WO2023008297A1 - Iii族窒化物半導体素子の製造方法 - Google Patents

Iii族窒化物半導体素子の製造方法 Download PDF

Info

Publication number
WO2023008297A1
WO2023008297A1 PCT/JP2022/028303 JP2022028303W WO2023008297A1 WO 2023008297 A1 WO2023008297 A1 WO 2023008297A1 JP 2022028303 W JP2022028303 W JP 2022028303W WO 2023008297 A1 WO2023008297 A1 WO 2023008297A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gan layer
substrate
group iii
period
Prior art date
Application number
PCT/JP2022/028303
Other languages
English (en)
French (fr)
Inventor
勝 堀
修 小田
アマルラジ・フランク・ウィルソン
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023008297A1 publication Critical patent/WO2023008297A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the technical field of the present specification relates to a method for manufacturing group III nitride semiconductor devices using plasma.
  • group III nitride semiconductors represented by GaN the bandgap changes from 0.6 eV to 6 eV by changing the composition. Therefore, group III nitride semiconductors are applied to light-emitting devices, laser diodes, light-receiving devices, etc., which correspond to wavelengths in a wide range from near-infrared to deep-ultraviolet.
  • group III nitride semiconductors have a high breakdown electric field strength and a high melting point. Therefore, III-nitride semiconductors are expected to replace GaAs-based semiconductors as materials for high-power, high-frequency, and high-temperature semiconductor devices. Along with this, HEMT elements and the like are being researched and developed.
  • MOCVD method metalorganic chemical vapor deposition method
  • the MOCVD method uses a large amount of ammonia gas. Therefore, it is necessary to provide an abatement device for removing ammonia from the MOCVD furnace. Moreover, the running cost of ammonia is high.
  • a semiconductor layer is formed by a reaction between the organometallic gas and ammonia. In order to cause this reaction, it is necessary to raise the substrate temperature to a high temperature. If the substrate temperature is high, it is difficult to grow an InGaN layer with a high In concentration with high quality. Moreover, warping is likely to occur due to the difference in thermal expansion between the growth substrate and the semiconductor layer.
  • Patent Document 1 a Registered Enhanced Metal Organic Chemical Vapor Deposition method that does not convert an organometallic gas containing a group III metal into plasma, but converts a gas containing nitrogen atoms into plasma and supplies it to the growth substrate.
  • REMOCVD Rotary Enhanced Metal Organic Chemical Vapor Deposition
  • Patent Document 1 The technique of Patent Document 1 can grow GaN or the like at a low temperature. Therefore, the stress caused by the difference in thermal expansion coefficients can be suppressed.
  • the MOCVD method and the MBE method are sometimes used to form a group III nitride semiconductor film.
  • a HEMT structure is often used in which high resistance GaN is grown on a GaN/Si template grown through a buffer layer, and a clad layer of AlGaN is grown thereon. In this case, the energy band of GaN is bent to generate a two-dimensional electron gas on the GaN side of the AlGaN/GaN interface.
  • a HEMT structure may also be used in which a thin, low-resistance GaN layer is grown on high-resistance GaN, and an AlGaN cladding layer is grown thereon.
  • the technique of the present specification is to provide a method for manufacturing a Group III nitride semiconductor device capable of forming a Group III nitride semiconductor film having excellent crystallinity.
  • a method for manufacturing a Group III nitride semiconductor device includes the steps of preparing a substrate on which an underlying GaN layer is formed, and growing a first GaN layer having a higher electrical resistivity than the underlying GaN layer on the underlying GaN layer. and growing a second GaN layer on the first GaN layer.
  • the mixed gas of N 2 and H 2 is plasmatized and supplied to the substrate, and the organometallic gas is supplied to the substrate without being plasmatized.
  • the second GaN layer is pulse-grown by plasmatizing N 2 and supplying it to the substrate and supplying the organometallic gas to the substrate without plasmatizing it.
  • the second GaN layer is pulse-grown on the high-resistance first GaN layer. Therefore, a nitride semiconductor layer having excellent crystallinity is formed.
  • This specification provides a method for manufacturing a group III nitride semiconductor device, which can form a film of a group III nitride semiconductor with excellent crystallinity.
  • FIG. 4 is a timing chart (part 1) showing the relationship between the supply of gas and the output of the high-frequency potential applied to the showerhead electrode by the RF power supply in the first embodiment; 2 is a timing chart (Part 2) showing the relationship between the supply of gas and the output of high-frequency potential applied to the showerhead electrode by the RF power supply in the first embodiment.
  • 1 is a schematic configuration diagram showing the structure of the HEMT of the first embodiment;
  • FIG. 4 is a graph showing the semi-insulating properties of GaN. 4 is a scanning electron micrograph showing a cross section of the GaN layer of Example 1.
  • FIG. 4 is a scanning electron micrograph showing the surface of the GaN layer of Example 1.
  • FIG. 4 is a graph showing the half width of X-ray diffraction of the GaN layer of Example 1.
  • FIG. 4 is a scanning electron micrograph showing a cross section of the GaN layer of Example 2.
  • FIG. 4 is a scanning electron micrograph showing the surface of the GaN layer of Example 2.
  • FIG. 7 is a graph showing the half width of X-ray diffraction of the GaN layer of Example 2.
  • 4 is a scanning electron micrograph showing a cross section of a GaN layer of a comparative example; 4 is a scanning electron micrograph showing the surface of a GaN layer of a comparative example; 7 is a graph showing the half width of X-ray diffraction of a GaN layer of a comparative example;
  • FIG. 1 is a diagram showing the structure of a semiconductor wafer Wa1 according to the first embodiment.
  • the semiconductor wafer Wa1 has a substrate Sa1, a high-resistance nitride layer F1, and a pulse-grown nitride layer F2.
  • the substrate Sa1 is a nitride template substrate or nitride substrate having a nitride layer grown on a Si(111) substrate.
  • the high-resistance nitride layer F1 is a nitride layer grown by converting a mixed gas of N 2 and H 2 into plasma and reacting it with an organometallic gas.
  • the pulse-grown nitride layer F2 is a nitride layer that is pulse-grown by converting only the N2 gas into plasma and reacting it with the organometallic gas.
  • Both the high-resistance nitride layer F1 and the pulse-grown nitride layer F2 are, for example, GaN layers.
  • the semiconductor wafer Wa1 is obtained by epitaxially growing a group III nitride semiconductor on the main surface of the wafer.
  • the semiconductor wafer Wa1 of the first embodiment is a template or bulk substrate in which a GaN layer is grown on a Si(111) substrate via a buffer layer.
  • a Si (111) substrate on which a buffer layer and a GaN layer are grown in a growth apparatus may be used.
  • a pulse-grown nitride layer F2 is pulse-grown under precise control. Therefore, the crystallinity of this semiconductor is very excellent.
  • FIG. 2 is a schematic configuration diagram of a semiconductor wafer Wa1 manufacturing apparatus 1000 according to the first embodiment.
  • a manufacturing apparatus 1000 is for epitaxially growing a Group III nitride semiconductor.
  • a manufacturing apparatus 1000 is a plasma generation apparatus that generates a plasma generation region inside a chamber.
  • the manufacturing apparatus 1000 supplies an organometallic gas (first gas) containing a group III metal to the growth substrate without passing through the plasma generation region, and supplies a gas (second gas) containing nitrogen atoms to the plasma generation region. After passing through, it is supplied to the growth substrate.
  • first gas organometallic gas
  • second gas gas
  • a manufacturing apparatus 1000 includes a furnace body 1001, a shower head electrode 1100, a susceptor 1200, a heater 1210, a first gas supply pipe 1300, a gas introduction chamber 1410, a second gas supply pipe 1420, a metal Mesh 1500, RF power supply 1600, matching box 1610, plasma power pulse control unit 1620, first gas supply unit 1710, second gas supply unit 1810, gas containers 1910, 1920, 1930, constant temperature It has tanks 1911 , 1921 , 1931 , mass flow controllers 1720 , 1820 , 1830 , 1840 and a pulse valve 1850 .
  • the manufacturing apparatus 1000 also has an exhaust port (not shown).
  • a showerhead electrode 1100 is a first electrode to which a periodic potential is applied.
  • the showerhead electrode 1100 is made of stainless steel, for example. Of course, other metals may be used.
  • the showerhead electrode 1100 is a plate-shaped electrode.
  • the showerhead electrode 1100 is provided with a plurality of through holes (not shown) penetrating from the front surface to the back surface. These through holes communicate with gas introduction chamber 1410 and second gas supply pipe 1420 . Therefore, the second gas supplied from the gas introduction chamber 1410 to the inside of the furnace body 1001 is preferably converted into plasma.
  • the RF power supply 1600 is a potential applying unit that applies a high frequency potential to the shower head electrode 1100 .
  • the plasma power pulse controller 1620 is a device for applying high frequency pulses to the showerhead electrode 1100 .
  • the susceptor 1200 is a substrate support for supporting the substrate Sa1.
  • the material of the susceptor 1200 is graphite, for example. Also, other conductors may be used.
  • the substrate Sa1 is a growth substrate for growing a group III nitride semiconductor.
  • a first gas supply pipe 1300 is for supplying a first gas to the susceptor 1200 .
  • the first gas is supplied to the substrate Sa1 supported by the susceptor 1200.
  • the first gas is an organometallic gas containing a group III metal.
  • other carrier gases may be included.
  • the first gas supply pipe 1300 has a ring-shaped ring portion 1310 .
  • the ring portion 1310 of the first gas supply pipe 1300 is provided with 12 through holes (not shown) inside the ring portion 1310 .
  • the first gas supply pipe 1300 has at least one or more through-holes. These through holes are ejection ports from which the first gas is ejected. Therefore, the first gas is jetted toward the inner side of ring portion 1310 . Also, these through holes are located between the susceptor 1200 and the metal mesh 1500 . Therefore, the first gas supply pipe 1300 is positioned away from the plasma generation region.
