WO2023008234A1 - デバイス構造体及びその製造方法 - Google Patents
デバイス構造体及びその製造方法 Download PDFInfo
- Publication number
- WO2023008234A1 WO2023008234A1 PCT/JP2022/027878 JP2022027878W WO2023008234A1 WO 2023008234 A1 WO2023008234 A1 WO 2023008234A1 JP 2022027878 W JP2022027878 W JP 2022027878W WO 2023008234 A1 WO2023008234 A1 WO 2023008234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealing layer
- layer
- organic
- device structure
- sealing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 56
- 238000007789 sealing Methods 0.000 claims abstract description 413
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 44
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 35
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000007922 dissolution test Methods 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 642
- 239000002904 solvent Substances 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 55
- 150000001875 compounds Chemical class 0.000 claims description 53
- 229920001709 polysilazane Polymers 0.000 claims description 49
- 229920001400 block copolymer Polymers 0.000 claims description 40
- 150000001993 dienes Chemical class 0.000 claims description 35
- -1 hydrogenated aromatic vinyl compound Chemical class 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 35
- 229920002554 vinyl polymer Polymers 0.000 claims description 34
- 239000012298 atmosphere Substances 0.000 claims description 33
- 239000011261 inert gas Substances 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 33
- 230000001678 irradiating effect Effects 0.000 claims description 32
- 239000006096 absorbing agent Substances 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 238000005538 encapsulation Methods 0.000 claims description 22
- 229920001296 polysiloxane Polymers 0.000 claims description 21
- 238000005401 electroluminescence Methods 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 12
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims description 11
- 239000000470 constituent Substances 0.000 claims description 5
- 239000012044 organic layer Substances 0.000 claims description 4
- 239000003463 adsorbent Substances 0.000 claims description 2
- 239000000565 sealant Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 29
- 229920000642 polymer Polymers 0.000 description 32
- 239000011342 resin composition Substances 0.000 description 32
- 239000002245 particle Substances 0.000 description 31
- 239000000243 solution Substances 0.000 description 25
- 238000001035 drying Methods 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 12
- 239000004205 dimethyl polysiloxane Substances 0.000 description 12
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 12
- 238000005984 hydrogenation reaction Methods 0.000 description 12
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 125000005370 alkoxysilyl group Chemical group 0.000 description 11
- 239000004020 conductor Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 11
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 11
- 239000011164 primary particle Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000009835 boiling Methods 0.000 description 10
- 239000008188 pellet Substances 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 150000004678 hydrides Chemical group 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000005525 hole transport Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 7
- 239000010457 zeolite Substances 0.000 description 7
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 6
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 5
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 5
- 239000012964 benzotriazole Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000004210 ether based solvent Substances 0.000 description 4
- 230000009975 flexible effect Effects 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000007641 inkjet printing Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005604 random copolymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical class OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- LGCMKPRGGJRYGM-UHFFFAOYSA-N Osalmid Chemical compound C1=CC(O)=CC=C1NC(=O)C1=CC=CC=C1O LGCMKPRGGJRYGM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 150000001934 cyclohexanes Chemical class 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229960001545 hydrotalcite Drugs 0.000 description 2
- 229910001701 hydrotalcite Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- VVBVFVRWEMORTQ-UHFFFAOYSA-N 2-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)-3-hydroxyphenoxy]ethyl 2-ethylhexanoate Chemical compound OC1=CC(OCCOC(=O)C(CC)CCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 VVBVFVRWEMORTQ-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- XDQWJFXZTAWJST-UHFFFAOYSA-N 3-triethoxysilylpropyl prop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C=C XDQWJFXZTAWJST-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- PKAUJJPTOIWMDM-UHFFFAOYSA-N 3h-dioxaphosphepine Chemical compound C=1C=CPOOC=1 PKAUJJPTOIWMDM-UHFFFAOYSA-N 0.000 description 1
- DZWAQOSWSCOXEW-UHFFFAOYSA-N 5-bicyclo[2.2.1]hept-2-enyl(trimethoxy)silane Chemical compound C1C2C([Si](OC)(OC)OC)CC1C=C2 DZWAQOSWSCOXEW-UHFFFAOYSA-N 0.000 description 1
- DFANMEUHPMJFDO-UHFFFAOYSA-N 6-[4,6-bis(4-hexoxy-2-hydroxy-3-methylphenyl)-1,3,5-triazin-2-yl]-3-hexoxy-2-methylphenol Chemical compound OC1=C(C)C(OCCCCCC)=CC=C1C1=NC(C=2C(=C(C)C(OCCCCCC)=CC=2)O)=NC(C=2C(=C(C)C(OCCCCCC)=CC=2)O)=N1 DFANMEUHPMJFDO-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- KJQMOGOKAYDMOR-UHFFFAOYSA-N CC(=C)C=C.CC(=C)C=C Chemical compound CC(=C)C=C.CC(=C)C=C KJQMOGOKAYDMOR-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical class C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- LMGZGXSXHCMSAA-UHFFFAOYSA-N cyclodecane Chemical compound C1CCCCCCCCC1 LMGZGXSXHCMSAA-UHFFFAOYSA-N 0.000 description 1
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- MBGQQKKTDDNCSG-UHFFFAOYSA-N ethenyl-diethoxy-methylsilane Chemical compound CCO[Si](C)(C=C)OCC MBGQQKKTDDNCSG-UHFFFAOYSA-N 0.000 description 1
- ZLNAFSPCNATQPQ-UHFFFAOYSA-N ethenyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C=C ZLNAFSPCNATQPQ-UHFFFAOYSA-N 0.000 description 1
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007755 gap coating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 1
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- UMFJXASDGBJDEB-UHFFFAOYSA-N triethoxy(prop-2-enyl)silane Chemical compound CCO[Si](CC=C)(OCC)OCC UMFJXASDGBJDEB-UHFFFAOYSA-N 0.000 description 1
- LFRDHGNFBLIJIY-UHFFFAOYSA-N trimethoxy(prop-2-enyl)silane Chemical compound CO[Si](OC)(OC)CC=C LFRDHGNFBLIJIY-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- JLQFVGYYVXALAG-CFEVTAHFSA-N yasmin 28 Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C([C@]12[C@H]3C[C@H]3[C@H]3[C@H]4[C@@H]([C@]5(CCC(=O)C=C5[C@@H]5C[C@@H]54)C)CC[C@@]31C)CC(=O)O2 JLQFVGYYVXALAG-CFEVTAHFSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
- C08L53/025—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/811—Controlling the atmosphere during processing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/351—Thickness
Definitions
- the present invention relates to a device structure and its manufacturing method.
- an organic electroluminescence device can include a substrate such as a glass plate, and an element portion including an electrode layer and a light-emitting layer provided on the substrate. Some of the materials contained in the element portion may deteriorate due to intrusion of moisture. Therefore, in order to suppress the intrusion of moisture into the element portion, a sealing layer for sealing the element portion may be formed.
- the sealing layer includes an organic sealing layer made of an organic material and an inorganic sealing layer made of an inorganic material (Patent Document 1).
- organic sealing layers have generally been formed under atmospheric pressure.
- the inorganic sealing layer was often formed in a vacuum environment by a method such as CVD (Chemical Vapor Deposition).
- Patent Document 1 the process in a vacuum environment as described in Patent Document 1 causes a high cost because the apparatus for forming the inorganic sealing layer becomes large and complicated.
- particles such as plasma dust are generated, and these particles can cause deterioration of the element portion.
- Patent Document 2 a method of forming an inorganic sealing layer containing silicon nitride under atmospheric pressure using a polysilazane compound has been developed (Patent Document 2 and Non-Patent Document 1).
- a sealing layer comprising an inorganic sealing layer containing silicon nitride and an organic sealing layer is required to have improved sealing performance in a high-temperature and high-humidity environment.
- the present invention is an invention made in view of the above circumstances, and a device structure including a sealing layer containing silicon nitride and having good sealing performance in a high-temperature and high-humidity environment, and the device structure can be easily formed. It aims at providing the manufacturing method which can do.
- the inventor of the present invention obtained the following findings after earnestly studying to solve the above problems.
- dibutyl ether is one of the solvents preferably used for the reason that it has little effect on the polysilazane compound.
- dibutyl ether tends to damage organic sealing layers containing thermoplastic elastomers.
- the present inventors have found that the dibutyl ether resistance of the organic sealing layer can be improved by irradiating the organic sealing layer with vacuum ultraviolet rays.
- the present invention is an invention made based on such findings, and includes the following.
- a device structure including a base material, a multilayer material having an element part provided on the base material, and a sealing layer for sealing the element part, wherein the sealing A layer has a structure in which an organic sealing layer and an inorganic sealing layer are laminated in this order with respect to the element portion, the inorganic sealing layer contains silicon nitride, and the organic sealing layer is heated.
- a device structure comprising a plastic elastomer, and having a film remaining rate of 90% or more in a dissolution test in dibutyl ether.
- the sealing layer comprises a first sealing layer provided on the element portion, and a second sealing layer having two or more layers and two or more layers provided on the first sealing layer.
- the thermoplastic elastomer comprises a hydrogenated aromatic vinyl compound-conjugated diene block copolymer and a hydrogenated aromatic vinyl compound-conjugated diene block copolymer modified with a silicon atom-containing polar group.
- the hydrogenated aromatic vinyl compound-conjugated diene block copolymer has a structure in which both non-aromatic carbon-carbon unsaturated bonds and aromatic carbon-carbon unsaturated bonds are hydrogenated.
- [7] The device structure according to any one of [1] to [6], wherein each constituent layer included in the sealing layer has a thickness of 300 nm or less.
- the element portion is an organic electroluminescence element portion.
- the step (b) of forming the sealing layer comprises the step (b1) of forming an organic sealing layer, and the step (b1) of forming an inorganic sealing layer after the step (b1).
- the step (b1) includes the step (b1-1) of forming an organic intermediate layer containing a thermoplastic elastomer, and the step (b1-1) of irradiating the organic intermediate layer with vacuum ultraviolet rays to a step (b1-2) of obtaining an organic encapsulating layer, wherein the step (b2) is a step (b2-1) of forming an intermediate layer using a liquid composition containing a polysilazane compound and a solvent; and a step (b2-2) of obtaining an inorganic encapsulating layer containing silicon nitride by irradiating the intermediate layer with ultraviolet rays.
- step (b1-2) comprises a step (b1-2-1) of irradiating the organic intermediate layer with vacuum ultraviolet rays in an inert gas atmosphere, and after the step (b1-2-1)
- the device structure according to [9] or [10] comprising a step (b1-2-2) of irradiating the organic intermediate layer with vacuum ultraviolet rays in a mixed atmosphere of inert gas and oxygen. Production method.
- the step (b) includes a step (b3) of forming a first sealing layer, and a step of forming a second sealing layer as the inorganic sealing layer provided on the first sealing layer ( b4), and a step (b5) of forming a third sealing layer as the organic sealing layer provided on the second sealing layer, wherein the step (b4) and the step (b5) are Any of [9] to [11], including a step of alternately performing at least two times, wherein the step (b4) is the step (b2) and the step (b5) is the step (b1) 3.
- a device structure including a sealing layer containing silicon nitride and having good sealing performance in a high-temperature and high-humidity environment, and a manufacturing method capable of easily forming the device structure.
- FIG. 1 is a cross-sectional view schematically showing a device structure according to one embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing a multilayer material prepared in step (a) of the method for manufacturing a device structure according to one embodiment of the present invention.
- FIG. 3 schematically shows a state in which a first sealing layer for sealing an element part is formed on a layered object in step (b) of a method for manufacturing a device structure according to one embodiment of the present invention.
- 3 is a cross-sectional view shown in FIG.
- FIG. 4 schematically shows a state in which a second sealing layer as an inorganic sealing layer is formed on a layered object in step (b) of the method for manufacturing a device structure according to one embodiment of the present invention.
- FIG. 3 is a cross-sectional view shown in FIG. FIG. 5 schematically shows a state in which a third sealing layer as an organic sealing layer is formed on a layered object in step (b) of a method for manufacturing a device structure according to one embodiment of the present invention.
- 3 is a cross-sectional view shown in FIG.
- FIG. 6 shows a second sealing layer as an inorganic sealing layer and a second sealing layer as an organic sealing layer on the layered object in step (b) of the method for manufacturing a device structure according to one embodiment of the present invention.
- FIG. 4 is a cross-sectional view schematically showing a state in which three sealing layers are alternately formed;
- FIG. 7 is a diagram showing a table showing the results of microscopic observation of Examples and Comparative Examples.
- FIG. 8 is a graph showing changes in shrinkage in the example and the comparative example.
- (meth)acryl is a term that includes “acryl”, “methacryl” and combinations thereof.
- (meth)acrylic acid alkyl ester includes acrylic acid alkyl ester, methacrylic acid alkyl ester, or mixtures thereof.
- solvent includes not only a medium in a solution but also a dispersion medium in which solids are dispersed.
- a device structure includes a substrate, a multilayer structure including an element portion provided on the substrate, and a sealing layer that seals the element portion.
- the sealing layer has a structure in which an organic sealing layer and an inorganic sealing layer are laminated in this order with respect to the element part, and the inorganic sealing layer contains silicon nitride. and the organic sealing layer contains a thermoplastic elastomer, and the residual film rate of the organic sealing layer is 90% or more in a dissolution test in dibutyl ether.
