplitude spectrum feature information;
  • the characteristic change rate of the vibration signal and the change rate threshold it is judged whether the fender entity is impacted.
  • the vibration of the chassis guard is detected by the vibration detection sensor array, the vibration signal feature is extracted, and the change rate of the vibration signal feature is compared with the threshold information to determine whether the chassis guard is impacted, and the user is reminded Repair in time to increase the safety of the vehicle.
  • the information of the chassis guard can also be output.
  • the wear condition of the chassis guard can be fed back and predicted.
  • FIG. 1 is a schematic structural diagram of a chassis guard plate in some embodiments of the present invention.
  • FIG. 2 is a schematic structural diagram of a chassis guard plate in other embodiments of the present invention.
  • FIG. 3a is a schematic structural diagram of a chassis guard plate located below the engine in other embodiments of the present invention.
  • FIG. 3b is a schematic structural diagram (top view) of a chassis guard plate located under the engine in other embodiments of the present invention.
  • FIG. 4a is a schematic structural diagram of a chassis guard using a signal collection board in other embodiments of the present invention.
  • 4b is a schematic structural diagram of a signal acquisition circuit board in some embodiments of the present invention.
  • FIG. 5a is a schematic structural diagram of a signal acquisition board provided in a chassis guard in some embodiments of the present invention.
  • Figure 5b is a schematic structural diagram of a signal acquisition board provided in a chassis guard in some embodiments of the present invention.
  • FIG. 6a is a schematic structural diagram of a chassis guard using a plurality of guards in some embodiments of the present invention.
  • Fig. 6b is the enlarged structural schematic diagram of the middle part of the circle in Fig. 6a;
  • FIG. 7 is a schematic structural diagram of the physical connection between the vibration detection sensor in the chassis guard plate and the guard plate in some embodiments of the present invention.
  • FIG. 8 is a schematic structural diagram of a chassis guard plate in practical use in some embodiments of the present invention.
  • FIG. 9 is a schematic structural diagram of a chassis guard relative to a vehicle in practical use in some embodiments of the present invention.
  • FIG. 10 is a schematic structural diagram of a vehicle-mounted collision detection system when a collision is detected in some embodiments of the present invention.
  • FIG. 11 is a schematic structural diagram of a vehicle-mounted collision detection system in some embodiments of the present invention.
  • FIG. 12 is a schematic flowchart of a method for impact detection in some embodiments of the present invention.
  • FIG. 13 is a schematic flowchart of a method for judging a collision in a collision detection method according to some embodiments of the present invention.
  • 15 is a schematic flowchart of a method for impact detection in other embodiments of the present invention.
  • 16 is a schematic structural diagram of a collision detection device in some embodiments of the present invention.
  • FIG. 17 is a schematic structural diagram of an electronic device in some embodiments of the present invention.
  • a guard plate is often set on the outside of the body. protection. It is especially important for automobiles, because automobiles often drive on open roads and the road surface environment is complex. During the driving process, it is inevitable that small gravels on the road will fly up and hit the car body. Under the condition of manned or unmanned driving, due to human judgment error or perception detection error, the driver or the driving system does not perceive the information of large obstacles (such as large rocks) on the road, and the vehicle will cause the vehicle to pass through. Chassis damaged.
  • a pressure sensor can be set on the chassis guard, and the pressure value fed back by the pressure sensor can be used to know whether the chassis is hit. Only when the chassis guard is damaged by impact will it send out a reliable signal to sense the impact, but even if the guard is not damaged after being hit, the driver needs to pay attention, which can remind the driver to repair in time and avoid the safety of the vehicle when using it. hidden danger. In some scenarios, due to the long-term use of the guard plate, the connection screws are loosened, and it is difficult to achieve this detection requirement by using a pressure sensor. In further research, the inventor uses vibration detection sensors and vibration detection sensor arrays to detect the chassis guards.
  • the specific information of the chassis guards including whether it is hit or not, can be known. , the environment around the chassis, whether the installation is loose, etc., so that the chassis guard plate can be fully detected and the driving safety is improved.
  • the technology for detecting the chassis guard plate by means of vibration detection developed by the inventor will be introduced below.
  • the embodiment of the present invention provides an automobile chassis guard, comprising: a guard entity;
  • the plurality of vibration detection sensor groups may be arranged vertically and horizontally. In some embodiments, the vibration detection sensor groups may be arranged in a column, or may be arranged in a row, which is convenient for wiring and operation. Signal acquisition is also convenient to correspond to the signal acquisition board.
  • an embodiment of the present disclosure provides a chassis fender 100 , including a fender entity 110 and a vibration detection sensor array 120 disposed on the fender entity 110 , the vibration detection sensor array 120 is used for outputting the vibration signal characteristic of the fender entity.
  • the vibration detection sensor array 120 in this embodiment includes a plurality of vibration detection sensors 121, and their arrangement form, as shown in FIG. 2 , can be a circular array, or a matrix array as shown in FIG. 1 .
  • the specific arrangement position of the vibration detection sensor 121 can be arranged according to the position of the key components on the chassis.
  • the conventional chassis is provided with an engine, a reducer, and a water tank, and the chassis of the new energy vehicle is also provided with a battery box.
  • the vibration detection sensor 121 is correspondingly arranged at the bottom according to the size of the key parts.
  • the chassis guard 100 is arranged under the engine 610.
  • the vibration detection sensor 121 is arranged at the position of the The vibration detection sensors 121 are arranged in the form of matrix arrays in the area between the chassis guards corresponding to the four corners, and the vibration detection sensors 121 are arranged in the form of a circular array on the area of the chassis guards corresponding to the center of the engine. Considering not only the comprehensiveness of detection, but also the density of lifting sensors in key parts to ensure that even if some sensors fail, the remaining sensors can still effectively feedback the state of the guard.
  • the fender entity 110 may be a fender structure added to the ex-factory vehicle, or may be a structure of the ex-factory vehicle itself.
  • the fender entity 110 is the cover of the battery pack.
  • the guard plate entity 110 is the casing structure of the engine, and the guard plate entity 110 can also be used as the frame structure. If the vibration detection sensor array 120 is directly arranged on the chassis structure, the vibration detection sensor 121 can be arranged on the chassis. key position. Through the vibration signal characteristics returned by the vibration detection sensor 121, the impact detection is performed on the chassis.
  • the shape of the chassis protector 100 of the present disclosure can be set according to the structure of the chassis.
  • the chassis as a whole is square, and the shape of the chassis protector 100 can also be set to be a corresponding square as required.
  • the shape of the chassis guard 100 may be optimized.
  • the chassis guard 100 is arranged between the parts. At this time, the chassis guard 100 needs to cover a plurality of key parts.
  • An envelope graph can be made according to the shapes of the multiple key parts here, and the chassis guard is set according to the envelope graph. Dimensions of the board 100 .
  • the chassis guard plate 100 can be provided in multiple pieces and used in combination, which is also convenient for future flexible production requirements, and is applicable to chassis structures of various vehicle models.
  • the vibration detection sensor array 120 in the embodiment of the present disclosure uses a plurality of vibration detection sensors 121 for detection, which ensures the comprehensiveness of the detection.
  • an average value can be used to represent the vibration of the corresponding area on the guard plate.
  • signal characteristics For example, the vibration signal feature is a frequency feature, and a plurality of frequency feature values are obtained according to the vibration signal features of each vibration detection sensor 121, and the frequency feature value of the guard plate in this area can be obtained by calculating the average value;
  • the importance of the key components on the chassis guard is different, or the importance of different areas of the same key component is different. You can set the weight according to the different importance, and obtain the chassis guard in this area by weighted average. 100 frequency characteristics.
  • the ground end 1215 of the vibration detection sensor 121 in the vibration detection sensor array 120 is electrically connected to the shield entity 110 to realize a common ground.
  • the vibration detection sensor 121 outputs an electrical signal, and often needs to refer to the ground terminal 0 potential to output the signal.
  • the ground wire end of each sensor can be connected to the guard plate entity 110. Since the guard plate entity 110 is mostly an integral metal plate, the ground wire of each sensor can be connected.
  • the terminals can be unified to 0 potential.
  • non-metal such as carbon fiber material
  • a connection point is set at the installation position of the sensor, and a connection point can be arranged between the connection points.
  • Metal wires or bars are pre-embedded in the carbon fiber material, so that the ground ends of the vibration detection sensors 121 on the entire fender body 110 are connected together. In this way, the installation of the vibration detection sensor 121 is facilitated, and the structure of the chassis fender 100 is also compact.
  • An operational amplifier circuit may be set in the vibration detection sensor 121 in the embodiment of the present disclosure to amplify the initial signal, and the amplification factor is set according to actual data processing requirements.
  • the vibration detection sensor array 120 can be arranged in the vibration detection sensor array 120.
  • the vibration detection sensors 121 are grouped.
  • the vibration detection sensor array 120 includes one or more vibration detection sensor groups 122, and the chassis entity 110 is further provided with one or more vibration detection sensor groups corresponding to the vibration detection sensor groups 122.
  • a signal collection board 130 is provided, and the output end of the vibration detection sensor 121 in the vibration detection sensor group 122 is connected to the corresponding signal collection board 130 .
  • Each signal collection board 130 collects, amplifies, and outputs the signal of the vibration detection sensor 121 .
  • the signals between the multiple signal collection boards 130 can be unified and output to the outside.
  • each signal collecting board 130 may be connected by means of a bus, and the vibration signal characteristics can be outputted through the bus.
  • the one or more signal collection boards 130 are connected through the CAN bus 140 , and the vibration signal characteristics are externally output through the CAN bus 140 .
  • the number of the shield entities 110 is multiple, each shield entity 110 is provided with the signal collection board 130 , and the signal collection boards 130 on adjacent shield entities 110 pass through bus connection.
  • the CAN bus 140 is used to connect the adjacent fender entities 110 .
  • the plurality of fender entities 110 correspond to different regions of the chassis, and a front fender, a middle fender and a rear fender can be formed according to the corresponding regions.
  • the signal acquisition board 130 is provided with a signal acquisition circuit, and the signal acquisition circuit can be implemented by a multiplexer circuit, that is, one signal acquisition circuit collects Electrical signals from multiple sensor units.
  • the multiplexer is connected to an AD (analog-digital) sampling circuit, and the AD sampling circuit is used to sample and convert the analog signal into a digital signal, and then output to the MCU (micro control unit).
  • Multiple MCUs (MCU0, MCU1, MCU2, MCU3...) are divided into master MCU (MCU0 in Fig. 4b) and slave MCUs (MCU1, MCU2, MCU3... in Fig.
  • the slave MCU is used for sampling circuit from AD Receive the acquisition signal, and control the sampling frequency, sampling time and other parameters of the AD sampling circuit.
  • the main MCU is used to receive the signal from the MUC, and perform operations and output, and it is also used to control the slave MCU. Cost can be reduced by multiplexing one AD sampling circuit with multiple sensor units.
  • the outer shape of the guard plate entity 110 may be set according to the outer shape of the protected member on the chassis, and the outer shape of the guard plate entity 110 corresponds to the protected member provided on the chassis, so The protective plate entity 110 is installed below the protected member.
  • the vibration detection sensor 121 in the vibration detection sensor array 120 includes one or more of a piezoelectric ceramic sensor, an acceleration sensor, a strain gauge, and a thin film pressure sensor.
  • the functions and circuits of the signal collection board 130 will also be different.
  • the vibration detection sensors 121 use piezoelectric ceramic sensors, because the piezoelectric ceramic sensors vary according to the vibration, pressure and The piezoelectric effect outputs electromotive force, that is, a voltage analog signal.
  • the signal acquisition board 130 receives the signal, it amplifies the signal, and then converts it into a digital signal for external output.
  • the vibration detection sensor 121 uses an acceleration sensor. Since some kinds of acceleration sensors output digital signals, they are input to the signal acquisition board 130 for registration, and then written into a corresponding data structure according to the bus protocol and sent to the outside world.
  • the vibration detection sensor 121 in the present disclosure can output vibration signals according to changes in strain and pressure, such as using strain gauges and thin-film pressure sensors, or output vibration signals according to changes in piezoelectric electromotive force, such as using piezoelectric ceramic sensors.
  • the vibration detection sensor 121 there are various correspondences between the vibration detection sensor 121 and the signal collection board. As shown in FIG. 5 a and FIG.
  • the detection sensor 121 corresponds to a signal collection board 130, and then each signal collection board 130 is connected through a bus.
  • the form shown in FIG. 6 can also be used to connect the vibration detection sensor 121 in a certain direction to the same signal collection board 130. As shown in FIGS.
  • the guard board entity 110 includes the front guard board 111, The middle fender 112 , the rear fender 113 and the tail fender 114 , the first signal collection board 131 and the front fender 111 , the middle fender 112 , the rear fender 113 and the tail fender 114 are transverse to the first signal collection board 131
  • the vibration detection sensor 121 corresponding to the position is connected to the first signal collection board 131 .
  • the vibration detection sensors 121 on the second signal collecting board 132 and the front fender 111 , the middle fender 112 , the rear fender 113 and the tail fender 114 corresponding to the lateral positions of the second signal collecting board 132 are the same as those described above.
  • the second signal collection board 132 is connected, and then the first signal collection board 131 and the second signal collection board 132 are connected through a bus.
  • the ground end or the negative electrode of the vibration detection sensor 121 is connected to the shield entity 110 .
  • the ground end of the vibration detection sensor 121 is connected to the fender entity 110, and the fender entity 110 is connected to the vehicle shell, so that the vibration detection sensor 121 can be connected in common; specifically, as shown in FIG. 7
  • the vibration detection sensor 121 is realized by integrating on a PCB board, and the piezoelectric ceramic sheet is welded on the PCB board, and then the signal is output through the pins on the PCB. Layer 1212 is connected.
  • FIG. 7 As shown in the figure, the vibration detection sensor 121 is realized by integrating on a PCB board, and the piezoelectric ceramic sheet is welded on the PCB board, and then the signal is output through the pins on the PCB. Layer 1212 is connected. In actual application, as shown in FIG.
  • the shield body 110 is made of metal material, the PCB board metal layer 1212 is laid on the base layer 1211 of the PCB board, and a buffer is provided between the shield body 110 and the vibration detection sensor 121
  • the layer 1213 for example, a rubber pad, during installation, the vibration detection sensor 121 is fixed to the guard plate entity 110 through metal screws 1214, and through holes are provided on the PCB metal layer 1212, the PCB base layer 1211 and the buffer layer 1213,
  • the shield body 110 is provided with threaded holes or through holes, and the metal screws 1214 pass through the through holes set on the PCB metal 1212 , the PCB base layer 1211 and the buffer layer 1213 and the threaded holes or through holes set on the shield body 110 . Hole connection.
  • the metal screw 1214 is used as a fixing part and a conductive part to connect the ground or negative electrode of the piezoelectric ceramic sheet to the The fender body 110 is then connected to the vehicle body shell.
  • the vibration detection sensor 121 is in the form of a piezoelectric ceramic sensor.
  • the piezoelectric ceramic sensor includes a PCB board. Piezoelectric ceramic sheets are arranged on one side, and after a buffer pad is placed on the PCB board, it is fixed on the guard plate entity 110, and a plurality of them form an array.
  • the chassis guard 110 will be forced to vibrate when driving, and the vibration signal characteristics represent that the vehicle is driving.
  • the vibration signals corresponding to other sensors in the array can also be passed through. Features are compared to identify faulty sensors.
  • the single chip system on the chassis guard 100 records the impact degree, location, time and other information, and transmits it to the display screen in the car for display. It can also report to the cloud platform through the mobile phone or the built-in cellular communication of the system, which can solve the damage to the electric vehicle chassis. Evidence establishment and service improvement.
  • a water pressure sensor 150 is installed to monitor the water level height when the vehicle is wading. When the height exceeds the safety value, an alarm will be issued. When the water level exceeds the warning value, the window or sunroof will be automatically opened to prevent the door from being unable to be opened in the water. affect escape.
  • the infrared temperature sensor 160 is installed under the corresponding positions of the water tank 620 , the engine 610 , the gearbox 630 , the transfer case, and the bottom battery of the vehicle 600 . Since the frame will be deformed during bumps, the non-contact design will improve the installation efficiency. Convenience, and reduce the precision requirements of the installation structure. Since the infrared temperature sensor is an optical sensor, in order to avoid dust coverage, a flexible protection tube 161 is made of high temperature resistant rubber (such as silicon rubber, 220 degrees Celsius) for infrared light transmission. High temperature resistance (such as silicone rubber glue) can be used for bonding and sealing to avoid water entering when wading.
  • high temperature resistant rubber such as silicon rubber, 220 degrees Celsius
  • High temperature resistance such as silicone rubber glue
  • the fans 170 are installed in an array on the shield body 110, and a small-diameter high-speed fan can be used.
  • the high-speed DC motor rotates at a speed of 38,000 rpm.
  • a perfusion fan is used. Turn it on or off to control the wind direction to send air to the rear of the car.
  • Fans in the form of arrays can be easily controlled and used in combination.
  • the chassis guard in the embodiment of the present disclosure is not only applicable to the chassis of the automobile, but also applicable to the outside installation and use of other mobile devices that require protective structural members.
  • the chassis guard 100 may further monitor the protected parts and key parts on the chassis, such as monitoring temperature information, and may appropriately perform cooling or heat preservation work.
  • the chassis shield 100 further includes a temperature sensor 160 disposed on the shield entity 110 for detecting the temperature of the protected member installed on the chassis, and a temperature sensor 160 disposed on the shield entity for detecting the temperature of the protected member installed on the chassis.
  • the signal of the temperature sensor 160 is input to a signal processing device, so that the signal processing device can control the operation of the fan array according to the signal of the temperature sensor 160 , wherein , the fan array includes a plurality of fans 170 corresponding to the protected components.
  • a temperature sensor 160 is arranged on the chassis shield below the engine, and a fan 170 is arranged at a corresponding position.
  • the fan can be turned on, so that the air flow is blown toward the engine, and the engine to dissipate heat.
  • the chassis guard 100 further includes a water level detection sensor 190 located on the guard body 110 , and the water level detection sensor 190 sends a signal to a signal processing device for the signal processing.
  • the device determines whether the fender entity 110 is involved in water and whether to send a door unlocking signal, a sunroof opening signal and/or a vehicle window opening signal.
  • the water level detection sensor 190 can be arranged on the front fender 111, and a water pressure sensor is used, which is calibrated before use.