  • a second gas supply pipe 1420 is for supplying a second gas to the susceptor 1200 .
  • the second gas is supplied to the space between the showerhead electrode 1100 and the metal mesh 1500 to supply the substrate Sa1 supported by the susceptor 1200 with the second gas.
  • the second gas is gas containing nitrogen gas.
  • the second gas may be a mixed gas of nitrogen gas and hydrogen gas.
  • the gas introduction chamber 1410 temporarily accommodates a mixed gas of nitrogen gas and hydrogen gas, and is for supplying this mixed gas to the through-holes of the shower head electrode 1100 .
  • the metal mesh 1500 is a metal mesh member for capturing charged particles.
  • Metal mesh 1500 is made of stainless steel, for example. Of course, other metals may be used.
  • a metal mesh 1500 is positioned between the showerhead electrode 1100 and the susceptor 1200 . Therefore, the metal mesh 1500 can suppress charged particles generated in the plasma generation region from going toward the growth substrate Sa1 supported by the susceptor 1200, as will be described later.
  • the metal mesh 1500 is arranged at a position between the showerhead electrode and the ring portion 1310 of the first gas supply pipe 1300 . Therefore, charged particles can be prevented from colliding with organometallic molecules containing a group III metal ejected from the ring portion 1310 of the first gas supply pipe 1300 .
  • the metal mesh 1500 is formed by overlapping a large number of meshes while shifting them little by little. That is, the linear portions of the second mesh are arranged at the positions of the openings of the first mesh. Therefore, light traveling in a straight line cannot pass through the metal mesh 1500 . In other words, the metal mesh 1500 does not pass electrons, ions, and light, but allows neutral radicals to pass.
  • the furnace body 1001 accommodates therein at least the shower head electrode 1100, the susceptor 1200, the ring portion 1310 of the first gas supply pipe 1300, and the metal mesh 1500.
  • the furnace body 1001 is made of stainless steel, for example.
  • Furnace body 1001 may be a conductor other than the above.
  • the furnace main body 1001, the metal mesh 1500, and the first gas supply pipe 1300 are conductive members and are all grounded. Therefore, when a potential is applied to showerhead electrode 1100 , a voltage is applied between showerhead electrode 1100 , furnace main body 1001 and metal mesh 1500 . Then, it is considered that discharge occurs between at least one of the furnace body 1001 and the metal mesh 1500 and the shower head electrode 1100 . A high-frequency and high-strength electric field is formed directly under the showerhead electrode 1100 . Therefore, the position directly below the showerhead electrode 1100 is the plasma generation region.
  • the second gas is turned into plasma in this plasma generating region.
  • a plasma product is generated in the plasma generation region.
  • the plasma products in this case are, for example, nitrogen radicals, hydrogen radicals, hydrogen nitride compounds, electrons, and other ions.
  • the hydrogen nitride-based compound includes NH, NH2 , NH3 , their excited states, and others.
  • the showerhead electrode 1100 and the susceptor 1200 are sufficiently separated.
  • the distance between the showerhead electrode 1100 and the susceptor 1200 is 40 mm or more and 200 mm or less. More preferably, it is 40 mm or more and 150 mm or less. If the distance between the showerhead electrode 1100 and the susceptor 1200 is short, the plasma generation area may extend to the susceptor 1200 . If the distance between the showerhead electrode 1100 and the susceptor 1200 is 40 mm or more, there is almost no possibility that the plasma generation region will extend to the susceptor 1200 . Therefore, it is possible to suppress the charged particles from reaching the substrate Sa1.
  • the distance between the showerhead electrode 1100 and the susceptor 1200 is large, it becomes difficult for nitrogen radicals, hydrogen nitride-based compounds, and the like to reach the substrate Sa1 held by the susceptor 1200 . These distances also depend on the size of the plasma generation region and other plasma conditions.
  • the showerhead electrode 1100 is arranged at a position farther from the through hole of the ring portion 1310 of the first gas supply pipe 1300 when viewed from the susceptor 1200 .
  • the distance between the showerhead electrode 1100 and the through hole of the ring portion 1310 of the first gas supply pipe 1300 is 30 mm or more and 190 mm or less. More preferably, it is 30 mm or more and 140 mm or less. This is to prevent charged particles from mixing into the first gas, and to facilitate nitrogen radicals, hydrogen nitride compounds, and the like to reach the substrate Sa1. Therefore, the semiconductor layer is laminated on the substrate Sa1 by the plasmatized second gas and the plasmatized first gas. These distances also depend on the size of the plasma generation region and other plasma conditions.
  • the heater 1210 is for heating the substrate Sa1 supported by the susceptor 1200 via the susceptor 1200 .
  • the mass flow controllers 1720, 1820, 1830, 1840 are for controlling the flow rate of each gas.
  • a pulse valve 1850 is for supplying an organometallic gas containing a group III metal in synchronism with pulses of a high frequency potential.
  • Constant temperature baths 1911 , 1921 , 1931 are filled with antifreeze liquids 1912 , 1922 , 1932 .
  • Gas containers 1910, 1920, and 1930 are containers for containing organometallic gases containing Group III metals.
  • Gas containers 1910, 1920, and 1930 contain trimethylgallium, trimethylindium, and trimethylaluminum, respectively.
  • an organometallic gas containing other Group III metals such as triethylgallium may also be used.
  • the manufacturing apparatus 1000 has an electron gun 1010 and a detector 1020 .
  • the electron gun 1010 is for emitting electrons in a solid due to heat or an electric field.
  • the detector 1020 is for detecting electrons scattered on the surface of the substrate Sa1. Electron gun 1010 and detector 1020 form part of the RHEED apparatus.
  • Table 1 shows manufacturing conditions of the manufacturing apparatus 1000 .
  • the numerical ranges listed in Table 1 are only a guideline, and the numerical ranges are not necessarily required.
  • the RF power is in the range of 100W to 1000W.
  • the frequency of the periodic potential applied to showerhead electrode 1100 by RF power supply 1600 is in the range of 30 MHz to 300 MHz.
  • the substrate temperature is in the range of 0° C. or higher and 900° C. or lower.
  • the internal pressure of the manufacturing apparatus 1000 is within the range of 1 Pa or more and 10000 Pa or less.
  • RF power 100W or more and 1000W or less Frequency 30MHz or more and 300MHz or less Substrate temperature 0°C or more and 900°C or less Internal pressure 1Pa or more and 10000Pa or less
  • the pulse-grown nitride layer F2 is deposited by pulse growth. The relationship between gas supply and applied voltage will now be described. During pulse growth, the first period and the second period are repeated. The organometallic gas is supplied during the first period, and the organometallic gas is not supplied during the second period.
  • FIG. 3 is a timing chart (No. 1) showing the relationship between the supply of gas and the output of the high-frequency potential applied to the showerhead electrode by the RF power supply in the first embodiment.
  • the horizontal axis of FIG. 3 is time.
  • the vertical axis in FIG. 3 is the flow rate of the raw material gas or the power of the RF power source.
  • the manufacturing apparatus 1000 forms semiconductor films while alternately repeating a first period T1 and a second period T2.
  • N2 flows constantly regardless of time. That is, the N2 gas is continuously supplied during the first period T1 and the second period T2.
  • the supply of TMG (trimethylgallium) and the RF power are changed at regular intervals.
  • the RF power output is W1. That is, in the first period T1, power is supplied to turn the N 2 gas into plasma.
  • the second period T2 only N2 is supplied, TMG is not supplied, and the RF power output is W2, which is less than W1. This is to prevent dissociation of nitrogen. That is, in the second period T2, the power for plasmatizing the N2 gas is made weaker than the power for plasmatizing the N2 gas in the first period T1.
  • FIG. 4 is a timing chart (part 2) showing the relationship between the gas supply and the output of the high-frequency potential applied to the showerhead electrode by the RF power supply in the first embodiment.
  • the horizontal axis of FIG. 4 is time.
  • the vertical axis in FIG. 4 is the flow rate of the raw material gas or the power of the RF power supply.
  • the N2 gas continues to be supplied during the first period T1 and the second period T2.
  • TMG In the first period T1, TMG is supplied, N2 is supplied, and the RF power is off.
  • TMG is not supplied, N2 is supplied, and RF power is on. That is, the TMG flow rate is 0, the N2 flow rate is constant, and the RF power output is W1. That is, during the first period T1, no power is supplied to turn the N2 gas into plasma, and during the second period T2, power is supplied to turn the N2 gas into plasma.
  • the second pattern of FIG. 4 is preferable for low temperature growth.
  • Ga is temporarily retained on the surface of the substrate during the first period T1 to form a Ga layer, and the Ga layer is nitrided during the second period T2.
  • the first pattern of FIG. 3 is preferred. In the first pattern, it is difficult to temporarily retain Ga on the surface of the substrate during the first period T1, so Ga and N are supplied during the first period T1 to form GaN on the surface of the substrate.
  • a semiconductor layer is grown by a REMOCVD (Radial Enhanced Metal Organic Chemical Vapor Deposition) method. That is, the manufacturing apparatus 1000 of the first embodiment is used to epitaxially grow a Group III nitride semiconductor on the main surface of the substrate Sa1.
  • REMOCVD Rotary Enhanced Metal Organic Chemical Vapor Deposition
  • a method for manufacturing a semiconductor wafer using the manufacturing apparatus 1000 of the first embodiment will be described.
  • a substrate in which a base GaN layer is formed on a Si(111) substrate is prepared as a substrate Sa1.