- FIG. 1 is a cross-sectional view schematically showing a device structure according to one embodiment of the present invention.
- the device structure 10 includes a substrate 110 , a multilayer structure 100 including an element section 120 provided on the substrate 110 , and a sealing layer 200 that seals the element section 120 .
- the sealing layer 200 has a structure in which an organic sealing layer 210 and an inorganic sealing layer 220 are laminated in this order on the element section 120 .
- Inorganic encapsulation layer 220 includes silicon nitride.
- the organic sealing layer 210 contains a thermoplastic elastomer and has a residual film rate of 90% or more in a dissolution test in dibutyl ether.
- the sealing layer 200 includes a first sealing layer 201 provided on the element portion 120 and a three-layered second It includes a sealing layer 202 and three third sealing layers 203, and has a structure in which the second sealing layers 202 and the third sealing layers 203 are alternately laminated, and the second sealing layer 202 is An example in which the third sealing layer 203 is the inorganic sealing layer 220 and the organic sealing layer 210 is shown. Also, an example in which the first sealing layer 201 is a silicone sealing layer 230 is shown.
- dibutyl ether is one of the preferred solvents for polysilazane compounds because it has low reactivity with polysilazane compounds in the method of forming an inorganic sealing layer using polysilazane compounds.
- dibutyl ether may dissolve thermoplastic elastomers. Therefore, when forming a sealing layer by laminating an inorganic sealing layer on an organic sealing layer, when a liquid composition containing a polysilazane compound and dibutyl ether is applied onto the organic sealing layer, the organic sealing layer is deteriorated by dibutyl ether, and the sealing layer as a whole may not have sufficient sealing performance.
- the organic sealing layer has a high residual film ratio in the dissolution test in dibutyl ether, and thus the organic sealing layer has high resistance to dibutyl ether. Therefore, even when the liquid composition described above is applied to the organic sealing layer, deterioration of the organic sealing layer due to dibutyl ether can be suppressed. Therefore, the sealing layer can be obtained by laminating the organic sealing layer and the inorganic sealing layer in a favorable state, so that sealing performance in a high-temperature and high-humidity environment can be improved.
- the layered article 10 includes a substrate and an element section formed on the substrate.
- the base material 110 a material capable of constituting a device structure can be appropriately adopted.
- the substrate 110 include a glass plate, a resin plate, and a resin film.
- the substrate may comprise only one layer or may comprise multiple layers.
- a substrate 110 including a resin film and a barrier layer provided on the surface thereof may be used.
- the element section 120 one that can form a device structure can be appropriately adopted.
- the element portion 120 typically includes one or more conductor layers.
- the layer indicated by the term “conductor layer” includes various layers that exhibit their functions by the movement of electrons within the layer.
- the term “conductor layer” can include not only highly conductive layers, such as metals, but also organic thin layers, such as relatively low conductive light-emitting layers.
- a sealing layer is usually formed in order to suppress deterioration of the conductor layer due to moisture.
- the conductor layer examples include, for example, an electrode layer, a light-emitting layer, and a combination thereof that constitute the organic electroluminescence element portion; and patterned wiring that constitutes the touch panel.
- the conductor layer may be provided on the substrate 110 occupying a large area. Also, the conductor layer may be provided with an arbitrary surface shape such as a strip-like shape, a thin wire-like shape, a rectangular shape, a dot-like shape, etc., like the wiring and other structures on the base material 110. good.
- the number of conductor layers included in the element section 120 may be one, or two or more.
- the layers may be arranged side by side without overlapping, or may be partially or wholly overlapped.
- the element section 120 may include members other than the conductor layer inside or on the surface of the element section 120 .
- Such members include, for example, members that maintain the mechanical structure of the element section 120 .
- Specific examples of this member include constituent members of display elements such as liquid crystal cells and organic electroluminescence elements.
- FIG. 1 an example of an organic electroluminescence element portion having a first electrode layer 121, a light emitting layer 122 and a second electrode layer 123 in this order in the thickness direction as the element portion 120 will be described.
- the first electrode layer 121, the light-emitting layer 122, and the second electrode layer 123 are all conductor layers, and the light-emitting layer 122 normally emits light when a voltage is applied from the first electrode layer 121 and the second electrode layer 123. can occur.
- Examples of materials for the light-emitting layer 122 include polyparaphenylenevinylene-based, polyfluorene-based, and polyvinylcarbazole-based materials.
- the light-emitting layer 122 may have a laminate of layers emitting light of different colors, or a mixed layer in which a certain dye layer is doped with a different dye.
- the element section 120 may include functional layers (not shown) such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface formation layer, and a charge generation layer. .
- the multilayered product 100 can be manufactured, for example, by a manufacturing method including forming the element part 120 on the base material 110 .
- a method of forming the element portion 120 for example, a method of forming a conductor layer on the substrate 110 by a method such as sputtering or vapor deposition can be used.
- the sealing layer 200 has a structure in which an organic sealing layer 210 and an inorganic sealing layer 220 are laminated in this order on the element section 120 .
- the sealing layer 200 is a layer provided so as to seal at least part of the element section 120 , and preferably is provided so as to seal all or most of the element section 120 .
- the sealing portion is formed so as to seal the entire portion of the element portion that is not in contact with the surface of the substrate 110.
- the organic encapsulating layer and the inorganic encapsulating layer are usually laminated directly without interposing another layer between the organic encapsulating layer and the inorganic encapsulating layer.
- the sealing layer has a multilayer structure in which two or more organic sealing layers and two or more inorganic sealing layers are alternately laminated, one organic sealing layer and one It includes at least a structure in which the inorganic encapsulating layer of layers is directly laminated. In this embodiment, it is preferable that the organic sealing layer and the inorganic sealing layer included in the multilayer structure are directly laminated.
- the number of organic sealing layers and inorganic sealing layers may be the same, although not shown, the organic sealing layer may be one layer larger than the inorganic sealing layer, or the organic sealing layer may be one layer smaller than the inorganic sealing layer.
- the number of organic sealing layers is, for example, two or more, preferably three or more, and preferably ten or less.
- the number of inorganic sealing layers is, for example, two or more, preferably three or more, and preferably ten or less.
- a specific layer structure of the sealing layer can be appropriately selected according to the device structure.
- the sealing layer 200 has a structure in which a first sealing layer 201, a second sealing layer 202, and a third sealing layer 203 are laminated in this order on the element portion 120.
- the encapsulation layer 200 can have, for example, a second encapsulation layer 202 as the inorganic encapsulation layer 220 and a third encapsulation layer 203 as the organic encapsulation layer 210 .
- the second sealing layer 202 as the inorganic sealing layer 220 and the third sealing layer 203 as the organic sealing layer 210 are provided, the second sealing layer 202 having two or more layers and the third sealing layer 203 having two or more layers It preferably has a sealing layer 203 and has a structure in which the second sealing layer 202 and the third sealing layer 203 are alternately laminated. This is because the sealing performance of the sealing layer 200 can be enhanced.
- the first sealing layer has a structure in which a first sealing layer, a second sealing layer, and a third sealing layer are laminated in this order with respect to the element part
- the first sealing The layer can be, for example, an organic encapsulating layer.
- the first encapsulation layer can be, for example, a silicone encapsulation layer.
- An inorganic encapsulating layer containing silicon nitride tends to have high stress in a high-temperature and high-humidity environment, and cracks are likely to occur.
- the second sealing layer is an inorganic sealing layer
- an organic sealing layer or a silicone sealing layer is used as the first sealing layer
- the stress of the inorganic sealing layer is absorbed to prevent the occurrence of cracks. can be suppressed.
- the first sealing layer can directly seal the element part
- the material should be selected according to the type of the element part, taking into consideration the effect on the element part during the formation of the first sealing layer. preferably.
- the sealing layer can take, other than the layer structure described above, for example, a two-layer structure in which an organic sealing layer and an inorganic sealing layer are laminated in this order with respect to the element portion, and On the other hand, a three-layer structure in which an organic sealing layer, an inorganic sealing layer and an organic sealing layer are laminated in this order can be mentioned.
- An organic sealing layer is a layer containing a thermoplastic elastomer.
- the organic sealing layer has a film retention rate of 90% or more in a dissolution test in dibutyl ether.
- the residual film rate of the organic sealing layer in the dissolution test in dibutyl ether is the value obtained by the following measurement method. First, the organic sealing layer is exposed on the surface of the device structure and immersed in dibutyl ether for 60 seconds. Then let it dry naturally. Let T1 be the thickness of the organic sealing layer before immersion in dibutyl ether, T2 be the thickness of the organic sealing layer after being immersed in dibutyl ether and then air-dried. and
- the residual film rate of the organic sealing layer is 90% or more, preferably 95% or more, more preferably 98% or more, and ideally 100%.
- the organic sealing layer is a layer formed closer to the element section than the inorganic sealing layer. Since the organic sealing layer has high resistance to dibutyl ether, damage to the organic sealing layer can be suppressed when the inorganic sealing layer is formed using a liquid composition containing a polysilazane compound and dibutyl ether. Moreover, the organic sealing layer may be formed directly on the surface of the element portion, or may be formed on the surface of the element portion via another layer. When the organic sealing layer is formed directly on the surface of the element portion, the organic sealing layer can directly seal the element portion.
- "directly" sealing of the element section with a layer means that there is no other layer between the layer and the element section.
- thermoplastic elastomer is a material that exhibits the properties of rubber at room temperature and is plasticized at high temperature to enable molding. Such thermoplastic elastomers have the property of being resistant to elongation and breakage under a small force load. Specifically, the thermoplastic elastomer can exhibit a Young's modulus of 0.001 to 1 GPa and a tensile elongation (elongation at break) of 100 to 1000% at 23°C.
- Thermoplastic elastomers also exhibit a sharp drop in storage modulus and a peak loss tangent tan ⁇ (loss modulus/storage modulus) or a value exceeding 1 in a high temperature range of 40° C. or higher and 200° C. or lower. show and can soften. Young's modulus and tensile elongation can be measured according to JIS K7113. Also, the loss tangent tan ⁇ can be measured by a commercially available dynamic viscoelasticity measuring device.
- thermoplastic elastomers generally do not contain residual solvent, or if they do contain a small amount. Therefore, the thermoplastic elastomer has the advantage of less outgassing and the advantage of being able to seal with a simple process that does not involve a cross-linking treatment or the like.
- a polymer can be used as a thermoplastic elastomer.
- examples of polymers that can be used as thermoplastic elastomers include ethylene- ⁇ -olefin copolymers such as ethylene-propylene copolymers; ethylene- ⁇ -olefin-polyene copolymers; ethylene-methyl methacrylate and ethylene-butyl acrylate.
- Copolymers of ethylene and unsaturated carboxylic acid esters such as copolymers; Copolymers of ethylene and vinyl fatty acids, such as ethylene-vinyl acetate copolymers; Ethyl acrylate, butyl acrylate, hexyl acrylate , 2-ethylhexyl acrylate, polymers of acrylic acid alkyl esters such as lauryl acrylate; Diene-based copolymers such as coalescence, butadiene-(meth)acrylic acid alkyl ester-acrylonitrile copolymer, butadiene-(meth)acrylic acid alkyl ester-acrylonitrile-styrene copolymer; butylene-isoprene copolymer; styrene -butadiene random copolymer, styrene-isoprene random copolymer, styrene-butadiene block copolymer, st
- a hydrogenated aromatic vinyl compound-conjugated diene block copolymer is preferable for obtaining the desired effects of the present invention.
- a hydrogenated aromatic vinyl compound-conjugated diene block copolymer represents a hydride of an aromatic vinyl compound-conjugated diene block copolymer. That is, the hydrogenated aromatic vinyl compound-conjugated diene block copolymer has a non-aromatic carbon-carbon unsaturated bond, an aromatic carbon-carbon bond, or It represents a polymer having a structure obtained by partially or wholly hydrogenating both of them.
- the hydride is not limited by its production method.
- the aromatic vinyl compound styrene and its derivatives; vinylnaphthalene and its derivatives; are preferred. It is particularly preferable to use styrene because of its industrial availability.
- the conjugated diene is preferably a chain conjugated diene (linear conjugated diene, branched conjugated diene).
- Preferred examples of conjugated dienes include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. Among these, 1,3-butadiene and isoprene are particularly preferred because of their industrial availability.
- wA be the mass fraction of all the aromatic vinyl monomer units in the aromatic vinyl compound-conjugated diene block copolymer, and all the conjugated diene monomer units are the aromatic vinyl compound-conjugated diene block copolymer.
- wB is the mass fraction of the total
- the ratio of wA to wB (wA/wB) is preferably within a specific range. Specifically, the ratio (wA/wB) is preferably 20/80 or more, more preferably 30/70 or more, and preferably 60/40 or less, more preferably 55/45 or less.
- the ratio wA/wB is equal to or higher than the lower limit of the range, the heat resistance of the organic sealing layer can be improved.
- the flexibility of an organic sealing layer can be improved.
- the ratio (wA/wB) is within the above range, the temperature range in which the organic sealing layer has rubber elasticity can be widened, so the temperature range in which the device structure has flexibility can be widened.
