WO2023015740A1 - 一种计量标准器及其制备方法 - Google Patents

一种计量标准器及其制备方法 Download PDF

Info

Publication number
WO2023015740A1
WO2023015740A1 PCT/CN2021/128163 CN2021128163W WO2023015740A1 WO 2023015740 A1 WO2023015740 A1 WO 2023015740A1 CN 2021128163 W CN2021128163 W CN 2021128163W WO 2023015740 A1 WO2023015740 A1 WO 2023015740A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard
calibration
wafer
micro
groove structure
Prior art date
Application number
PCT/CN2021/128163
Other languages
English (en)
French (fr)
Inventor
李迪
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023015740A1 publication Critical patent/WO2023015740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present application relates to the field of semiconductor technology, in particular to a measurement standard and a preparation method thereof.
  • chip-level nanometric standards such as nanoscale line width, nanoscale one-dimensional/two-dimensional periodic grids, etc.
  • semiconductor process line measurement equipment is fully automated equipment.
  • This kind of chip-level measurement standard cannot be directly used in the integrated circuit industry, resulting in a disconnect between nanometer measurement and the industry.
  • How to transfer the chip-level nanometric standard to a large-size wafer carrier to form a wafer-level nanometric standard compatible with a fully automatic production line to meet the needs of the semiconductor industry for online rapid measurement and calibration has become a difficult problem in the metrology industry.
  • how to ensure the accuracy of the measurement value during long-term use has become a technical problem that needs to be solved urgently at this stage.
  • the embodiment of the present application provides a measuring standard to solve at least one problem existing in the background art.
  • a standard meter including:
  • At least one air guide channel is provided at the bottom of the groove structure, and the air guide channel passes through the groove structure and an external vacuum system, and the external vacuum system is used for The air guide channel is evacuated.
  • the wafer carrier includes a stacked first wafer and a second wafer, the groove structure runs through the first wafer, and the groove structure The bottom surface is flush with the upper surface of the second wafer, wherein the upper surface of the second wafer is the surface of the second wafer facing the first wafer.
  • the roughness of the bottom of the groove structure and/or the roughness of the lower surface of the calibration micro-nano-scale standard plate is less than or equal to 10 nm, wherein the calibration micro The lower surface of the nanoscale standard sheet is the surface facing the bottom of the groove structure of the micro-nanoscale standard sheet for calibration.
  • the standard meter also includes:
  • a suction-assisting film is located between the micro-nano-scale standard sheet for calibration and the bottom of the groove structure, and the elastic modulus of the suction-assisting film is greater than that of the micro-nano-scale standard sheet for calibration modulus of elasticity.
  • the air guide channel is perpendicular to the wafer carrier, and the air guide channel passes through the wafer carrier under the groove structure.
  • the openings at the tops of the multiple air guide channels are equal in size, and the multiple air guide channels are arranged at equal intervals.
  • a plurality of the air guiding channels communicate with each other.
  • the number of openings at the top of the air guide channel is greater than the number of openings at the bottom.
  • the number of openings at the top of the air guide channel is smaller than the number of openings at the bottom.
  • the gas guide channel is a through hole, and the diameter of the through hole near the micro-nanoscale standard sheet for calibration is larger than the diameter of the side away from the micro-nanoscale standard sheet for calibration.
  • the depth of the groove structure is equal to the thickness of the micro-nano-scale standard sheet for calibration.
  • the embodiment of the present application also provides a preparation method of a measurement standard, including:
  • a wafer carrier is provided, a groove structure is formed on the wafer carrier; at least one gas guide channel is formed at the bottom of the groove structure, and the gas guide channel passes through the groove structure and an external vacuum system; through the The external vacuum system vacuumizes the air guide channel; provides micro-nano-scale standard sheets for calibration, and mounts the micro-nano-scale standard sheets for calibration in the groove structure.
  • the formation of the groove structure on the wafer carrier includes:
  • the groove structure is formed by using pulse laser, the pulse width of the pulse laser is less than or equal to 100ns, the power of the pulse laser is 10 to 300W, and the repetition frequency is 10 to 100kHz.
  • the wafer carrier is provided, and the groove structure is formed on the wafer carrier, including:
  • the method further includes:
  • a suction-assisting film is formed on the lower surface of the micro-nano-size standard sheet for calibration, and the elastic modulus of the suction-aid film is greater than the elastic modulus of the micro-nano-size standard sheet for calibration, wherein the micro-nano-size standard sheet for calibration is
  • the lower surface of the nanoscale standard sheet is the surface to be mounted on the bottom of the groove structure of the micro-nanoscale standard sheet for calibration.
  • At least one air guide channel is formed at the bottom of the groove structure, including:
  • the gas guiding channel is formed by using a pulsed laser, the pulse width of the pulsed laser is less than or equal to 50 ps, the power of the pulsed laser is 10 to 100 W, and the repetition frequency is 100 to 2000 kHz.
  • the embodiment of the present application provides a measurement standard, including: a wafer carrier; a micro-nano-scale standard sheet for calibration; a groove structure is provided on the wafer carrier; the micro-nano-scale standard sheet for calibration is detachable fixed in the groove structure.
  • the calibration micro-nano-scale standard sheet in the measurement standard device of this application is detachable, which meets the periodic calibration requirements and can ensure the accuracy of the measurement value in long-term use.
  • Fig. 1 is the schematic sectional view of the measuring standard device of related art
  • Fig. 2 is a schematic cross-sectional view of a metrology standard provided by the embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a measurement standard provided in another embodiment of the present application.
  • Figure 4a is a schematic cross-sectional view of a measurement standard provided by another embodiment of the present application.
  • Fig. 4b is a schematic cross-sectional view of a measurement standard provided by another embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of a measurement standard provided by another embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a measurement standard provided in another embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of a measurement standard provided in another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of a measurement standard provided by another embodiment of the present application.
  • Figures 9a to 9b are schematic cross-sectional views of a measurement standard provided in another embodiment of the present application.
  • Fig. 10 is a flow chart of the preparation method of the measurement standard device provided by the embodiment of the present application.
  • Fig. 11a to Fig. 11d are schematic diagrams of the device structure during the preparation process of the metrology standard provided by the embodiment of the present application.
  • Fig. 1 is a schematic cross-sectional view of a measurement standard of related technology in the industry, which comprises: a wafer carrier 101; a micro-nano-scale standard sheet 105 for calibration; the wafer carrier 101 is provided with a groove structure 103; The micro-nano-scale standard plate 105 for calibration is fixed in the groove structure 103 through the adhesive material 107 .