  • the substrate Sa1 is placed on the susceptor 1200 inside the manufacturing apparatus 1000, and the substrate temperature is raised to about 900° C. while supplying hydrogen gas. This reduces the surface of the substrate Sa1 and cleans the surface of the substrate Sa1.
  • the substrate temperature may be higher than this.
  • hydrogen gas may be turned into plasma.
  • a high resistance nitride layer F1 (first GaN layer) is formed on the underlying GaN layer of the substrate Sa1.
  • the first gas supply pipe 1300 supplies the susceptor 1200 with the first gas.
  • a mixed gas of N 2 and H 2 is supplied from the second gas supply pipe 1420 .
  • the RF power supply 1600 is also turned on continuously to grow a GaN film of the required thickness. That is, the mixed gas of N 2 and H 2 is plasmatized and supplied to the substrate Sa1, and the organic metal gas is supplied to the substrate Sa1 without being plasmatized.
  • the ratio of N 2 and H 2 has an appropriate ratio depending on the configuration of the device, so that ratio is used.
  • a flow rate ratio of H 2 in the mixed gas is, for example, 10% or more and 60% or less.
  • carbon tends to enter the interior of the semiconductor. And carbon becomes a deep acceptor. Therefore, the high resistance nitride layer F1 has high resistance.
  • a pulse-growth nitride layer F2 (second GaN layer) is formed on the high resistance nitride layer F1 (first GaN layer).
  • the semiconductor layer is pulse grown.
  • the first gas supply pipe 1300 supplies the first gas to the susceptor 1200 .
  • N 2 gas is supplied from the second gas supply pipe 1420, H 2 gas is not supplied.
  • the N2 gas is plasmatized, and the H2 gas is not plasmatized. Therefore, in the step of forming a pulse-grown nitride layer, nitrogen radicals reach the surface of the substrate, but hydrogen radicals do not.
  • the N 2 is plasmatized and supplied to the substrate Sa1, and the organometallic gas is supplied to the substrate Sa1 without being plasmatized to pulse-grow the second GaN layer.
  • the temperature of the heating unit that heats the substrate is preferably 200°C or higher and lower than 600°C.
  • the temperature of the heating unit that heats the substrate may be 600° C. or higher and 1150° C. or lower.
  • FIG. 5 is a schematic configuration diagram showing the structure of the HEMT of the first embodiment.
  • the HEMT of FIG. 5 has a Si (111) substrate, a buffer layer, an i-GaN layer (high resistance nitride layer), a GaN active layer (pulse growth nitride layer), and an i-AlGaN layer. .
  • the i-GaN layer (high resistance nitride layer) has a higher carbon concentration than the GaN active layer (pulse-grown nitride layer).
  • a two-dimensional electron gas is generated in the pulse-grown nitride layer.
  • the crystallinity of the pulse-grown nitride layer F2 is excellent.
  • a group III nitride semiconductor having excellent crystal quality can be grown by pulse growth. This is because the carbon atoms are favorably detached from the semiconductor layer by the pulse growth, and the flatness is also improved.
  • FIG. 6 is a graph showing the semi-insulating properties of GaN.
  • the shallow donor concentration is between the deep acceptor and the shallow acceptor, the Fermi level is pinned between the energy bands, resulting in semi-insulating properties and unmeasurably high resistivity.
  • Modification 9-1 Period for Generating Plasma in the Plasma Generation Region As shown in FIG. 3, when stopping the organometallic gas, plasma is generated in the plasma generation region. This is to prevent the grown nitride from decomposing when the organometallic gas is stopped. However, plasma does not have to be generated when the organometallic gas is stopped.
  • the film may be formed at the atomic layer level by pulse growth. In this case, the crystallinity of the pulse-grown nitride layer F2 is improved, but the film formation time is lengthened.
  • Lengths of First and Second Periods As for the lengths of the first period T1 and the second period T2, appropriate conditions may be selected according to the device configuration, growth conditions, and the like.
  • the crystallinity may be determined based on the detection results by RHEED, or may be determined based on the flatness, crystallinity, and impurity concentration of the grown film.
  • Example 1 First Step In this experiment, the manufacturing apparatus 1000 shown in FIG. 2 was used. The internal pressure of the manufacturing apparatus 1000 was 300Pa. A bulk GaN substrate having a size of 10 mm square and a thickness of 300 ⁇ m was used as a growth substrate.
  • the bulk GaN substrate was heated to 800° C. and heat-treated for 10 minutes without plasma power (cleaning step).
  • GaN films were continuously formed under the following conditions.
  • the film thickness of the grown GaN was 1.3 ⁇ m.
  • the pulse growth time was 5 seconds for the first period T1 and 10 seconds for the second period T2.
  • SEM 7 is a scanning electron micrograph showing a cross section of the GaN layer of Example 1.
  • FIG. 8 is a scanning electron micrograph showing the surface of the GaN layer of Example 1.
  • the thickness of the pulse-grown GaN was 1.4 ⁇ m.
  • the surface of pulse-grown GaN is flat.
  • the growth rate of pulse-grown GaN was as high as 0.7 ⁇ m/hr.
  • XRD 9 is a graph showing the half width of X-ray diffraction of the GaN layer of Example 1.
  • FIG. 9 As shown in FIG. 9, the FWHM of the X-ray diffraction of the GaN layer of Example 1 was 345 arcsec.
  • Example 2 First Step In this experiment, the manufacturing apparatus 1000 shown in FIG. 2 was used. A Mo electrode was used as the plasma electrode. The internal pressure of the manufacturing apparatus 1000 was 100Pa. A bulk GaN substrate having a size of 10 mm square and a thickness of 300 ⁇ m was used as a growth substrate.
  • the bulk GaN substrate was heated to 800° C. and heat-treated for 10 minutes without plasma power (cleaning step).
  • GaN films were continuously formed under the following conditions.
  • the pulse growth time is 180 minutes.
  • the first period T1 was 10 seconds, and the second period T2 was 10 seconds.
  • Plasma power P1 was set to 150W, and P2 was set to 150W.
  • SEM 10 is a scanning electron micrograph showing a cross section of the GaN layer of Example 2.
  • FIG. 11 is a scanning electron micrograph showing the surface of the GaN layer of Example 2.
  • FIG. 11 the surface of the GaN layer is relatively flat.
  • the film thickness of GaN grown in the first step was 0.1 ⁇ m. With Mo electrodes, high plasma power could not be used due to arcing.
  • the film thickness of GaN grown in the second step was 0.72 ⁇ m.
  • the surface of this GaN layer was flat.
  • the growth rate was 0.36 ⁇ m/hr because the plasma power was small.
  • XRD 12 is a graph showing the half width of X-ray diffraction of the GaN layer of Example 2.
  • FIG. 12 As shown in FIG. 12, the FWHM of the X-ray diffraction of the GaN layer of Example 2 was 169 arcsec.
  • (Comparative example 1) 1. First Step In this experiment, the manufacturing apparatus 1000 shown in FIG. 2 was used. The internal pressure of the manufacturing apparatus 1000 was 300Pa. A GaN template on a Si (111) substrate having a size of 10 mm square and a thickness of 625 ⁇ m was used as a growth substrate.
  • the bulk GaN substrate was heated to 800° C. and heat-treated for 10 minutes without plasma power (cleaning step).
  • GaN films were continuously formed under the following conditions.
  • the film thickness of the grown GaN was 0.6 ⁇ m.
  • the pulse growth time was 5 seconds for the first period T1 and 10 seconds for the second period T2.
  • the surface morphology of pulse-grown GaN is considerably worse than those of Examples 1 and 2, and the growth rate is extremely slow. The reason for this is thought to be that the introduction of hydrogen during pulse growth has an etching effect due to H radicals.
  • FIG. 13 is a scanning electron micrograph showing a cross section of a GaN layer of a comparative example.
  • FIG. 14 is a scanning electron micrograph showing the surface of the GaN layer of the comparative example. As shown in FIG. 14, the surface of the GaN layer has minute irregularities and is not flat.
  • the film thickness of the GaN layer in the first step was 0.6 ⁇ m.
  • the film thickness of the GaN layer in the second step was 0.7 ⁇ m.
  • the growth rate of the pulse-grown GaN layer was slower than the growth rate of the pulse-grown GaN layer of Example 1.
  • FIG. 15 is a graph showing the half width of X-ray diffraction of the GaN layer of the comparative example. As shown in FIG. 15, the half width of X-ray diffraction of the GaN layer of the comparative example was 954 arcsec.
  • a method for manufacturing a Group III nitride semiconductor device includes the steps of preparing a substrate on which an underlying GaN layer is formed, and growing a first GaN layer having a higher electrical resistivity than the underlying GaN layer on the underlying GaN layer. and growing a second GaN layer on the first GaN layer.
  • the mixed gas of N 2 and H 2 is plasmatized and supplied to the substrate, and the organometallic gas is supplied to the substrate without being plasmatized.
  • the second GaN layer is pulse-grown by plasmatizing N 2 and supplying it to the substrate and supplying the organometallic gas to the substrate without plasmatizing it.
  • the first period and the second period are repeated. In period 2, no organometallic gas is supplied.
  • N 2 gas is continuously supplied during the first period and the second period.
  • power is supplied to turn the N 2 gas into plasma.
  • the power for plasmatizing the N 2 gas is made weaker than the power for plasmatizing the N 2 gas in the first period.
  • the N2 gas in the step of growing the second GaN layer, is continuously supplied during the first period and the first period, and the N2 gas is continuously supplied during the first period. In the second period, power is supplied to plasmanize the N 2 gas.
  • the temperature of the heating unit that heats the substrate is set at 200°C or higher and lower than 600°C.
  • the temperature of the heating unit that heats the substrate is set at 600°C or higher and 1150°C or lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】 結晶性に優れたIII 族窒化物半導体を成膜することのできるIII 族窒化物半導体素子の製造方法を提供することである。 【解決手段】 このIII 族窒化物半導体素子の製造方法は、Si(111)基板の上に下地GaN層を形成した基板を準備する工程と、下地GaN層の上に下地GaN層よりも電気抵抗率の高い第1GaN層を成長させる工程と、第1GaN層の上に第2GaN層を成長させる工程と、を有する。第1GaN層を成長させる工程では、N2とH2との混合ガスをプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給する。第2GaN層を成長させる工程では、N2をプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給し、第2GaN層をパルス成長させる。