- aromatic vinyl compound-conjugated diene block copolymers examples include styrene-butadiene block copolymers, styrene-butadiene-styrene block copolymers, styrene-isoprene block copolymers, styrene-isoprene-styrene block copolymers, and mixtures thereof are preferred. More specific examples of these include JP-A-2-133406, JP-A-2-305814, JP-A-3-72512, JP-A-3-74409, and International Publication No. 2015/099079. and those described in technical literature such as.
- the hydrogenation rate of the hydrogenated aromatic vinyl compound-conjugated diene block copolymer is preferably 90% or more, more preferably 97% or more, and particularly preferably 99% or more.
- the hydrogenation rate of the hydride can be obtained by measurement by 1H-NMR.
- the hydrogenation rate of non-aromatic carbon-carbon unsaturated bonds in the hydrogenated aromatic vinyl compound-conjugated diene block copolymer is preferably 95% or more, more preferably 99% or more. If the hydrogenation rate of the non-aromatic carbon-carbon unsaturated bond is high, the light resistance and oxidation resistance of the organic encapsulating layer can be further enhanced.
- the hydrogenation rate of aromatic carbon-carbon unsaturated bonds in the hydrogenated aromatic vinyl compound-conjugated diene block copolymer is preferably 90% or more, more preferably 93% or more, and particularly preferably 95% or more. be.
- the hydrogenation rate of the aromatic carbon-carbon unsaturated bond is high, the glass transition temperature of the hydride is high, so that the heat resistance of the organic sealing layer can be effectively improved. Furthermore, the photoelastic coefficient of the organic encapsulating layer can be lowered to reduce the occurrence of retardation.
- the hydrogenated aromatic vinyl compound-conjugated diene block copolymer particularly preferably has a structure in which both non-aromatic carbon-carbon unsaturated bonds and aromatic carbon-carbon unsaturated bonds are hydrogenated. .
- a particularly preferred block form of the hydrogenated aromatic vinyl compound-conjugated diene block copolymer is that block [A] of hydrogenated aromatic vinyl polymer is bound to both ends of block [B] of hydrogenated conjugated diene polymer.
- Triblock copolymer; a penta polymer block [B] bound to both ends of the polymer block [A], and a polymer block [A] bound to the other end of both polymer blocks [B] It is a block copolymer.
- a triblock copolymer of [A]-[B]-[A] is particularly preferred because it is easy to produce and the physical properties as a thermoplastic elastomer can be within desired ranges.
- the hydrogenated aromatic vinyl compound-conjugated diene block copolymer can be produced, for example, by the methods described in International Publication No. 2015/099079 and JP-A-2016-204217.
- a polymer having a silicon atom-containing polar group may also be used as the thermoplastic elastomer.
- Such polymers include, for example, modified products with silicon atom-containing polar groups of the polymers exemplified as polymers that can be used as thermoplastic elastomers. Adhesion between the organic sealing layer and other members can be improved when a polymer having a silicon-containing polar group is employed as the thermoplastic elastomer.
- the polymer used in the reaction to obtain the modified product may be referred to as "pre-reaction polymer” as appropriate.
- the modified product may have a structure obtained by graft polymerization of a pre-reaction polymer and a compound having a silicon atom-containing polar group as a monomer, for example.
- the modified product is not limited by its production method.
- An alkoxysilyl group is preferable as the silicon atom-containing polar group.
- Examples of compounds having an alkoxysilyl group as a silicon atom-containing polar group include vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, p-styryltri methoxysilane, p-styryltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxysilane Ethylenically unsaturated silane compounds such as roxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane,
- a silicon atom-containing polar group By reacting the pre-reaction polymer with a compound having a silicon atom-containing polar group, a silicon atom-containing polar group can be introduced into the pre-reaction polymer to obtain a modified product having a silicon atom-containing polar group.
- the amount of the alkoxysilyl group introduced is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, relative to 100 parts by weight of the pre-reaction polymer. , more preferably 0.3 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 3 parts by weight or less.
- the amount of alkoxysilyl groups to be introduced is within the above range, the degree of cross-linking between the alkoxysilyl groups decomposed by water can be prevented from becoming excessively high, so that high adhesiveness can be maintained.
- substances having alkoxysilyl groups and modification methods used for introducing alkoxysilyl groups include those described in WO 2015/099079.
- the amount of polar groups introduced can be measured by 1H-NMR spectrum.
- the measurement can be performed by increasing the number of accumulations.
- thermoplastic elastomers described above from the viewpoint of significantly obtaining the desired effects of the present invention, hydrogenated aromatic vinyl compound-conjugated diene block copolymers and hydrogenated aromatic vinyl compound-conjugated diene block copolymers are preferred.
- modified with a silicon atom-containing polar group and at least one type selected from the group consisting of is preferable.
- a hydrogenated aromatic vinyl compound-conjugated diene block copolymer modified with a silicon atom-containing polar group is particularly preferred.
- the modified product obtained by introducing an alkoxysilyl group as the silicon atom-containing polar group is preferable.
- introducing an alkoxysilyl group as a polar group into a pre-reaction polymer such as a hydrogenated aromatic vinyl compound-conjugated diene block copolymer is sometimes referred to as silane modification.
- silane modification an alkoxysilyl group may be directly bonded to the pre-reaction polymer, or may be bonded via a divalent organic group such as an alkylene group.
- silane-modified product the polymer obtained by silane-modifying the pre-reaction polymer is also referred to as "silane-modified product".
- a silane-modified hydrogenated aromatic vinyl compound-conjugated diene block copolymer is preferable.
- silane-modified hydrogenated styrene-butadiene block copolymer silane-modified hydrogenated styrene-butadiene-styrene block copolymer, silane-modified hydrogenated styrene-isoprene block copolymer, and hydrogenated styrene
- silane-modified products selected from the group consisting of silane-modified products of -isoprene-styrene block copolymers are particularly preferred.
- the weight average molecular weight (Mw) of the thermoplastic elastomer is not particularly limited, but is preferably 20,000 or more, more preferably 30,000 or more, still more preferably 35,000 or more, and preferably 200,000 or less. It is preferably 100,000 or less, more preferably 70,000 or less.
- the weight average molecular weight of the thermoplastic elastomer can be measured in terms of polystyrene by gel permeation chromatography using tetrahydrofuran as a solvent.
- the molecular weight distribution (Mw/Mn) of the thermoplastic elastomer is preferably 4 or less, more preferably 3 or less, even more preferably 2 or less, and preferably 1 or more. When the weight average molecular weight Mw and the molecular weight distribution Mw/Mn of the thermoplastic elastomer are within the above ranges, the mechanical strength and heat resistance of the organic sealing layer can be improved.
- the glass transition temperature of the thermoplastic elastomer is not particularly limited, but is preferably 40° C. or higher, more preferably 70° C. or higher, preferably 200° C. or lower, more preferably 180° C. or lower, and still more preferably 160° C. or lower. . Further, when a thermoplastic elastomer containing a block copolymer is used, the adhesiveness and flexibility of the organic sealing layer can be improved by adjusting the glass transition temperature by changing the weight ratio of each polymer block. You can balance your sexuality.
- the glass transition temperature of the resin can be measured using a differential scanning calorimeter (DSC) by heating at a rate of 10°C/min.
- DSC differential scanning calorimeter
- the organic sealing layer may further contain optional components in addition to the thermoplastic elastomer.
- Optional ingredients can include, for example, hygroscopic particles and UV absorbers.
- “Hygroscopic particles” refers to particles that have a high rate of weight change when left standing at 20°C and 90% RH for 24 hours.
- a specific range of the weight change rate is usually 3% or more, preferably 10% or more, and more preferably 15% or more.
- the upper limit of the weight change rate is not particularly limited, it may be, for example, 100% or less.
- the hygroscopic particles having such high hygroscopicity can absorb a large amount of moisture even in a small amount, and therefore can effectively suppress permeation of moisture through the sealing layer. As a result, the rubber properties of the thermoplastic elastomer are not hindered, which is advantageous.
- the weight change rate of the hygroscopic particles can be calculated by the following formula (K1).
- W1 represents the weight of the particles before standing in an environment of 20° C. and 90% Rh
- W2 represents the weight of the particles after standing in an environment of 20° C. and 90% Rh for 24 hours. represents weight.
- Weight change rate (%) ((W2-W1)/W1) x 100 (K1)
- Examples of materials contained in hygroscopic particles include basic hygroscopic materials and acidic hygroscopic materials.
- Examples of basic moisture absorbents include compounds containing alkali metals, alkaline earth metals, and aluminum (oxides, hydroxides, salts, etc.) that do not contain silicon (e.g., barium oxide, magnesium oxide, calcium oxide, strontium oxide, aluminum hydroxide, hydrotalcite, etc.); organometallic compounds described in JP-A-2005-298598; clays containing metal oxides;
- Examples of acidic moisture absorbents include inorganic compounds containing silicon (eg, silica gel, nanoporous silica, zeolite).
- the material for the hygroscopic particles is preferably one or more substances selected from the group consisting of zeolite and hydrotalcite.
- zeolites generally have a particularly high hygroscopic capacity. Specifically, zeolite can easily achieve a high weight change rate of 10% to 30% when left standing at 20° C. and 90% RH for 24 hours. Also, zeolites release water when dried, so they can be reused.
- the materials for the hygroscopic particles may be used singly or in combination of two or more at any ratio.
- the primary particle size of the hygroscopic particles is preferably 30 nm or more, more preferably 40 nm or more, and preferably 150 nm or less, more preferably 80 nm or less.
- the primary particle size of the hygroscopic particles represents the number average particle size of the primary particles.
- the primary particle size of the hygroscopic particles can be measured by a particle size measuring device that employs a dynamic light scattering method in the state of a dispersion liquid dispersed in a solvent.
- the primary particle size may be measured by observation using an electron microscope. Specifically, it can be measured by the following method.
- the sum of the short axis and the long axis of each of the 50 primary particles is obtained, and the obtained sum is divided by 2 to measure the particle diameter of each particle.
- the arithmetic average value of the particle diameters of 50 primary particles thus measured can be taken as the primary particle diameter.
- the refractive index of the hygroscopic particles at a measurement wavelength of 589 nm is preferably 1.2 or more and 3.0 or less.
- hygroscopic particles having such a refractive index are used, the haze of the organic sealing layer can be reduced, and a sealing layer having excellent transparency can be realized.
- the ratio of the hygroscopic particles in the organic sealing layer is not particularly limited, and can be adjusted within a range in which desired properties can be obtained.
- the ratio of the hygroscopic particles in the organic sealing layer is preferably 5% by weight or more, more preferably 10% by weight or more, and preferably 60% by weight or less, preferably 40% by weight or less, More preferably, it is 30% by weight or less.
- the ratio of the hygroscopic particles is equal to or higher than the above lower limit, the effect of suppressing moisture intrusion of the organic sealing layer can be enhanced. Further, when the ratio of the hygroscopic particles is equal to or less than the above upper limit, the transparency of the organic sealing layer can be increased.
- UV absorbers examples include benzotriazole UV absorbers, toazine UV absorbers, benzophenone UV absorbers, acrylonitrile UV absorbers, salicylate UV absorbers, cyanoacrylate UV absorbers, and azomethine UV absorbers.
- organic UV absorbers such as UV absorbers, indole UV absorbers, naphthalimide UV absorbers, and phthalocyanine UV absorbers.
- Benzotriazole-based UV absorbers contain a benzotriazole structure in the molecule.
- benzotriazole-based UV absorbers include 2,2′-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], 2-(2H-benzotriazol-2-yl)-p-cresol, and 2-(5-chloro-2H-benzotriazol-2-yl)-6-tert-butyl-4-methylphenol.
- Examples of commercially available benzotriazole-based UV absorbers include "ADEKA STAB LA-31", “ADEKA STAB LA-32", and "ADEKA STAB LA-36".
- a triazine-based UV absorber contains a triazine structure in its molecule.
- a compound containing a 1,3,5-triazine structure in the molecule is preferable as the triazine-based ultraviolet absorber.
- Examples of triazine-based UV absorbers include 2,4,6-tris(2-hydroxy-3-methyl-4-hexyloxyphenyl)-1,3,5-triazine, 2-(4,6-diphenyl- 1,3,5-triazin-2-yl)-5-(2-(2-ethylhexanoyloxy)ethoxy)phenol and 2,4-diphenyl-6-(2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazines.
- UV absorber examples include "ADEKA STAB LA-F70", “ADEKA STAB LA-46", and "TINUVIN 1577” manufactured by BASF Japan.
- Another specific example of the UV absorber is the UV absorber described in JP-A-2017-154401.
- optional components that the resin composition may contain include, in addition to the hygroscopic particles and ultraviolet absorbers described above, dispersants, plasticizers, light stabilizers, antioxidants, lubricants, inorganic fillers, and the like. be done. As for the types, characteristics and amounts of these optional components, those described in, for example, International Publication No. 2019/220896 can be adopted.
- Any component may be used singly, or two or more may be used in combination at any ratio.
- the thickness of the organic sealing layer is preferably 1 nm or more, more preferably 10 nm or more, still more preferably 80 nm or more, preferably 300 nm or less, more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less. .
- the thickness of the organic encapsulating layer is equal to or greater than the lower limit, penetration of moisture can be effectively suppressed.
- the thickness of the organic sealing layer is equal to or less than the upper limit, the thickness of the device structure can be reduced.
- the thickness of the organic sealing layer refers to the thickness of one layer of the organic sealing layer.