  • the measurement standard adopts a dispensing process to transfer the micro-nano-scale standard sheet for calibration to the wafer groove to form a wafer-level measurement standard. This pasting and fixing method makes it impossible to remove the micro-nano-scale standard sheet for calibration from the wafer carrier in the later stage, and thus cannot meet the periodic calibration requirements of the measurement standard.
  • the micro-nano-scale standard sheet for this type of calibration needs to be calibrated once a year to ensure the accuracy of the value.
  • integrated circuit manufacturing companies need standard sheets (such as nanometer line width standards) to calibrate fully automatic scanning electron microscopes (SEM).
  • SEM scanning electron microscopes
  • new calibrated standard chips must be purchased and replaced.
  • the production cost is increased, and on the other hand, the procurement cycle will also increase the production risk of the enterprise.
  • the height of the adhesive material is difficult to control, and thus the height difference between the micro-nano-scale standard sheet for calibration and the surface of the wafer carrier cannot be accurately controlled, thereby affecting the measurement effect.
  • the standard sheets produced by the previous wafer-level metrology standard technology solutions are all certified once. During the long-term use process, the standard sheets cannot be re-certified, and the long-term accuracy of the value cannot be guaranteed.
  • FIG. 2 is a schematic cross-sectional view of the standard provided by the embodiment of the present application.
  • described measuring standard device comprises: wafer carrier 101; Calibration uses micro-nano-scale standard piece 105; Described wafer carrier 101 is provided with groove structure 103; Described calibration uses micro-nano-scale standard piece 105 It is detachably fixed in the groove structure 103 .
  • the calibration micro-nano-scale standard sheet in the measurement standard device of this application is detachable, which meets the periodic calibration requirements and can ensure the accuracy of the measurement value in long-term use.
  • the wafer carrier 101 can be silicon wafer (Si wafer), glass wafer (glass wafer), gallium nitride wafer (GaN wafer), silicon carbide wafer (SiC wafer), sapphire wafer Round (sapphire wafer), gallium arsenide wafer (GaAs wafer), etc.
  • the thickness of the wafer carrier may be, for example, 775 ⁇ 20 ⁇ m.
  • the size of the wafer carrier can be, for example, 6 inches, 8 inches, or 12 inches.
  • the nano-geometric characteristic parameters of the micro-nano-scale standard sheet for calibration include but are not limited to line width, grid, steps, film thickness, etc.
  • the depth of the groove structure 103 is equal to the thickness of the micro-nano-scale standard sheet 105 for calibration.
  • the size of the groove structure 103 can be, for example, 20.05 ⁇ 20.05 ⁇ 300 ⁇ m (length ⁇ width ⁇ height), and can be formed by wet or dry etching process.
  • the size of the micro-nano-scale standard sheet 105 for calibration can be, for example, 20 ⁇ 20 ⁇ 300um (length ⁇ width ⁇ height).
  • micro-nano-scale standard sheet for calibration is embedded in the groove, which reduces the volume of the surface of the wafer carrier exposed by the micro-nano-scale standard sheet for calibration, and increases the stability of the micro-nano-scale standard sheet for calibration on the wafer carrier. sex.
  • At least one air guide channel 109 is provided at the bottom of the groove structure 103 , and the air guide channel 109 passes through the groove structure 103 and an external vacuum system 111 ,
  • the external vacuum system 111 is used to evacuate the air guide channel.
  • the micro-nano-scale standard piece for calibration can be vacuum adsorbed through the external vacuum system, and the standard can be disassembled after use. After long-term use, it is necessary to certify and calibrate the micro-nano-scale standard sheet for calibration.
  • the disassembled calibration micro-nano-scale standard sheet can be calibrated separately, so as to ensure the accuracy of the value and meet the periodic calibration requirements.
  • the gas guiding channel can be formed by etching or laser grooving.
  • the air guide channel is perpendicular to the wafer carrier, and the air guide channel 109 passes through the wafer carrier below the groove structure 103 . In this way, gas flow is facilitated, and the vacuuming efficiency of the external vacuum system is improved.
  • the opening sizes W1 at the tops of the multiple air guiding channels 109 are equal, and the multiple air guiding channels 109 are arranged at equal intervals W2 .
  • the air guide channel may be cylindrical, for example, the opening size W1 may be 10-2000 ⁇ m, and the interval W2 of the multiple air guide channels may be 100-4000 ⁇ m. Multiple air guide channels are evenly arranged, and the uniformity of the adsorption force can be improved when the external vacuum system is vacuumed.
  • the roughness of the bottom of the groove structure 103 and/or the roughness of the lower surface of the calibration micro-nano-scale standard plate 105 is less than or equal to 10 nm, wherein the calibration micro The lower surface of the nanoscale standard sheet is the surface facing the bottom of the groove structure of the micro-nanoscale standard sheet for calibration.
  • the metrology standard further includes: a suction film 113, and the suction film 113 is located between the calibration micro-nano-scale standard sheet 105 and the between the bottoms of the groove structures 103, and the elastic modulus of the suction-assisting film 113 is greater than the elastic modulus of the micro-nano size standard sheet 105 for calibration.
  • the suction-assisting film 113 may be coated or mounted on the lower surface of the micro-nano-scale standard sheet 105 for calibration.
  • FIG. 4 a the suction-assisting film 113 may be coated or mounted on the lower surface of the micro-nano-scale standard sheet 105 for calibration.
  • the suction-assisting film 113 can be coated or pasted on the bottom of the groove structure 103 .
  • a vacuum suction film can be used to reduce gas leakage and improve the adsorption effect.
  • the wafer carrier includes a stacked first wafer 101-1 and a second wafer 101-2, and the groove structure 103 runs through the first wafer 101-1.
  • a wafer 101-1, and the bottom surface of the groove structure 103 is flush with the upper surface 111 of the second wafer 101-2, wherein the upper surface of the second wafer is the second wafer round the surface facing the first wafer.
  • the thickness of the first wafer 101-1 may be, for example, 300 ⁇ 10 ⁇ m
  • the thickness of the second wafer 101-2 may be, for example, 475 ⁇ 10 ⁇ m.
  • the groove structure can be formed by using pulsed laser.
  • the surface roughness of the bottom of the groove is poor, which affects the adsorption effect, and the etching requires a photomask, resulting in high process cost.