  • the water level detection sensor can also output water depth information and send it to the signal processing device.
  • the signal processing device is based on the water level.
  • the signal output by the detection sensor 190 judges whether the fender entity 110 is wading in water, and if wading in water, it will send a signal to open the sunroof or the window to avoid drowning of persons in the vehicle and increase the safety of the vehicle.
  • the driving of opening the window or opening of the sunroof adopts the driving built in the vehicle.
  • the signal processing device can directly send the opening signal to the driving device, or can send the signal to the vehicle central control, and the vehicle central control sends the signal to the driving device. Drive so that the windows or sunroof are driven open.
  • the chassis guard 100 in the embodiment of the present disclosure may have a further signal processing function, such as judging whether an impact has occurred through vibration signal characteristics, or an external processor may be used to detect whether an impact has occurred.
  • the chassis fender 100 is provided with a signal processing device, and the signal processing device may be disposed on the fender entity 110 or on the vehicle.
  • the signal processing device for judging whether the impact is or not can be independent from the chassis guard 100. At this time, from the perspective of engineering practice, the signal processing device can be adapted to a variety of different models. Chassis guard 100.
  • some embodiments of the present disclosure provide a vehicle-mounted collision detection system 400 , which includes the chassis guard 100 in the above-mentioned embodiment, and further includes the signal collecting board 130 and the signal collecting board 130 .
  • the connected signal processing device 430, the signal processing device 430 identifies whether the fender entity is impacted according to the rate of change of the vibration signal characteristics, wherein the vibration signal characteristics include frequency characteristics, energy characteristics, amplitude spectrum characteristics, One or more of the magnitude features.
  • the signal processing device 430 can further determine whether there is a collision and perform comprehensive detection on the fender entity 110.
  • the signal processing device 430 It can be connected to the signal acquisition board 130 through the CAN bus 140 to obtain the information of each vibration detection sensor 121 and other detection sensors.
  • the signal processing device 430 can be arranged on the guard board entity, and can also have an interface on the guard board entity 110.
  • the signal processing device is arranged on the vehicle body, and is connected to each signal collection board 130 through the interface on the guard board entity 110 .
  • the signal acquisition board 130 performs frequency domain analysis, time domain analysis or time-frequency domain analysis on the vibration signal, obtains vibration signal characteristics or other signal characteristics, and sends it to the signal processing device.
  • the signal processing device 430 further analyzes the vibration signal according to the vibration signal. The feature and its change determine whether the fender entity has an impact.
  • the detected impact types include short-term impact and long-term impact. Short-term impact can be impact, knock, and long-term impact can be scratch.
  • the vibration signal characteristics include one or more of frequency characteristics, energy characteristics, amplitude spectrum characteristic information, and amplitude characteristics, and the frequency characteristics represent the physical characteristics of the fender. Forced vibration frequency, the energy characteristic is the product of the square of the characteristic sampling value of the vibration signal and the sampling period, and the amplitude spectrum characteristic information may be the logarithm value of the amplitude spectrum.
  • the signal processing device 430 identifies whether the fender entity 110 is impacted according to the change rate of the vibration signal characteristic.
  • the signal acquisition board 130 periodically uploads the vibration signal characteristics to the signal processing device 430, and the signal processing device 430 analyzes and compares the vibration signal characteristics received before and after, and obtains the change rate information of the vibration signal characteristics. When a certain threshold is reached, it can be recognized as a signal of impact.
  • the signal collection board 130 processes the signal from the vibration detection sensor 121 after receiving the signal, and acquires the characteristics of the vibration signal. For example, the vibration detection sensor 121 uses a piezoelectric ceramic sensor to output a voltage signal, and the signal collection board 130 collects the voltage signal, performs time domain and frequency domain analysis, and obtains information such as frequency information, energy information, and amplitude spectrum information.
  • the rate of change information can be calculated by the eigenvalues of the vibration signal recorded by the signal processing device 430.
  • the signal processing device 430 obtains the eigenvalues of the vibration signal according to the timing period and caches them.
  • the upper The vibration signal characteristic change rate information can be obtained by dividing the difference between the second stored vibration signal characteristic value and the vibration signal characteristic value received at the current moment or the most recent moment by the timing period.
  • the judging period is relatively dense, for example, it is almost the same as the sampling period or the frequency of the vibration signal, the change value of the characteristics of the vibration signal can be used to judge whether there is a collision.
  • the amplitude spectrum eigenvector is the logarithmic value of the amplitude spectrum, which is obtained after analysis by the signal acquisition board 130. When judging whether the signal processing device 430 hits, the amplitude spectrum eigenvectors obtained before and after calculate the vector distance value, Then analyze to determine whether it was hit.
  • whether there is a short-term impact can be determined according to energy characteristics and amplitude spectrum feature information; for a long-term impact, frequency characteristics can be used to determine whether there is a collision.
  • the signal processing device 430 is configured to obtain the installation position corresponding to the vibration detection sensor 121 according to the relationship between the vibration signal characteristics and the installation position of the vibration detection sensor 121, and according to the installation position A threshold value corresponding to the installation position is acquired, and whether the guard plate entity is impacted is determined according to the vibration signal characteristics and the corresponding threshold value.
  • a label can be set for each vibration detection sensor 121, and the corresponding relationship between the label of the vibration detection sensor 121 and the position of the vibration detection sensor 121 on the guard plate entity 110 can be recorded in the signal processing device 430, and the label can be set.
  • the vibration detection sensor 121 is bound to the signal acquisition port of the signal acquisition board 130, after the signal acquisition board 130 receives the signal from the vibration detection sensor 121, according to the port number, The signal is encoded, and the port number and the vibration signal feature are sent together.
  • the signal processing device 430 receives the signal of the signal acquisition board 130, it decodes to obtain the port number and the vibration signal feature. According to the above-mentioned corresponding relationship, it can be obtained Until this time, the vibration detection sensor corresponding to the vibration signal characteristic is received, so as to obtain the corresponding position on the guard plate entity 110 .
  • the vibration detection sensor 121a corresponds to the surrounding area of the guard plate, and the corresponding impact judgment threshold is Ta.
  • the vibration detection sensor 121b corresponds to the central area of the guard plate. Since it is closest to the protected part, the detection should be more sensitive.
  • the shield entity 110 is impacted, and the impacted position on the shield entity 110 is acquired according to the vibration signal characteristic and the installation position relationship of the vibration detection sensor 121 .
  • a label can be set for each vibration detection sensor 121, and the corresponding relationship between the label of the vibration detection sensor 121 and the position of the vibration detection sensor 121 on the guard plate entity 110 can be recorded in the signal processing device 430, and the label can be set.
  • the vibration detection sensor 121 is bound to the signal acquisition port of the signal acquisition board 130, after the signal acquisition board 130 receives the signal from the vibration detection sensor 121, according to the port number, The signal is encoded, and the port number and the vibration signal feature are sent together.
  • the signal processing device 430 After the signal processing device 430 receives the signal of the signal acquisition board 130, it decodes and obtains the port number and the vibration signal feature. According to the above-mentioned correspondence, it can be obtained Until this time, the vibration detection sensor corresponding to the vibration signal characteristic is received, so as to obtain the corresponding position on the guard plate entity 110 .
  • the vibration detection sensor 121 in the form of an array can be used for detection, and a plurality of vibration signal characteristics can be obtained. Signal characteristics to judge whether it is hit or not.
  • weights may be set for the vibration signal features obtained by each sensor, and it is determined by using the representative vibration signal features after the weighted average that they are all impacted.
  • the frequency information of multiple vibration detection sensors is used for determination.
  • the signal processing device 430 is specifically configured as , in response to the rate of change of the first vibration signal characteristic of the first vibration detection sensor 123 in the vibration detection sensor array 120 exceeding a first threshold, detecting one or more second vibration detection sensors 123 adjacent to the first vibration detection sensor 123 Whether the change rate of the second vibration signal characteristic of the vibration detection sensor 124 exceeds a first threshold, in response to the change rate of the second vibration signal characteristic exceeding the first threshold, it is determined that the guard plate entity is hit.
  • the misjudgment caused by the false alarm of a single sensor is avoided.
  • the vibration signal feature includes an amplitude feature
  • the signal processing device 430 is specifically configured to respond to the first vibration detection sensor 123 in the vibration detection sensor array 120 The rate of change of the frequency characteristic exceeds the fourth threshold, and it is detected whether the first amplitude characteristic of the first vibration detection sensor 123 exceeds the second threshold, and in response to the first amplitude characteristic exceeding the second threshold, it is determined that the guard plate Entity is struck. Judgment is made through multiple signal attribute information of single sensor information, which improves the accuracy of judgment.
  • the signal processing device 430 is further configured to detect the first vibration of the first vibration detection sensor 123 in the vibration detection sensor array 120
  • the signal characteristic is lower than the second vibration signal characteristic of one or more second vibration detection sensors 124 adjacent to the first vibration detection sensor 123, and the difference between the second vibration signal characteristic and the first vibration signal characteristic is greater than the third vibration signal characteristic
  • the threshold is determined to determine that the first vibration detection sensor 123 is faulty, and the vibration signal characteristics of the first vibration detection sensor 123 are shielded.
  • the frequency of the surrounding second vibration detection sensor 124 is higher than the frequency of the first vibration detection sensor 123, and the difference is larger, it can be determined that the first vibration detection sensor 123 is faulty, so that the information output by this sensor can be to block.
  • the frequency feature output by the vibration detection sensor can not only be used as a detection basis for whether it is hit, but also can obtain information about the surrounding environment of the fender entity, such as whether it is wading, according to the frequency feature. Whether it is sand-related information, the signal processing device 430 is configured to acquire the environmental information of the fender entity according to the frequency characteristics and a preset vibration environment frequency threshold.
  • the guard plate entity 110 exhibits different frequency characteristics in different environments. For example, the frequency characteristics of the guard plate entity 110 when immersed in water are inconsistent with the frequency characteristics in the air, and the guard plate can be perceived through different thresholds. Information about the environment where the entity 110 is located.
  • the environmental information includes water wading information and water wading depth information
  • the signal processing device 430 is specifically configured to compare the frequency feature with the preset water wading environmental frequency threshold, and determine Whether the fender entity is wading, and the wading depth information of the fender entity is acquired according to the frequency feature, wherein the wading environment frequency threshold is the frequency from the fender body when the chassis is immersed and running in water.
  • the above-mentioned water wading environment frequency threshold can be determined through multiple tests, which can be a single point value or a frequency range.
  • experiments can also be performed in different water depths to obtain different thresholds, and the closest threshold segment is found according to the measured frequency value and the different thresholds, so as to obtain the water depth information.
  • the vibration detection sensor 121 can not only detect the impact situation, but also detect the environmental information around the fender entity in the non-collision situation, and has rich functions.
  • the corresponding impact detection threshold ensures more accurate detection. As shown in Table 1 below, different judgment thresholds are set, where awc is smaller than asc, that is, in the sand-related environment, the vibration change rate needs to be larger to be recognized as impact.
  • the signal processing device 430 is further configured to, according to the information of the temperature sensor, detect the first protected part exceeding the temperature threshold, and control the first protected part according to the position of the first protected part
  • the target fan in the fan array rotates to dissipate heat to the first protected member. For example, if the temperature sensor 160 detects that the temperature of the battery pack located in the middle and rear of the chassis is too high, it is necessary to dissipate heat.
  • the fan 170 under the battery needs to be turned on, but also the fan 170 corresponding to the front of the chassis needs to be turned on to form an air flow channel , so that the wind at the front of the vehicle is diverted to the middle and rear of the chassis, and then the fan 170 at the rear of the bottom should also be turned on, so that after the air flow and the battery pack are heat exchanged, they can be exhausted from the bottom by the fan 170 at the rear, so as to avoid the fan 170 at the rear.
  • the high-temperature airflow affects other components on the chassis.
  • the embodiment of the present disclosure also further The method of filtering the frequency effect brought by the fan is adopted, so that the detection and judgment of the signal processing device 430 is more accurate.
  • the signal processing device 430 is further configured to obtain the target fan according to the rotational speed information of the target fan
  • the frequency characteristics of the vibration detection sensor 121 located near the target fan are filtered according to the noise frequency, and whether the shield entity 110 is impacted is identified according to the change rate of the filtered vibration signal characteristics.
  • the signal processing device 430 can obtain the specific position of the working fan, and filter the frequency characteristics returned by the vibration detection sensor 121 around it.
  • the signal processing device can also indicate the corresponding signal acquisition board. 130 performs filtering processing on the vibration signal characteristics of the corresponding vibration detection sensor 121 , obtains frequency characteristics according to the filtered signal, and sends it to the signal processing device 430 for detection and judgment.
  • the signal processing device 430 or the signal acquisition board 130 performs filtering, according to the rotational speed information of the fan, the corresponding noise frequency can be queried, and then the signal can be filtered; wherein, when the vehicle is stopped, each fan can be driven in turn according to the frequency.
  • the vibration detection sensor When rotating at different rotational speeds, the vibration detection sensor is used to measure the frequency at which the guard body 110 is forced to vibrate as the noise frequency. The detection is performed according to the frequency characteristics after filtering processing, and the judgment is more accurate.
  • the piezoelectric ceramic in the embodiment of the present disclosure outputs a fluctuating electrical signal, and the signal collecting board 130 can filter the electrical signal according to the frequency of the noise, collect the filtered signal, and obtain frequency information.
  • the chassis shield 100 further includes a temperature sensor 160 disposed on the shield entity 110 for detecting the temperature of the protected member installed on the chassis, and a temperature sensor 160 disposed on the shield entity for detecting the temperature of the protected member installed on the chassis.
  • the signal of the temperature sensor 160 is input to the signal processing device 430 , and the signal processing device 430 controls the operation of the fan array according to the signal of the temperature sensor 160 , wherein , the fan array includes a plurality of fans 170 corresponding to the protected parts.
  • a temperature sensor 160 is arranged on the chassis shield below the engine, and a fan 170 is arranged at a corresponding position.
  • the fan can be turned on, so that the air flow is blown toward the engine, and the engine to dissipate heat.
  • the chassis guard 100 further includes a water level detection sensor 190 located on the guard body 110, the water level detection sensor 190 sends a signal to the signal processing device 430, and the signal processing device 430 Determine whether the fender entity 110 is involved in water and whether to send a door unlocking signal, a sunroof opening signal and/or a window opening signal.
  • the water level detection sensor 190 can be arranged on the front fender 111, a water pressure sensor is used, and calibration is performed before use.
  • the water level detection sensor 190 can also output water depth information and send it to the signal processing device 430.
  • the signal processing device 430 Determine whether the fender entity 110 is wading in water according to the signal output by the water level detection sensor 190, and if wading in water, it will send a sunroof or window opening signal to avoid drowning of people in the vehicle and increase the safety of the vehicle.
  • the driving of opening the window or opening of the sunroof adopts the drive built in the vehicle.
  • the signal processing device 430 can directly send the opening signal to the driving device, or can send the signal to the vehicle central control, and the vehicle central control sends the signal. Give the drive so that the window or sunroof is driven open.
  • the impact position may be visually displayed.
  • the chassis guard 100 further includes a connection with the signal processing device 430 .
  • the bluetooth module 210 is used for sending the information of the signal processing device 430 to the mobile terminal 300, so that the mobile terminal 300 displays the impacted position of the guard plate entity 110.
  • the mobile terminal 300 stores the basic model of the chassis guard 100, the position of the vibration detection sensor 121, and the relationship table between the labels and the position of the vibration detection sensor 121.
  • the mobile phone terminal 300 send the label of the vibration detection sensor 121 and other information to the mobile phone terminal 300 through the Bluetooth module 210, and the mobile phone terminal 300 obtains the specific location according to the label of the vibration detection sensor 121, and identifies it in the basic model of the chassis guard out position, so that the user can intuitively observe the impact position.
  • visualization can also be implemented on a vehicle-mounted central control.
  • a vehicle-mounted collision detection system 400 including the above-mentioned chassis guard 100 , It also includes an on-board controller 410 connected to the signal processing device 430, and an on-board display screen 420 connected to the on-board controller 410.
  • the on-board display screen 420 is used to display the position where the shield entity 110 is struck.
  • the vehicle controller 410 can also store the basic model of the chassis guard 100, the position of the vibration detection sensor 121, and the relationship table between the label and the position of the vibration detection sensor 121.
  • the signal processing device 430 will send the label of the vibration detection sensor 121 and other information to the on-board controller 410 after judging that the guard plate entity 110 is hit, and the on-board controller 410 will query and obtain the specific location according to the label of the vibration detection sensor 121, and in the The position is marked in the basic model of the chassis guard, so that the user can intuitively observe the position of the impact, and send display information to the vehicle display screen 420 for display.
  • the chassis guard can use the vibration detection sensor to detect the impact of the chassis guard.