- the haze of the organic sealing layer is preferably 0.5% or less, more preferably 0.15% or less, and particularly preferably 0.05% or less.
- the transparency of the organic sealing layer can be increased, so that it can be suitably used in places where light transmission is required in device structures such as organic electroluminescence devices and flexible touch sensors. can be done.
- Haze can be measured by using a turbidity meter.
- the inorganic sealing layer is a layer containing silicon nitride.
- the inorganic encapsulating layer may contain, for example, silicon oxide and silicon oxynitride in addition to silicon nitride.
- Such an inorganic sealing layer can be formed using a polysilazane compound. More specifically, [II. Device structure manufacturing method].
- the thickness of the inorganic sealing layer is preferably 1 nm or more, more preferably 10 nm or more, preferably 300 nm or less, more preferably 200 nm or less, and particularly preferably 150 nm or less.
- the thickness of the inorganic encapsulating layer is equal to or greater than the lower limit, it is possible to effectively suppress the infiltration of moisture.
- the thickness of the inorganic sealing layer is equal to or less than the upper limit, the thickness of the device structure can be reduced.
- the thickness of the inorganic sealing layer refers to the thickness of one layer of the inorganic sealing layer.
- the encapsulating layer according to this embodiment may have, for example, a silicone encapsulating layer in addition to the organic encapsulating layer and the inorganic encapsulating layer.
- the silicone encapsulating layer includes, for example, a compound having a siloxane whose main skeleton is composed of Si—O bonds with high bonding energy, more specifically organopolysiloxane. Examples of organopolysiloxanes include dimethylpolysiloxane.
- the silicone sealing layer is preferably made of silicone rubber (silicone elastomer).
- the thickness of the silicone sealing layer is preferably 1 nm or more, more preferably 10 nm or more, still more preferably 80 nm or more, and preferably 300 nm or less, more preferably 200 nm or less.
- the thickness of the entire encapsulating layer is appropriately adjusted within a range in which the encapsulating layer of the device structure can exhibit the desired sealing performance.
- the thickness of the entire sealing layer is preferably 0.7 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less. Since the sealing layer according to the present embodiment has a structure in which the organic sealing layer and the inorganic sealing layer are laminated, it can exhibit good sealing performance with a small thickness.
- each constituent layer constituting the sealing layer is preferably 300 nm or less, more preferably 200 nm or less. Also, the lower limit of the thickness of each constituent layer can be set to, for example, 1 nm or more.
- the device structure 10 including the organic electroluminescence element portion as the element portion 120 as in the embodiment described above can be used as a device such as a display device or a lighting device, for example.
- the device structure is not limited to these devices.
- Device structures can include a wide range of devices comprising component parts and assemblies that form part of the device. Among them, the sealing layer of the device structure described above is excellent in transparency, and therefore various optical devices and assemblies constituting a part of the optical device are preferable as the device structure.
- Examples of optical devices include liquid crystal display devices, touch panels, and organic electroluminescence devices as display devices and light source devices.
- a method for manufacturing a device structure according to an embodiment of the present invention comprises a step (a) of preparing a multilayer structure including a substrate and an element portion provided on the substrate; and a step (b) of forming an encapsulation layer that stops, wherein the step (b) of forming the encapsulation layer includes the step (b1) of forming an organic encapsulation layer.
- step (b2) of forming an inorganic sealing layer after the step (b1)
- the step (b1) comprises a step (b1-1) of forming an organic intermediate layer containing a thermoplastic elastomer; and a step (b1-2) of obtaining the organic sealing layer by irradiating the organic intermediate layer with vacuum ultraviolet rays
- the step (b2) is an intermediate layer using a liquid composition containing a polysilazane compound and a solvent.
- the method includes a step (b2-1) of forming a body layer, and a step (b2-2) of obtaining an inorganic encapsulating layer containing silicon nitride by irradiating the intermediate layer with ultraviolet rays.
- FIG. 2 to 6 are cross-sectional views showing the method of manufacturing a device structure according to one embodiment of the present invention. 2 to 6, in the step (b) of forming the sealing layer 200, the first sealing layer 201, the second sealing layer 202, the third sealing layer 203, the second An example of forming a sealing layer 200 in which a sealing layer 202 and a third sealing layer 203 are laminated in this order is shown.
- a multilayer structure 100 including a substrate 110 and an element portion 120 provided on the substrate 110 is prepared (step (a)).
- the first sealing layer 201 is formed on the element section 120 (step (b3)).
- FIG. 3 shows an example of forming a silicone sealing layer 230 as the first sealing layer 201 .
- a second sealing layer 202 is formed as an inorganic sealing layer 220 on the first sealing layer 201 (step (b4)).
- a third sealing layer 203 is formed as an organic sealing layer 210 on the second sealing layer 202 (step (b5).
- the sealing layer 200 is formed by further repeating the steps (b4) and (b5).
- the organic intermediate layer is irradiated with vacuum ultraviolet rays, so that the resistance of the polysilazane compound to the solvent of the organic sealing layer can be improved. . Therefore, when the inorganic sealing layer is formed on the organic sealing layer, deterioration of the organic sealing layer due to the solvent of the polysilazane compound can be suppressed, and a sealing layer having good sealing performance can be formed. .
- the present inventor speculates as follows about the reason why the resistance of the polysilazane compound to the solvent can be improved by irradiating the organic sealing layer with vacuum ultraviolet rays.
- the technical scope of the present invention is not limited by the mechanism described below.
- Step (a) is a step of preparing a covering material.
- the covering may be prepared by manufacturing oneself, or may be prepared by purchasing from another party.
- the above [I. Device structure 1 . Layer] is the same as the content described in the item.
- the step (b) of forming an encapsulation layer includes a step (b1) of forming an organic encapsulation layer and a step (b2) of forming an inorganic encapsulation layer after step (b1).
- the step (b) includes performing at least steps (b1) and (b2) in this order. Since the sealing layer preferably has a structure in which two or more organic sealing layers and two or more inorganic sealing layers are alternately laminated, step (b1) and step (b2) are performed two or more times. Preferably repeated. In this case, step (b1) and step (b2) may be repeated in this order, and step (b2) and step (b1) may be repeated in this order.
- the step of forming an organic sealing layer includes a step (b1-1) of forming an organic intermediate layer containing a thermoplastic elastomer, and a step of irradiating the organic intermediate layer with vacuum ultraviolet rays to obtain the organic sealing layer. (b1-2) and
- Step (b1-1) Formation of organic intermediate layer
- Step (b1-1) is a step of forming an organic intermediate layer containing a thermoplastic elastomer.
- the organic intermediate layer is a layer of a resin composition containing a thermoplastic elastomer, and is a layer obtained before being irradiated with vacuum ultraviolet rays.
- the method for forming the organic intermediate layer is preferably a step of forming a layer of a resin composition containing a thermoplastic elastomer and a solvent, and then drying the layer of the resin composition to obtain an organic intermediate layer.
- the solvent contained in the resin composition may be referred to as a "first solvent” in order to distinguish it from the solvent used when forming the inorganic sealing layer.
- the resin composition contains a thermoplastic elastomer and a first solvent.
- the resin composition preferably contains optional components.
- the thermoplastic elastomer and optional components are described in [I. Device structure 2. Sealing layer 2.2. organic encapsulating layer].
- a solvent that can dissolve or disperse the thermoplastic elastomer can be used as the first solvent.
- the first solvent may be used singly or in combination of two or more.
- it is preferable to use a non-aqueous solvent as the first solvent since the element portion to be sealed generally has low resistance to moisture.
- a non-polar solvent as the first solvent.
- nonpolar solvents examples include cyclohexane, methylcyclohexane, ethylcyclohexane, hexane, toluene, benzene, xylene, decahydronaphthalene, tetrahydronaphthalene, trimethylbenzene, cyclooctane, cyclodecane, octane (eg, normal octane), dodecane, tridecane. , tetradecane, and cyclododecane.
- cyclohexane examples include cyclohexane, methylcyclohexane, ethylcyclohexane, hexane, toluene, benzene, xylene, decahydronaphthalene, tetrahydronaphthalene, trimethylbenzene, cyclooctane, cyclodecane, oct
- the amount of the nonpolar solvent that makes up the total amount of the first solvent to 100% by weight is preferably 95% by weight or more, more preferably 99% by weight or more, still more preferably 99.9% by weight or more, and ideally 100% by weight. %.
- the first solvent comprises a high boiling solvent having a high boiling point.
- the boiling point of the high boiling point solvent at 1 atm is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 125° C. or higher, still more preferably 150° C. or higher, and particularly preferably 175° C. That's it.
- the first solvent contains a high-boiling solvent, the formation of unevenness on the surface of the organic sealing layer obtained by drying the organic intermediate layer as the layer of the resin composition containing the first solvent is suppressed, Surface can be made smooth.
- nozzle clogging during coating of the resin composition using an inkjet printing method can be suppressed.
- the upper limit of the boiling point at 1 atm of the high boiling point solvent is preferably 300° C. or lower, more preferably 250° C. or lower.
- the organic intermediate layer can be easily dried.
- the amount of the high-boiling solvent is preferably 10% by weight or more, more preferably 25% by weight or more, still more preferably 50% by weight or more, and still more preferably 70% by weight or more, relative to the total amount of the first solvent 100% by weight, Particularly preferably, it is 80% by weight or more, and usually 100% by weight or less.
- the resin composition is preferably a liquid composition.
- the organic intermediate layer can be easily formed by a coating method.
- the viscosity of the liquid resin composition is preferably 1 cP or more, more preferably 2 cP or more, particularly preferably 3 cP or more, preferably 5000 cP or less, more preferably 1000 cP or less, still more preferably 500 cP or less, still more preferably 50 cP. Below, it is more preferably 30 cP or less, and particularly preferably 20 cP or less.
- the viscosity of the resin composition is above the lower limit of the above range, the thickness of the organic intermediate layer can be easily adjusted, and the organic sealing layer having the desired thickness can be easily formed.
- the organic intermediate layer can be easily formed by a coating method.
- the viscosity is 50 cP or less
- the organic intermediate layer can be formed by inkjet printing.
- the viscosity can be measured at a measurement temperature of 25°C ⁇ 2°C using a tuning fork vibration viscometer (for example, A&D Co., Ltd. SV-10 tuning fork vibration viscometer).
- the proportion of solids contained in the resin composition is not particularly limited, and is preferably adjusted appropriately so that properties such as viscosity are within the desired range.
- the amount of solid content relative to the total amount of 100% by weight of the resin composition is preferably 1% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 30% by weight. or less, more preferably 20% by weight or less.
- the method for forming the organic intermediate layer it is preferable to use a method including preparing the resin composition containing the thermoplastic elastomer and the first solvent and applying the resin composition. Thereby, the organic intermediate layer can be easily formed.
- coating methods include curtain coating, extrusion coating, roll coating, spin coating, dip coating, bar coating, spray coating, slide coating, print coating, gravure coating, and die coating. , gap coating method, and dipping method.
- a printing method such as a screen printing method or an inkjet printing method is preferable, and an inkjet printing method is particularly preferable.
- the first solvent is removed by drying after coating the resin composition.
- methods for drying the layer of the resin composition include natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. If natural drying is achieved simply by standing at room temperature for a short period of time, no specific drying procedure may be required. However, since the layer of the resin composition can usually contain a large amount of the first solvent, it is preferable to accelerate drying by operations such as heating and pressure reduction.
- the first solvent is removed from the resin composition layer to obtain an organic intermediate layer formed of the solid content of the resin composition.
- the step (b1-2) is a step of irradiating the organic intermediate layer with vacuum ultraviolet rays to obtain the organic sealing layer.
- the dibutyl ether resistance of the organic sealing layer can be improved.
- a vacuum ultraviolet light source includes, for example, a rare gas excimer lamp. Among them, the Xe excimer lamp emits ultraviolet light with a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency.
- the vacuum ultraviolet irradiation conditions can be appropriately adjusted within a range in which the desired organic sealing layer can be obtained.
- the irradiation conditions include a step (b1-2-2) of irradiating vacuum ultraviolet rays in a mixed atmosphere of inert gas and oxygen.
- vacuum ultraviolet rays are irradiated in a mixed atmosphere of inert gas and oxygen to partially modify the surface of the organic sealing layer. It is preferable to improve the coatability to the solvent.
- "Under an inert gas atmosphere" in step (b1-2-1) includes not only an atmosphere in which only inert gas exists, but also an atmosphere containing inert gas and a trace amount of oxygen.
- a specific oxygen concentration in the inert gas atmosphere is preferably 500 ppm or more, more preferably 1000 ppm or more, and preferably 10000 ppm or less, more preferably 5000 ppm or less.
- the unit "ppm" above is on a mass basis.
- inert gases examples include nitrogen, helium, neon, argon, etc. Among them, nitrogen is preferred. Moreover, one type of inert gas may be used alone, or two or more types may be used in combination.
- ultraviolet irradiation may be performed in a processing chamber in which the inert gas is supplied and exhausted. At this time, in order to adjust the oxygen concentration in the atmosphere, the flow rates of the oxygen gas and the inert gas introduced into the processing chamber may be adjusted.
- the irradiation intensity of the vacuum ultraviolet rays in the inert gas atmosphere can be appropriately adjusted within a range in which a desired organic sealing layer can be obtained.