Description

III族窒化物半導体素子の製造方法
 本明細書の技術分野は、プラズマを用いたIII 族窒化物半導体素子の製造方法に関する。
 GaNに代表されるIII 族窒化物半導体では、その組成を変化させることにより、バンドギャップが0.6eVから6eVまで変化する。そのため、III 族窒化物半導体は、近赤外から深紫外までの広い範囲の波長に相当する発光素子や、レーザーダイオード、受光素子等に応用されている。
 また、III 族窒化物半導体は、高い破壊電界強度と、高い融点とを備えている。そのため、III 族窒化物半導体は、GaAs系半導体に代わる、高出力、高周波、高温用の半導体デバイスの材料として期待されている。それにともなって、HEMT素子などが研究開発されている。
 III 族窒化物半導体をエピタキシャル成長させる方法として、例えば、有機金属化学気相成長法(MOCVD法)がある。MOCVD法では、大量のアンモニアガスを用いる。そのため、MOCVD炉にアンモニアを除外する除害装置を設ける必要がある。また、アンモニアのランニングコストも高い。そして、有機金属ガスとアンモニアとの反応により半導体層を形成する。この反応を起こすために、基板温度を高温にする必要がある。基板温度が高いと、In濃度の高いInGaN層を高品質に成長させることは難しい。また、成長基板と半導体層との熱膨張差の違いにより、そりが発生しやすい。
 そのため、本発明者らは、III 族金属を含む有機金属ガスをプラズマ化せずに窒素原子を含むガスをプラズマ化して成長基板に供給するREMOCVD(Radical Enhanced Metal Organic Chemical Vapor Deposition)法を開発した(特許文献1)。特許文献1の技術では、GaN等を低温成長させることができる。そのため、熱膨張係数差に起因する応力を抑制することができる。
特開2015-99866号公報 特開2016-20299号公報
 ところで、サファイア基板やGaN基板は高価である。そのため、安価なSi(111)基板の上にIII 族窒化物半導体を成膜することが好ましい。しかし、Si(111)基板の上に高性能なデバイス特性を示す高品質なIII 族窒化物半導体を成膜することは必ずしも容易ではない(特許文献2)。
 III 族窒化物半導体を成膜するためにMOCVD法やMBE法が用いられることがある。また、バッファ層を介して成長させたGaN/Siテンプレートの上に高抵抗のGaNを成長させ、その上にAlGaNのクラッド層を成長させるHEMT構造がよく用いられる。この場合には、GaNのエネルギーバンドをまげて、AlGaN/GaNの界面のGaN側に二次元電子ガスを生成させる。また、高抵抗のGaNの上に薄い低抵抗のGaN層を成長させ、その上にAlGaNのクラッド層を成長させるHEMT構造が用いられることがある。
 しかし、このような従来のMOCVD法による窒化物半導体を成長させる場合には、中性のNHの活性化のために1150℃以上の高温成長が必要である。このため、成長基板と半導体との熱膨張係数差に起因する応力が発生する。このため、成長させる半導体の結晶性が悪くなるおそれがある。この応力により、反りや割れといった問題が生じることがある。また、従来のMOCVD法では、大量のアンモニアを使用するため、生産性が悪い。
 本明細書の技術は、結晶性に優れたIII 族窒化物半導体を成膜することのできるIII 族窒化物半導体素子の製造方法を提供することである。
 第1の態様におけるIII 族窒化物半導体素子の製造方法は、下地GaN層を形成した基板を準備する工程と、下地GaN層の上に下地GaN層よりも電気抵抗率の高い第1GaN層を成長させる工程と、第1GaN層の上に第2GaN層を成長させる工程と、を有する。第1GaN層を成長させる工程では、NとHとの混合ガスをプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給する。第2GaN層を成長させる工程では、Nをプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給し、第2GaN層をパルス成長させる。
 このIII 族窒化物半導体素子の製造方法は、高抵抗の第1GaN層の上に第2GaN層をパルス成長させる。このため、結晶性に優れた窒化物半導体層が形成される。
 本明細書では、結晶性に優れたIII 族窒化物半導体を成膜することのできるIII 族窒化物半導体素子の製造方法が提供されている。
第1の実施形態の半導体ウエハの構造を示す図である。 第1の実施形態における製造装置の概略構成を示す図である。 第1の実施形態におけるガスの供給とRF電源がシャワーヘッド電極に付与する高周波電位の出力との関係を示すタイミングチャート(その1)である。 第1の実施形態におけるガスの供給とRF電源がシャワーヘッド電極に付与する高周波電位の出力との関係を示すタイミングチャート(その2)である。 第1の実施形態のHEMTの構造を示す概略構成図である。 GaNの半絶縁性を示すグラフである。 実施例1のGaN層の断面を示す走査型電子顕微鏡写真である。 実施例1のGaN層の表面を示す走査型電子顕微鏡写真である。 実施例1のGaN層のX線回折の半値幅を示すグラフである。 実施例2のGaN層の断面を示す走査型電子顕微鏡写真である。 実施例2のGaN層の表面を示す走査型電子顕微鏡写真である。 実施例2のGaN層のX線回折の半値幅を示すグラフである。 比較例のGaN層の断面を示す走査型電子顕微鏡写真である。 比較例のGaN層の表面を示す走査型電子顕微鏡写真である。 比較例のGaN層のX線回折の半値幅を示すグラフである。
 以下、具体的な実施形態について、III 族窒化物半導体素子の製造方法を例に挙げて図を参照しつつ説明する。
(第1の実施形態)
1.半導体ウエハ
 図1は、第1の実施形態の半導体ウエハWa1の構造を示す図である。半導体ウエハWa1は、基板Sa1と高抵抗窒化物層F1とパルス成長窒化物層F2とを有する。基板Sa1はSi(111)基板上に窒化物層を成長させた窒化物テンプレート基板または窒化物基板である。高抵抗窒化物層F1は、NとHとの混合ガスをプラズマ化して有機金属ガスと反応させて成長させた窒化物層である。パルス成長窒化物層F2は、Nガスのみをプラズマ化して有機金属ガスと反応させてパルス成長させた窒化物層である。高抵抗窒化物層F1とパルス成長窒化物層F2はともに、例えば、GaN層である。このように、半導体ウエハWa1は、ウエハの主面にIII 族窒化物半導体をエピタキシャル成長させたものである。
2.第1の実施形態の半導体ウエハの効果
 第1の実施形態の半導体ウエハWa1は、Si(111)基板上にバッファ層を介してGaN層を成長させたテンプレートまたはバルク基板である。Si(111)基板として成長装置内でバッファ層およびGaN層を成長させたものを用いてもよい。このSi(111)基板の上に高抵抗窒化物層F1を成長させた後に、精密制御しながらパルス成長窒化物層F2をパルス成長させる。このためこの半導体の結晶性は非常に優れている。
3.III 族窒化物半導体素子の製造装置
 図2は、第1の実施形態における半導体ウエハWa1の製造装置1000の概略構成図である。製造装置1000は、III 族窒化物半導体をエピタキシャル成長させるためのものである。製造装置1000は、チャンバーの内部にプラズマ発生領域を生成するプラズマ発生装置である。製造装置1000は、III 族金属を含む有機金属ガス(第1のガス)をプラズマ発生領域に通過させずに成長基板に供給し、窒素原子を含むガス(第2のガス)をプラズマ発生領域に通過させてから成長基板に供給する。
 製造装置1000は、炉本体1001と、シャワーヘッド電極1100と、サセプター1200と、加熱器1210と、第1のガス供給管1300と、ガス導入室1410と、第2のガス供給管1420と、金属メッシュ1500と、RF電源1600と、マッチングボックス1610と、プラズマ電力パルス制御部1620と、第1のガス供給部1710と、第2のガス供給部1810と、ガス容器1910、1920、1930と、恒温槽1911、1921、1931と、マスフローコントローラー1720、1820、1830、1840と、パルスバルブ1850と、を有している。また、製造装置1000は、排気口(図示せず)を有している。