  • the state of the chassis guard can also be known through the vibration characteristics of the chassis guard, and the chassis guard can be detected. Predict the failure of structural components, which is convenient for users to prevent driving risks in advance.
  • the vibration detection sensor can also learn the environmental information of the chassis guard plate, and adjust the threshold value of impact detection accordingly.
  • the key parts and the protected parts on the chassis are detected by the temperature sensor on the chassis guard, and after the temperature of the protected parts and the key parts is determined, the fan on the chassis is controlled to work. At the same time, during the impact detection, the frequency interference caused by the rotation of the fan is filtered out accordingly, so that the detection is more accurate.
  • the present disclosure also provides a collision detection method, which includes the following steps:
  • the vibration signal features include frequency features, amplitude signals or one or more of amplitude features, energy features, and amplitude spectrum feature information;
  • the vibration Signal characteristics can be obtained by processing the original output signal of the sensor. For example, frequency information and amplitude information can be obtained by filtering and sampling, and then multiplied with time to obtain energy information. Frequency analysis can also be performed to obtain amplitude spectrum characteristic information, etc. .
  • multiple vibration signal characteristics can be obtained to ensure reliable and effective detection. At the same time, multiple vibration signal characteristics can be integrated to obtain more representative signals and make detection more accurate.
  • the frequency information can be obtained by processing the mean signal.
  • the step S130 may adopt the following steps: obtaining the installation position corresponding to the vibration detection sensor according to the relationship between the vibration signal characteristics and the installation position of the vibration detection sensor, and obtaining the installation position corresponding to the vibration detection sensor according to the installation position.
  • the threshold value corresponding to the installation position is determined according to the vibration signal characteristics and the corresponding threshold value to determine whether the guard plate entity is impacted. Different thresholds are set for different regions to ensure more accurate detection.
  • S140 Determine that the shield entity is hit, and obtain the impacted position on the shield entity according to the vibration signal feature and the installation position relationship of the vibration detection sensor.
  • the position of the vibration detection sensor on the chassis guard can be calibrated. When a sudden change in the vibration signal characteristic of a vibration detection sensor is detected, the impact is recognized. According to its installation position, the information that the corresponding chassis guard is hit can be obtained.
  • the step S130 includes:
  • S132 in response to the change rate of the second vibration signal feature exceeding a first threshold, determine that the fender entity is hit.
  • the vibration information of multiple vibration detection sensors is used to determine whether it is impacted, so that the detection is more accurate, and the situation of false detection by a single sensor is avoided.
  • the step S130 includes:
  • the step S130 further includes:
  • the first vibration signal characteristic of the first vibration detection sensor in the vibration detection sensor array is lower than the second vibration signal characteristic of one or more second vibration detection sensors adjacent to the first vibration detection sensor , and the difference between the second vibration signal feature and the first vibration signal feature is greater than the third threshold, it is determined that the first vibration detection sensor is faulty, and the vibration signal feature of the first vibration detection sensor is shielded.
  • the vibration characteristics detected by a single vibration detection sensor are compared with the vibration characteristics detected by the surrounding sensors, and the faulty sensor information is obtained, and then shielded.
  • step S150 includes: acquiring environmental information of the fender entity according to the frequency feature and a preset vibration environment frequency threshold.
  • the environmental information includes water wading information and water wading depth information; the signal processing device is specifically configured to compare the frequency characteristics with the preset water wading environment frequency threshold, and determine whether the guard plate entity is involved in water wading. water, and obtain the wading depth information of the fender entity according to the frequency feature, wherein the wading environment frequency threshold is the value measured from the vibration detection sensor on the fender entity when the chassis is immersed in water and running. frequency characteristics.
  • the environmental information also includes sand-related information. Similarly, detection can be performed using a similar principle.
  • the chassis guard is further provided with a temperature sensor on the guard body for detecting the temperature of the protected member installed on the chassis, and a temperature sensor on the guard body for detecting the temperature of the protected member installed on the chassis.
  • the impact detection method further includes the steps of: receiving a signal from the temperature sensor, and controlling the fan array to work according to the signal from the temperature sensor. According to the information of the temperature sensor, the first protected member exceeding the temperature threshold is detected, and according to the position of the first protected member, the target fan in the fan array is controlled to rotate to dissipate heat from the first protected member.
  • the step S130 further includes the following steps: acquiring the noise frequency of the target fan according to the rotational speed information of the target fan, and detecting the vibration detection sensor located near the target fan according to the noise frequency Filter the frequency characteristics of the vibration signal, and identify whether the guard plate entity is impacted according to the change rate of the filtered vibration signal characteristics. By filtering out the frequency of the fan, it is possible to more accurately identify whether it has been hit.
  • the impact detection method further includes step S160, wherein the chassis guard is further provided with a water level detection sensor located on the chassis guard, and the step S160 includes: receiving the The water level detects the sensor signal, determines that the guard plate is wading in water, and sends a sunroof opening signal and/or a vehicle window opening signal, so that the vehicle window and/or the sunroof are opened.
  • step S170 is further included, and the step S170 includes: displaying the impacted position of the fender entity.
  • the step S170 includes: displaying the impacted position of the fender entity.
  • the specific position is obtained by querying according to the label of the vibration detection sensor. The position is marked in the basic model of the chassis guard, so that the user can visually observe the position of the impact.
  • the collision detection method in the embodiment of the present disclosure may be executed in the above-mentioned signal processing device 430, or may be built-in and executed in an in-vehicle system.
  • the impact detection method of the present disclosure can detect the impact of the chassis guard by the vibration detection sensor, and at the same time, when no impact occurs, the state of the chassis guard can also be known through the vibration characteristics of the chassis guard, and the failure of the chassis guard structure can be detected. Prediction is convenient for users to prevent driving risks in advance.
  • the vibration detection sensor can also learn the environmental information of the chassis guard plate, and adjust the threshold value of impact detection accordingly.
  • the key parts and the protected parts on the chassis are detected by the temperature sensor on the chassis guard, and after the temperature of the protected parts and the key parts is determined, the fan on the chassis is controlled to work. At the same time, during the impact detection, the frequency interference caused by the rotation of the fan is filtered out accordingly, so that the detection is more accurate. Also provides the ability to visualize the impacted site.
  • an embodiment of the present disclosure further provides a collision detection device 500, including:
  • the receiving module 510 the receiving module 510 is used to obtain the vibration signal characteristics output by the vibration detection sensor array on the shield entity, wherein the vibration signal characteristics include one of frequency characteristics, amplitude signals, energy characteristics, and amplitude spectrum characteristic information or more; the vibration signal characteristics can be obtained by processing the original output signal, for example, frequency information can be obtained by filtering and sampling. Using an array of vibration detection sensors, multiple vibration signal characteristics can be obtained to ensure reliable and effective detection. At the same time, multiple vibration signal characteristics can be integrated to obtain more representative signal characteristics and make detection more accurate. For example, the frequency information can be obtained by processing the mean signal.
  • the rate of change acquisition module 520 is used to acquire the characteristic rate of change of the vibration signal according to the characteristic of the vibration signal; the rate of change acquisition module 520 acquires the characteristic value of the vibration signal at each time period, and compares, Get the rate of change.
  • the impact judgment module 530 is used for judging whether the guard plate entity is impacted according to the characteristic change rate of the vibration signal and the change rate threshold. Since the impact will cause the characteristic jump of the vibration signal to intensify, if the sudden change of vibration is detected, the impact information can be obtained, and the impact detection result is guaranteed to be valid.
  • the impact determination module 530 is configured to obtain the installation position corresponding to the vibration detection sensor according to the vibration signal characteristic and the installation position relationship of the vibration detection sensor, and obtain the installation position corresponding to the installation position according to the installation position
  • the threshold value is determined according to the characteristics of the vibration signal and the corresponding threshold value to determine whether the guard plate entity is impacted. Different thresholds are set for different regions to ensure more accurate detection.
  • the impact detection device 500 further includes an impact position acquisition module 540, and the impact position acquisition module 540 is configured to determine that the guard plate entity is impacted, according to the vibration signal characteristics and the installation position relationship of the vibration detection sensor , to obtain the position where the shield is physically hit.
  • the position of the vibration detection sensor on the chassis guard can be calibrated. When a sudden change in the vibration frequency of a vibration detection sensor is detected, the impact is recognized. According to its installation position, the information that the corresponding chassis guard is hit can be obtained.
  • the impact determination module 530 is further configured to:
  • S132 in response to the change rate of the second vibration signal feature exceeding a first threshold, determine that the fender entity is hit.
  • the vibration information of multiple vibration detection sensors is used to determine whether it is impacted, so that the detection is more accurate, and the situation of false detection by a single sensor is avoided.
  • the impact determination module 530 is further configured to:
  • the impact determination module 530 is further configured to:
  • the first vibration signal characteristic of the first vibration detection sensor in the vibration detection sensor array is lower than the second vibration signal characteristic of one or more second vibration detection sensors adjacent to the first vibration detection sensor , and the difference between the second vibration signal feature and the first vibration signal feature is greater than the third threshold, it is determined that the first vibration detection sensor is faulty, and the vibration signal feature of the first vibration detection sensor is shielded.
  • the vibration characteristics detected by a single vibration detection sensor are compared with the vibration characteristics detected by the surrounding sensors, and the faulty sensor information is obtained, and then shielded.
  • the difference of signals here can be understood as the difference of signal values.
  • the impact detection system 500 further includes a vibration environment information obtaining module 540, and the vibration environment information obtaining module 540 is configured to obtain the vibration environment information according to the frequency characteristics and a preset vibration environment frequency threshold.
  • the environmental information includes water wading information and water wading depth information; the signal processing device is specifically configured to compare the frequency characteristics with the preset water wading environment frequency threshold, and determine whether the guard plate entity is involved in water wading. water, and obtain the wading depth information of the fender entity according to the frequency feature, wherein the wading environment frequency threshold is the value measured from the vibration detection sensor on the fender entity when the chassis is immersed in water and running. frequency characteristics.
  • the environmental information also includes sand-related information. Similarly, detection can be performed using a similar principle.
  • the chassis guard is further provided with a temperature sensor on the guard body for detecting the temperature of the protected member installed on the chassis, and a temperature sensor on the guard body for detecting the temperature of the protected member installed on the chassis.
  • a fan array that is dissipated by the protection member, the impact detection system further includes a fan control module 550, the fan control module 550 is configured to receive the signal of the temperature sensor, and control the operation of the fan array according to the signal of the temperature sensor . According to the information of the temperature sensor, the first protected member exceeding the temperature threshold is detected, and according to the position of the first protected member, the target fan in the fan array is controlled to rotate to dissipate heat from the first protected member.
  • the impact judging module 530 is further configured to: acquire the noise frequency of the target fan according to the rotational speed information of the target fan, and determine the vibration detection sensor located near the target fan according to the noise frequency Filter the frequency characteristics of the vibration signal, and identify whether the guard plate entity is impacted according to the change rate of the filtered vibration signal characteristics. By filtering out the frequency of the fan, it is possible to more accurately identify whether it has been hit.
  • the impact detection system 500 further includes a window driving module 560
  • the chassis guard is further provided with a water level detection sensor located on the chassis guard
  • the window driving module Step 560 is used for: receiving the signal of the water level detection sensor, judging that the fender is physically wading in water, and sending a sunroof opening signal and/or a vehicle window opening signal, so that the vehicle window and/or the sunroof are opened.
  • the impact detection system 500 further includes a display module 570, and the display module 570 is configured to display the impacted position of the fender entity.
  • the specific position is obtained by querying according to the label of the vibration detection sensor. The position is marked in the basic model of the chassis guard, so that the user can visually observe the position of the impact.
  • the impact detection device of the present disclosure can detect the impact of the chassis guard by the vibration detection sensor, and at the same time, when no impact occurs, can also know the state of the chassis guard through the vibration characteristics of the chassis guard, and can detect the failure of the chassis guard structure. Make predictions to facilitate users to prevent driving risks in advance.
  • the vibration detection sensor can also learn the environmental information of the chassis guard plate, and adjust the threshold value of impact detection accordingly.
  • the key parts and the protected parts on the chassis are detected by the temperature sensor on the chassis guard, and after the temperature of the protected parts and the key parts is determined, the fan on the chassis is controlled to work. At the same time, during the impact detection, the frequency interference caused by the rotation of the fan is filtered out accordingly, so that the detection is more accurate. Also provides the ability to visualize the impacted site.
  • modules or units of the apparatus for action performance are mentioned in the above detailed description, this division is not mandatory. Indeed, according to embodiments of the present invention, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above may be further divided into multiple modules or units to be embodied.
  • an electronic device capable of implementing the above method is also provided.
  • aspects of the present disclosure may be implemented as a system, method or program product. Therefore, various aspects of the present invention can be embodied in the following forms: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", “module” or "system”.
  • the electronic device 1100 according to this embodiment of the present invention is described below with reference to FIG. 17 .
  • the electronic device 1100 shown in FIG. 17 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present invention.
  • electronic device 1100 takes the form of a general-purpose computing device.
  • Components of the electronic device 1100 may include, but are not limited to: the above-mentioned at least one processing unit 1110 , the above-mentioned at least one storage unit 1120 , and a bus 1130 connecting different system components (including the storage unit 1120 and the processing unit 1110 ).
  • the storage unit stores program codes, and the program codes can be executed by the processing unit 1110, so that the processing unit 1110 executes various exemplary methods according to the present invention described in the above-mentioned “Exemplary Methods” section of this specification Implementation steps.
  • the processing unit 1110 may perform S110 as shown in FIG. 12 to obtain the vibration signal characteristics output by the vibration detection sensor array on the shield entity, wherein the vibration signal characteristics include frequency characteristics, amplitude signals, energy characteristics, amplitude One or more of the spectral feature information; S120 , obtaining the vibration signal characteristic change rate according to the vibration signal characteristic; S130 , determining whether the guard plate entity is impacted according to the vibration signal characteristic change rate and the change rate threshold.
  • the storage unit 1120 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 11201 and/or a cache storage unit 11202 , and may further include a read only storage unit (ROM) 11203 .
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 1120 may also include a program/utility 11204 having a set (at least one) of program modules 11205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
  • the bus 1130 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
  • the electronic device 1100 may also communicate with one or more external devices 1200 (eg, keyboards, pointing devices, Bluetooth devices, etc.), with one or more devices that enable a user to interact with the electronic device 1100, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 1100 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 1150 . Also, the electronic device 1100 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 1160 . As shown, network adapter 1160 communicates with other modules of electronic device 1100 via bus 1130 . It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 1100, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives and data backup storage systems.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, the technical solutions according to the embodiments of the present invention can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to an embodiment of the present invention.
  • a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.
  • a computer-readable storage medium on which a program product capable of implementing the above-mentioned method of the present specification is stored.
  • aspects of the present invention can also be implemented in the form of a program product comprising program code for enabling the program product to run on a terminal device The terminal device performs the steps according to various exemplary embodiments of the present invention described in the "Example Method" section above in this specification.
  • a program product for implementing the above method according to an embodiment of the present invention may adopt a portable compact disc read only memory (CD-ROM) and include program codes, and may run on a terminal device, such as a personal computer.
  • CD-ROM compact disc read only memory
  • the program product of the present invention is not limited thereto, and in this document, a readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the program product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer readable signal medium may include a propagated data signal in baseband or as part of a carrier wave with readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium can also be any readable medium, other than a readable storage medium, that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for carrying out operations of the present invention may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural Programming Language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种汽车底盘护板、车载撞击检测系统及撞击检测方法,底盘护板(100)包括护板实体(110)和设置在护板实体(110)上的振动检测传感器阵列(120),振动检测传感器阵列(120)用于输出护板实体(110)的振动信号特征。通过振动检测传感器阵列(120)检测底盘护板(100)的振动,提取出振动信号特征,根据振动信号特征的变化率和阈值信息比较,判断底盘护板(100)是否受到撞击,提醒用户及时修理,增加用车的安全性,在车辆并未受到撞击时,也能输出底盘护板(100)的信息。