- the irradiation intensity is preferably 30 mW/cm 2 or more, more preferably 40 mW/cm 2 or more, still more preferably 50 mW/cm 2 or more, preferably 100 mW/cm 2 or less, and more preferably 80 mW/cm. 2 or less, more preferably 60 mW/cm 2 or less.
- the irradiation time of the vacuum ultraviolet rays in the inert gas atmosphere can be adjusted appropriately within the range in which the desired organic sealing layer can be obtained.
- the irradiation time is preferably 100 seconds or longer, more preferably 150 seconds or longer, preferably 300 seconds or shorter, and more preferably 250 seconds or shorter.
- “Mixed atmosphere of inert gas and oxygen” in step (b1-2-2) is an atmosphere containing inert gas and oxygen.
- the oxygen concentration can be adjusted to the extent that the wettability of the surface of the organic sealing layer to the solvent can be changed. Specifically, the oxygen concentration is preferably 1% or more, more preferably 3% or more, preferably 20% or less, and more preferably 10% or less.
- the above unit “%" is based on mass.
- the irradiation intensity of the vacuum ultraviolet rays in the mixed atmosphere of inert gas and oxygen can be appropriately adjusted within a range in which a desired organic sealing layer can be obtained.
- the irradiation intensity is preferably 30 mW/cm 2 or more, more preferably 40 mW/cm 2 or more, still more preferably 50 mW/cm 2 or more, preferably 100 mW/cm 2 or less, and more preferably 80 mW/cm. 2 or less, more preferably 60 mW/cm 2 or less.
- the irradiation time of vacuum ultraviolet rays in a mixed atmosphere of inert gas and oxygen can be appropriately adjusted within a range in which the desired organic sealing layer can be obtained.
- a specific range is preferably 100 seconds or longer, more preferably 150 seconds or longer, preferably 300 seconds or shorter, and more preferably 250 seconds or shorter.
- the irradiation conditions such as the irradiation intensity and the irradiation time of the vacuum ultraviolet rays in the step (b1-2) are, for example, the peak derived from the C—H stretching of the FT-IR spectrum of the organic intermediate layer (organic sealing layer) before and after the irradiation of the vacuum ultraviolet rays. It can also be adjusted by the amount of intensity reduction. Specifically, the peak intensity derived from C—H stretching in the FT-IR spectrum of the organic intermediate layer before irradiation with vacuum ultraviolet rays is defined as I1, and the C—H stretching in the FT-IR spectrum of the organic intermediate layer after irradiation with vacuum ultraviolet rays is defined as I1.
- the irradiation conditions are preferably such that the ratio of I2 to I1 (I2/I1) is 50% or less, where I2 is the derived peak intensity. Moreover, it is preferable to set the irradiation condition so that I2/I1 is 20% or more. This is because when I2/I1 is within the above range, it is easy to obtain an organic encapsulating layer having good resistance to dibutyl ether. A peak derived from C—H stretching in the FT-IR spectrum is observed, for example, in the range of 2960 cm ⁇ 1 to 2850 cm ⁇ 1 .
- the step (b2) of forming an inorganic encapsulating layer includes the step (b2-1) of forming an intermediate layer using a liquid composition containing a polysilazane compound and a solvent, and irradiating the intermediate layer with ultraviolet light, obtaining an inorganic sealing layer containing silicon nitride (b2-2). Since the inorganic sealing layer is formed on the organic sealing layer, it can indirectly seal the element portion. When the sealing layer has two or more inorganic sealing layers, for example, the inorganic sealing layer may be formed directly on the element portion.
- Step (b2) includes step (b2-1) of forming an intermediate layer using a liquid composition containing a polysilazane compound and a solvent.
- the intermediate layer is a layer containing a polysilazane compound.
- the intermediate layer containing the polysilazane compound is preferably formed by a method including applying a liquid composition containing the polysilazane compound and a solvent. According to this method, the intermediate layer can be easily formed.
- a polysilazane compound is a polymer having silicon-nitrogen bonds.
- polysilazane compounds for example, polysilazane compounds that can be used as precursors of ceramics such as SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y may be used.
- Preferred polysilazane compounds include, for example, compounds containing repeating units represented by the following formula (1).
- R 1 , R 2 and R 3 each independently represent one or more groups selected from the group consisting of hydrogen atoms and monovalent organic groups.
- monovalent organic groups include aliphatic hydrocarbon groups such as alkyl groups and alkenyl groups; alicyclic hydrocarbon groups such as cycloalkyl groups; aromatic hydrocarbon groups such as aryl groups; alkylsilyl groups; ; alkoxy group; and the like.
- polysilazane compound represented by formula (1) those described in JP-A-8-112879 may be used.
- R 1 , R 2 and R 3 are preferably hydrogen atoms.
- a polysilazane compound in which all of R 1 , R 2 and R 3 in a repeating unit are hydrogen atoms is sometimes called perhydropolysilazane.
- the number average molecular weight (Mn) of perhydropolysilazane can be, for example, about 600 to 2000 (converted to polystyrene).
- polysilazane compounds include, for example, silicon alkoxide-added polysilazane obtained by reacting a polysilazane compound containing a repeating unit represented by formula (1) with a silicon alkoxide (JP-A-5-238827), and glycidol.
- polysilazane compound may be used alone, or two or more types may be used in any combination.
- perhydropolysilazane and organopolysilazane in which some of the hydrogen atoms bonded to Si atoms of perhydropolysilazane are substituted with organic groups such as alkyl groups may be used in combination.
- organic groups such as alkyl groups
- only perhydropolysilazane may be used as the polysilazane compound.
- An inorganic sealing layer formed using only perhydropolysilazane is particularly prone to cracking. In the present embodiment, even when such an inorganic sealing layer that is prone to cracking is formed, cracking can be suppressed by combining it with an organic sealing layer.
- a polysilazane compound can generally be a liquid or solid compound.
- a commercially available product may be used as such a polysilazane compound.
- a liquid composition usually contains a solvent.
- the solvent used for forming the intermediate layer may be referred to as a "second solvent" in order to distinguish it from the first solvent used for forming the organic intermediate layer.
- the second solvent is preferably a solvent containing dibutyl ether.
- the content of dibutyl ether in the second solvent is preferably 50% by weight or more, more preferably 70% by weight or more, and even more preferably 90% by weight or more.
- the dibutyl ether resistance of the organic sealing layer can be increased. Because you can.
- the second solvent a solvent that gives a residual film rate of the organic sealing layer of 90% or more in the dissolution test of the second solvent may be used.
- the step (b2-3) of selecting the second solvent in which the residual film rate of the organic sealing layer is 90% or more in the dissolution test for the second solvent is performed. may have.
- the second solvent for example, on a support substrate such as a silicon substrate, prepare a sample having an organic sealing layer formed thereon under the same conditions as in step (b1), irradiate vacuum ultraviolet rays, and Under the same conditions as the butyl ether dissolution test, the sample is immersed in the second solvent and dried, and the residual film ratio is calculated from the thickness of the organic sealing layer before and after immersion. can be selected as the second solvent.
- the irradiation conditions of vacuum ultraviolet rays are, for example, in an environment with a temperature of 23 to 25 ° C.
- VUV vacuum ultraviolet rays
- the second solvent examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons; halogenated hydrocarbon solvents; ether solvents such as aliphatic ether solvents and alicyclic ether solvents. ; Specific examples include hydrocarbon solvents such as pentane, hexane, cyclohexane, toluene, xylene, Solvesso and tarbene; halogenated hydrocarbon solvents such as methylene chloride and trichloroethane; ether solvents such as dibutyl ether, dioxane and tetrahydrofuran; mentioned.
- the second solvent may be used singly or in combination of two or more at any ratio.
- the amount of the second solvent in the liquid composition is preferably adjusted so that the concentration of the polysilazane compound in the liquid composition is within an appropriate range.
- the amount of the polysilazane compound is preferably 0.2% to 35% by weight with respect to 100% by weight of the total amount of the liquid composition.
- the liquid composition may contain optional components other than the polysilazane compound and the second solvent.
- the method of applying the liquid composition there are no particular restrictions on the method of applying the liquid composition.
- the same method as the coating method of the resin composition used for forming the organic intermediate layer may be used.
- an intermediate layer as a layer of the liquid composition can be formed under an atmospheric pressure environment.
- step (b2-1) may include drying the intermediate layer (b2-4). Drying may be performed at the same time as step (b2-2), but is preferably performed before step (b2-2). Drying can remove the second solvent from the intermediate layer.
- the oxygen concentration in the atmosphere is preferably 10% or less, more preferably 5% or less.
- the intermediate layer in an inert gas atmosphere.
- the inert gas include nitrogen, helium, neon, argon, etc. Among them, nitrogen is preferred.
- one type of inert gas may be used alone, or two or more types may be used in combination. If an inert gas is used, drying may be performed, for example, in a drying chamber into which the inert gas is supplied and exhausted. Moreover, you may heat in the case of drying.
- the step (b2) includes a step (b2-2) of irradiating the intermediate layer with ultraviolet rays after obtaining the intermediate layer in the step (b2-1).
- the polysilazane compound contained in the intermediate layer reacts to obtain an inorganic sealing layer containing silicon nitride.
- the ultraviolet light light with a wavelength of 1 nm to 380 nm can be used. Among them, it is preferable to use vacuum ultraviolet rays having a wavelength of 100 nm to 200 nm. By irradiating the vacuum ultraviolet rays, the modification reaction of the polysilazane compound can proceed in a short period of time, so that damage to the element portion and the organic sealing layer due to the ultraviolet rays can be suppressed.
- the vacuum ultraviolet light source is described in [2.1.2. Step (b1-2): Vacuum UV irradiation].
- the irradiation intensity of ultraviolet rays can be appropriately adjusted within a range in which a desired inorganic sealing layer can be obtained.
- the irradiation intensity is preferably 10 mW/cm 2 or more, more preferably 100 mW/cm 2 or more, and preferably 300 mW/cm 2 or less, more preferably 200 mW/cm 2 or less.
- step (b2-2) preferably includes one or more UV irradiations at a maximum irradiation intensity of 100 mW/cm 2 to 200 mW/cm 2 .
- the ultraviolet irradiation time can be adjusted appropriately within a range in which the desired inorganic sealing layer can be obtained.
- the irradiation time is preferably 0.1 seconds or longer, more preferably 0.5 seconds or longer, preferably 10 minutes or shorter, more preferably 3 minutes or shorter, and still more preferably 1 minute or shorter. is.
- the above-described ultraviolet irradiation be performed in an atmosphere with a low oxygen concentration.
- a specific oxygen concentration of the atmosphere is preferably 500 ppm or more, more preferably 1000 ppm or more, and preferably 10000 ppm or less, more preferably 5000 ppm or less.
- the unit "ppm" above is on a mass basis.
- This embodiment may have a step of forming a silicone sealing layer.
- a method of forming the silicone sealing layer for example, a method of forming a layer containing a polysilazane compound and then irradiating with ultraviolet rays can be mentioned.
- the irradiation conditions of ultraviolet rays for example, the above [2.2.2. Step (b2-2): Irradiating the Intermediate Layer with Ultraviolet Rays]] can be the same as the conditions for irradiating the intermediate layer with ultraviolet rays.
- the method for manufacturing a device structure according to the present embodiment includes a step of performing the steps (b1) and (b2) in this order in the step (b), the steps (b1) and (b2)
- the number of repetitions and the number of steps are not limited, and can be appropriately adjusted according to the desired layer structure of the sealing layer.
- the step (b) is a step (b3) of forming a first sealing layer, and the second sealing layer as the inorganic sealing layer provided on the first sealing layer forming a layer (b4); and forming a third sealing layer as the organic sealing layer provided on the second sealing layer (b5), wherein the steps (b4) and A step comprising performing the step (b5) alternately at least twice or more, wherein the step (b4) is the step (b2) and the step (b5) is the step (b1) mentioned.
- step (b1) and step (b2) may be performed the same number of times, and step (b1) may be performed more frequently than step (b2). may be greater, and step (b1) may be less than step (b2).
- an inorganic sealing layer may be formed to form a sealing layer having a two-layer structure.
- the device structure manufacturing method may include the step of forming any layer. Therefore, the method for manufacturing the device structure may include the step of forming any layer between the element section and the sealing layer. Moreover, the manufacturing method of the device structure may include the step of forming an arbitrary layer covering the sealing portion. To give a specific example, when the device structure is a display device including an organic electroluminescence element portion, the manufacturing method of the device structure is to form a circle on the sealing layer via an adhesive if necessary. A step of providing a polarizing plate layer may be included.
- both the step (b1) of forming the organic sealing layer 210 and the step (b2) of forming the inorganic sealing layer 220 can be performed under an atmospheric pressure environment. Therefore, since large and complicated manufacturing facilities are not required, the device structure 10 can be manufactured at low cost.
- the organic intermediate layer and the intermediate layer are formed by a coating method, the layers can be formed by a wet process, so deterioration of the element part due to particles such as plasma dust can be suppressed.
- the device structure was allowed to stand in a test environment with a temperature of 60° C. and a humidity of 90% RH. After 0 hour, 24.5 hours, 138 hours, 210 hours, and 284.5 hours, the light-emitting surface was observed with a microscope to observe the presence or absence of discolored portions. In addition, the shrinkage was measured after 0, 24.5, 138, 210, 284.5 and 500 hours. The shrinkage is a value obtained by measuring the length of the non-light-emitting portion after a predetermined time has elapsed from the end portion of the initial light-emitting portion.