  • two wafers are used, and pulsed lasers are used to form groove structures and gas guide channels in each wafer.
  • the upper surface of the second wafer as the bottom surface of the groove structure can achieve lower roughness and improve the adsorption effect.
  • the roughness of the upper surface of the second wafer can be controlled through a grinding and polishing process.
  • pulsed laser is more efficient than etching and slotting, and does not require the cost of a photomask.
  • a plurality of the air guide channels 109 communicate with each other.
  • it can be realized by vertical etching and lateral etching, or by forming gas guide channels in multiple wafers respectively, and then bonding multiple wafers to form.
  • Multiple air guide channels are connected to keep the vacuum degree in the air guide channels consistent, so that the adsorption force is more uniform, and at the same time, the problem of the decrease of adsorption force caused by the blockage of multiple air guide channels is avoided.
  • the number of top openings 109 - 1 of the air guide channel is greater than the number of bottom openings 109 - 2 .
  • the number of top openings 109 - 1 of the air guide channel is smaller than the number of bottom openings 109 - 2 .
  • the more openings at the bottom of the air guide channel the greater the air flow rate, that is, the increase in the pumping rate, which can increase the vacuum degree, thereby enhancing or stabilizing the adsorption force.
  • the gas guide channel 109 is a through hole, and the diameter W3 of the through hole close to the micro-nanoscale standard sheet for calibration is larger than that far away from the micro-nanoscale standard sheet for calibration.
  • the air guide channel may be, for example, a circular frustum with a taper of less than 0.2. In this way, the adsorption force is more uniform, and the stability of the micro-nano-scale standard sheet for calibration on the wafer carrier is improved.
  • the air guide channel can also be a columnar channel with different widths up and down. Cylindrical channel 109-2, wherein W5 is greater than W6. In some embodiments, the air guide channel includes cylindrical channels with different widths up and down, the width of the upper air guide channel is greater than the width of the lower air guide channel, and the upper air guide channel has a hole taper of less than 0.2 Round table.
  • the embodiment of the present application also provides a method for preparing a measurement standard, please refer to Figure 10 for details, as shown in the figure, the method includes:
  • Step 1001 providing a wafer carrier, and forming a groove structure on the wafer carrier;
  • Step 1002 forming at least one air guide channel at the bottom of the groove structure, and the air guide channel passes through the groove structure and an external vacuum system;
  • Step 1003 vacuumize the air guide channel through the external vacuum system
  • Step 1004 providing a micro-nano-scale standard sheet for calibration, and mounting the micro-nano-scale standard sheet for calibration in the groove structure.
  • Fig. 11a to Fig. 11d are schematic diagrams of the device structure during the preparation process of the metrology standard provided by the embodiment of the present application.
  • step 1001 is executed, referring to FIG. 11 a , providing a wafer carrier 101 on which a groove structure 103 is formed.
  • Described wafer carrier 101 can be silicon wafer (Si wafer), glass wafer (glass wafer), gallium nitride wafer (GaN wafer), silicon carbide wafer (SiC wafer), sapphire wafer (sapphire wafer) , GaAs wafer (GaAs wafer), etc.
  • the thickness of the wafer carrier may be, for example, 775 ⁇ 20 ⁇ m.
  • the size of the wafer carrier can be, for example, 6 inches, 8 inches, or 12 inches.
  • the forming the groove structure on the wafer carrier includes: forming the groove structure by using a pulsed laser, the pulse width of the pulsed laser is less than or equal to 100 ns, and the pulse The power of the laser is 10 to 300W, and the repetition rate is 10 to 100kHz.
  • step 1002 is performed to form at least one air guide channel 109 at the bottom of the groove structure 101 , and the air guide channel passes through the groove structure and an external vacuum system.
  • the gas guiding channel can be formed by etching or laser grooving.
  • the providing a wafer carrier and forming a groove structure on the wafer carrier includes: providing a first wafer; forming a through groove on the first wafer; providing a second Two wafers: bonding the first wafer and the second wafer, forming a groove structure by the through groove and the surface of the second wafer.
  • the thickness of the first wafer may be, for example, 300 ⁇ 10 ⁇ m
  • the thickness of the second wafer may be, for example, 475 ⁇ 10 ⁇ m.
  • forming at least one gas guiding channel at the bottom of the groove structure includes: forming the gas guiding channel by using a pulsed laser, the pulse width of the pulsed laser is less than or equal to 50 ps, and the pulse The power of the laser is 10 to 100W, and the repetition rate is 100 to 2000kHz.
  • the gas guiding channel is perpendicular to the wafer carrier, and the gas guiding channel 109 passes through the wafer carrier below the groove structure 103 .
  • the openings at the tops of the multiple air guide channels 109 are equal in size, and the multiple air guide channels are arranged at equal intervals.
  • the air guide channel may be cylindrical, for example, the opening size W1 may be 10-2000 ⁇ m, and the interval W2 of the multiple air guide channels may be 100-4000 ⁇ m.
  • a plurality of the air guide channels 109 communicate with each other.
  • the number of openings at the top of the air guiding channel is greater than the number of openings at the bottom.
  • the number of openings at the top of the air guiding channel is less than the number of openings at the bottom.
  • the gas guide channel 109 is a through hole, and the diameter of the through hole near the micro-nanoscale standard sheet for calibration is larger than the diameter of the side away from the micro-nanoscale standard sheet for calibration.
  • the air guide channel may also be a cylindrical channel with different widths up and down.
  • the air guide channel includes cylindrical channels with different widths up and down, the width of the upper air guide channel is greater than the width of the lower air guide channel, and the upper air guide channel has a hole taper of less than 0.2 Round table.
  • step 1003 is performed to vacuumize the air guide channel through the external vacuum system 111;
  • step 1104 is performed to provide the micro-nanoscale standard sheet 105 for calibration, and mount the micro-nanoscale standard sheet 105 for calibration in the groove structure 103 .
  • the depth of the groove structure 103 is equal to the thickness of the micro-nano-scale standard sheet 105 for calibration.
  • the size of the groove structure 103 can be, for example, 20.05 ⁇ 20.05 ⁇ 300 ⁇ m (length ⁇ width ⁇ height), and can be formed by wet or dry etching process.
  • the size of the micro-nano-scale standard sheet 105 for calibration can be, for example, 20 ⁇ 20 ⁇ 300 ⁇ m (length ⁇ width ⁇ height).
  • the nano-geometric characteristic parameters of the micro-nano-scale standard sheet for calibration include but are not limited to line width, grid, steps, film thickness, etc.