 シャワーヘッド電極1100は、周期的な電位を付与される第1の電極である。シャワーヘッド電極1100は、例えば、ステンレス製である。もちろん、これ以外の金属であってもよい。シャワーヘッド電極1100は、平板形状の電極である。そして、シャワーヘッド電極1100には、表面から裏面に貫通する複数の貫通孔(図示せず)が設けられている。そして、これらの複数の貫通孔は、ガス導入室1410および第2のガス供給管1420と連通している。このため、ガス導入室1410から炉本体1001の内部に供給される第2のガスは、好適にプラズマ化される。
 RF電源1600は、シャワーヘッド電極1100に高周波電位を付与する電位付与部である。プラズマ電力パルス制御部1620は、シャワーヘッド電極1100に高周波のパルスを付与するための装置である。
 サセプター1200は、基板Sa1を支持するための基板支持部である。サセプター1200の材質は、例えば、グラファイトである。また、これ以外の導電体であってもよい。ここで、基板Sa1は、III 族窒化物半導体を成長させるための成長基板である。
 第1のガス供給管1300は、サセプター1200に第1のガスを供給するためのものである。実際には、サセプター1200に支持された基板Sa1に第1のガスを供給することとなる。ここで、第1のガスとは、III 族金属を含む有機金属ガスである。また、その他のキャリアガスを含んでいてもよい。第1のガス供給管1300は、リング状のリング部1310を有している。そして、第1のガス供給管1300のリング部1310には、12個の貫通孔(図示せず)がリング部1310の内側に設けられている。このように第1のガス供給管1300は、少なくとも1以上の貫通孔を有する。これらの貫通孔は、第1のガスが噴出する噴出口である。そのため、第1のガスは、リング部1310の内側に向けて、噴出することとなる。また、これらの貫通孔は、サセプター1200と金属メッシュ1500との間の位置に配置されている。そのため、第1のガス供給管1300は、プラズマ発生領域から離れた位置に位置している。
 第2のガス供給管1420は、サセプター1200に第2のガスを供給するためのものである。実際には、第2のガスをシャワーヘッド電極1100と金属メッシュ1500との間の空間に供給し、サセプター1200に支持された基板Sa1に第2のガスを供給することとなる。ここで、第2のガスは、窒素ガスを含むガスである。第2のガスは、窒素ガスと水素ガスとの混合ガスであってもよい。
 ガス導入室1410は、窒素ガスと水素ガスとの混合ガスを一旦収容するとともに、シャワーヘッド電極1100の貫通孔にこの混合ガスを供給するためのものである。
 金属メッシュ1500は、荷電粒子を捕獲するための金属メッシュ部材である。金属メッシュ1500は、例えば、ステンレス製である。もちろん、これ以外の金属であってもよい。金属メッシュ1500は、シャワーヘッド電極1100とサセプター1200との間の位置に配置されている。そのため、金属メッシュ1500は、後述するようにプラズマ発生領域で発生した荷電粒子が、サセプター1200に支持されている成長基板Sa1に向かうのを抑制することができる。また、金属メッシュ1500は、シャワーヘッド電極と第1のガス供給管1300のリング部1310との間の位置に配置されている。そのため、荷電粒子が、第1のガス供給管1300のリング部1310から噴出されるIII 族金属を含む有機金属分子に衝突するのを抑制することができる。また、金属メッシュ1500は、多数枚のメッシュを少しずつずらして重ねあわされている。つまり、第1のメッシュの開口部の位置に第2のメッシュの線状部を配置している。そのため、直線的に進行する光は、金属メッシュ1500を透過できない。つまり、金属メッシュ1500は、電子、イオン、光を通過させないが、中性のラジカルを通過させる。
 炉本体1001は、少なくとも、シャワーヘッド電極1100と、サセプター1200と、第1のガス供給管1300のリング部1310と、金属メッシュ1500と、を内部に収容している。炉本体1001は、例えば、ステンレス製である。炉本体1001は、上記以外の導電体であってもよい。
 炉本体1001と、金属メッシュ1500と、第1のガス供給管1300とは、導電性の部材であり、いずれも接地されている。そのため、シャワーヘッド電極1100に電位が付与されると、シャワーヘッド電極1100と、炉本体1001および金属メッシュ1500と、の間に電圧が印加されることとなる。そして、炉本体1001と金属メッシュ1500との少なくとも1つ以上と、シャワーヘッド電極1100と、の間に放電が生じると考えられる。シャワーヘッド電極1100の直下では、高周波かつ高強度の電界が形成される。そのため、シャワーヘッド電極1100の直下の位置は、プラズマ発生領域である。
 ここで、第2のガスは、このプラズマ発生領域においてプラズマ化されることとなる。そして、プラズマ発生領域でプラズマ生成物が発生する。この場合におけるプラズマ生成物とは、例えば、窒素ラジカルと、水素ラジカルと、窒化水素系の化合物と、電子と、その他のイオン等である。ここで、窒化水素系の化合物とは、NHと、NHと、NHと、これらの励起状態と、その他のものとを含む。
 また、シャワーヘッド電極1100と、サセプター1200とは、十分に離れている。シャワーヘッド電極1100と、サセプター1200との間の距離は、40mm以上200mm以下である。より好ましくは、40mm以上150mm以下である。シャワーヘッド電極1100とサセプター1200との間の距離が短いと、プラズマ発生領域がサセプター1200の箇所にまで広がるおそれがある。シャワーヘッド電極1100とサセプター1200との間の距離が40mm以上であれば、プラズマ発生領域がサセプター1200の箇所にまで広がるおそれがほとんどない。そのため、荷電粒子が基板Sa1に到達することを抑制できる。また、シャワーヘッド電極1100とサセプター1200との間の距離が大きいと、窒素ラジカルや、窒化水素系の化合物等が、サセプター1200の保持する基板Sa1に到達しにくくなるからである。なお、これらの距離は、プラズマ発生領域の大きさと、その他のプラズマ条件にも依存する。
 シャワーヘッド電極1100は、サセプター1200からみて第1のガス供給管1300のリング部1310の貫通孔よりも遠い位置に配置されている。シャワーヘッド電極1100と、第1のガス供給管1300のリング部1310の貫通孔との間の距離は、30mm以上190mm以下である。より好ましくは、30mm以上140mm以下である。荷電粒子が、第1のガスに混入することを抑制するとともに、窒素ラジカルや、窒化水素系の化合物等が、基板Sa1に到達しやすくするためである。このため、プラズマ化された第2のガスと、プラズマ化されない第1のガスとにより、基板Sa1に半導体層が積層されることとなる。なお、これらの距離は、プラズマ発生領域の大きさと、その他のプラズマ条件にも依存する。
 加熱器1210は、サセプター1200を介して、サセプター1200に支持される基板Sa1を加熱するためのものである。
 マスフローコントローラー1720、1820、1830、1840は、各々のガスの流量を制御するためのものである。パルスバルブ1850は、高周波電位のパルスと同期させて、III 族金属を含む有機金属ガスを供給するためのものである。恒温槽1911、1921、1931には、不凍液1912、1922、1932が満たされている。また、ガス容器1910、1920、1930は、III 族金属を含む有機金属ガスを収容するための容器である。ガス容器1910、1920、1930には、それぞれ、トリメチルガリウムと、トリメチルインジウムと、トリメチルアルミニウムとが、収容されている。もちろん、トリエチルガリウム等、その他のIII 族金属を含む有機金属ガスであってもよい。
 製造装置1000は、電子銃1010と、検出部1020と、を有する。電子銃1010は、固体中の電子を熱もしくは電界により放出させるためのものである。検出部1020は、基板Sa1の表面で散乱された電子を検出するためのものである。電子銃1010および検出部1020は、RHEED装置の一部を構成する。
4.製造装置の製造条件
 製造装置1000における製造条件を表1に示す。表1で挙げた数値範囲は、あくまで目安であり、必ずしもこの数値範囲である必要はない。RFパワーは、100W以上1000W以下の範囲内である。RF電源1600がシャワーヘッド電極1100に付与する周期的な電位の周波数は、30MHz以上300MHz以下の範囲内である。基板温度は、0℃以上900℃以下の範囲内である。製造装置1000の内圧は、1Pa以上10000Pa以下の範囲内である。
[表1]
 RFパワー    100W以上   1000W以下
 周波数     30MHz以上  300MHz以下