- the block copolymer in the obtained solution (i) had a weight average molecular weight (Mw) of 44,900 and a molecular weight distribution (Mw/Mn) of 1.03 (gel permeation using tetrahydrofuran as a solvent). Measured in terms of polystyrene by chromatography (same below).
- the solution (i) is transferred to a pressure-resistant reactor equipped with a stirrer, and a silica-alumina-supported nickel catalyst (E22U, 60% nickel supported; manufactured by Nikki Chemical Industry Co., Ltd.) is used as a hydrogenation catalyst in the solution (i). ) and 350 parts of dehydrated cyclohexane were added and mixed.
- the inside of the reactor is replaced with hydrogen gas, hydrogen is supplied while stirring the solution, and a hydrogenation reaction is carried out at a temperature of 170° C. and a pressure of 4.5 MPa for 6 hours to hydrogenate the block copolymer and block A solution (iii) containing the copolymer hydride (ii) was obtained.
- the weight average molecular weight (Mw) of hydride (ii) in solution (iii) was 45,100 and the molecular weight distribution (Mw/Mn) was 1.04.
- the solution (iii) was filtered to remove the hydrogenation catalyst. Then, the filtered solution (iii) was added with a phosphorous antioxidant 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10- 0. Tetrakis-t-butyldibenzo[d,f][1.3.2]dioxaphosphepine ("Sumilizer (registered trademark) GP" manufactured by Sumitomo Chemical Co., Ltd.; hereinafter referred to as "antioxidant A”); 1.0 part of a xylene solution in which 1 part was dissolved was added and dissolved to obtain a solution (iv).
- a phosphorous antioxidant 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10- 0.
- Tetrakis-t-butyldibenzo[d,f][1.3.2]dioxaphosphepine
- the solution (iv) is filtered through a Zeta Plus (registered trademark) filter 30H (Cuno, pore size 0.5 ⁇ m to 1 ⁇ m), and another metal fiber filter (pore size 0.4 ⁇ m, Nichidai Co., Ltd.). to remove minute solids.
- a Zeta Plus (registered trademark) filter 30H Cross-linked polyethylene glycol
- another metal fiber filter pore size 0.4 ⁇ m, Nichidai Co., Ltd.
- the solid content is extruded in a molten state into strands, cooled, cut with a pelletizer, and pellets containing the block copolymer hydride and antioxidant A (v) 85 parts were obtained.
- the weight average molecular weight (Mw) of the hydrogenated block copolymer (hydrogenated block copolymer) in the obtained pellet (v) was 45,000, and the molecular weight distribution (Mw/Mn) was 1.08. .
- the hydrogenation rate measured by 1 H-NMR was 99.9%.
- [Production Example 2: Production of resin composition for forming organic sealing layer] (P2-1. Production of hygroscopic particle dispersion) 10 g of zeolite particles (refractive index 1.5) having a number average primary particle diameter of 50 nm, a dispersant having a basic adsorptive group (hydroxyl group-containing carboxylic acid ester, trade name “DISPERBYK108”, manufactured by BYK-Chemie) 4 g, and 46 g of cyclohexane were mixed and dispersed in a bead mill. A 17% zeolite dispersion 1 was prepared by this operation.
- All of the layers from the hole transport layer to the electron transport layer were made of organic materials.
- Materials for forming each layer from the transparent electrode layer to the reflective electrode layer were as follows. ⁇ Transparent electrode layer; tin-added indium oxide (ITO) - Hole transport layer; 4,4'-bis[N-(naphthyl)-N-phenylamino]biphenyl ( ⁇ -NPD) ⁇ Yellow light-emitting layer: ⁇ -NPD added with 1.5% by weight of rubrene ⁇ Electron transport layer; phenanthroline derivative (BCP) ⁇ Electron injection layer; lithium fluoride (LiF) ⁇ Reflective electrode layer; Al
- the transparent electrode layer was formed by a reactive sputtering method using an ITO target. Further, the formation of the hole transport layer to the reflective electrode layer is carried out by placing the base material on which the transparent electrode layer has already been formed in a vacuum vapor deposition apparatus, and sequentially applying the materials from the hole transport layer to the reflective electrode layer by resistance heating. It was carried out by vapor deposition.
- a multilayer product comprising a glass substrate; and an organic electroluminescence element portion comprising a transparent electrode layer, a hole transport layer, a yellow light emitting layer, an electron transport layer, an electron injection layer and a reflective electrode layer in this order; Obtained.
- Example 3 The liquid composition for the PDMS layer obtained in Production Example 3 was spin-coated so as to cover the organic electroluminescence element portion of the layered material produced in Production Example 5 (conditions: drop amount 1 mL, rotation speed 6000 rpm, 30 seconds) and dried, the PDMS layer was cured by irradiating UV (365 nm) at 12 mW/cm 2 for 200 seconds. The PDMS layer was then irradiated with VUV (172 nm) at 55 mW/cm 2 for 130 seconds under N 2 atmosphere. Through the above procedure, a PDMS layer (first sealing layer) having a thickness of about 170 nm was obtained.
- the liquid composition for the inorganic encapsulating layer of Production Example 4 was applied by a spin coating method (conditions: drop amount 1 mL, number of revolutions 6000 rpm, 30 seconds), dried, and then subjected to VUV ( 172 nm) at 55 mW/cm 2 for 220 seconds.
- VUV 172 nm
- an inorganic sealing layer (second sealing layer) having a thickness of 130 nm was obtained. This step corresponds to step (b2).
- the resin composition obtained in Production Example 2 was applied by a spin coating method (conditions: drop amount 1 mL, number of revolutions 6000 rpm, 60 seconds) and dried to form an organic intermediate layer.
- the organic interlayer was then irradiated with VUV (172 nm) at 55 mW/cm 2 for 220 seconds under N 2 atmosphere. After that, oxygen was introduced until the O 2 concentration in the system reached 5%, and VUV (172 nm) was irradiated at 55 mW/cm 2 for 220 seconds in a mixed atmosphere of N 2 and O 2 .
- An organic sealing layer (third sealing layer) having a thickness of 100 nm was obtained by the following procedure. This step corresponds to step (b1).
- step (b2) and step (b1) were repeated to produce a sealing layer having a seven-layer structure shown in FIG. A device structure was obtained by the above procedure.
- the resin composition obtained in Production Example 2 was applied onto a silicon substrate to form an organic sealing layer in the same manner as the third sealing layer, and then heated at 23° C. to 25° C. in an N 2 atmosphere. After irradiation with VUV (172 nm) at an illumination intensity of 30 mW/cm 2 for 3 minutes in an environment of 50% to 60% humidity and 50% to 60% humidity, a sample was obtained. After measuring the thickness T1 of the obtained sample organic sealing layer, it was immersed in dibutyl ether for 60 seconds and then air-dried. The thickness T2 of the organic sealing layer in the sample after air drying was measured. From the measured values of T1 and T2, the film retention rate of the organic sealing layer in the dissolution test in dibutyl ether was calculated to be 97%.
- a PDMS layer and an inorganic encapsulating layer were formed on the organic electroluminescence element portion of the layered material in the same manner as in Examples.
- a third PDMS layer was formed on the second inorganic sealing layer.
- two layers of the inorganic sealing layer and the PDMS layer are alternately laminated to form a sealing having a seven-layer structure.
- a layer was made.
- a device structure was obtained by the above procedure.
- FIG. 7 shows a photograph of the light-emitting surface in the sealing performance evaluation under a high-temperature and high-humidity environment
- FIG. 8 shows a graph showing numerical changes in shrinkage over time.
- FIGS. 7 and 8 in the example including the organic sealing layer and the inorganic sealing layer according to the present embodiment, no discoloration was observed on the light emitting surface even after 284.5 hours had passed, and the shrinkage was improved. It was confirmed that there was little change and good sealing performance was exhibited.
- the comparative example it was confirmed that the discoloration point gradually increased after 138 hours, and the shrinkage also increased.
- the resin composition obtained in Production Example 2 was applied onto a silicon substrate and heated at 100° C. for 1 minute to form an organic layer having a thickness of 120 nm.
- the organic layer was irradiated with VUV (172 nm) at an illuminance of 30 mW/cm 2 , and the FT - IR spectrum before and after irradiation was measured. was confirmed. Further, the irradiation time was adjusted, and the peak intensity before VUV irradiation was defined as I1, and the peak intensity after irradiation was defined as I2.
- the peak at 2925 cm ⁇ 1 is a peak derived from C—H stretching vibration.
- REFERENCE SIGNS LIST 10 device structure 100 multilayer material 110 base material 120 element portion 121 first electrode layer 122 light emitting layer 123 second electrode layer 200 sealing layer 201 first sealing layer 202 second sealing layer 203 third sealing layer 210 Organic sealing layer 220 Inorganic sealing layer 230 Silicone sealing layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
- Laminated Bodies (AREA)
Abstract
Description
[2] 前記封止層が、前記素子部上に設けられた第一封止層と、前記第一封止層上に設けられた、2層以上の第二封止層及び2層以上の第三封止層とを含み、前記第二封止層及び前記第三封止層が交互に積層された構造を有し、前記第二封止層が、前記無機封止層であり、前記第三封止層が前記有機封止層である、[1]に記載のデバイス構造体。
[3] 前記第一封止層が、前記有機封止層、またはシリコーンを含むシリコーン封止層である、[1]または[2]に記載のデバイス構造体。
[4] 前記熱可塑性エラストマーが、水素化芳香族ビニル化合物-共役ジエンブロック共重合体、及び、水素化芳香族ビニル化合物-共役ジエンブロック共重合体のケイ素原子含有極性基による変性物、からなる群より選ばれる1種類以上である、[1]~[3]のいずれか一項に記載のデバイス構造体。
[5] 前記水素化芳香族ビニル化合物-共役ジエンブロック共重合体が、非芳香族性の炭素-炭素不飽和結合及び芳香族性の炭素-炭素不飽和結合の両方を水素化した構造を有する、[4]に記載のデバイス構造体。
[6] 前記第有機封止層が、水分吸着剤及び紫外線吸収剤からなる群より選ばれる1種類以上を含む、[1]~[5]までのいずれか一項に記載のデバイス構造体。
[7] 前記封止層に含まれる各構成層の厚みが、300nm以下である、[1]~[6]のいずれか一項に記載のデバイス構造体。
[8] 前記素子部が、有機エレクトロルミネッセンス素子部である、[1]~[7]のいずれか一項に記載のデバイス構造体。
[9] 基材、及び、前記基材上に設けられた素子部を備える複層物を用意する工程(a)と、前記素子部を封止する封止層を形成する工程(b)と、を含む、デバイス構造体の製造方法であって、前記封止層を形成する工程(b)が、有機封止層を形成する工程(b1)と、工程(b1)後に無機封止層を形成する工程(b2)とを含み、前記工程(b1)が、熱可塑性エラストマーを含む有機中間層を形成する工程(b1-1)と、前記有機中間層に対し真空紫外線を照射して、前記有機封止層を得る工程(b1-2)と、を含み、前記工程(b2)が、ポリシラザン化合物及び溶媒を含む液状組成物を用いて中間体層を形成する工程(b2-1)と、前記中間体層に紫外線を照射して、窒化ケイ素を含む無機封止層を得る工程(b2-2)と、を含む、デバイス構造体の製造方法。
[10] 前記工程(b)の前記液状組成物が前記溶媒としてジブチルエーテルを含む、[9]に記載のデバイス構造体の製造方法。
[11] 前記工程(b1-2)が、前記有機中間層に対し、不活性ガス雰囲気下で真空紫外線を照射する工程(b1-2-1)と、前記工程(b1-2-1)後の前記有機中間層に対し、不活性ガス及び酸素の混合雰囲気下で真空紫外線を照射する工程(b1-2-2)と、を含む、[9]または[10]に記載のデバイス構造体の製造方法。
[12] 前記工程(b)が、第一封止層を形成する工程(b3)、前記第一封止層上に設けられる前記無機封止層としての第二封止層を形成する工程(b4)、及び前記第二封止層上に設けられる前記有機封止層としての第三封止層を形成する工程(b5)とを有し、前記工程(b4)及び前記工程(b5)を少なくとも2回以上交互に行う工程を含み、前記工程(b4)が、前記工程(b2)であり、前記工程(b5)が、前記工程(b1)である、[9]~[11]のいずれか一項に記載のデバイス構造体の製造方法。
[13] 前記工程(b3)が、前記工程(b1)であり、前記有機封止層としての前記第一封止層を形成する工程である、[12]に記載のデバイス構造体の製造方法。
本発明の一実施形態に係るデバイス構造体は、基材、及び、前記基材上に設けられた素子部を備える複層物と、前記素子部を封止する封止層と、を含む、デバイス構造体であって、前記封止層が、前記素子部に対し、有機封止層及び無機封止層がこの順で積層された構造を有し、前記無機封止層が、窒化ケイ素を含み、前記有機封止層が、熱可塑性エラストマーを含み、かつ、ジブチルエーテルに対する溶解試験における、前記有機封止層の残膜率が90%以上である。
被層物10は、基材と、基材上に形成された素子部とを含む。
基材110としては、デバイス構造体を構成しうるものを適宜採用しうる。基材110の例としては、ガラス板、樹脂製の板、及び樹脂製のフィルムが挙げられる。基材は、1の層のみを備えていてもよく、複数の層を備えていてもよい。例えば、樹脂のフィルムと、その表面に設けられたバリア層とを含む基材110を用いてもよい。
封止層200は、素子部120に対し、有機封止層210及び無機封止層220がこの順で積層された構造を有する。封止層200は素子部120の少なくとも一部を封止するように設けられる層であり、好ましくは、素子部120の全部または大部分を封止するように設けられる。本実施形態においては、素子部の基材110の面に接していない部分の全体を封止するように封止部が形成される例を示して説明する。
封止層において、有機封止層と無機封止層とは、通常、有機封止層と無機封止層との間に他の層を介さずに直接積層される。封止層が、2層以上の有機封止層と2層以上の無機封止層とが交互に積層された多層構造である場合は、多層構造中に、1層の有機封止層及び1層の無機封止層が直接積層された構造を少なくとも含む。本実施形態においては、多層構造に含まれる有機封止層及び無機封止層が、それぞれ直接積層されていることが好ましい。
有機封止層は、熱可塑性エラストマーを含む層である。また、有機封止層は、ジブチルエーテルに対する溶解試験における、残膜率が90%以上である。
(熱可塑性エラストマー)
熱可塑性エラストマーとは、常温ではゴムの特性を示し、高温では可塑化されて成形加工が可能となる材料をいう。このような熱可塑性エラストマーは、小さい力の負荷では伸びも破断も生じにくい特性を有する。具体的には、熱可塑性エラストマーは、23℃において、ヤング率0.001~1GPa、及び引張伸び(破断伸度)100~1000%の値を示しうる。熱可塑性エラストマーはまた、40℃以上200℃以下の高い温度範囲において、貯蔵弾性率が急激に低下して損失正接tanδ(損失弾性率/貯蔵弾性率)がピークを持つか、1を超える値を示し、軟化しうる。ヤング率及び引張伸びは、JIS K7113に則り測定しうる。また、損失正接tanδは市販の動的粘弾性測定装置により測定しうる。
有機封止層は、熱可塑性エラストマーに加えて、任意の成分をさらに含んでいてもよい。任意の成分としては、例えば、吸湿性粒子及び紫外線吸収剤を挙げることができる。
重量変化率(%)=((W2-W1)/W1)×100 (K1)
有機封止層の厚みは、好ましくは、好ましくは1nm以上、より好ましくは10nm以上であり、さらに好ましくは80nm以上であり、好ましくは300nm以下、より好ましくは200μm以下、特に好ましくは150μm以下である。有機封止層の厚みが前記下限値以上である場合、水分の浸入を効率的に抑制できる。また、有機封止層の厚みが前記上限値以下である場合、デバイス構造体の厚みの低減が可能である。ここでの有機封止層の厚みとは、有機封止層の1層当たりの厚みをいう。
無機封止層は、窒化ケイ素を含む層である。無機封止層は、窒化ケイ素以外にも、例えば、酸化ケイ素、及び酸窒化ケイ素を含んでいてもよい。
本実施形態に係る封止層は、前記の有機封止層及び無機封止層以外に、例えば、シリコーン封止層を有していてもよい。シリコーン封止層は、例えば、主骨格が結合エネルギーの高いSi-O結合からなるシロキサンを有する化合物を含み、より具体的には、オルガノポリシロキサンを含む。オルガノポリシロキサンとしては、例えば、ジメチルポリシロキサンが挙げられる。また、シリコーン封止層はシリコーンゴム(シリコーンエラストマー)であることが好ましい。シリコーン封止層の厚みは、好ましくは、1nm以上、より好ましくは10nm以上、さらに好ましくは80nm以上であり、好ましくは300nm以下、より好ましくは200nm以下である。
封止層全体の厚みは、デバイス構造体の封止層として所望の封止性能を発揮しうる範囲で適宜調整される。封止層全体の厚みは、好ましくは0.7μm以上、より好ましくは1μm以上、好ましくは10μm以下、より好ましくは5μm以下である。本実施形態に係る封止層は、前記の有機封止層及び無機封止層が積層された構造を有することにより、薄い厚みで良好な封止性能を発揮することができる。
上述した実施形態のように素子部120として有機エレクトロルミネッセンス素子部を備えるデバイス構造体10は、例えば、表示装置、照明装置等の装置として用いうる。しかし、デバイス構造体は、これらの装置に限定されない。デバイス構造体には、素子部を備える広範な装置、及び、その装置の一部を構成する組立体が含まれうる。中でも、上述したデバイス構造体の封止層は、透明性に優れるので、デバイス構造体としては、各種の光学デバイス、および光学デバイスの一部を構成する組立体が好ましい。光学デバイスの例としては、液晶表示装置、タッチパネル、並びに表示装置及び光源装置としての有機エレクトロルミネッセンス装置が挙げられる。特に、フレキシブルという有機エレクトロルミネッセンス素子部の優れた特性を活用して、デバイス構造体は、フレキシブルな光学デバイスとして用いることが好ましい。
本発明の一実施形態に係るデバイス構造体の製造方法は、基材、及び、前記基材上に設けられた素子部を備える複層物を用意する工程(a)と、前記素子部を封止する封止層を形成する工程(b)と、を含む、デバイス構造体の製造方法であって、前記封止層を形成する工程(b)が、有機封止層を形成する工程(b1)と、工程(b1)後に無機封止層を形成する工程(b2)とを含み、前記工程(b1)が、熱可塑性エラストマーを含む有機中間層を形成する工程(b1-1)と、前記有機中間層に対し真空紫外線を照射して、前記有機封止層を得る工程(b1-2)と、を含み、前記工程(b2)が、ポリシラザン化合物及び溶媒を含む液状組成物を用いて中間体層を形成する工程(b2-1)と、前記中間体層に紫外線を照射して、窒化ケイ素を含む無機封止層を得る工程(b2-2)と、を含む。
工程(a)は、被層物を用意する工程である。被層物は自ら製造することにより用意してもよく、他者から購入することにより用意してもよい。被層物については、上述した[I.デバイス構造体 1.被層物]の項目で説明した内容と同様とする。
封止層を形成する工程(b)は、有機封止層を形成する工程(b1)と、工程(b1)後に、無機封止層を形成する工程(b2)とを含む。工程(b)においては、少なくとも工程(b1)及び工程(b2)をこの順で行う工程を含む。封止層は、2層以上の有機封止層及び2層以上の無機封止層を交互に積層させた構造を有することが好ましいことから、工程(b1)及び工程(b2)は2回以上繰り返されることが好ましい。この場合、工程(b1)及び工程(b2)がこの順で繰り返されてもよく、工程(b2)及び工程(b1)がこの順で繰り返されてもよい。
有機封止層を形成する工程は、熱可塑性エラストマーを含む有機中間層を形成する工程(b1-1)と、前記有機中間層に対し真空紫外線を照射して、前記有機封止層を得る工程(b1-2)と、を含む。
工程(b1-1)は、熱可塑性エラストマーを含む有機中間層を形成する工程である。有機中間層は、熱可塑性エラストマーを含む樹脂組成物の層であり、真空紫外線を照射される前段階で得られる層である。
工程(b1-2)は、前記有機中間層に対し真空紫外線を照射して、前記有機封止層を得る工程である。工程(b1-2)を行うことにより、有機封止層のジブチルエーテル耐性を向上させることができる。
無機封止層を形成する工程(b2)は、ポリシラザン化合物及び溶媒を含む液状組成物を用いて中間体層を形成する工程(b2-1)と、前記中間体層に紫外線を照射して、窒化ケイ素を含む無機封止層を得る工程(b2-2)と、を含む。無機封止層は、有機封止層上に形成されることから、素子部を間接的に封止できる。封止層が2層以上の無機封止層を有する場合、例えば、素子部上に直接無機封止層を形成してもよい。
工程(b2)は、ポリシラザン化合物及び溶媒を含む液状組成物を用いて中間体層を形成する工程(b2-1)を含む。中間体層はポリシラザン化合物を含む層である。
工程(b2)は、工程(b2-1)で中間体層を得た後で、その中間体層に紫外線を照射する工程(b2-2)を含む。中間体層に紫外線が照射されることで、中間体層に含まれるポリシラザン化合物が反応して、窒化ケイ素を含む無機封止層が得られる。
本実施形態においては、シリコーン封止層を形成する工程を有していてもよい。シリコーン封止層の形成方法としては、例えば、ポリシラザン化合物を含む層を形成した後、紫外線を照射する方法を挙げることができる。紫外線の照射条件については、例えば、前記の[2.2.2.工程(b2-2):中間体層への紫外線の照射]で説明した中間体層への紫外線の照射条件と同様とすることができる。
本実施形態に係るデバイス構造体の製造方法は、工程(b)において、工程(b1)及び工程(b2)をこの順で行う工程を有していれば、工程(b1)及び工程(b2)の繰り返し回数及び工程数については限定されず、所望の封止層の層構造に合わせて適宜調整しうる。
〔樹脂のヤング率、引張伸び及びtanδ〕
樹脂の23℃におけるヤング率及び引張伸びは、JIS K7113に則り測定した。40℃以上200℃以下における樹脂の損失正接tanδ(損失弾性率/貯蔵弾性率)は、フィルム状にしてから幅10mm×長さ20mmの試験片を切り出し日立ハイテクサイエンス社製の動的粘弾性測定装置DMS6100を用い測定した。
前記のデバイス構造体を、温度60℃、湿度90%RHの試験環境で静置した。0時間後、24.5時間後、138時間後、210時間後、284.5時間後に、顕微鏡にて発光面を観察し変色部の有無を観察した。また、0時間後、24.5時間後、138時間後、210時間後、284.5時間後、及び500時間後のシュリンケージを測定した。シュリンケージとは、初期発光部の端部から、所定時間経過後の非発光部の長さを測定した値である。
(P1-1.水素化ブロック共重合体の製造)
芳香族ビニル化合物としてスチレンを用い、鎖状共役ジエン化合物としてイソプレンを用いて、重合体ブロック[B]の両端に重合体ブロック[A]が結合したトリブロック構造を有する、ブロック共重合体の水素化物(水素化ブロック共重合体)を、以下の手順により製造した。
その後、更に、脱水スチレンを25.0部加え、同温度で60分攪拌した。この時点での重合転化率はほぼ100%であった。
次いで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させて、ブロック共重合体を含む溶液(i)を得た。
得られた溶液(i)中のブロック共重合体の重量平均分子量(Mw)は44,900、分子量分布(Mw/Mn)は1.03であった(テトラヒドロフランを溶媒としたゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算の値で測定。以下同じ)。
前記の工程(P1-1)で得られたペレット(v)100部に対して、ビニルトリメトキシシラン2.0部及びジ-t-ブチルパーオキサイド0.2部を添加し、混合物を得た。この混合物を、二軸押出し機を用いて、バレル温度210℃、滞留時間80秒~90秒で混練した。混練された混合物を押し出し、ペレタイザーでカットして、水素化ブロック共重合体のシラン変性物のペレット(vi)を得た。このペレット(vi)からフィルム状の試験片を作製し、ガラス転移温度Tgを動的粘弾性測定装置のtanδピークで評価したところ、124℃であった。またこのペレット(vi)の40℃以上200℃以下におけるtanδのピーク値は1.3であった。このペレット(vi)の、23℃におけるヤング率は0.5GPaであり、引張伸びは550%であった。また、このペレット(vi)のアッベ屈折計により測定した屈折率(n1)は1.50であった。
(P2-1.吸湿性粒子分散液の製造)
一次粒子の数平均粒子径50nmのゼオライト粒子(屈折率1.5)10g、塩基性吸着基をもつ分散剤(水酸基含有カルボン酸エステル、商品名「DISPERBYK108」、ビックケミー社製)4g、及びシクロヘキサン46gを、ビーズミルにて混合し、分散させた。この操作により、17%のゼオライト分散液1を調製した。
製造例1で得たペレット(vi)28g及び可塑剤(脂肪族炭化水素重合体を含む可塑剤、製品名「日石ポリブテンLV-100」、新日本石油株式会社製、屈折率1.50、数平均分子量500)12gを、シクロヘキサン60gに混合し、溶解させた。この操作により、固形分40%の重合体溶液1を調製した。
前記の工程(P2-1)で得たゼオライト分散液1を60g、及び、前記の工程(P2-2)で得た重合体溶液1を100g、混合して、樹脂組成物としての樹脂溶液1を得た。得られた樹脂溶液1の粘度を測定した。粘度の測定には、エー・アンド・デイ社製の音叉型振動式粘度計「SV-10」を用いた。測定は、サンプル容器の基準線の間に樹脂溶液1の液面がくるように容器を満たし、振動子を規定の位置まで樹脂溶液中に入れて行った。また、この測定は、25℃±2℃の環境下で行った。その結果、樹脂溶液1の粘度は400cPであった。
信越化学製のX-34-4184-A、X-34-4184-B、及びD5 KF-995を重量比でX-34-4184-A:X-34-4184-B:D5 KF-995=1:1:16となるように混合した溶液を混合し、PDMS層用の液状組成物を調製した。
信越化学社製のPHPS X-45-850(20wt%ジブチルエーテル溶液)及びジブチルエーテル(DBE)を重量比でPHPS X-45-850:DBE=1:1となるように混合し、液状組成物を準備した。
縦40mm×横40mmのガラス基材を用意した。ガラス基材上に、厚み100nmの透明電極層、厚み10nmのホール輸送層、厚み20nmの黄色発光層、厚み15nmの電子輸送層、厚み1nmの電子注入層、及び厚み100nmの反射電極層を、この順に形成した。
・透明電極層;錫添加酸化インジウム(ITO)
・ホール輸送層;4,4’-ビス[N-(ナフチル)-N-フェニルアミノ]ビフェニル(α-NPD)
・黄色発光層;ルブレン1.5重量%添加 α-NPD
・電子輸送層;フェナンスロリン誘導体(BCP)
・電子注入層;フッ化リチウム(LiF)
・反射電極層;Al
また、ホール輸送層から反射電極層までの形成は、透明電極層を既に形成した基材を真空蒸着装置内に設置し、上記のホール輸送層から反射電極層までの材料を抵抗加熱式により順次蒸着させることにより行なった。
製造例5で作製した被層物の有機エレクトロルミネッセンス素子部を覆うように、製造例3で得られたPDMS層用の液状組成物をスピンコート法(条件:滴下量1mL、回転数6000rpm、30秒)によって塗工して乾燥させた後、UV(365nm)を12mW/cm2で200秒照射してPDMS層を硬化させた。その後、PDMS層に対し、N2雰囲気下で、VUV(172nm)を55mW/cm2で130秒照射した。以上の手順により、厚みが約170nmのPDMS層(第一封止層)を得た。
実施例と同様に、被層物の有機エレクトロルミネッセンス素子部上にPDMS層及び無機封止層を作製した。次に、第1層目のPDMS層と同様の手順を繰り返すことにより、第2層目の無機封止層上に、3層目のPDMS層を形成した。その後、第2層目の無機封止層及び第1層目のPDMS層と同様の手順により、さらに2層ずつ無機封止層及びPDMS層を交互に積層させて、7層構造を有する封止層を作製した。以上の手順によりデバイス構造体を得た。
高温高湿環境下における封止性能評価における発光面の写真を図7に示し、時間経過に対するシュリンケージの数値変化を表すグラフを図8に示す。図7及び8に示すように、本実施形態に係る有機封止層及び無機封止層を含む実施例は、284.5時間経過した後も発光面に変色部が確認されず、シュリンケージの変化も少なく、良好な封止性能を示すことが確認された。一方、比較例においては、138時間経過後から徐々に変色点の増加が確認され、シュリンケージも大きくなることが確認された。
製造例2で得られた樹脂組成物をシリコン基板上に塗布し、100℃で1分間加熱して厚み120nmの有機層を形成した。窒素雰囲気下において、VUV(172nm)を照度30mW/cm2で有機層に照射し、照射前後におけるFT-IRスペクトルを測定したところ、2925cm-1にあるピーク強度が、VUVの照射前後で減少することが確認された。また、照射時間を調整し、VUV照射前のピーク強度をI1とし、照射後のピーク強度をI2としたときの、I1に対するI2の割合と、ジブチルエーテル溶解試験における残膜率との相関関係を調べたところ、I2/I1が50%以下である有機層は、残膜率が90%以上となることが確認された。FT―IRスペクトルにおいて、2925cm-1にあるピークは、C-H伸縮振動由来のピークである。
・照射時間1分間、残膜率80%
・照射時間3分間、残膜率97%
・照射時間5分間、残膜率100%
100 複層物
110 基材
120 素子部
121 第一電極層
122 発光層
123 第二電極層
200 封止層
201 第一封止層
202 第二封止層
203 第三封止層
210 有機封止層
220 無機封止層
230 シリコーン封止層
Claims (13)
- 基材、及び、前記基材上に設けられた素子部を備える複層物と、前記素子部を封止する封止層と、を含む、デバイス構造体であって、
前記封止層が、前記素子部に対し、有機封止層及び無機封止層がこの順で積層された構造を有し、
前記無機封止層が、窒化ケイ素を含み、
前記有機封止層が、熱可塑性エラストマーを含み、かつ、
ジブチルエーテルに対する溶解試験における、前記有機封止層の残膜率が90%以上である、デバイス構造体。 - 前記封止層が、前記素子部上に設けられた第一封止層と、前記第一封止層上に設けられた、2層以上の第二封止層及び2層以上の第三封止層とを含み、前記第二封止層及び前記第三封止層が交互に積層された構造を有し、
前記第二封止層が、前記無機封止層であり、前記第三封止層が前記有機封止層である、請求項1に記載のデバイス構造体。 - 前記第一封止層が、前記有機封止層、またはシリコーンを含むシリコーン封止層である、請求項1または2に記載のデバイス構造体。
- 前記熱可塑性エラストマーが、水素化芳香族ビニル化合物-共役ジエンブロック共重合体、及び、水素化芳香族ビニル化合物-共役ジエンブロック共重合体のケイ素原子含有極性基による変性物、からなる群より選ばれる1種類以上である、請求項1または2に記載のデバイス構造体。
- 前記水素化芳香族ビニル化合物-共役ジエンブロック共重合体が、非芳香族性の炭素-炭素不飽和結合及び芳香族性の炭素-炭素不飽和結合の両方を水素化した構造を有する、請求項4に記載のデバイス構造体。
- 前記第有機封止層が、水分吸着剤及び紫外線吸収剤からなる群より選ばれる1種類以上を含む、請求項1または2に記載のデバイス構造体。
- 前記封止層に含まれる各構成層の厚みが、300nm以下である、請求項1または2に記載のデバイス構造体。
- 前記素子部が、有機エレクトロルミネッセンス素子部である、請求項1または2に記載のデバイス構造体。
- 基材、及び、前記基材上に設けられた素子部を備える複層物を用意する工程(a)と、
前記素子部を封止する封止層を形成する工程(b)と、を含む、デバイス構造体の製造方法であって、
前記封止層を形成する工程(b)が、有機封止層を形成する工程(b1)と、工程(b1)後に無機封止層を形成する工程(b2)とを含み、
前記工程(b1)が、熱可塑性エラストマーを含む有機中間層を形成する工程(b1-1)と、前記有機中間層に対し真空紫外線を照射して、前記有機封止層を得る工程(b1-2)と、を含み、
前記工程(b2)が、ポリシラザン化合物及び溶媒を含む液状組成物を用いて中間体層を形成する工程(b2-1)と、前記中間体層に紫外線を照射して、窒化ケイ素を含む無機封止層を得る工程(b2-2)と、を含む、デバイス構造体の製造方法。 - 前記工程(b)の前記液状組成物が前記溶媒としてジブチルエーテルを含む、請求項9に記載のデバイス構造体の製造方法。
- 前記工程(b1-2)が、前記有機中間層に対し、不活性ガス雰囲気下で真空紫外線を照射する工程(b1-2-1)と、前記工程(b1-2-1)後の前記有機中間層に対し、不活性ガス及び酸素の混合雰囲気下で真空紫外線を照射する工程(b1-2-2)と、を含む、請求項9または10に記載のデバイス構造体の製造方法。
- 前記工程(b)が、第一封止層を形成する工程(b3)、前記第一封止層上に設けられる前記無機封止層としての第二封止層を形成する工程(b4)、及び前記第二封止層上に設けられる前記有機封止層としての第三封止層を形成する工程(b5)とを有し、前記工程(b4)及び前記工程(b5)を少なくとも2回以上交互に行う工程を含み、
前記工程(b4)が、前記工程(b2)であり、
前記工程(b5)が、前記工程(b1)である、請求項9または10に記載のデバイス構造体の製造方法。 - 前記工程(b3)が、前記工程(b1)であり、前記有機封止層としての前記第一封止層を形成する工程である、請求項12に記載のデバイス構造体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237043501A KR20240040680A (ko) | 2021-07-30 | 2022-07-15 | 디바이스 구조체 및 그 제조 방법 |
CN202280043025.2A CN117501807A (zh) | 2021-07-30 | 2022-07-15 | 器件结构体及其制造方法 |
JP2023538442A JPWO2023008234A1 (ja) | 2021-07-30 | 2022-07-15 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-126209 | 2021-07-30 | ||
JP2021126209 | 2021-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008234A1 true WO2023008234A1 (ja) | 2023-02-02 |
Family
ID=85087609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027878 WO2023008234A1 (ja) | 2021-07-30 | 2022-07-15 | デバイス構造体及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2023008234A1 (ja) |
KR (1) | KR20240040680A (ja) |
CN (1) | CN117501807A (ja) |
TW (1) | TW202313347A (ja) |
WO (1) | WO2023008234A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094052A1 (ja) * | 2011-12-22 | 2013-06-27 | 三洋電機株式会社 | 太陽電池及び太陽電池モジュール |
JP2015083658A (ja) * | 2013-09-19 | 2015-04-30 | 日本合成化学工業株式会社 | 活性エネルギー線硬化性樹脂組成物及びコーティング剤組成物 |
WO2018150924A1 (ja) * | 2017-02-20 | 2018-08-23 | コニカミノルタ株式会社 | 電子デバイス |
WO2019220896A1 (ja) * | 2018-05-18 | 2019-11-21 | 日本ゼオン株式会社 | 印刷用樹脂溶液及びデバイス構造体の製造方法 |
WO2019230682A1 (ja) * | 2018-05-31 | 2019-12-05 | コニカミノルタ株式会社 | 電子デバイス及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015202620A (ja) | 2014-04-14 | 2015-11-16 | コニカミノルタ株式会社 | ガスバリア性フィルムの製造方法および電子デバイスの製造方法 |
JP6834613B2 (ja) | 2017-03-08 | 2021-02-24 | Jsr株式会社 | 有機el表示装置及びその製造方法 |
-
2022
- 2022-07-15 WO PCT/JP2022/027878 patent/WO2023008234A1/ja active Application Filing
- 2022-07-15 KR KR1020237043501A patent/KR20240040680A/ko unknown
- 2022-07-15 CN CN202280043025.2A patent/CN117501807A/zh active Pending
- 2022-07-15 JP JP2023538442A patent/JPWO2023008234A1/ja active Pending
- 2022-07-20 TW TW111127263A patent/TW202313347A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094052A1 (ja) * | 2011-12-22 | 2013-06-27 | 三洋電機株式会社 | 太陽電池及び太陽電池モジュール |
JP2015083658A (ja) * | 2013-09-19 | 2015-04-30 | 日本合成化学工業株式会社 | 活性エネルギー線硬化性樹脂組成物及びコーティング剤組成物 |
WO2018150924A1 (ja) * | 2017-02-20 | 2018-08-23 | コニカミノルタ株式会社 | 電子デバイス |
WO2019220896A1 (ja) * | 2018-05-18 | 2019-11-21 | 日本ゼオン株式会社 | 印刷用樹脂溶液及びデバイス構造体の製造方法 |
WO2019230682A1 (ja) * | 2018-05-31 | 2019-12-05 | コニカミノルタ株式会社 | 電子デバイス及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
SUN LINA, UEMURA KAHO, TAKAHASHI TATSUHIRO, YOSHIDA TSUKASA, SUZURI YOSHIYUKI: "Interfacial Engineering in Solution Processing of Silicon-Based Hybrid Multilayer for High Performance Thin Film Encapsulation", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 46, 20 November 2019 (2019-11-20), US , pages 43425 - 43432, XP055924436, ISSN: 1944-8244, DOI: 10.1021/acsami.9b14994 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023008234A1 (ja) | 2023-02-02 |
TW202313347A (zh) | 2023-04-01 |
CN117501807A (zh) | 2024-02-02 |
KR20240040680A (ko) | 2024-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102186129B1 (ko) | 광학적으로 투명한 핫 멜트 접착제 및 그의 용도 | |
CN105830533B (zh) | 密封膜、有机场致发光显示装置及有机半导体器件 | |
JP7020472B2 (ja) | 電子デバイス用樹脂フィルム及び電子デバイス | |
CN108521767A (zh) | 复合层叠体、以及树脂层的保管方法 | |
KR102641397B1 (ko) | 수지 조성물, 수지 필름 및 유기 일렉트로루미네센스 장치 | |
TW201114814A (ja) | ||
WO2018021031A1 (ja) | 熱可塑性エラストマー積層体及び有機エレクトロルミネッセンス装置 | |
JPWO2017159787A1 (ja) | プライマー層形成用硬化性組成物、ガスバリア性積層フィルムおよびガスバリア性積層体 | |
CN111602467B (zh) | 树脂膜和有机电致发光装置 | |
WO2015166657A1 (ja) | シール材及びその硬化物 | |
WO2023008234A1 (ja) | デバイス構造体及びその製造方法 | |
JP7375585B2 (ja) | デバイス構造体の製造方法 | |
WO2019220896A1 (ja) | 印刷用樹脂溶液及びデバイス構造体の製造方法 | |
JP7144864B2 (ja) | 有機薄膜を形成するための組成物および技術 | |
JP7056187B2 (ja) | 吸湿性樹脂フィルムの製造方法 | |
JP2019133852A (ja) | 電子デバイス用材料及び有機エレクトロルミネッセンス装置 | |
JP2022006733A (ja) | 積層フィルム及び電子デバイスの製造方法 | |
JP2020066161A (ja) | 接合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849297 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023538442 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280043025.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849297 Country of ref document: EP Kind code of ref document: A1 |