  • the roughness of the bottom of the groove structure 103 and/or the roughness of the lower surface of the calibration micro-nano-scale standard plate 105 is less than or equal to 10 nm, wherein the calibration micro The lower surface of the nanoscale standard sheet is the surface facing the bottom of the groove structure of the micro-nanoscale standard sheet for calibration.
  • the method further includes: forming a suction-assisting film on the lower surface of the micro-nano-size standard sheet for calibration, the suction-assisting film
  • the elastic modulus is greater than the elastic modulus of the micro-nano-sized standard sheet for calibration, wherein the lower surface of the micro-nano-sized standard sheet for calibration is the micro-nano-sized standard sheet for calibration to be mounted on the concave The surface at the bottom of the trough structure.
  • micro-nano-scale standard sheet for calibration in the measurement standard of this application is detachable, which meets the periodic calibration requirements and can ensure the accuracy of the measurement value in long-term use.
  • the measurement standard provided in the embodiment of the present application and its preparation method can be applied to the online calibration of any wafer-level semiconductor production line high-precision measuring instruments, such as scanning electron microscopes, atomic force microscopes, fully automatic optical microscopes, etc.
  • high-precision measuring instruments such as scanning electron microscopes, atomic force microscopes, fully automatic optical microscopes, etc.
  • the technical features in the technical solutions described in each embodiment can be combined arbitrarily under the condition that there is no conflict.
  • the embodiment of the present application provides a measurement standard, including: a wafer carrier; a micro-nano-scale standard sheet for calibration; a groove structure is provided on the wafer carrier; the micro-nano-scale standard sheet for calibration is detachable fixed in the groove structure.
  • the calibration micro-nano-scale standard sheet in the measurement standard device of this application is detachable, which meets the periodic calibration requirements and can ensure the accuracy of the measurement value in long-term use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种计量标准器,包括:晶圆载体(101);校准用微纳尺度标准片(105);晶圆载体(101)上设有凹槽结构(103);校准用微纳尺度标准片(105)可拆卸地固定在凹槽结构(103)内。还提供一种计量标准器的制备方法。

Description

一种计量标准器及其制备方法
相关申请的交叉引用
本申请基于申请号为202110932981.3、申请日为2021年08月13日、发明名称为“一种计量标准器及其制备方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及半导体技术领域,尤其涉及一种计量标准器及其制备方法。
背景技术
在半导体制造领域,每种产品从入料(FAB IN)到出货(FAB OUT)需要经历上百步的工艺及量测步骤,其中包含至少上千个量测参数,而每一个量测数值的好坏,都会关系到产品的最终品质。因此半导体量测设备在半导体产业中扮演着重要角色。而半导体量测设备需要定期计量校准来维持其量测数值的准确性。
当前,各国计量机构已逐步开发出小尺寸芯片级纳米计量标准器(比如纳米级线宽、纳米级一维/二维周期栅格等),但半导体工艺线量测设备均是全自动化设备。这种芯片级计量标准器无法直接用于集成电路产业里,造成纳米计量与产业脱节。如何将芯片级纳米计量标准器转移至大尺寸圆片载体上形成晶圆级纳米计量标准器以兼容全自动生产线来满足半导体行业在线快速计量校准需求,成为了计量行业一个难题。另一方面,如何在长期使用过程中,保证量值的准确性,成为现阶段亟需解决的技术问题。
发明内容
有鉴于此,本申请实施例为解决背景技术中存在的至少一个问题而提供一种计量标准器。
为达到上述目的,本申请的技术方案是这样实现的:
根据本申请实施例提供了一种计量标准器,包括:
晶圆载体;校准用微纳尺度标准片;所述晶圆载体上设有凹槽结构;所述校准用微纳尺度标准片可拆卸地固定在所述凹槽结构内。
在本申请的一些示例性实施例中,所述凹槽结构底部设有至少一个导气通道,所述导气通道贯通所述凹槽结构与外部真空系统,所述外部真空系统用于对所述导气通道抽真空。
在本申请的一些示例性实施例中,所述晶圆载体包括叠置的第一晶圆和第二晶圆,所述凹槽结构贯穿所述第一晶圆,且所述凹槽结构的底面与所述第二晶圆的上表面齐平,其中,所述第二晶圆的上表面为所述第二晶圆的面向所述第一晶圆的表面。
在本申请的一些示例性实施例中,所述凹槽结构底部的粗糙度和/或所述校准用微纳尺度标准片的下表面的粗糙度小于或等于10nm,其中,所述校准用微纳尺度标准片的下表面为所述校准用微纳尺度标准片的面向所述凹槽结构底部的表面。
在本申请的一些示例性实施例中,所述计量标准器还包括:
助吸膜,所述助吸膜位于所述校准用微纳尺度标准片与所述凹槽结构的底部之间,且所述助吸膜的弹性模量大于所述校准用微纳尺寸标准片的弹性模量。
在本申请的一些示例性实施例中,所述导气通道垂直于所述晶圆载体,且所述导气通道贯通所述凹槽结构下方的所述晶圆载体。
在本申请的一些示例性实施例中,多个所述导气通道的顶端的开口尺 寸相等,且多个所述导气通道等间隔排列。
在本申请的一些示例性实施例中,多个所述导气通道互相连通。
在本申请的一些示例性实施例中,所述导气通道的顶端开口数量大于底端开口数量。
在本申请的一些示例性实施例中,所述导气通道的顶端开口数量小于底端开口数量。
在本申请的一些示例性实施例中,所述导气通道为贯穿通孔,所述通孔靠近校准用微纳尺度标准片一侧的直径大于远离校准用微纳尺度标准片一侧的直径。
在本申请的一些示例性实施例中,所述凹槽结构的深度和所述校准用微纳尺度标准片的厚度相等。
本申请实施例还提供了一种计量标准器的制备方法,包括:
提供晶圆载体,在所述晶圆载体上形成凹槽结构;在所述凹槽结构底部形成至少一个导气通道,所述导气通道贯通所述凹槽结构与外部真空系统;通过所述外部真空系统对所述导气通道进行抽真空操作;提供校准用微纳尺度标准片,将校准用微纳尺度标准片贴装在所述凹槽结构内。
在本申请的一些示例性实施例中,所述在所述晶圆载体上形成凹槽结构,包括:
采用脉冲激光形成所述凹槽结构,所述脉冲激光的脉冲宽度小于或等于100ns,所述脉冲激光的功率为10至300W,重复频率为10至100kHz。
在本申请的一些示例性实施例中,所述提供晶圆载体,在所述晶圆载体上形成凹槽结构,包括:
提供第一晶圆;在所述第一晶圆上形成贯穿槽;提供第二晶圆;将第一晶圆和第二晶圆键合,由所述贯穿槽与所述第二晶圆表面形成凹槽结构。
在本申请的一些示例性实施例中,提供校准用微纳尺寸标准片之后,所述方法还包括:
在所述校准用微纳尺寸标准片的下表面上形成助吸膜,所述助吸膜的弹性模量大于所述校准用微纳尺寸标准片的弹性模量,其中,所述校准用微纳尺寸标准片的下表面为所述校准用微纳尺度标准片的待贴装于所述凹槽结构底部的表面。
在本申请的一些示例性实施例中,在所述凹槽结构底部形成至少一个导气通道,包括:
采用脉冲激光形成所述导气通道,所述脉冲激光的脉冲宽度小于或等于50ps,所述脉冲激光的功率为10至100W,重复频率为100至2000kHz。
本申请实施例提供了一种计量标准器,包括:晶圆载体;校准用微纳尺度标准片;所述晶圆载体上设有凹槽结构;所述校准用微纳尺度标准片可拆卸地固定在所述凹槽结构内。本申请计量标准器中的校准用微纳尺度标准片可拆卸,满足周期性校准需求,可在长期使用中保证量值的准确性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为相关技术的计量标准器的剖面示意图;
图2为本申请实施例提供的计量标准器的剖面示意图;
图3为本申请另一实施例提供的计量标准器的剖面示意图;
图4a为本申请另一实施例提供的计量标准器的剖面示意图;
图4b为本申请另一实施例提供的计量标准器的剖面示意图;
图5为本申请另一实施例提供的计量标准器的剖面示意图;
图6为本申请另一实施例提供的计量标准器的剖面示意图;
图7为本申请另一实施例提供的计量标准器的剖面示意图;
图8为本申请另一实施例提供的计量标准器的剖面示意图;
图9a至图9b为本申请另一实施例提供的计量标准器的剖面示意图;
图10为本申请实施例提供的计量标准器的制备方法的流程图;
图11a至图11d为本申请实施例提供的计量标准器在制备过程中的器件结构示意图。
具体实施方式
下面将参照附图更详细地描述本申请公开的示例性实施方式。虽然附图中显示了本申请的示例性实施方式,然而应当理解,可以以各种形式实现本申请,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本申请,并且能够将本申请公开的范围完整的传达给本领域的技术人员。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实际实施例的全部特征,不详细描述公知的功能和结构。
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在……上”、“与……相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在……上”、“与……直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、 层或部分可表示为第二元件、部件、区、层或部分。而当讨论的第二元件、部件、区、层或部分时,并不表明本申请必然存在第一元件、部件、区、层或部分。
空间关系术语例如“在……下”、“在……下面”、“下面的”、“在……之下”、“在……之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在……下面”和“在……下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
图1为业内相关技术的计量标准器的剖面示意图,该计量标准器包括:晶圆载体101;校准用微纳尺度标准片105;所述晶圆载体101上设有凹槽结构103;所述校准用微纳尺度标准片105通过粘合材料107固定在凹槽结构103中。该计量标准器采用点胶工艺将校准用微纳尺度标准片转移至晶 圆凹槽处形成晶圆级计量标准器。这种粘贴固定方式,导致校准用微纳尺度标准片后期无法从圆片载体上取出,进而无法满足计量标准器的周期性校准需求。而该类型校准用微纳尺度标准片每年需校准一次,以保证量值的准确性。例如集成电路制造企业需要标准片(如纳米线宽标准器)来校准全自动扫描电子显微镜(SEM)。为了保证半导体产业的工艺质量,必须采购换用新的已校准的标准片,一方面增加了生产成本,另一方面采购周期也会增加了企业的生产风险。且粘合材料的高度难以控制,进而无法准确的控制校准用微纳尺度标准片与晶圆载体表面的高度差,从而影响量测效果。综上所述,过往晶圆级计量标准器技术方案所制作的标准片均是一次性认证的,长期使用过程中,无法对标准片进行重新认证,无法保证量值的长期准确。
基于此,本申请实施例提供了一种计量标准器,图2是本申请实施例提供的计量标准器的剖面示意图。参考图2,所述计量标准器包括:晶圆载体101;校准用微纳尺度标准片105;所述晶圆载体101上设有凹槽结构103;所述校准用微纳尺度标准片105可拆卸地固定在所述凹槽结构103内。本申请计量标准器中的校准用微纳尺度标准片可拆卸,满足周期性校准需求,可在长期使用中保证量值的准确性。