 基板温度       0℃以上    900℃以下
 内圧        1Pa以上 10000Pa以下
5.ガスおよびパルス電圧
 パルス成長窒化物層F2は、パルス成長により成膜される。ガスの供給と印加電圧との間の関係について説明する。パルス成長させる際には、第1期間と第2期間とを繰り返す。第1期間では、有機金属ガスを供給し、第2期間では、有機金属ガスを供給しない。
5-1.第1のパターン
 図3は、第1の実施形態におけるガスの供給とRF電源がシャワーヘッド電極に付与する高周波電位の出力との関係を示すタイミングチャート(その1)である。図3の横軸は時刻である。図3の縦軸は、原料ガスの流量またはRF電源の電力である。
 図3に示すように、製造装置1000は、第1期間T1と第2期間T2とを交互に繰り返しながら半導体を成膜する。Nは時刻によらず一定に流れる。すなわち、第1期間T1および第2期間T2にNガスを供給し続ける。TMG(トリメチルガリウム)の供給およびRFパワーを一定時間おきに変更する。
 第1期間T1では、TMGおよびNが供給されるとともに、RFパワーがオンである。TMGの流量はSB1であり、Nの流量は一定であり、RFパワーの出力はW1である。すなわち、第1期間T1では、Nガスをプラズマ化させるための電力を供給する。第2期間T2では、Nのみが供給されるとともに、TMGは供給されず、RFパワーの出力はW1より小さいW2である。窒素の解離を防止するためである。すなわち、第2期間T2では、Nガスをプラズマ化させるための電力を第1期間T1におけるNガスをプラズマ化させるための電力よりも弱くする。
5-2.第2のパターン
 図4は、第1の実施形態におけるガスの供給とRF電源がシャワーヘッド電極に付与する高周波電位の出力との関係を示すタイミングチャート(その2)である。図4の横軸は時刻である。図4の縦軸は、原料ガスの流量またはRF電源の電力である。第1期間T1および第2期間T2にNガスを供給し続ける。
 第1期間T1では、TMGが供給されるとともに、Nが供給され、RFパワーがオフである。第2期間T2では、TMGは供給されずに、Nが供給され、RFパワーがオンである。つまり、TMGの流量は0であり、Nの流量は一定であり、RFパワーの出力はW1である。すなわち、第1期間T1では、Nガスをプラズマ化させるための電力を供給せず、第2期間T2では、Nガスをプラズマ化させるための電力を供給する。
5-3.パターンの相違
 低温で半導体を成長させる場合には、有機金属ガスから分解したIII 族金属の蒸気圧が比較的低い。このため、低温成長の場合には、図4の第2のパターンが好ましい。第2のパターンでは、第1期間T1に基板の表面にGaを一時的に留めてGaの層を形成し、第2期間T2にそのGaの層を窒化する。
 高温で半導体を成長させる場合には、有機金属ガスから分解したIII 族金属の蒸気圧が比較的高い。このため、高温成長の場合には、図3の第1のパターンが好ましい。第1のパターンでは、第1期間T1に基板の表面にGaを一時的に留めることが困難であるため、第1期間T1にGaとNとを供給し、基板の表面にGaNを形成する。
5-4.パルス成長の効果
 第1のパターンの第1期間T1では、窒素ラジカルが基板Sa1に到達し、半導体が成長する。第2期間T2では、窒素ラジカルが基板Sa1に到達しないため、半導体は成長しない。また、第2期間T2では、半導体から炭素等の不純物が離脱し、成長膜が平坦化する。第2のパターンの第1期間T1では、TMGが表面でGaとなり炭素が脱離する。第2のパターンの第2期間T2では、このGaが窒素ラジカルと反応し、低炭素の半導体が成長する。
6.半導体ウエハの製造方法
 本実施形態の半導体ウエハの製造方法は、REMOCVD(Radical Enhanced Metal Organic Chemical Vapor Deposition)法により半導体層を成長させる。すなわち、第1の実施形態の製造装置1000を用いて基板Sa1の主面にIII 族窒化物半導体をエピタキシャル成長させる。
6-1.基板のクリーニング
 ここで、第1の実施形態の製造装置1000を用いた半導体ウエハの製造方法について説明する。まず、基板Sa1としてSi(111)基板の上に下地GaN層を形成した基板を準備する。基板Sa1を、製造装置1000の内部のサセプター1200に配置し、水素ガスを供給しながら基板温度を900℃程度まで上昇させる。これにより、基板Sa1の表面を還元するとともに、基板Sa1の表面をクリーニングする。基板温度をこれ以上の温度にしてもよい。また、水素ガスをプラズマ化してもよい。
6-2.高抵抗窒化物層形成工程
 基板Sa1の下地GaN層の上に高抵抗窒化物層F1(第1GaN層)を形成する。高抵抗窒化物層形成工程では、第1のガス供給管1300は、サセプター1200に第1のガスを供給する。第2のガス供給管1420からはNとHとの混合ガスを供給する。RF電源1600も連続的にオンとして、必要な厚さのGaN膜を成長させる。すなわち、NとHとの混合ガスをプラズマ化させて基板Sa1に供給するとともに有機金属ガスをプラズマ化させずに基板Sa1に供給する。NとHとの比率は装置の構成によって適切な比率があるのでその比率とする。混合ガスに占めるHの流量比は、例えば、10%以上60%以下である。この工程では、炭素が半導体の内部に入りやすい。そして、炭素はディープアクセプターになる。このため、高抵抗窒化物層F1は高抵抗である。
6-3.パルス成長窒化物層形成工程
 次に、高抵抗窒化物層F1(第1GaN層)の上にパルス成長窒化物層F2(第2GaN層)を形成する。図3または図4で示したように、半導体層をパルス成長させる。この際に、第1のガス供給管1300は、サセプター1200に第1のガスを供給する。第2のガス供給管1420からはNガスを供給するが、Hガスを供給しない。この工程では、Nガスのみをプラズマ化し、Hガスをプラズマ化しない。このため、パルス成長窒化物層形成工程においては、基板の表面に窒素ラジカルが到達するが、水素ラジカルは到達しない。このように、Nをプラズマ化させて基板Sa1に供給するとともに有機金属ガスをプラズマ化させずに基板Sa1に供給し、第2GaN層をパルス成長させる。第2GaN層を成長させる工程では、基板を加熱する加熱部の温度を200℃以上600℃未満とするとよい。第2GaN層を成長させる工程では、基板を加熱する加熱部の温度を600℃以上1150℃以下としてもよい。
7.半導体素子
 図5は、第1の実施形態のHEMTの構造を示す概略構成図である。図5のHEMTは、Si(111)基板と、バッファ層と、i-GaN層(高抵抗窒化物層)と、GaN活性層(パルス成長窒化物層)と、i-AlGaN層と、を有する。i-GaN層(高抵抗窒化物層)の炭素濃度は、GaN活性層(パルス成長窒化物層)の炭素濃度よりも高い。パルス成長窒化物層に2次元電子ガスが発生する。パルス成長窒化物層F2の結晶性は優れている。
8.第1の実施形態の効果
 第1の実施形態のIII 族窒化物半導体素子の製造方法においては、パルス成長により結晶品質に優れたIII 族窒化物半導体を成長させることができる。パルス成長により、炭素原子が半導体層から好適に離脱し、平坦性も向上するからである。
 図6は、GaNの半絶縁性を示すグラフである。シャロードナーの濃度がディープアクセプターとシャローアクセプターの間にあると、フェルミ準位がエネルギーバンドの間にピニングされるため半絶縁性となり測定不可能な高い抵抗率を示す。
9.変形例
9-1.プラズマ発生領域におけるプラズマを発生させる期間
 図3に示すように、有機金属ガスを停止する際には、プラズマ発生領域にプラズマを発生させる。有機金属ガスを停止する際に成長させた窒化物が分解しないようにするためである。しかし、有機金属ガスを停止する際にプラズマを発生させなくてもよい。
9-2.窒素ガスを流す期間
 図3および図4では、TMAを流している間も停止している間も窒素ガスは連続的に流しているが必要に応じて間歇的に流してもよい。すなわち、図3では有機金属ガスを停止している間、あるいは図4の場合は有機金属ガスを流している間は窒素ガスを流さなくてもよい。
9-3.パルス成長窒化物層形成工程
 パルス成長窒化物層形成工程において、パルス成長により原子層レベルで成膜してもよい。この場合には、パルス成長窒化物層F2の結晶性は向上するが、成膜時間は長くなる。
9-4.第1期間および第2期間の長さ
 第1期間T1および第2期間T2の長さは、装置構成、成長条件などによって適切な条件を選べばよい。RHEEDによる検出結果に基づいて結晶性を判断する、あるいは成長し膜の平坦性や結晶性、不純物濃度で判断すればよい。