Description

底盘护板、车载撞击检测系统及撞击检测方法 技术领域
本发明涉及移动装置防护设备技术领域,具体而言,涉及一种底盘护板、一种撞击检测方法和一种车载撞击检测系统。
背景技术
汽车底盘底部往往暴露水箱下沿、发动机底壳、变速箱底壳、传动轴等汽车关键部件,电动汽车底盘往往安装有电池组,这些部件在遭受撞击后应及时检修,避免出现安全问题。特别是电动汽车,电池组底面被撞击有很高的风险导致电池损坏。为了对底盘及安装在底盘上的关键件进行防护,现有技术中,可以在汽车底盘加装底盘护板,防止撞击直接发生到关键件上,给车辆带来较大的损伤。另外,护板也能使车辆在较差环境中运行时,避免砂石飞起击打关键件,影响其使用寿命。
车辆行驶中,加装的护板能够较大可能地对诸如水箱、发动机、变速箱或者电池组等关键件进行防护,相比起关键件的价格和作用,即便发生撞击,用户也会较少关心护板的损伤,但是护板的损伤却影响底盘行驶的安全。现有技术中有可以对护板的受损情况进行监控的方案,通过检测护板上承受的压力,进一步判断护板是否破损,但是在实际使用中,有可能底盘护板在未破损时,汽车就已经面临风险,而现有技术无法实现对护板更全面的检测,会导致用户处于一定的风险之中。
发明内容
本发明为了解决现有技术中底盘护板检测不全面,仅在破损才能检测出结果的问题,提供了一种可对底盘护板能够全面检测的技术,进而提升汽车的安全性。具体地,第一方面,本发明所公开的实施例提供了一种底盘护板,包括:护板实体;设置在所述护板实体上的振动检测传感器阵列,所述振动检测传感器阵列包括在预定区域内呈纵横排布的多个振动检测传感器组,用于输出所述护板实体各部位的振动信号特征;以及信号采集板;其中,所述振动检测传感器组中的振动检测传感器的输出端与对应的所述信号采集板连接;所述振动检测传感器阵列中的振动检测传感器的地端与所述护板实体电性连接,实现共地。
在一些实施例中,多个所述多个信号采集板通过总线连接,并通过总线对外输出所述振动信号。
在一些实施例中,所述护板实体的数量为多个,每个护板实体上设置有所述信号采集板,相邻护板实体上的信号采集板通过总线连接。
在一些实施例中,所述护板实体的外形或者所述预定区域与所述底盘上方设置的被保护件对应,所述护板实体安装在所述被保护件的下方。
在一些实施例中,还包括设置在护板实体上用于检测安装在底盘上的被保护件温度的温度传感器和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述温度传感器的信号输入至信号处理装置,以供所述信号处理装置根据所述温度传感器的信号而控制所述风扇阵列工作。
在一些实施例中,还包括位于所述底盘护板上的水位检测传感器,所述水位检测传感器向信号处理装置输出信号,以供所述信号处理装置判断所述护板实体是否涉水及是否发送车门开锁信号、天窗开启信号和/或者车窗开启信号。
第二方面,在本发明的一些实施例中,提供了一种车载撞击检测系统,包括上述的汽车底盘护板,还包括与所述信号采集板连接的信号处理装置,所述信号处理装置根据所述振动信号特征的变化率识别所述护板实体是否被撞击,其中,所述振动信号特征包括频率特征、能量特征、幅度谱特征、幅值特征中的一种或多种。
在一些实施例中,所述信号处理装置被配置为根据振动信号与振动检测传感器的安装位置关系,获取所述振动检测传感器对应的安装位置,根据所述安装位置获取与所述安装位置对应的阈值,根据所述振动信号特征和对应的阈值判断所述护板实体是否被撞击。
在一些实施例中,所述信号处理装置具体被配置为,响应于所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征的变化率超过第一阈值,检测所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征的变化率是否超过第一阈值,响应于所述第二振动信号特征的变化率超过第一阈值,判断所述护板实体被撞击。
在一些实施例中,所述信号处理装置具体被配置为,响应于所述振动检测传感器阵列中的第一振动检测传感器的第一频率特征的变化率超过第四阈值,检测所述第一振动检测传感器的第一幅值特征是否超过第二阈值,响应于所述第一幅值特征超过第二阈值,判断所述护板实体被撞击。
在一些实施例中,所述信号处理装置还被配置为,检测到所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征低于所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征,且第二振动信号特征与第一振动信号特征的差值大于第三阈值,确定所述第一振动检测传感器故障,屏蔽所述第一振动检测传感器的振动信号特征。
在一些实施例中,所述信号处理装置被配置为根据所述频率特征和预设的振动环境频率阈值,获取所述护板实体的环境信息。
在一些实施例中,所述环境信息包括是否涉水信息、涉水深度信息;所述信号处理装置具体被配置为将所述频率特征与所述预设的涉水环境频率阈值比较,判断所述护板实体是否涉水,并根据所述频率特征获取所述护板实体的涉水深度信息,其中,所述涉水环境频率阈值为底盘浸没在水中运行时,从护板实体上的振动检测传感器上测量到的频率特征。
在一些实施例中,所述信号处理装置还被配置为,根据温度传感器的信息,检测到超过温度阈值的第一被保护件,根据第一被保护件的位置,控制所述风扇阵列中的目标风扇转动,以对所述第一被保护件散热。
在一些实施例中,所述信号处理装置还被配置为,根据目标风扇的转速信息,获取所述目标风扇的噪音频率,根据所述噪音频率对位于所述目标风扇附近的振动检测传感器的频率特征进行滤波,并根据滤波后的振动信号特征的变化率识别所述护板实体是否被撞击。
在一些实施例中,还包括与信号处理装置连接的车载控制器、与所述车载控制器连接的车载显示屏,所述车载显示屏用于显示所述护板实体被撞击的位置。
在一些实施例中,还包括与所述信号处理装置连接的蓝牙模块,所述蓝牙模块用于将信号处理装置的信息发送给移动终端,以使移动终端显示所述护板实体的被撞击的位置。
第三方面,在本发明的一些实施例中,提供了一种上述的汽车底盘护板的撞击检测方法,包括如下步骤:
获取护板实体上振动检测传感器阵列输出的振动信号特征,其中所述振动信号特征包括频率特征、振幅特征、能量特征、幅度谱特征信息中的一种或多种;
根据所述振动信号特征获取振动信号特征变化率;
根据振动信号特征变化率和变化率阈值判断所述护板实体是否被撞击。
本公开中的底盘护板及系统,通过振动检测传感器阵列检测底盘护板的振动,提取出振动信号特征,根据振动信号特征的变化率和阈值信息比较,判断底盘护板是否受到撞击,提醒用户及时修理,增加用车的安全性。在车辆并未受到撞击时,也能输出底盘护板的信息,为底盘护板长期使用时,对底盘护板的磨损情况能够进行反馈,做出预测。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为本发明一些实施例中的底盘护板结构示意图;
图2为本发明另一些实施例中的底盘护板结构示意图;
图3a为本发明另一些实施例中位于发动机下方的底盘护板的结构示意图;
图3b为本发明另一些实施例中位于发动机下方的底盘护板的结构示意图(俯视);
图4a为本发明另一些实施例中的采用了信号采集板的底盘护板的结构示意图;
图4b为本发明一些实施例中的信号采集电路板的结构示意图;
图5a为本发明一些实施例中的底盘护板中设置信号采集板的结构示意图;
图5b为本发明一些实施例中的底盘护板中设置信号采集板的结构示意图;
图6a为本发明一些实施例中的采用多块护板实体的底盘护板的结构示意图;
图6b为图6a中圈中部分的放大结构示意图;
图7为本发明一些实施例中底盘护板中的振动检测传感器与护板实体连接的结构示意图;
图8为本发明一些实施例中底盘护板在实际运用中的结构示意图;
图9为本发明一些实施例中底盘护板在实际运用中相对车辆的结构示意图;
图10为本发明一些实施例中车载撞击检测系统检测撞击时的结构示意图;
图11为本发明一些实施例中的车载撞击检测系统的结构示意图;
图12为本发明一些实施例中的撞击检测方法的方法流程示意图;
图13为本发明一些实施例中的撞击检测方法中的撞击判断的方法流程示意图;
图14为本发明一些实施例中的撞击检测方法中的另一些撞击判断的方法流程示意图;
图15为本发明另一些实施例中的撞击检测方法的方法流程示意图;
图16为本发明一些实施例中的撞击检测装置的结构示意图;
图17为本发明一些实施例中的电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
汽车、火车、轮船、飞行器在移动过程中,为了避免外界物体直接对本体上的关键件进行撞击,特别是对于被撞击频次较高的关键件,常常在本体外侧设置护板,对关键件进行防护。对于汽车而言,尤其重要,由于汽车常常行驶在开放性道路上,道路路面环境复杂,行 驶过程中,难以避免地造成道路上较小的砂石飞起,撞击汽车本体。在有人驾驶或者无人驾驶条件下,由于人为判断失误或者感知检测失误,驾驶者或者驾驶系统对道路上较大障碍物信息(例如较大石块)没有感知到,车辆行驶通过时会造成车辆底盘受损。在一些操作安全的场景下,道路上的异常因素(例如井盖受压后弹起、道路突然受损造成道路平整性缺失)也会造成车辆底盘受损。为了对底盘进行保护,人们在底盘外侧加装底盘护板,对底盘进行防护。在撞击发生时,使得护板先被撞击,抵消掉全部或者部分的撞击能量,驾驶员常常通过声音获知底盘护板被撞击的情况发生,但是有些撞击声音较小,或者驾驶员由于周围环境声音过大掩盖了撞击的声音,从而没有感知到撞击的情况,给车辆行驶带来安全隐患。在有些情况下,即便知道被撞击也并未确切知晓被撞击的部位,只能将车抬高,进行检修时才能确切知道被撞击的部位。为了辅助驾驶员获知到底盘护板的撞击情况,可以在底盘护板上设置压力传感器,通过压力传感器反馈的压力值获知到底盘是否被撞击,发明人在使用这种技术时发现,这种检测仅在底盘护板被撞击破损时才会发出可靠的感知被撞击的信号,但是护板即便被撞击后没有破损也是需要驾驶者关注,这样可以提醒驾驶者及时的检修,避免车辆使用时存在安全隐患。在一些场景中,由于护板长期使用,使得连接螺钉松动,这种检测需求采用压力传感器也较难实现。发明人在进一步地研究中,使用了振动检测传感器以及振动检测传感器阵列对底盘护板进行检测,通过振动检测传感器实时反馈的振动信号特征,能够获知到底盘护板的具体信息,包括是否被撞击,底盘周围的环境,安装是否松动等信息,从而能够全面地检测底盘护板,提升了行车安全性。下面对发明人研究出的采用振动检测的手段对底盘护板进行检测的技术进行介绍。
本发明实施例提供了一种汽车底盘护板,包括:护板实体;
设置在所述护板实体上的振动检测传感器阵列,所述振动检测传感器阵列包括在预定区域内的多个振动检测传感器组,用于输出所述护板实体各部位的振动信号特征;以及信号采集板;其中,所述振动检测传感器组中的振动检测传感器的输出端与对应的所述信号采集板连接;所述振动检测传感器阵列中的振动检测传感器的地端与所述护板实体电性连接,实现共地。所述多个振动检测传感器组可以呈纵横排布,在一些实施例中,可成列的形式排列所述振动检测传感器组,也可成行的形式排列所述振动检测传感器组,这样便于布线和信号采集,也便于和信号采集板对应。
具体地,如图1所示,本公开实施例提供了一种底盘护板100,包括护板实体110和设置在所述护板实体110上的振动检测传感器阵列120,所述振动检测传感器阵列120用于输出所述护板实体的振动信号特征。本实施例中的振动检测传感器阵列120包括多个振动检测传 感器121,其排列形式,如图2所示,可采用圆周阵列,也可采用如图1所示的矩阵阵列。所述振动检测传感器121的具体布置位置可以根据底盘上关键件的位置进行布置,常规的底盘上设置有发动机、减速器、水箱,在新能源车的底盘上还设置有电池箱,这些关键件的下方根据关键件的尺寸对应设置所述振动检测传感器121,例如,图3a、图3b所示,底盘护板100设置在发动机610的下方,发动机尺寸整体呈方形,可在发动机的四个角和中心的位置设置所述振动检测传感器121,所述振动检测传感器121组成的阵列120的形式可以采用单一的阵列形式,也可以采用组合的阵列形式,例如,如图3b所示,在发动机的四个角对应底盘护板之间的区域采用矩阵阵列的形式布置所述振动检测传感器121,在所述发动机中心对应的底盘护板区域上采用圆周阵列的形式布置所述振动检测传感器121。既考虑检测的全面性,也考虑了在关键部位设置提升传感器的密集程度,保证即使部分传感器失效,其余传感器仍能有效反馈护板的状态。
需要说明的是,本公开的实施例中护板实体110可以为相对出厂车辆外加的护板结构,也可以是出厂车辆上本身的结构,例如,护板实体110即为电池组的盖板,护板实体110即为发动机的壳体结构,所述护板实体110也可作为车架结构,如果振动检测传感器阵列120直接设置在底盘结构上,可以将所述振动检测传感器121设置在底盘的关键位置上。通过振动检测传感器121返回的振动信号特征,对底盘进行撞击检测。
本公开的底盘护板100的外形可以根据底盘的结构进行设置,例如,底盘整体呈方形,可以根据需要设置底盘护板100的外形也为对应的方形。在一些实施例中,为了减少底盘护板100带来的额外重量,可以对底盘护板100的外形进行优化,例如,可以仅在关键件底部设置底盘护板100,也可根据较为集中的关键件之间设置底盘护板100,这时,底盘护板100需要罩住多个关键件,可以根据此处多个关键件的外形,做出包络图形,根据包络图形设置所述底盘护板100的外形尺寸。另外,为了便于加工,可将底盘护板100设置成多块,组合使用,这样,也便于将来柔性化生产的需求,适用多种车型底盘结构。
本公开实施例中的振动检测传感器阵列120采用多个振动检测传感器121进行检测,保证了检测的全面性,在具体检测时,可以采用求取平均值的方式来代表护板上对应区域的振动信号特征。例如,振动信号特征为频率特征,根据各个振动检测传感器121的振动信号特征获取到多个频率特征值,可以进行求取平均值的方式获取此区域护板的频率特征值;在一些更加精细的场景中,底盘护板上关键件上重要程度不同,或者是同一关键件不同区域的重要程度不同,可以根据不同的重要程度,设置权值,通过加权求平均的方式获取此区域的底盘护板100的频率特征。