在实际操作中,所述晶圆载体101可以是硅晶圆(Si wafer),玻璃晶圆(glass wafer),氮化镓晶圆(GaN wafer),碳化硅晶圆(SiC wafer),蓝宝石晶圆(sapphire wafer),砷化镓晶圆(GaAs wafer)等。所述晶圆载体的厚度例如可以为775±20μm。所述晶圆载体的尺寸例如可以为6寸、8寸、12寸。校准用微纳尺度标准片的纳米几何特征参量包括但不限于线宽、栅格、台阶、膜厚等。
在本申请的一些实施例中,所述凹槽结构103的深度和所述校准用微纳尺度标准片105的厚度相等。所述凹槽结构103的尺寸例如可以为20.05×20.05×300μm(长×宽×高),可以采用湿法或干法刻蚀工艺形成。所述 校准用微纳尺度标准片105的尺寸例如可以为20×20×300um(长×宽×高)。如此,将校准用微纳尺度标准片镶嵌到凹槽内,减少了校准用微纳尺度标准片露出晶圆载体的表面的体积,增加了校准用微纳尺度标准片在晶圆载体上的稳定性。
在本申请的一些实施例中,如图2所示,所述凹槽结构103底部设有至少一个导气通道109,所述导气通道109贯通所述凹槽结构103与外部真空系统111,所述外部真空系统111用于对所述导气通道抽真空。需要使用计量标准器时,可通过外部真空系统利用真空吸附校准用微纳尺度标准片,使用完毕后,可将标准拆卸下来。长期使用后,需要对校准用微纳尺度标准片认证校准,可单独将拆卸下的校准用微纳尺度标准片进行校准,从而保证量值的准确,满足周期性校准需求。且当晶圆载体和校准用微纳尺度标准片一方出现损坏时,只需更换损坏的一方,制作新的计量标准器不仅成本较低,而且周期快,也降低了企业生产风险。
在实际操作中,所述导气通道可以通过刻蚀或激光开槽的工艺形成。
在本申请的一些实施例中,所述导气通道垂直于所述晶圆载体,且所述导气通道109贯通所述凹槽结构103下方的所述晶圆载体。如此,便于气体流动,提高外部真空系统抽真空效率。
在本申请的一些实施例中,如图3所示,多个所述导气通道109的顶端的开口尺寸W1相等,且多个所述导气通道等间隔W2排列。在实际操作中,所述导气通道例如可以为圆柱形,开口尺寸W1可以为10~2000μm,多个导气通道的间隔W2可以为100~4000μm。多个导气通道均匀排布,外部真空系统抽真空时,可以提高吸附力的均匀性。
在本申请的一些实施例中,所述凹槽结构103底部的粗糙度和/或所述校准用微纳尺度标准片105的下表面的粗糙度小于或等于10nm,其中,所述校准用微纳尺度标准片的下表面为所述校准用微纳尺度标准片的面向所述凹槽结构底部的表面。如此,通过平整度的提高,进而减少气体泄漏, 可提高外部真空系统的真空吸附效果。
在本申请的一些实施例中,如图4a至图4b所示,所述计量标准器还包括:助吸膜113,所述助吸膜113位于所述校准用微纳尺度标准片105与所述凹槽结构103的底部之间,且所述助吸膜113的弹性模量大于所述校准用微纳尺寸标准片105的弹性模量。在实际操作中,如图4a所示,助吸膜113可以涂覆或贴装在校准用微纳尺度标准片105的下表面。或者,如图4b所示,助吸膜113可以涂覆或贴装在凹槽结构103的底部。当凹槽底部或校准用微纳尺寸标准片较粗糙时,可采用真空助吸膜来减少气体泄漏,提高吸附效果。
在本申请的一些实施例中,如图5所示,所述晶圆载体包括叠置的第一晶圆101-1和第二晶圆101-2,所述凹槽结构103贯穿所述第一晶圆101-1,且所述凹槽结构103的底面与所述第二晶圆101-2的上表面111齐平,其中,所述第二晶圆的上表面为所述第二晶圆的面向所述第一晶圆的表面。在实际操作中,所述第一晶圆101-1的厚度例如可以为300±10μm,所述第二晶圆101-2的厚度例如可以为475±10μm。所述凹槽结构可以采用脉冲激光形成。当使用刻蚀工艺形成凹槽时,其凹槽底部表面粗糙度差,影响吸附效果,且刻蚀需要光罩,工艺成本高。本方案采用两个晶圆,分别在各自晶圆中采用脉冲激光形成凹槽结构和导气通道。利用第二晶圆的上表面作为凹槽结构的底面,可以达到较低的粗糙度,提高吸附效果。在实际操作中,第二晶圆的上表面的粗糙度可以通过研磨抛光工艺控制。另一方面,脉冲激光相比刻蚀开槽效率高,且无需光罩成本。
在本申请的一些实施例中,如图6所示,多个所述导气通道109互相连通。在实际操作中,可以通过纵向刻蚀和侧向刻蚀实现,或者通过在多个晶圆中分别形成导气通道,再将多个晶圆键合形成。多个导气通道连通,可以使得导气通道内的真空度保持一致,使得吸附力较均匀,同时也避免了存在多个导气通道堵塞引发吸附力下降的问题。
在本申请的一些实施例中,如图7所示,所述导气通道的顶端开口109-1数量大于底端开口109-2数量。导气通道的顶端开口越多,有效吸附面积大,吸附力越大且均匀。
在本申请的一些实施例中,如图8所示,所述导气通道的顶端开口109-1数量小于底端开口109-2数量。一般结构均存在不同程度的泄气,而导气通道的底端开口越多,气流量增加,即抽气速率提高,可提高真空度,进而增强或稳定吸附力。
在本申请的一些实施例中,如图9a所示,所述导气通道109为贯穿通孔,所述通孔靠近校准用微纳尺度标准片一侧的直径W3大于远离校准用微纳尺度标准片一侧的直径W4。在实际操作中,所述导气通道例如可以为孔锥度小于0.2的圆台。如此,使得吸附力更加均匀,提高了校准用微纳尺度标准片在晶圆载体上的稳定性。另一方面,当使用刻蚀工艺形成导气通道,圆台形导气通道相较于垂直柱体,更易实现,成本更低。在一些其他实施例中,如图9b,所述导气通道还可以为上下宽度不同的柱形通道,例如导气通道包括上部为宽度W5的柱形通道109-1和下部为宽度为W6的柱形通道109-2,其中,W5大于W6。在一些实施例中,所述导气通道包括上下宽度不同的柱形通道,位于上部的导气通道的宽度大于位于下部导气通道的宽度,且位于上部的导气通道为孔锥度小于0.2的圆台。
本申请实施例还提供了一种计量标准器的制备方法,具体请参见图10,如图所示,所述方法包括:
步骤1001:提供晶圆载体,在所述晶圆载体上形成凹槽结构;
步骤1002:在所述凹槽结构底部形成至少一个导气通道,所述导气通道贯通所述凹槽结构与外部真空系统;
步骤1003:通过所述外部真空系统对所述导气通道进行抽真空操作;
步骤1004:提供校准用微纳尺度标准片,将校准用微纳尺度标准片贴装在所述凹槽结构内。
下面结合具体实施例对本申请实施例提供的计量标准器的制备方法再作进一步详细的说明。
图11a至图11d为本申请实施例提供的计量标准器在制备过程中的器件结构示意图。
首先,执行步骤1001,参见图11a,提供晶圆载体101,在所述晶圆载体101上形成凹槽结构103。所述晶圆载体101可以是硅晶圆(Si wafer),玻璃晶圆(glass wafer),氮化镓晶圆(GaN wafer),碳化硅晶圆(SiC wafer),蓝宝石晶圆(sapphire wafer),砷化镓晶圆(GaAs wafer)等。所述晶圆载体的厚度例如可以为775±20μm。所述晶圆载体的尺寸例如可以为6寸、8寸、12寸。
在本申请的一些实施例中,所述在所述晶圆载体上形成凹槽结构,包括:采用脉冲激光形成所述凹槽结构,所述脉冲激光的脉冲宽度小于或等于100ns,所述脉冲激光的功率为10至300W,重复频率为10至100kHz。