9-5.組み合わせ
 上記の変形例を自由に組み合わせてもよい。
(実施例1)
1.第1の工程
 本実験では、図2に示す製造装置1000を用いて実験を行った。製造装置1000の内圧は、300Paであった。成長基板として10mm角、厚さ300μmのバルクGaN基板を用いた。
 N/Hガスを750sccm/250sccm流しながらバルクGaN基板を800℃まで昇温しプラズマ電力なしで10分間熱処理した(クリーニング工程)。
その後、以下の条件でGaN膜を連続成膜した。
 TMG温度 +5℃
 Hキャリアガス 20sccm
 成長温度 800℃
 プラズマ電力 600W
 炉内圧力 300Pa
 N/H ガス流量 1500sccm/1500sccm
 成長時間 10分間
 成長できたGaNの膜厚は1.3μmであった。
2.第2の工程
 次に、そのまま図2に示す製造装置1000製造装置内で以下の条件でパルス成長を行った。
 炉内圧力 150Pa
 TMG温度 +5℃
 Hキャリアガス 20sccm
 プラズマ電力 P1 600W P2 300W
 Nガス流量 1500sccm
 成長時間 120分
 パルス成長時間は、第1期間T1は5秒、第2期間T2は10秒とした。
3.SEM
 図7は、実施例1のGaN層の断面を示す走査型電子顕微鏡写真である。図8は、実施例1のGaN層の表面を示す走査型電子顕微鏡写真である。図8に示すように、GaN層の表面は比較的平坦である。パルス成長させたGaNの膜厚は1.4μmであった。パルス成長させたGaNの表面は平坦である。パルス成長させたGaNの成長速度は0.7μm/hrと高速であった。
4.XRD
 図9は、実施例1のGaN層のX線回折の半値幅を示すグラフである。図9に示すように、実施例1のGaN層のX線回折の半値幅は345arcsecであった。
(実施例2)
1.第1の工程
 本実験では、図2に示す製造装置1000を用いて実験を行った。プラズマ用電極はMo電極を用いた。製造装置1000の内圧は、100Paであった。成長基板として10mm角、厚さ300μmのバルクGaN基板を用いた。
 N/Hガスを750sccm/250sccm流しながらバルクGaN基板を800℃まで昇温しプラズマ電力なしで10分間熱処理した(クリーニング工程)。
 その後、以下の条件でGaN膜を連続成膜した。
 TMG温度 0℃
 Hキャリアガス 5sccm
 成長温度 800℃
 プラズマ電力 150W
 N/Hガス流量 750sccm/250sccm
 成長時間 60分
2.第2の工程
 次に、そのまま図2に示す製造装置1000製造装置内で以下の条件でパルス成長を行った。
 炉内圧力 85Pa
 TMG温度 0℃
 Hキャリアガス 5sccm
 プラズマ電力 P1 ・150W ・P2 ・150W
 Nガス流量 750sccm
 成長時間 180分
 パルス成長時間180分である。第1期間T1は10秒、第2期間T2は10秒とした。プラズマ電力P1は150W、P2は150Wとした。
3.SEM
 図10は、実施例2のGaN層の断面を示す走査型電子顕微鏡写真である。図11は、実施例2のGaN層の表面を示す走査型電子顕微鏡写真である。図11に示すように、GaN層の表面は比較的平坦である。第1の工程で成長させたGaNの膜厚は0.1μmであった。Mo電極を用いた場合、アークが発生するため、高いプラズマ電力を使用することができなかった。第2の工程で成長させたGaNの膜厚は0.72μmであった。このGaN層の表面は平坦であった。プラズマ電力が小さいため、成長速度は0.36μm/hrであった。
4.XRD
 図12は、実施例2のGaN層のX線回折の半値幅を示すグラフである。図12に示すように、実施例2のGaN層のX線回折の半値幅は169arcsecであった。
(比較例1)
1.第1の工程
 本実験では、図2に示す製造装置1000を用いて実験を行った。製造装置1000の内圧は、300Paであった。成長基板として10mm角、厚さ625μmのSi(111)基板上のGaNテンプレートを用いた。
 N/Hガスを750sccm/250sccm流しながらバルクGaN基板を800℃まで昇温しプラズマ電力なしで10分間熱処理した(クリーニング工程)。
 その後、以下の条件でGaN膜を連続成膜した。
 成長温度 800℃
 炉内圧力 300Pa
 TMG温度 +5℃
 Nキャリアガス 20sccm
 プラズマ電力 600W
 N/Hガス流量 1500sccm/1500sccm
 成長時間 20分
 成長できたGaNの膜厚は0.6μmであった。
2.第2の工程
 次に、そのまま図2に示す製造装置1000製造装置内で以下の条件でパルス成長を行った。
 炉内圧力 300Pa
 TMG温度 +5℃
 Hキャリアガス 20sccm
 プラズマ電力 P1 600W P2 400W
 N/Hガス流量 1500sccm/1500sccm
 成長時間 120分
 パルス成長時間は、第1期間T1は5秒、第2期間T2は10秒とした。
 パルス成長したGaNの表面モフォロジーは実施例1および実施例2と比べるとかなり悪く、また、成長速度も極めて遅い。この理由は、パルス成長時に水素を導入するとHラジカルによるエッチング効果があるためと考えられる。
3.SEM
 図13は、比較例のGaN層の断面を示す走査型電子顕微鏡写真である。図14は、比較例のGaN層の表面を示す走査型電子顕微鏡写真である。図14に示すように、GaN層の表面には微小な凹凸が形成されており、平坦ではない。第1の工程のGaN層の膜厚は0.6μmであった。第2の工程のGaN層の膜厚は0.7μmであった。パルス成長させたGaN層の成長速度は、実施例1のパルス成長させたGaN層の成長速度よりも遅かった。
4.XRD
 図15は、比較例のGaN層のX線回折の半値幅を示すグラフである。図15に示すように、比較例のGaN層のX線回折の半値幅は954arcsecであった。
(付記)
 第1の態様におけるIII 族窒化物半導体素子の製造方法は、下地GaN層を形成した基板を準備する工程と、下地GaN層の上に下地GaN層よりも電気抵抗率の高い第1GaN層を成長させる工程と、第1GaN層の上に第2GaN層を成長させる工程と、を有する。第1GaN層を成長させる工程では、NとHとの混合ガスをプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給する。第2GaN層を成長させる工程では、Nをプラズマ化させて基板に供給するとともに有機金属ガスをプラズマ化させずに基板に供給し、第2GaN層をパルス成長させる。
 第2の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、第1期間と第2期間とを繰り返し、第1期間では、有機金属ガスを供給し、第2期間では、有機金属ガスを供給しない。
 第3の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、第1期間では、Nガスをプラズマ化させるための電力を供給する。
 第4の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、第1期間および第2期間にNガスを供給し続ける。第1期間では、Nガスをプラズマ化させるための電力を供給する。第2期間では、Nガスをプラズマ化させるための電力を第1期間におけるNガスをプラズマ化させるための電力よりも弱くする。
 第5の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、第1期間および第1期間にNガスを供給し続け、第1期間では、Nガスをプラズマ化させるための電力を供給せず、第2期間では、Nガスをプラズマ化させるための電力を供給する。
 第6の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、基板を加熱する加熱部の温度を200℃以上600℃未満とする。
 第7の態様におけるIII 族窒化物半導体素子の製造方法においては、第2GaN層を成長させる工程では、基板を加熱する加熱部の温度を600℃以上1150℃以下とする。
1000…製造装置
1001…炉本体
1010…電子銃
1020…検出部
1100…シャワーヘッド電極
1200…サセプター
1210…加熱器
1300…第1のガス供給管
1410…ガス導入室
1420…第2のガス供給管
1500…金属メッシュ
1600…RF電源
1610…マッチングボックス