如图3a所示,本公开实施中所述振动检测传感器阵列120中的振动检测传感器121的地端1215与所述护板实体110电性连接,实现共地。所述振动检测传感器121输出电信号,常常需要参考地端0电位输出信号,在接线中,需要设置各个传感器的地线,由于采用了阵列的形式,每个传感器的地线都需要设置,造成线束过多,影响使用,为了便于各个传感器的安装连接,可以将各个传感器地线端与所述护板实体110连接,由于护板实体110多为整体性的金属板,这样各个传感器的地线端可以统一到0电位上。在一些质量较轻,但是强度足够的护板实体110上,可以采用非金属,例如碳纤维材料组成所述护板实体的大部分,在传感器的安装位置设置连接点,可在连接点之间的碳纤维材料中预埋金属导线或者导条,使得整张护板实体110上的振动检测传感器121的地端实现共联。这样便于振动检测传感器121的安装,也使得底盘护板100的结构紧凑。
本公开实施例中的振动检测传感器121中可以设置运算放大电路,对初始信号进行放大,放大倍数根据实际数据处理需求进行设置。
如图4a所示,本公开的一些实施例中,为了避免大量的传感器的信号线都统一连接到一个接口,造成信号线密集,从而影响结构的设置的问题,可以将振动检测传感器阵列120中振动检测传感器121进行分组,具体地,所述振动检测传感器阵列120包括一个或多个振动检测传感器组122,所述底盘实体110上还设置有与所述振动检测传感器组122对应的一个或多个信号采集板130,所述振动检测传感器组122中的振动检测传感器121的输出端与对应的所述信号采集板130连接。每个信号采集板130对振动检测传感器121的信号进行采集、放大,输出。多个信号采集板130之间的信号可以统一一并对外输出。在一些实施例中,为了节省走线,可以采用总线的方式,将各个信号采集板130连接,通过总线将振动信号特征向外输出。如图4a所示,所述一个或多个信号采集板130通过CAN总线140连接,并通过CAN总线140对外输出所述振动信号特征。
在本公开的一些实施例中,所述护板实体110的数量为多个,每个护板实体110上设置有所述信号采集板130,相邻护板实体110上的信号采集板130通过总线连接。如图4a所示,相邻的护板实体110之间采用CAN总线140连接。多个护板实体110对应底盘的不同区域,根据对应的区域不同可形成前护板、中护板和后护板。
本公开的一些实施例中,如图4b所示,所述信号采集板130上设置有一个信号采集电路,信号采集电路可以通过多路复用器电路来实现一带多,即一个信号采集电路采集多个传感器单元的电信号。多路复用器与AD(模拟-数字)采样电路相连,AD采样电路用于对模拟信号采样并转换为数字信号,然后输出给MCU(微控制单元)。多个MCU(MCU0、MCU1、MCU2、 MCU3……)又分为主MCU(图4b中MCU0)和从MCU(图4b中的MCU1、MCU2、MCU3……),从MCU用于从AD采样电路接收采集信号,并对AD采样电路进行采样频率、采样时间等参数的控制,主MCU用于接收从MUC的信号,并进行运算和输出,同时也用于对从MCU进行控制。通过使多路传感器单元复用一个AD采样电路,可以降低成本。
在本公开的一些实施例中,可以根据底盘上的被保护件的外形设置所述护板实体110的外形,所述护板实体110的外形与所述底盘上设置的被保护件对应,所述护板实体110安装在所述被保护件的下方。
在本公开的实施例中,所述振动检测传感器阵列120中的振动检测传感器121包括压电陶瓷传感器、加速度传感器、应变片、薄膜压力传感器中的一种或多种。根据振动检测传感器121的类型不同,所述信号采集板130的功能和电路也将不同,例如所述振动检测传感器121采用的是压电陶瓷传感器,由于压电陶瓷传感器根据受到的振动、压力和压电效应输出电动势,即电压模拟信号,信号采集板130收到信号后,进行信号放大,然后转换为数字信号,对外输出。例如所述振动检测传感器121采用的是加速度传感器,由于某些种类加速度传感器输出数字信号,输入到信号采集板130后进行寄存,然后根据总线协议写成对应的数据结构对外发出。
本公开中的振动检测传感器121可以根据应变的变化、压力的变化输出振动信号,例如采用应变片、薄膜压力传感器,也可采用根据压电电动势变化输出振动信号,例如采用压电陶瓷传感器。
本公开的一些实施例中,振动检测传感器121与信号采集板的对应关系有多种,如图5a、图5b所示,护板实体110有多块,可以每个护板实体110上的振动检测传感器121对应一个信号采集板130,然后通过总线将各个信号采集板130连接起来。还可采用如图6所示的形式,将某个方向上的振动检测传感器121连接到同一个信号采集板130上,如图6a、6b所示,护板实体110包括,前护板111、中护板112、后护板113和尾护板114,第一信号采集板131与前护板111、中护板112、后护板113和尾护板114上与第一信号采集板131横向位置对应的振动检测传感器121与第一信号采集板131连接。同样的,第二信号采集板132与前前护板111、中护板112、后护板113和尾护板114上与第二信号采集板132的横向位置对应的振动检测传感器121与所述第二信号采集板132连接,然后通过总线将第一信号采集板131和第二信号采集板132连接。图6b中,所述振动检测传感器121的地端或者负极与所述护板实体110连接。
在本公开的一些实施例中,振动检测传感器121的地端与护板实体110连接,而护板实体110与车壳连接,使得振动检测传感器121能够共地连接;具体地,如图7所示,振动检测传感器121通过集成在一张PCB板上实现,在PCB板上焊接压电陶瓷片,然后通过PCB上的引脚将信号输出,压电陶瓷片的地端或者负极与PCB板金属层1212连接,在实际运用中,如图7所示,护板实体110采用金属材质,PCB板基层1211上铺设有PCB板金属层1212,护板实体110和振动检测传感器121之间设置有缓冲层1213,例如,橡胶垫,安装时,通过金属螺钉1214将振动检测传感器121固定到护板实体110上,在所述PCB板金属层1212、PCB板基层1211和缓冲层1213上设置通孔,护板实体110上设置有螺纹孔或者通孔,金属螺钉1214穿过所述PCB板金属1212、PCB板基层1211和缓冲层1213上设置的通孔与护板实体110上设置的螺纹孔或者通孔连接,连接时,保证金属螺钉1214的螺帽12141与所述PCB板金属层1212稳固连接,金属螺钉1214即作为固定件,也作为导电件,将压电陶瓷片的地端或者负极连接到护板实体110上,继而与车体外壳连接。
如图8、图9所示,下面通过实际运用来介绍本公开实施例中的底盘护板100,振动检测传感器121采用压电陶瓷传感器的形式,压电天陶瓷传感器包括PCB板,PCB板上单面设置有压电陶瓷片,PCB板垫上缓冲垫后,固定在护板实体110上,多个形成阵列。当正常状态时,底盘护板110在行驶时会受迫振动,振动信号特征则代表车辆在行驶中,当单个压电陶瓷片出现故障时,也可以通过与阵列中其他的传感器对应的振动信号特征进行对比,识别故障传感器。
当底盘受到撞击时,会产生明显区别于正常振动信号的局部冲击信号,采集系统会对该信号进行记录,并給出报警。底盘护板100上的单片机系统记录撞击程度、位置、时间等等信息,并传递给车内显示屏上显示,也可通过手机或系统内置蜂窝通讯向云平台报告,可解决电动汽车底盘受损的证据确立和服务提升。
在前护板111位置,安装水压传感器150,车辆涉水时监测水位高度,当高度超过安全值时进行报警,当水位超过警戒值时,自动打开车窗或天窗,避免在水中无法打开车门影响逃生。
在车辆600的水箱620、发动机610、变速箱630、分动箱、车底电池对应位置下方安装红外温度传感器160,由于车架在颠簸中会产生交代形变,采用非接触设计,会提高安装的方便程度,并降低对安装结构的精度要求。由于红外温度传感器属于光学传感器,为了避免灰尘覆盖,采用耐高温橡胶(如硅橡胶,220摄氏度)制作柔性保护管161进行红外光传递。并可采用耐高温(也如硅橡胶胶水)进行粘接密封,避免涉水时进水。
在护板实体110上阵列形式安装风扇170,可采用小直径的高速风扇,其中,高速直流电机转速可达38000转/分钟,为了减小对底盘高度的影响,采用灌流风机,通过控制风机的开启或者关闭,可控制风向向车后送风。采用阵列形式的风扇,可便于控制组合使用。
本公开实施例中的底盘护板,不仅适用于汽车的底盘,还可适用于其他移动装置需要防护结构件的外侧安装使用。
本公开的一些实施例中,底盘护板100还可进一步实现对底盘上的被保护件、关键件进行监控,例如温度信息进行监控,并可适当进行降温或者保温的工作。
在本公开的一些实施例中,所述底盘护板100还包括设置在护板实体110上用于检测安装在底盘上的被保护件温度的温度传感器160和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述温度传感器160的信号输入至信号处理装置,以供所述信号处理装置根据所述温度传感器160的信号而控制所述风扇阵列工作,其中,所述风扇阵列包括多个对应被保护件的风扇170。
例如,在发动机下方的底盘护板上设置温度传感器160,和在对应的位置设置风扇170,当检测到发动机温度高于阈值时,可以将风扇开启进行,使得风流吹向所述发动机,对发动机进行散热。
在本公开的一些实施例中,所述底盘护板100还包括位于所述护板实体110上的水位检测传感器190,所述水位检测传感器190发送信号给信号处理装置,以供所述信号处理装置判断所述护板实体110是否涉水及是否发送车门开锁信号、天窗开启信号和/或者车窗开启信号。所述水位检测传感器190可以设置在前护板111上,采用水压传感器,使用之前进行标定,所述水位检测传感器还能输出水深信息发送给所述信号处理装置,所述信号处理装置根据水位检测传感器190输出的信号判断所述护板实体110是否涉水,如果涉水,将发送天窗或者车窗开启的信号,避免车辆中人员的溺水,增加车辆安全性。其中,车窗开启或者天窗开启的驱动采用车辆上自带的驱动,所述信号处理装置能够直接将开启信号发送给驱动装置,也可以将信号发送给车辆中控,由车辆中控发送信号给驱动,以使车窗或者天窗被驱动开启。
本公开实施例中的底盘护板100,可以自带有进一步地信号处理功能,例如通过振动信号特征判断是否有撞击的情况发生,也可外接处理器实现撞击发生与否的检测。在一些实施例中所述底盘护板100上设置有信号处理装置,信号处理装置可以设置于护板实体110上,也可以设置在车辆上。本发明的一些实施例中,可以将用于判断撞击与否的信号处理装置从所述底盘护板100中独立出来,这时从工程实践的角度,信号处理装置可以适配多种不同型号的底盘护板100。
具体地,依据上述实施例中的底盘护板100,本公开的一些实施例提供了一种车载撞击检测系统400,包括上述实施例中的底盘护板100,还包括与所述信号采集板130连接的信号处理装置430,所述信号处理装置430根据所述振动信号特征的变化率识别所述护板实体是否被撞击,其中,所述振动信号特征包括频率特征、能量特征、幅度谱特征、幅值特征中的一种或多种。
本公开实施例中的车载撞击检测系统400,进行信号采集之后,利用所述信号处理装置430,还可进一步实现判断是否有撞击,以及对护板实体110进行全面检测,所述信号处理装置430可通过CAN总线140与信号采集板130连接,获取各个振动检测传感器121及其他检测传感器的信息,所述信号处理装置430可设置在护板实体上,也可在护板实体110上留有接口,将信号处理装置设置在车辆本体上,通过护板实体110上接口与各个信号采集板130连接。所述信号采集板130对振动信号进行频域分析、时域分析或者时频域分析,获取振动信号特征或者其他信号特征,发送给所述信号处理装置,信号处理装置430进一步根据所述振动信号特征及其变化判断所述护板实体是否有撞击。检测的撞击类型包括短时撞击和长时撞击,短时撞击可以为冲击、敲击,长时撞击可以为剐蹭。
本公开实施例中的一些车载撞击检测系统400,所述振动信号特征包括频率特征、能量特征、幅度谱特征信息、幅值特征中的一种或多种,所述频率特征代表护板实体的受迫振动频率,所述能量特征为,为振动信号特征采样值平方与采样周期的乘积,所述幅度谱特征信息可为幅度谱的对数值。所述信号处理装置430根据所述振动信号特征的变化率识别所述护板实体110是否被撞击。信号采集板130周期性的上传振动信号特征给所述信号处理装置430,所述信号处理装置430将前后接收到振动信号特征进行分析比较之后,获取振动信号特征的变化率信息,当变化率超过一定的阈值时,可以识别为撞击的信号。所述信号采集板130接收到振动检测传感器121的信号之后进行处理,获取到振动信号特征。例如,所述振动检测传感器121采用压电陶瓷传感器,输出电压信号,所述信号采集板130采集电压信号,进行时域、频域分析,获取到频率信息、能量信息、幅度谱信息等信息。变化率信息可以通过信号处理装置430记录的振动信号特征值来进行计算,例如信号处理装置430按照定时周期获取到振动信号特征值,并进行缓存,当需要计算当前时刻的变化率时,将上次存储的振动信号特征值和当前时刻或者最近时刻接收到的振动信号特征值做差除以定时周期,即可获取振动信号特征变化率信息。当然,如果判断周期比较密,例如近乎和采样周期一致或者和振动信号的频率一致,可以用通过振动信号特征的变化值来进行判断是否撞击。
本公开实施例中的能量值E=∑A 2*T(单位时间t内),其中A为各个振动信号幅值,T为对应的振动信号采样周期,例如,单位时间t=0.01s,检测到10个振动周期,将各个周期与对应的振幅做乘积然后累加获取到能量值,根据逐个能量值与时间的关系形成能量特征,在判断是否撞击时,将相邻的能量值做差,获取到变化率,然后进行判断。本公开实施例中的幅度谱特征向量为幅度谱的对数值,信号采集板130进行分析后获取,信号处理装置430在判断是否撞击时,将前后获取到的幅度谱特征向量计算向量距离值,然后分析判断是否被撞击。
本发明所公开的一些实施例中,对于短时撞击,可以依据能量特征、幅度谱特征信息来判断是否有短时撞击;对于长时撞击,可以采用频率特征来判断是否有撞击。
本发明所公开的进一步实施例中,所述信号处理装置430被配置为根据振动信号特征与振动检测传感器121的安装位置关系,获取所述振动检测传感器121对应的安装位置,根据所述安装位置获取与所述安装位置对应的阈值,根据所述振动信号特征和对应的阈值判断所述护板实体是否被撞击。可以为各个振动检测传感器121设置标号,并在所述信号处理装置430中记录振动检测传感器121的标号与所述振动检测传感器121在护板实体110上的位置对应关系,可将所述标号设置成信号采集板130上信号端口号,所述振动检测传感器121与信号采集板130的信号采集端口绑定,信号采集板130接收到振动检测传感器121的信后之后,根据端口号,对接收到的信号进行编码,将端口号和振动信号特征一起发送,所述信号处理装置430接收到信号采集板130的信号之后,进行解码获取到端口号和振动信号特征,根据上述的对应关系,可获取到此次接收到振动信号特征对应于哪个振动检测传感器,从而获取护板实体110上对应的位置。
如图3b所示,振动检测传感器121a对应护板实体周边区域,对应的撞击判断阈值为Ta,振动检测传感器121b对应护板实体中心区域,由于与被保护件位置最近,检测应该更加敏感,对应的撞击判断阈值Tb<Ta。
本公开的一些实施例中,确定所述护板实体110被撞击,根据振动信号特征与振动检测传感器121的安装位置关系,获取所述护板实体110上被撞击的位置。可以为各个振动检测传感器121设置标号,并在所述信号处理装置430中记录振动检测传感器121的标号与所述振动检测传感器121在护板实体110上的位置对应关系,可将所述标号设置成信号采集板130上信号端口号,所述振动检测传感器121与信号采集板130的信号采集端口绑定,信号采集板130接收到振动检测传感器121的信后之后,根据端口号,对接收到的信号进行编码,将端口号和振动信号特征一起发送,所述信号处理装置430接收到信号采集板130的信号之后, 进行解码获取到端口号和振动信号特征,根据上述的对应关系,可获取到此次接收到振动信号特征对应于哪个振动检测传感器,从而获取护板实体110上对应的位置。
本公开实施例中的根据阵列形式的振动检测传感器121进行检测,可以获取到多个振动信号特征,在使用时,可以通过求取平均值的方式获取到代表性振动信号特征,利用代表性振动信号特征进行判断是否被撞击。在一些实施例中,根据传感器安装位置,可以给各个传感器获取到振动信号特征设置权值,利用加权平均之后的代表性振动信号特征进行判断是都被撞击。
为了更加精细判断护板实体是否被撞击,本公开的一些实施例中,采用多个振动检测传感器的频率信息进行判断,具体地,如图10所示,所述信号处理装置430具体被配置为,响应于所述振动检测传感器阵列120中的第一振动检测传感器123的第一振动信号特征的变化率超过第一阈值,检测所述第一振动检测传感器123相邻的一个或多个第二振动检测传感器124的第二振动信号特征的变化率是否超过第一阈值,响应于所述第二振动信号特征的变化率超过第一阈值,判断所述护板实体被撞击。通过多个检测传感器的输出信号共同判断,避免单一传感器的误报造成判断失误。
在本公开的一些实施例中,所述振动信号特征包括幅值特征,所述信号处理装置430具体被配置为,响应于所述振动检测传感器阵列120中的第一振动检测传感器123的第一频率特征的变化率超过第四阈值,检测所述第一振动检测传感器123的第一幅值特征是否超过第二阈值,响应于所述第一幅值特征超过第二阈值,判断所述护板实体被撞击。通过单一传感器信息的多重信号属性信息进行判断,提升了判断的准确率。
在本公开的一些实施例中,为了去除故障传感器对检测的影响,所述信号处理装置430还被配置为,检测到所述振动检测传感器阵列120中的第一振动检测传感器123的第一振动信号特征低于所述第一振动检测传感器123相邻的一个或多个第二振动检测传感器124的第二振动信号特征,且第二振动信号特征与第一振动信号特征的差值大于第三阈值,确定所述第一振动检测传感器123故障,屏蔽所述第一振动检测传感器123的振动信号特征。周围的第二振动检测传感器124的频率都要比第一振动检测传感器123的频率要大,且差值较大,可以认定,此第一振动检测传感器123故障,从而可以对此传感器输出的信息进行屏蔽。
在本公开的一些实施例中,所述振动检测传感器输出的频率特征不仅可以作为是否被撞击的检测依据,还可根据频率特性获知所述护板实体的周围环境信息,例如是否涉水信息,是否涉沙信息,所述信号处理装置430被配置为根据所述频率特征和预设的振动环境频率阈值,获取所述护板实体的环境信息。所述护板实体110在不同的环境中,表现出不同频率特 性,例如,护板实体110被浸没在水中时的频率特性和在空气中的频率特性不一致,可以通过不同的阈值感知到护板实体110所在的环境信息。
在一些实施例中,所述环境信息包括是否涉水信息、涉水深度信息;所述信号处理装置430具体被配置为将所述频率特征与所述预设的涉水环境频率阈值比较,判断所述护板实体是否涉水,并根据所述频率特征获取所述护板实体的涉水深度信息,其中,所述涉水环境频率阈值为底盘浸没在水中运行时,从护板实体上的振动检测传感器上测量到的频率特征,上述的涉水环境频率阈值可以通过多次试验进行确定,可以为单点值,也可以为一个频率段。本公开实施例中,还可在不同的水深中进行试验,获取到不同的阈值,根据所测的频率值与不同的阈值进行比较,找到最近的阈值段,从而获取到水深信息。
本公开实施例中振动检测传感器121不仅可以检测撞击的情况,还可以在非撞击情况下,对护板实体周围的环境信息进行检测,功能丰富,进一步地获取到周围环境信息后,还能调整对应的撞击检测阈值,保证检测更加准确。如下表1所示,设置了不同的判断阈值,其中awc小于asc,即在涉沙环境中,振动变化率需要更大才会被识别为撞击。
表1 不同环境中的频率阈值信息
Figure PCTCN2021091035-appb-000001
在本公开的一些实施例中,所述信号处理装置430还被配置为,根据温度传感器的信息,检测到超过温度阈值的第一被保护件,根据第一被保护件的位置,控制所述风扇阵列中的目标风扇转动,以对所述第一被保护件散热。例如,通过温度传感器160检测到位于底盘中后部的电池组温度过高,需要对其散热,不仅需要开启电池下方的风扇170,还需开启底盘前部对应的风扇170,以形成一条风流通道,使,车辆前部的风导流到底盘中后部,然后底部尾部的风扇170,也应开启,使得风流与电池组热交换之后,能够被尾部的风扇170从底部排出,避免带有较高温度的风流影响底盘上其他部件。
在风扇170工作时,也会对护板实体110的振动带来影响,为了避免风扇170工作使得护板实体的振动频率变化,造成检测误报或者检测失效的问题,本公开的实施例,还采用了 对风扇带来的频率影响进行滤波的手段,使得信号处理装置430检测判断更加准确,具体地,所述信号处理装置430还被配置为,根据目标风扇的转速信息,获取所述目标风扇的噪音频率,根据所述噪音频率对位于所述目标风扇附近的振动检测传感器121的频率特征进行滤波,并根据滤波后的振动信号特征的变化率识别所述护板实体110是否被撞击。在风扇170工作时,信号处理装置430能够获取到工作风扇的具体位置,对其周围的振动检测传感器121传回的频率特征进行滤波处理,所述信号处理装置,也可指示对应的信号采集板130对对应的振动检测传感器121的振动信号特征进行滤波处理,根据滤波之后的信号获取频率特征,发送给信号处理装置430进行检测判断。信号处理装置430或者信号采集板130进行滤波时,根据所述风扇的转速信息,可以查询到对应的噪音频率,然后对信号进行滤波处理;其中,在车辆停止时,可以依次驱动各个风扇的按照不同的转速转动,通过振动检测传感器,测量其迫使护板实体110振动的频率,作为噪音频率,依次记录之后,可以建立起风扇的位置、风扇的转速与噪音频率的对应表。依据滤波处理之后的频率特征进行检测,判断更加精确。本公开实施例中的压电陶瓷输出波动的电信号,信号采集板130可以根据噪音的频率对电信号进行过滤,将过滤后的信号进行采集,获取到频率信息。
在本公开的一些实施例中,所述底盘护板100还包括设置在护板实体110上用于检测安装在底盘上的被保护件温度的温度传感器160和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述温度传感器160的信号输入至信号处理装置430,所述信号处理装置430根据所述温度传感器160的信号而控制所述风扇阵列工作,其中,所述风扇阵列包括多个对应被保护件的风扇170。
例如,在发动机下方的底盘护板上设置温度传感器160,和在对应的位置设置风扇170,当检测到发动机温度高于阈值时,可以将风扇开启进行,使得风流吹向所述发动机,对发动机进行散热。
在本公开的一些实施例中,所述底盘护板100还包括位于所述护板实体110上的水位检测传感器190,所述水位检测传感器190发送信号给信号处理装置430,所述信号处理装置430判断所述护板实体110是否涉水及是否发送车门开锁信号、天窗开启信号和/或者车窗开启信号。所述水位检测传感器190可以设置在前护板111上,采用水压传感器,使用之前进行标定,所述水位检测传感器190还能输出水深信息发送给所述信号处理装置430,所述信号处理装置430根据水位检测传感器190输出的信号判断所述护板实体110是否涉水,如果涉水,将发送天窗或者车窗开启的信号,避免车辆中人员的溺水,增加车辆安全性。其中,车窗开启或者天窗开启的驱动采用车辆上自带的驱动,所述信号处理装置430能够直接将开 启信号发送给驱动装置,也可以将信号发送给车辆中控,由车辆中控发送信号给驱动,以使车窗或者天窗被驱动开启。
在本公开的一些实施例中,为了更加直观观察到底盘护板100被撞击的位置,可以将撞击位置进行可视化显示,具体地,所述底盘护板100还包括与所述信号处理装置430连接的蓝牙模块210,所述蓝牙模块210用于将信号处理装置430的信息发送给移动终端300,以使移动终端300显示所述护板实体110的被撞击的位置。所述移动终端300中存储有底盘护板100的基本模型、振动检测传感器121的位置、振动检测传感器121的标号和位置的关系表,所述信号处理装置430判断护板实体110被撞击之后将,通过所述蓝牙模块210发送振动检测传感器121的标号及其他信息给所述手机终端300,手机终端300根据振动检测传感器121的标号查询获取具体位置,在所述底盘护板的基本模型中标识出位置,以便用户直观的观察到撞击的位置。
在本公开的一些实施例中,可视化还可在车载中控上实现,具体地,如图11所示,本公开实施例提供了一种车载撞击检测系统400,包括上述的底盘护板100,还包括与信号处理装置430连接的车载控制器410、与所述车载控制器410连接的车载显示屏420,所述车载显示屏420用于显示所述护板实体110被撞击的位置。如上通过蓝牙与移动终端连接的实施例中,所述车载控制器410也可以存储底盘护板100的基本模型、振动检测传感器121的位置、振动检测传感器121的标号和位置的关系表,所述信号处理装置430判断护板实体110被撞击之后将,发送振动检测传感器121的标号及其他信息给所述车载控制器410,车载控制器410根据振动检测传感器121的标号查询获取具体位置,在所述底盘护板的基本模型中标识出位置,以便用户直观地观察到撞击的位置,发送显示信息给所述车载显示屏420进行显示。
本公开实施例中底盘护板,能够利用振动检测传感器检测底盘护板的撞击情况,同时在未发生撞击时,也能通底盘护板的振动特性获知底盘护板的状态,能够对底盘护板结构件失效进行预测,便于用户提前防范行车风险。通过振动检测传感器也能获知底盘护板所处的环境信息,相应地调整撞击检测的阈值。底盘护板上通过温度传感器对底盘上的关键件、被保护件进行检测,确定被保护件和关键件的温度之后,控制底盘上风机进行工作。同时,在撞击检测时,相应地过滤掉风扇旋转带来的频率干扰,使得检测更加准确。
依据本公开的底盘护板100,如图12所示,本公开还提供了一种撞击检测方法,包括如下步骤:
S110、获取护板实体上振动检测传感器阵列输出的振动信号特征,其中所述振动信号特征包括频率特征、振幅信号或者振幅特征、能量特征、幅度谱特征信息中一种或多种;所述 振动信号特征可通过对传感器的原始输出信号进行处理获取得到,例如可通过滤波、采样获取到频率信息、振幅信息,然后与时间做乘积获取能量信息,也可以进行频率分析,获取幅度谱特征信息等。采用阵列的振动检测传感器,可以获取到多个振动信号特征,保证检测可靠有效,同时可以将多个振动信号特征进行整合,获得更具有代表性的信号,使得检测更加精确。例如可以使用均值信号进行处理获取到频率信息。
S120、根据所述振动信号特征获取振动信号特征变化率;获取各个时间周期点的振动信号特征值,进行比较,获取得到变化率。
S130、根据振动信号特征变化率和变化率阈值判断所述护板实体是否被撞击。由于撞击将造成振动信号特征跳变加剧,检测到振动突变,即可获知撞击的信息,保证撞击检测结果有效。
本发明的一些实施例中,所述步骤S130可采用如下步骤:根据振动信号特征与振动检测传感器的安装位置关系,获取所述振动检测传感器对应的安装位置,根据所述安装位置获取与所述安装位置对应的阈值,根据所述振动信号特征和对应的阈值判断所述护板实体是否被撞击。针对不同的区域设置不同的阈值,保证检测更加精确。
在一些实施例中,还包括如下步骤:
S140、确定所述护板实体被撞击,根据振动信号特征与振动检测传感器的安装位置关系,获取所述护板实体上被撞击的位置。可以标定振动检测传感器在底盘护板上的位置,当检测到某个振动检测传感器的振动信号特征突变,即识别到撞击,根据其安装位置,获知对应的底盘护板被撞击的信息。
如图13所示,在本公开的一些实施例中,所述步骤S130包括:
S131、响应于所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征的变化率超过第一阈值,检测所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征的变化率是否超过第一阈值;
S132、响应于所述第二振动信号特征的变化率超过第一阈值,判断所述护板实体被撞击。通过多个振动检测传感器的振动信息判断是否被撞击,检测更加准确,避免造成单一传感器误检的情况。
如图14所示,在本公开的一些实施例中,所述步骤S130包括:
S133、响应于所述振动检测传感器阵列中的第一振动检测传感器的第一频率特征的变化率超过第四阈值,检测所述第一振动检测传感器的第一幅值特征是否超过第二阈值;
S134、响应于所述第一幅值特征超过第二阈值,判断所述护板实体被撞击。通过幅值和频率特性共同检测,提升单个振动检测传感器的有效性。
在本公开的一些实施例中,所述步骤S130还包括:
S135、检测到所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征低于所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征,且第二振动信号特征与第一振动信号特征的差值大于第三阈值,确定所述第一振动检测传感器故障,屏蔽所述第一振动检测传感器的振动信号特征。通过单个振动检测传感器检测到的振动特性与周围传感器检测到的振动特性进行比较,获知故障的传感器信息,然后进行屏蔽。
如图15所示,在本公开的一些实施例中,还包括步骤S150,S150步骤包括:根据所述频率特征和预设的振动环境频率阈值,获取所述护板实体的环境信息。所述环境信息包括是否涉水信息、涉水深度信息;所述信号处理装置具体被配置为将所述频率特征与所述预设的涉水环境频率阈值比较,判断所述护板实体是否涉水,并根据所述频率特征获取所述护板实体的涉水深度信息,其中,所述涉水环境频率阈值为底盘浸没在水中运行时,从护板实体上的振动检测传感器上测量到的频率特征。所述环境信息还包括是否涉沙信息,同理,用类似的原理可以进行检测。
在本公开的一些实施例中,底盘护板上还设置有在护板实体上用于检测安装在底盘上的被保护件温度的温度传感器和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述撞击检测方法还包括如下步骤:接收所述温度传感器的信号,根据所述温度传感器的信号控制所述风扇阵列工作。根据温度传感器的信息,检测到超过温度阈值的第一被保护件,根据第一被保护件的位置,控制所述风扇阵列中的目标风扇转动,以对所述第一被保护件散热。
在本公开一些实施例中,所述步骤S130,还包括如下步骤:根据目标风扇的转速信息,获取所述目标风扇的噪音频率,根据所述噪音频率对位于所述目标风扇附近的振动检测传感器的频率特征进行滤波,并根据滤波后的振动信号特征的变化率识别所述护板实体是否被撞击。通过过滤掉风机的频率,能够更加精确地识别是否被撞击。
在本公开的一些实施例中,所述撞击检测方法还包括步骤S160,其中所述底盘护板上还设置有位于所述底盘护板上的水位检测传感器,所述步骤S160包括:接收所述水位检测传感器信号,判断所述护板实体涉水,发送天窗开启信号和/或者车窗开启信号,以使车窗和/或天窗被打开。
在本公开的一些实施例中,还包括步骤S170,所述步骤S170包括:显示所述护板实体的被撞击的位置。根据预存储的底盘护板的基本模型、振动检测传感器的位置、振动检测传感器的标号和位置的关系表,在判断护板实体被撞击之后,根据振动检测传感器的标号查询获取具体位置,在显示出的所述底盘护板的基本模型中标识出位置,以便用户直观地观察到撞击的位置。
本公开实施例中的撞击检测方法,可以运行于上述的信号处理装置430,也可内置运行于车载系统中。
本公开的撞击检测方法,能够振动检测传感器检测底盘护板的撞击情况,同时在未发生撞击时,也能通底盘护板的振动特性获知底盘护板的状态,能够对底盘护板结构件失效进行预测,便于用户提前防范行车风险。通过振动检测传感器也能获知底盘护板所处的环境信息,相应地调整撞击检测的阈值。底盘护板上通过温度传感器对底盘上的关键件、被保护件进行检测,确定被保护件和关键件的温度之后,控制底盘上风机进行工作。同时,在撞击检测时,相应地过滤掉风扇旋转带来的频率干扰,使得检测更加准确。还提供可视化被撞击部位的功能。
如图16所示,本公开实施例还提供了一种撞击检测装置500,包括:
接收模块510,所述接收模块510用于获取护板实体上振动检测传感器阵列输出的振动信号特征,其中所述振动信号特征包括频率特征、振幅信号、能量特征、幅度谱特征信息中的一种或多种;所述振动信号特征可通过对原始输出信号进行处理获取得到,例如可通过滤波、采样获取到频率信息。采用阵列的振动检测传感器,可以获取到多个振动信号特征,保证检测可靠有效,同时可以将多个振动信号特征进行整合,获得更具有代表性的信号特征,使得检测更加精确。例如可以使用均值信号进行处理获取到频率信息。
变化率获取模块520,所述变化率获取模块520,用于根据所述振动信号特征获取振动信号特征变化率;所述变化率获取模块520获取各个时间周期点的振动信号特征值,进行比较,获取得到变化率。
撞击判断模块530,所述撞击判断模块530用于根据振动信号特征变化率和变化率阈值判断所述护板实体是否被撞击。由于撞击将造成振动信号特征跳变加剧,检测到振动突变,即可获知撞击的信息,保证撞击检测结果有效。
在一些实施例中,所述撞击判断模块530用于根据振动信号特征与振动检测传感器的安装位置关系,获取所述振动检测传感器对应的安装位置,根据所述安装位置获取与所述安装 位置对应的阈值,根据所述振动信号特征和对应的阈值判断所述护板实体是否被撞击。针对不同的区域设置不同的阈值,保证检测更加精确。
在一些实施例中,所述撞击检测装置500还包括撞击位置获取模块540,所述撞击位置获取模块540用于确定所述护板实体被撞击,根据振动信号特征与振动检测传感器的安装位置关系,获取所述护板实体上被撞击的位置。可以标定振动检测传感器在底盘护板上的位置,当检测到某个振动检测传感器的振动频率突变,即识别到撞击,根据其安装位置,获知对应的底盘护板被撞击的信息。
在本公开的一些实施例中,所述撞击判断模块530还用于:
S131、响应于所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征的变化率超过第一阈值,检测所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征的变化率是否超过第一阈值;
S132、响应于所述第二振动信号特征的变化率超过第一阈值,判断所述护板实体被撞击。通过多个振动检测传感器的振动信息判断是否被撞击,检测更加准确,避免造成单一传感器误检的情况。
在本公开的一些实施例中,所述撞击判断模块530还用于:
S133、响应于所述振动检测传感器阵列中的第一振动检测传感器的第一频率特征的变化率超过第四阈值,检测所述第一振动检测传感器的第一幅值特征是否超过第二阈值;
S134、响应于所述第一幅值特征超过第二阈值,判断所述护板实体被撞击。通过幅值和频率特性共同检测,提升单个振动检测传感器的有效性。
在本公开的一些实施例中,所述撞击判断模块530还用于:
S135、检测到所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征低于所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征,且第二振动信号特征与第一振动信号特征的差值大于第三阈值,确定所述第一振动检测传感器故障,屏蔽所述第一振动检测传感器的振动信号特征。通过单个振动检测传感器检测到的振动特性与周围传感器检测到的振动特性进行比较,获知故障的传感器信息,然后进行屏蔽。这里的信号之差可以理解为信号值之差。
在本公开的一些实施例中,所述撞击检测系统500还包括振动环境信息获取模块540,所述振动环境信息获取模块540用于根据所述频率特征和预设的振动环境频率阈值,获取所述护板实体的环境信息。所述环境信息包括是否涉水信息、涉水深度信息;所述信号处理装置具体被配置为将所述频率特征与所述预设的涉水环境频率阈值比较,判断所述护板实体是否 涉水,并根据所述频率特征获取所述护板实体的涉水深度信息,其中,所述涉水环境频率阈值为底盘浸没在水中运行时,从护板实体上的振动检测传感器上测量到的频率特征。所述环境信息还包括是否涉沙信息,同理,用类似的原理可以进行检测。
在本公开的一些实施例中,底盘护板上还设置有在护板实体上用于检测安装在底盘上的被保护件温度的温度传感器和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述撞击检测系统还包括风扇控制模块550,所述风扇控制模块550用于接收所述温度传感器的信号,根据所述温度传感器的信号控制所述风扇阵列工作。根据温度传感器的信息,检测到超过温度阈值的第一被保护件,根据第一被保护件的位置,控制所述风扇阵列中的目标风扇转动,以对所述第一被保护件散热。
在本公开一些实施例中,所述撞击判断模块530还用于:根据目标风扇的转速信息,获取所述目标风扇的噪音频率,根据所述噪音频率对位于所述目标风扇附近的振动检测传感器的频率特征进行滤波,并根据滤波后的振动信号特征的变化率识别所述护板实体是否被撞击。通过过滤掉风机的频率,能够更加精确地识别是否被撞击。
在本公开的一些实施例中,所述撞击检测系统500还包括窗体驱动模块560,所述底盘护板上还设置有位于所述底盘护板上的水位检测传感器,所述窗体驱动模块560用于:接收所述水位检测传感器信号,判断所述护板实体涉水,发送天窗开启信号和/或者车窗开启信号,以使车窗和/或天窗被打开。
在本公开的一些实施例中,所述撞击检测系统500还包括显示模块570,所述显示模块570用于显示所述护板实体的被撞击的位置。根据预存储的底盘护板的基本模型、振动检测传感器的位置、振动检测传感器的标号和位置的关系表,在判断护板实体被撞击之后,根据振动检测传感器的标号查询获取具体位置,在显示出的所述底盘护板的基本模型中标识出位置,以便用户直观地观察到撞击的位置。
本公开的撞击检测装置,能够振动检测传感器检测底盘护板的撞击情况,同时在未发生撞击时,也能通底盘护板的振动特性获知底盘护板的状态,能够对底盘护板结构件失效进行预测,便于用户提前防范行车风险。通过振动检测传感器也能获知底盘护板所处的环境信息,相应地调整撞击检测的阈值。底盘护板上通过温度传感器对底盘上的关键件、被保护件进行检测,确定被保护件和关键件的温度之后,控制底盘上风机进行工作。同时,在撞击检测时,相应地过滤掉风扇旋转带来的频率干扰,使得检测更加准确。还提供可视化被撞击部位的功能。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本发明中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图17来描述根据本发明的这种实施方式的电子设备1100。图17显示的电子设备1100仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图17所示,电子设备1100以通用计算设备的形式表现。电子设备1100的组件可以包括但不限于:上述至少一个处理单元1110、上述至少一个存储单元1120、连接不同系统组件(包括存储单元1120和处理单元1110)的总线1130。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元1110执行,使得所述处理单元1110执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。例如,所述处理单元1110可以执行如图12中所示的S110、获取护板实体上振动检测传感器阵列输出的振动信号特征,其中所述振动信号特征包括频率特征、振幅信号、能量特征、幅度谱特征信息中的一种或多种;S120、根据所述振动信号特征获取振动信号特征变化率;S130、根据振动信号特征变化率和变化率阈值判断所述护板实体是否被撞击。
存储单元1120可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)11201和/或高速缓存存储单元11202,还可以进一步包括只读存储单元(ROM)11203。
存储单元1120还可以包括具有一组(至少一个)程序模块11205的程序/实用工具11204,这样的程序模块11205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线1130可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备1100也可以与一个或多个外部设备1200(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备1100交互的设备通信,和/或与使得该电子设备1100能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口1150进行。并且,电子设备1100还可以通过网络适配器1160与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器1160通过总线1130与电子设备1100的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备1100使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本发明实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本发明实施方式的方法。
在本发明的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。
根据本发明的实施方式的用于实现上述方法的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列 表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里发明的发明后,将容易想到本发明的其他实施例。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由权利要求指出。