接着,参见图11b,执行步骤1002,在所述凹槽结构101底部形成至少一个导气通道109,所述导气通道贯通所述凹槽结构与外部真空系统。在实际操作中,所述导气通道可以通过刻蚀或激光开槽的工艺形成。
在本申请的一些实施例中,所述提供晶圆载体,在所述晶圆载体上形成凹槽结构,包括:提供第一晶圆;在所述第一晶圆上形成贯穿槽;提供第二晶圆;将第一晶圆和第二晶圆键合,由所述贯穿槽与所述第二晶圆表面形成凹槽结构。在实际操作中,所述第一晶圆的厚度例如可以为300±10μm,所述第二晶圆的厚度例如可以为475±10μm。
在本申请的一些实施例中,在所述凹槽结构底部形成至少一个导气通道,包括:采用脉冲激光形成所述导气通道,所述脉冲激光的脉冲宽度小于或等于50ps,所述脉冲激光的功率为10至100W,重复频率为100至2000kHz。
在本申请的一些实施例中,所述导气通道垂直于所述晶圆载体,且所 述导气通道109贯通所述凹槽结构103下方的所述晶圆载体。
在本申请的一些实施例中,多个所述导气通道109的顶端的开口尺寸相等,且多个所述导气通道等间隔排列。在实际操作中,所述导气通道例如可以为圆柱形,开口尺寸W1可以为10~2000μm,多个导气通道的间隔W2可以为100~4000μm。
在本申请的一些实施例中,多个所述导气通道109互相连通。
在本申请的一些实施例中,所述导气通道的顶端开口数量大于底端开口数量。
在本申请的一些实施例中,所述导气通道的顶端开口数量小于底端开口数量。
在本申请的一些实施例中,所述导气通道109为贯穿通孔,所述通孔靠近校准用微纳尺度标准片一侧的直径大于远离校准用微纳尺度标准片一侧的直径。在一些其他实施例中,所述导气通道还可以为上下宽度不同的柱形通道。在一些实施例中,所述导气通道包括上下宽度不同的柱形通道,位于上部的导气通道的宽度大于位于下部导气通道的宽度,且位于上部的导气通道为孔锥度小于0.2的圆台。
然后,参见图11c,执行步骤1003,通过所述外部真空系统111对所述导气通道进行抽真空操作;
最后,参见图11d,执行步骤1104,提供校准用微纳尺度标准片105,将校准用微纳尺度标准片105贴装在所述凹槽结构103内。
在本申请的一些实施例中,所述凹槽结构103的深度和所述校准用微纳尺度标准片105的厚度相等。所述凹槽结构103的尺寸例如可以为20.05×20.05×300μm(长×宽×高),可以采用湿法或干法刻蚀工艺形成。所述校准用微纳尺度标准片105的尺寸例如可以为20×20×300μm(长×宽×高)。校准用微纳尺度标准片的纳米几何特征参量包括但不限于线宽、栅格、台阶、膜厚等。
在本申请的一些实施例中,所述凹槽结构103底部的粗糙度和/或所述校准用微纳尺度标准片105的下表面的粗糙度小于或等于10nm,其中,所述校准用微纳尺度标准片的下表面为所述校准用微纳尺度标准片的面向所述凹槽结构底部的表面。
在本申请的一些实施例中,提供校准用微纳尺寸标准片之后,所述方法还包括:在所述校准用微纳尺寸标准片的下表面上形成助吸膜,所述助吸膜的弹性模量大于所述校准用微纳尺寸标准片的弹性模量,其中,所述校准用微纳尺寸标准片的下表面为所述校准用微纳尺度标准片的待贴装于所述凹槽结构底部的表面。
综上所述,本申请计量标准器中的校准用微纳尺度标准片可拆卸,满足周期性校准需求,可在长期使用中保证量值的准确性。
需要说明的是,本申请实施例提供的计量标准器及其制备方法可以应用于任何晶圆级半导体生产线高精密测量仪器的在线校准,例如扫描电子显微镜、原子力显微镜、全自动光学显微镜等。各实施例所记载的技术方案中各技术特征之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请实施例提供了一种计量标准器,包括:晶圆载体;校准用微纳尺度标准片;所述晶圆载体上设有凹槽结构;所述校准用微纳尺度标准片可拆卸地固定在所述凹槽结构内。本申请计量标准器中的校准用微纳尺度标准片可拆卸,满足周期性校准需求,可在长期使用中保证量值的准确性。

Claims (17)

  1. 一种计量标准器,包括:
    晶圆载体;
    校准用微纳尺度标准片;
    所述晶圆载体上设有凹槽结构;
    所述校准用微纳尺度标准片可拆卸地固定在所述凹槽结构内。
  2. 如权利要求1所述的计量标准器,其中,所述凹槽结构底部设有至少一个导气通道,所述导气通道贯通所述凹槽结构与外部真空系统,所述外部真空系统用于对所述导气通道抽真空。
  3. 如权利要求1所述的计量标准器,其中,所述晶圆载体包括叠置的第一晶圆和第二晶圆,所述凹槽结构贯穿所述第一晶圆,且所述凹槽结构的底面与所述第二晶圆的上表面齐平,其中,所述第二晶圆的上表面为所述第二晶圆的面向所述第一晶圆的表面。
  4. 如权利要求2所述的计量标准器,其中,所述凹槽结构底部的粗糙度和/或所述校准用微纳尺度标准片的下表面的粗糙度小于或等于10nm,其中,所述校准用微纳尺度标准片的下表面为所述校准用微纳尺度标准片的面向所述凹槽结构底部的表面。
  5. 如权利要求2所述的计量标准器,其中,还包括:
    助吸膜,所述助吸膜位于所述校准用微纳尺度标准片与所述凹槽结构的底部之间,且所述助吸膜的弹性模量大于所述校准用微纳尺寸标准片的弹性模量。
  6. 如权利要求2所述的计量标准器,其中,所述导气通道垂直于所述晶圆载体,且所述导气通道贯通所述凹槽结构下方的所述晶圆载体。
  7. 如权利要求2所述的计量标准器,其中,多个所述导气通道的顶端的开口尺寸相等,且多个所述导气通道等间隔排列。
  8. 如权利要求2所述的计量标准器,其中,多个所述导气通道互相连通。
  9. 如权利要求8所述的计量标准器,其中,所述导气通道的顶端开口数量大于底端开口数量。
  10. 如权利要求8所述的计量标准器,其中,所述导气通道的顶端开口数量小于底端开口数量。
  11. 如权利要求2所述的计量标准器,其中,所述导气通道为贯穿通孔,所述通孔靠近校准用微纳尺度标准片一侧的直径大于远离校准用微纳尺度标准片一侧的直径。
  12. 如权利要求1所述的计量标准器,其中,所述凹槽结构的深度和所述校准用微纳尺度标准片的厚度相等。
  13. 一种计量标准器的制备方法,包括:
    提供晶圆载体,在所述晶圆载体上形成凹槽结构;
    在所述凹槽结构底部形成至少一个导气通道,所述导气通道贯通所述凹槽结构与外部真空系统;
    通过所述外部真空系统对所述导气通道进行抽真空操作;
    提供校准用微纳尺度标准片,将校准用微纳尺度标准片贴装在所述凹槽结构内。
  14. 如权利要求13所述的计量标准器的制备方法,其中,所述在所述晶圆载体上形成凹槽结构,包括:
    采用脉冲激光形成所述凹槽结构,所述脉冲激光的脉冲宽度小于或等于100ns,所述脉冲激光的功率为10至300W,重复频率为10至100kHz。
  15. 如权利要求13所述的计量标准器的制备方法,其中,所述提供晶圆载体,在所述晶圆载体上形成凹槽结构,包括:
    提供第一晶圆;
    在所述第一晶圆上形成贯穿槽;
    提供第二晶圆;
    将第一晶圆和第二晶圆键合,由所述贯穿槽与所述第二晶圆表面形成凹槽结构。
  16. 如权利要求13所述的计量标准器的制备方法,其中,提供校准用微纳尺寸标准片之后,所述方法还包括:
    在所述校准用微纳尺寸标准片的下表面上形成助吸膜,所述助吸膜的弹性模量大于所述校准用微纳尺寸标准片的弹性模量,其中,所述校准用微纳尺寸标准片的下表面为所述校准用微纳尺度标准片的待贴装于所述凹槽结构底部的表面。