Claims (7)

  1. 下地GaN層を形成した基板を準備する工程と、
    前記下地GaN層の上に前記下地GaN層よりも電気抵抗率の高い第1GaN層を成長させる工程と、
    前記第1GaN層の上に第2GaN層を成長させる工程と、
    を有し、
     前記第1GaN層を成長させる工程では、
      NとHとの混合ガスをプラズマ化させて前記基板に供給するとともに有機金属ガスをプラズマ化させずに前記基板に供給し、
     前記第2GaN層を成長させる工程では、
      Nをプラズマ化させて前記基板に供給するとともに有機金属ガスをプラズマ化させずに前記基板に供給し、前記第2GaN層をパルス成長させること
    を含むIII 族窒化物半導体素子の製造方法。
  2. 請求項1に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      第1期間と第2期間とを繰り返し、
      前記第1期間では、有機金属ガスを供給し、
      前記第2期間では、有機金属ガスを供給しないこと
    を含むIII 族窒化物半導体素子の製造方法。
  3. 請求項2に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      前記第1期間では、前記Nガスをプラズマ化させるための電力を供給すること
    を含むIII 族窒化物半導体素子の製造方法。
  4. 請求項3に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      前記第1期間および前記第2期間に前記Nガスを供給し続け、
      前記第1期間では、前記Nガスをプラズマ化させるための電力を供給し、
      前記第2期間では、前記Nガスをプラズマ化させるための電力を前記第1期間における前記Nガスをプラズマ化させるための電力よりも弱くすること
    を含むIII 族窒化物半導体素子の製造方法。
  5. 請求項2に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      前記第1期間および前記第1期間に前記Nガスを供給し続け、
      前記第1期間では、前記Nガスをプラズマ化させるための電力を供給せず、
      前記第2期間では、前記Nガスをプラズマ化させるための電力を供給すること
    を含むIII 族窒化物半導体素子の製造方法。
  6. 請求項1から請求項5までのいずれか1項に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      前記基板を加熱する加熱部の温度を200℃以上600℃未満とすること
    を含むIII 族窒化物半導体素子の製造方法。
  7. 請求項1から請求項5までのいずれか1項に記載のIII 族窒化物半導体素子の製造方法において、
     前記第2GaN層を成長させる工程では、
      前記基板を加熱する加熱部の温度を600℃以上1150℃以下とすること
    を含むIII 族窒化物半導体素子の製造方法。
PCT/JP2022/028303 2021-07-30 2022-07-21 Iii族窒化物半導体素子の製造方法 WO2023008297A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-125820 2021-07-30
JP2021125820A JP2023020447A (ja) 2021-07-30 2021-07-30 Iii族窒化物半導体素子の製造方法

Publications (1)

Publication Number Publication Date
WO2023008297A1 true WO2023008297A1 (ja) 2023-02-02

Family

ID=85086860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028303 WO2023008297A1 (ja) 2021-07-30 2022-07-21 Iii族窒化物半導体素子の製造方法

Country Status (2)

Country Link
JP (1) JP2023020447A (ja)
WO (1) WO2023008297A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168040A (ja) * 1999-12-13 2001-06-22 Fuji Xerox Co Ltd 窒化物半導体素子及びその製造方法
JP2012517711A (ja) * 2009-02-11 2012-08-02 スコット アレクサンダー ブッチャー ケネス マイグレーション及びプラズマ増強化学蒸着
JP2015525484A (ja) * 2012-06-18 2015-09-03 アメリカ合衆国 低温における、立方晶系及び六方晶系InN並びにAlNを伴うその合金のプラズマ支援原子層エピタキシー法
JP2017139263A (ja) * 2016-02-01 2017-08-10 株式会社東芝 半導体装置の製造方法
JP2019212714A (ja) * 2018-06-01 2019-12-12 国立大学法人名古屋大学 Iii族窒化物半導体素子の製造装置および製造方法ならびに半導体ウエハの製造方法
JP2020068273A (ja) * 2018-10-23 2020-04-30 国立大学法人名古屋大学 Iii族窒化物半導体素子とその製造方法および半導体ウエハの製造方法およびテンプレート基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168040A (ja) * 1999-12-13 2001-06-22 Fuji Xerox Co Ltd 窒化物半導体素子及びその製造方法
JP2012517711A (ja) * 2009-02-11 2012-08-02 スコット アレクサンダー ブッチャー ケネス マイグレーション及びプラズマ増強化学蒸着
JP2015525484A (ja) * 2012-06-18 2015-09-03 アメリカ合衆国 低温における、立方晶系及び六方晶系InN並びにAlNを伴うその合金のプラズマ支援原子層エピタキシー法
JP2017139263A (ja) * 2016-02-01 2017-08-10 株式会社東芝 半導体装置の製造方法
JP2019212714A (ja) * 2018-06-01 2019-12-12 国立大学法人名古屋大学 Iii族窒化物半導体素子の製造装置および製造方法ならびに半導体ウエハの製造方法
JP2020068273A (ja) * 2018-10-23 2020-04-30 国立大学法人名古屋大学 Iii族窒化物半導体素子とその製造方法および半導体ウエハの製造方法およびテンプレート基板の製造方法

Also Published As

Publication number Publication date
JP2023020447A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
JP5214251B2 (ja) 高密度低エネルギープラズマ気相エピタキシーの装置
JP6406811B2 (ja) Iii 族窒化物半導体装置の製造装置および製造方法ならびに半導体ウエハの製造方法
US8722526B2 (en) Growing of gallium-nitrade layer on silicon substrate
US20130005118A1 (en) Formation of iii-v materials using mocvd with chlorine cleans operations
EP2487276A1 (en) Methods and systems for forming thin films
KR20200128658A (ko) 그래핀 트랜지스터 및 디바이스를 제조하는 방법
JP2016145144A (ja) ダイヤモンド積層構造、ダイヤモンド半導体形成用基板、ダイヤモンド半導体装置およびダイヤモンド積層構造の製造方法
TW201300564A (zh) 透過高壓或原子層沉積製程增加鎂摻入氮化鎵膜的方法
US6730611B2 (en) Nitride semiconductor growing process
JP6811476B2 (ja) Iii族窒化物半導体装置の製造方法および半導体ウエハの製造方法
JP6811472B2 (ja) Iii族窒化物半導体素子の製造方法
WO2023008297A1 (ja) Iii族窒化物半導体素子の製造方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
JP7066178B2 (ja) Iii族窒化物半導体素子の製造装置および製造方法ならびに半導体ウエハの製造方法
JP7245501B2 (ja) Iii族窒化物半導体素子の製造方法および基板の洗浄方法
JP6516482B2 (ja) Iii族窒化物半導体素子の製造装置および製造方法ならびに半導体ウエハの製造方法
JP2008297138A (ja) Iii族窒化物系化合物半導体製造用基板とその製造方法
JP7202604B2 (ja) Iii族窒化物半導体素子とその製造方法および半導体ウエハの製造方法およびテンプレート基板の製造方法
JP2016134610A (ja) Iii族窒化物半導体素子とその製造方法
JP6562350B2 (ja) Iii族窒化物半導体装置の製造装置および製造方法ならびに半導体ウエハの製造方法
JP6889901B2 (ja) Iii族窒化物半導体素子
JP7100871B6 (ja) Iii族窒化物半導体素子の製造方法
JP2023048051A (ja) Iii族窒化物半導体装置の製造装置および製造方法
WO2019225112A1 (ja) Iii族窒化物半導体基板及びその製造方法
JP2004104056A (ja) 窒化ガリウム系半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849359

Country of ref document: EP

Kind code of ref document: A1