Claims (18)

  1. 一种汽车底盘护板,其特征在于,包括:
    护板实体;
    设置在所述护板实体上的振动检测传感器阵列,所述振动检测传感器阵列包括在预定区域内呈纵横排布的多个振动检测传感器组,用于输出所述护板实体各部位的振动信号特征;以及
    信号采集板;
    其中,所述振动检测传感器组中的振动检测传感器的输出端与对应的所述信号采集板连接;所述振动检测传感器阵列中的振动检测传感器的地端与所述护板实体电性连接,实现共地。
  2. 根据权利要求1所述的汽车底盘护板,其特征在于,多个所述多个信号采集板通过总线连接,并通过总线对外输出所述振动信号。
  3. 根据权利要求1所述的汽车底盘护板,其特征在于,所述护板实体的数量为多个,每个护板实体上设置有所述信号采集板,相邻护板实体上的信号采集板通过总线连接。
  4. 根据权利要求1所述的汽车底盘护板,其特征在于,所述护板实体的外形或者所述预定区域与所述底盘上方设置的被保护件对应,所述护板实体安装在所述被保护件的下方。
  5. 根据权利要求1所述的汽车底盘护板,其特征在于,还包括设置在护板实体上用于检测安装在底盘上的被保护件温度的温度传感器和设置在所述护板实体上用于对所述被保护件进行散热的风扇阵列,所述温度传感器的信号输入至信号处理装置,以供所述信号处理装置根据所述温度传感器的信号而控制所述风扇阵列工作。
  6. 根据权利要求1所述的汽车底盘护板,其特征在于,还包括位于所述底盘护板上的水位检测传感器,所述水位检测传感器向信号处理装置输出信号,以供所述信号处理装置判断所述护板实体是否涉水及是否发送车门开锁信号、天窗开启信号和/或者车窗开启信号。
  7. 一种车载撞击检测系统,其特征在于,包括如权利要求1~6任一所述的汽车底盘护板,还包括与所述信号采集板连接的信号处理装置,所述信号处理装置根据所述振动信号特征的变化率识别所述护板实体是否被撞击,其中,所述振动信号特征包括频率特征、能量特征、幅度谱特征、幅值特征中的一种或多种。
  8. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置被配置为根据振动信号与振动检测传感器的安装位置关系,获取所述振动检测传感器对应的安装位置,根据所述安装位置获取与所述安装位置对应的阈值,根据所述振动信号特征和对应的阈值判断所述护板实体是否被撞击。
  9. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置具体被配置为,响应于所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征的变化率超过第一阈值,检测所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征的变化率是否超过第一阈值,响应于所述第二振动信号特征的变化率超过第一阈值,判断所述护板实体被撞击。
  10. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置具体被配置为,响应于所述振动检测传感器阵列中的第一振动检测传感器的第一频率特征的变化率超过第四阈值,检测所述第一振动检测传感器的第一幅值特征是否超过第二阈值,响应于所述第一幅值特征超过第二阈值,判断所述护板实体被撞击。
  11. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置还被配置为,检测到所述振动检测传感器阵列中的第一振动检测传感器的第一振动信号特征低于所述第一振动检测传感器相邻的一个或多个第二振动检测传感器的第二振动信号特征,且第二振动信号特征与第一振动信号特征的差值大于第三阈值,确定所述第一振动检测传感器故障,屏蔽所述第一振动检测传感器的振动信号特征。
  12. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置被配置为根据所述频率特征和预设的振动环境频率阈值,获取所述护板实体的环境信息。
  13. 根据权利要求12所述的车载撞击检测系统,其特征在于,所述环境信息包括是否涉水信息、涉水深度信息;所述信号处理装置具体被配置为将所述频率特征与所述预设的涉水环境频率阈值比较,判断所述护板实体是否涉水,并根据所述频率特征获取所述护板实体的涉水深度信息,其中,所述涉水环境频率阈值为底盘浸没在水中运行时,从护板实体上的振动检测传感器上测量到的频率特征。
  14. 根据权利要求7所述的车载撞击检测系统,其特征在于,所述信号处理装置还被配置为,根据温度传感器的信息,检测到超过温度阈值的第一被保护件,根据第一被保护件的位置,控制所述风扇阵列中的目标风扇转动,以对所述第一被保护件散热。
  15. 根据权利要求14所述的车载撞击检测系统,其特征在于,所述信号处理装置还被配置为,根据目标风扇的转速信息,获取所述目标风扇的噪音频率,根据所述噪音频率对位于所述目标风扇附近的振动检测传感器的频率特征进行滤波,并根据滤波后的振动信号特征的变化率识别所述护板实体是否被撞击。
  16. 根据权利要求7所述的车载撞击检测系统,其特征在于,还包括与信号处理装置连接的车载控制器、与所述车载控制器连接的车载显示屏,所述车载显示屏用于显示所述护板实体被撞击的位置。
  17. 根据权利要求7所述的车载撞击检测系统,其特征在于,还包括与所述信号处理装置连接的蓝牙模块,所述蓝牙模块用于将信号处理装置的信息发送给移动终端,以使移动终端显示所述护板实体的被撞击的位置。
  18. 一种利用权利要求1~6任一所述的汽车底盘护板的撞击检测方法,包括如下步骤:
    获取护板实体上振动检测传感器阵列输出的振动信号特征,其中所述振动信号特征包括频率特征、振幅特征、能量特征、幅度谱特征信息中的一种或多种;
    根据所述振动信号特征获取振动信号特征变化率;
    根据振动信号特征变化率和变化率阈值判断所述护板实体是否被撞击。
PCT/CN2021/091035 2021-04-29 2021-04-29 底盘护板、车载撞击检测系统及撞击检测方法 WO2022226901A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/091035 WO2022226901A1 (zh) 2021-04-29 2021-04-29 底盘护板、车载撞击检测系统及撞击检测方法
CN202180001817.9A CN113329915A (zh) 2021-04-29 2021-04-29 底盘护板、车载撞击检测系统及撞击检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091035 WO2022226901A1 (zh) 2021-04-29 2021-04-29 底盘护板、车载撞击检测系统及撞击检测方法

Publications (1)

Publication Number Publication Date
WO2022226901A1 true WO2022226901A1 (zh) 2022-11-03

Family

ID=77427039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091035 WO2022226901A1 (zh) 2021-04-29 2021-04-29 底盘护板、车载撞击检测系统及撞击检测方法

Country Status (2)

Country Link
CN (1) CN113329915A (zh)
WO (1) WO2022226901A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560108B2 (en) * 2020-03-19 2023-01-24 Zf Friedrichshafen Ag Vehicle safety system and method implementing weighted active-passive crash mode classification
CN114174793A (zh) * 2021-11-03 2022-03-11 焦旭 车身振动实时检测系统及汽车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963327A (zh) * 2012-11-27 2013-03-13 北京汽车股份有限公司 车辆涉水安全系统及其工作方法
CN204641641U (zh) * 2015-03-24 2015-09-16 北京汽车研究总院有限公司 一种发动机下护板装置及汽车
CN105280859A (zh) * 2015-09-24 2016-01-27 奇瑞汽车股份有限公司 电动汽车电池系统碰撞防护结构及其装配方法和拆卸方法
CN107054253A (zh) * 2016-02-11 2017-08-18 福特全球技术公司 潜在底盘损坏的识别、验证和通知
CN108661798A (zh) * 2018-06-29 2018-10-16 江苏科彤车业科技有限公司 一种便于拆装的发动机隔音罩
CN208325118U (zh) * 2018-06-26 2019-01-04 江西江铃汽车集团旅居车有限公司 一种应用于商旅房车上的故障判定装置
GB2581019A (en) * 2018-12-12 2020-08-05 Deutsch Zentr Luft & Raumfahrt Method and device for detecting an impact event and vehicle therefor
CN112356675A (zh) * 2020-11-18 2021-02-12 深圳市元征科技股份有限公司 一种电池的监管方法及其相关设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816533B2 (ja) * 2011-11-16 2015-11-18 株式会社ケーヒン 車両衝突判定装置
CN209544447U (zh) * 2019-03-15 2019-10-25 北京新能源汽车股份有限公司蓝谷动力系统分公司 底护板组件和电池包

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102963327A (zh) * 2012-11-27 2013-03-13 北京汽车股份有限公司 车辆涉水安全系统及其工作方法
CN204641641U (zh) * 2015-03-24 2015-09-16 北京汽车研究总院有限公司 一种发动机下护板装置及汽车
CN105280859A (zh) * 2015-09-24 2016-01-27 奇瑞汽车股份有限公司 电动汽车电池系统碰撞防护结构及其装配方法和拆卸方法
CN107054253A (zh) * 2016-02-11 2017-08-18 福特全球技术公司 潜在底盘损坏的识别、验证和通知
CN208325118U (zh) * 2018-06-26 2019-01-04 江西江铃汽车集团旅居车有限公司 一种应用于商旅房车上的故障判定装置
CN108661798A (zh) * 2018-06-29 2018-10-16 江苏科彤车业科技有限公司 一种便于拆装的发动机隔音罩
GB2581019A (en) * 2018-12-12 2020-08-05 Deutsch Zentr Luft & Raumfahrt Method and device for detecting an impact event and vehicle therefor
CN112356675A (zh) * 2020-11-18 2021-02-12 深圳市元征科技股份有限公司 一种电池的监管方法及其相关设备

Also Published As

Publication number Publication date
CN113329915A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022226901A1 (zh) 底盘护板、车载撞击检测系统及撞击检测方法
CN104112335A (zh) 一种基于多信息融合的疲劳驾驶检测方法
US11745701B2 (en) System for detecting window or glass panel damage
CN113335290B (zh) 一种车辆滚动阻力获取方法、获取模块及存储介质
CN103057502B (zh) 一种检测车辆瞬时加速度提示汽车姿态的装置和方法、及汽车
WO2019185045A1 (zh) 运输设备碰撞检测及预警防护方法
CN104819765A (zh) 用于探测至少一个结构声音信号的设备和方法
CN109421631A (zh) 基于加速度计的车辆刮水器刮片监测
KR20100090048A (ko) 운전자의 차량 조작정보 수집 및 이의 분석 시스템
CN114074577B (zh) 一种新能源车电池包磕底检测方法和装置
US11705149B2 (en) Accelerometer inside of a microphone unit
CN109932152B (zh) 一种汽车喇叭共振检测装置及检测方法
CN104019890A (zh) 一种次声波检测方法及其检测装置
US20220307939A1 (en) Glazing sensor
CN214775759U (zh) 底盘护板和车载撞击检测系统
CN106530822B (zh) 一种车辆监测方法及系统
CN216310220U (zh) 电动车的电池包异常预警系统及电动车
WO2023016065A1 (zh) 电池包安全监控方法、装置、设备、系统及存储介质
CN114047446B (zh) 电动车的电池包异常检测方法、装置及存储介质
CN109318862A (zh) 使用心理-声学指标的车辆雨水检测器
CN207440849U (zh) 一种可以预报危险的行车记录仪设备
CN202676809U (zh) 一种对车辆所受电磁辐射进行检测的设备和车辆
CN105243762A (zh) 一种带防盗功能的电子传感器门铃及其控制方法
CN203981269U (zh) 一种声信号检测装置
CN115824669B (zh) 一种用于车辆结构安全性测试的方法、系统及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938381

Country of ref document: EP

Kind code of ref document: A1