  17. 如权利要求13所述的计量标准器的制备方法,其中,在所述凹槽结构底部形成至少一个导气通道,包括:
    采用脉冲激光形成所述导气通道,所述脉冲激光的脉冲宽度小于或等于50ps,所述脉冲激光的功率为10至100W,重复频率为100至2000kHz。
PCT/CN2021/128163 2021-08-13 2021-11-02 一种计量标准器及其制备方法 WO2023015740A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110932981.3A CN115704677A (zh) 2021-08-13 2021-08-13 一种计量标准器及其制备方法
CN202110932981.3 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023015740A1 true WO2023015740A1 (zh) 2023-02-16

Family

ID=85180226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128163 WO2023015740A1 (zh) 2021-08-13 2021-11-02 一种计量标准器及其制备方法

Country Status (2)

Country Link
CN (1) CN115704677A (zh)
WO (1) WO2023015740A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113115A (en) * 1980-02-13 1981-09-05 Mitsubishi Electric Corp Sample table for immersion system microscope
JPH0831363A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 寸法校正試料
US20050017162A1 (en) * 2002-11-25 2005-01-27 Yasuhira Nagakubo Nanoscale standard sample and its manufacturing method
CN110098143A (zh) * 2018-01-31 2019-08-06 上海微电子装备(集团)股份有限公司 一种芯片吸附装置及芯片键合系统
CN110970358A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 堆叠半导体器件及其制造方法
CN111693003A (zh) * 2020-06-19 2020-09-22 西安微电子技术研究所 一种晶圆级纳米尺度计量标准器及其制造方法
CN112114285A (zh) * 2020-09-28 2020-12-22 西安交通大学 一种包含多种校准类型的晶圆标准样板及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113115A (en) * 1980-02-13 1981-09-05 Mitsubishi Electric Corp Sample table for immersion system microscope
JPH0831363A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd 寸法校正試料
US20050017162A1 (en) * 2002-11-25 2005-01-27 Yasuhira Nagakubo Nanoscale standard sample and its manufacturing method
CN110098143A (zh) * 2018-01-31 2019-08-06 上海微电子装备(集团)股份有限公司 一种芯片吸附装置及芯片键合系统
CN110970358A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 堆叠半导体器件及其制造方法
CN111693003A (zh) * 2020-06-19 2020-09-22 西安微电子技术研究所 一种晶圆级纳米尺度计量标准器及其制造方法
CN112114285A (zh) * 2020-09-28 2020-12-22 西安交通大学 一种包含多种校准类型的晶圆标准样板及其制作方法

Also Published As

Publication number Publication date
CN115704677A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
EP2557607B1 (en) Light-emitting device and process for production thereof
JPH10242255A (ja) 真空吸着装置
TW201601211A (zh) 裝置修飾基板物件及其製造方法
US8455983B2 (en) Microelectronic device wafers and methods of manufacturing
JPH1022184A (ja) 基板張り合わせ装置
KR20150038335A (ko) 복합 기판의 제조 방법 및 반도체 결정층 형성 기판의 제조 방법
JP2018049868A (ja) 半導体積層構造体および半導体デバイス
JPH11309638A (ja) 真空吸着盤
WO2023015740A1 (zh) 一种计量标准器及其制备方法
KR20150023540A (ko) 반도체-온-다이아몬드 웨이퍼용 핸들 및 제조 방법
JP4937775B2 (ja) 微小試料台、その作成方法、微小試料台集合体、および試料ホルダ
TWI741257B (zh) 用於雙面處理的圖案化真空吸盤
JP3817613B2 (ja) 真空吸着装置
JP4953154B2 (ja) ダイヤモンド基板およびその製造方法
TWI670784B (zh) 真空吸取裝置
JP3769618B2 (ja) 真空吸着装置
JP2017077978A (ja) 結晶成長基板及びその製造方法並びに検査方法
JP2011082457A (ja) 基板の処理方法及び基板保持装置
JP2020004892A (ja) 基板保持部材及びその製造方法
CN111599676A (zh) 基于多层膜沉积工艺的亚纳米级线宽标准样片的制备方法
CN111943132B (zh) 碎片样品的平面扩展方法以及平面扩展的碎片样品
TWI451516B (zh) 已切割晶圓適配器和傳送已切割晶圓的方法
TW200701305A (en) A wafer dicting process for optical electronic packing
KR20120038287A (ko) 서셉터
JP2010178169A (ja) 水晶デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE