WO2013094052A1 - 太陽電池及び太陽電池モジュール - Google Patents

太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
WO2013094052A1
WO2013094052A1 PCT/JP2011/079802 JP2011079802W WO2013094052A1 WO 2013094052 A1 WO2013094052 A1 WO 2013094052A1 JP 2011079802 W JP2011079802 W JP 2011079802W WO 2013094052 A1 WO2013094052 A1 WO 2013094052A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
rubber
electrode
bus bar
resin
Prior art date
Application number
PCT/JP2011/079802
Other languages
English (en)
French (fr)
Inventor
幸弘 吉嶺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013550026A priority Critical patent/JP5938695B2/ja
Priority to PCT/JP2011/079802 priority patent/WO2013094052A1/ja
Publication of WO2013094052A1 publication Critical patent/WO2013094052A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a solar cell module.
  • the solar cell includes an electrode on the main surface of the photoelectric conversion unit in order to collect carriers generated by light reception.
  • Such electrodes typically include fingers that collect carriers from a wide range of photoelectric conversion units, and bus bars that are connected to the fingers and collect carriers from the fingers.
  • Patent Document 1 discloses a solar cell including a finger formed using a sintered conductive material and a bus bar formed using a thermosetting conductive material.
  • a solar cell includes a photoelectric conversion unit and an electrode provided on a main surface of the photoelectric conversion unit, and the electrode includes a bus bar including a binder resin and a conductive filler.
  • the bus bar has a Young's modulus (25 ° C.) of 0.05 to 1 GPa.
  • a solar cell having good photoelectric conversion characteristics can be provided.
  • FIG. 4 is a diagram illustrating a state in which a wiring member is attached to a bus bar in an enlarged view of a portion B in FIG. It is a figure which shows the modification of the solar cell which is an example of embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing a part of the solar cell module 10.
  • the solar cell module 10 includes a plurality of solar cells 11, a first protective member 12 disposed on the light receiving surface side of the solar cell 11, and a second protective member 13 disposed on the back surface side of the solar cell 11.
  • the plurality of solar cells 11 are sandwiched between the first protective member 12 and the second protective member 13 and sealed in a layer of a filler 14 made of a resin such as ethylene vinyl acetate copolymer (EVA).
  • EVA ethylene vinyl acetate copolymer
  • the solar cell module 10 further includes a wiring member 15 that electrically connects the solar cells 11. Moreover, the solar cell module 10 is normally provided with the transition wiring material which connects the wiring materials 15 mutually, a flame
  • the “light-receiving surface” means a main surface on which light mainly enters from the outside of the solar cell 11. For example, more than 50% to 100% of light incident on the photoelectric conversion element 11 enters from the light receiving surface side.
  • the “back surface” means a surface opposite to the light receiving surface. In other words, of the main surfaces, the one with the electrode area described later is the back surface.
  • the solar cell 11 includes a photoelectric conversion unit 20 that generates carriers by receiving light such as sunlight, a first electrode 30 that is a light-receiving surface electrode provided on the light-receiving surface of the photoelectric conversion unit 20, and photoelectric conversion. And a second electrode 40 that is a back surface electrode provided on the back surface of the unit 20.
  • carriers generated by the photoelectric conversion unit 20 are collected by the first electrode 30 and the second electrode 40, and are output to the outside via the wiring member 15. Note that, on the back surface of the solar cell 11, the influence of the light-shielding loss on the photoelectric conversion characteristics is less than that of the light-receiving surface.
  • the first protective member 12 for example, a light-transmitting member such as a glass substrate, a resin substrate, or a resin film can be used, but a glass substrate is preferable from the viewpoint of durability and the like.
  • a resin substrate or a resin film made of polyethylene terephthalate (PET) or the like is preferable from the viewpoint of cost reduction or weight reduction. It is.
  • the second protective member 13 may be an opaque substrate or a resin film, for example, a laminated base material laminated with an aluminum foil.
  • Wiring material 15 connects solar cells 11 arranged adjacent to each other.
  • One end side of the wiring member 15 is attached to the first electrode 30 of one solar cell 11 among the solar cells 11 arranged adjacent to each other.
  • the other end side of the wiring member 15 is connected to the second electrode 40 of the other solar cell 11. That is, the wiring member 15 is bent in the thickness direction of the solar cell module 10 between the adjacent solar cells 11, and the adjacent solar cells 11 are electrically connected in series.
  • the bus bars 32 and 42 and the wiring member 15 are connected using an adhesive 16 as described later.
  • the adhesive 16 can be a non-conductive resin adhesive or a conductive resin adhesive containing a conductive filler such as silver (Ag), but the non-conductive or anisotropic conductive resin bond can be used. Agents are preferred.
  • FIG. 2 is a plan view of the solar cell 11 as seen from the light receiving surface side.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 and shows a cross section of the solar cell 11 cut in the thickness direction along the direction in which the fingers 31 extend.
  • FIG. 4 shows a connection form of the wiring member 15 in the enlarged view of part B of FIG.
  • the photoelectric conversion unit 20 includes a substrate made of a semiconductor material such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphorus (InP).
  • the photoelectric conversion unit 20 is, for example, a translucent conductive material mainly composed of an i-type amorphous silicon layer, a p-type amorphous silicon layer, indium oxide, and the like on a light-receiving surface of an n-type single crystal silicon substrate.
  • an i-type amorphous silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer are sequentially provided on the back surface of the n-type single crystal silicon substrate.
  • the photoelectric conversion unit 20 is not limited to this configuration, and can have various configurations.
  • the light receiving surface of the photoelectric conversion unit 20 has a texture structure 21 (see FIG. 4).
  • the texture structure 21 is a surface uneven structure that suppresses surface reflection and increases the light absorption amount of the photoelectric conversion unit 20.
  • the unevenness height of the texture structure 21, that is, the depth of the recesses is preferably 1 ⁇ m to 15 ⁇ m, and particularly preferably 5 ⁇ m to 10 ⁇ m.
  • a pyramidal (quadrangular pyramid or quadrangular frustum-shaped) concavo-convex structure obtained by performing anisotropic etching on the light-receiving surface of a substrate made of single crystal silicon having a (100) plane Can be illustrated.
  • the uneven structure obtained by performing isotropic etching on the light-receiving surface of the substrate made of crystalline silicon can be exemplified.
  • the texture structure 21 is preferably provided also on the back surface.
  • the first electrode 30 includes, for example, a plurality of (for example, 50) fingers 31 and a plurality of (for example, two) bus bars 32.
  • the finger 31 is a carrier collecting electrode that collects the carriers generated by the photoelectric conversion unit 20, and is a thin wire electrode formed over a wide range on the light receiving surface.
  • the bus bar 32 is an electrode that collects carriers from the fingers 31, and is electrically connected to all the fingers 31.
  • the bus bar 32 is also an electrode for connection to which the wiring material 15 is connected.
  • the second electrode 40 also includes a plurality of (for example, 250) fingers 41 and a plurality of (for example, two) bus bars 42, and is the same electrode as the first electrode 30. Have an arrangement.
  • the width of the finger 31 is not particularly limited, but is preferably 30 ⁇ m to 150 ⁇ m from the viewpoint of reducing light shielding loss. As the distance from the bus bar 32 increases, the width may be narrowed. In this case, the width of the finest details is preferably 30 ⁇ m to 80 ⁇ m.
  • the width of the bus bar 32 is preferably 0.5 mm to 1.5 mm, for example, and is 80 to 100% (equivalent) to the width of the wiring member 15 from the viewpoint of relaxation of stress generated by the connection of the wiring member 15. It is particularly preferred to do this.
  • the width of the finger 41 is preferably larger than that of the finger 31, and is set to 60 ⁇ m to 250 ⁇ m, for example.
  • the height of the finger 31 and the bus bar 32 is not particularly limited, but is preferably 40 ⁇ m to 150 ⁇ m from the viewpoint of reducing resistance loss.
  • the height h2 of the bus bar 32 is preferably equal to or higher than the height h1 of the finger 31 in order to improve electrical connection with the wiring member 15 (see FIG. 4).
  • the heights h1 and h2 are the lengths from the uppermost surface of the photoelectric conversion unit 20 (the convex portion of the texture structure 21) to the uppermost surface of each electrode, and use a scanning electron microscope (SEM). It is an average value of values measured by cross-sectional observation. Since the second electrode 40 has a larger electrode area than the first electrode 30, the electrode height can be made lower than that of the first electrode 30.
  • the height of the bus bar 42 is preferably equal to the height of the finger 41 or higher than h1.
  • the fingers 31 and 41 and the bus bars 32 and 42 include a binder resin and a conductive filler.
  • a conductive filler for example, metal particles such as silver (Ag), copper (Cu), nickel (Ni), carbon, or a mixture thereof is used. Of these, silver particles are preferred.
  • the shape of the silver particles is not particularly limited, and may be spherical, spindle shape, needle shape, flake shape, iga chestnut shape, or the like.
  • Conductive fillers such as silver particles are dispersed in the binder resin, and the content thereof is preferably 70 to 95% by weight, more preferably 75 to 92% by weight, based on the total weight of the electrode constituent components. 80 to 90% by weight is particularly preferred.
  • the content of the binder resin is preferably 5 to 30% by weight, more preferably 8 to 25% by weight, and particularly preferably 10 to 20% by weight based on the total weight of the electrode constituent components.
  • the electrode component may contain a small amount of an additive such as a filler dispersant.
  • the fingers 31 and 41 and the bus bars 32 and 42 are preferably formed by a screen printing method.
  • a screen printing method for the fingers 31 and the like for example, using a screen plate having an opening corresponding to the shape of the fingers 31 and the like, and a squeegee, ink containing electrode components is transferred onto the main surface of the photoelectric conversion unit 20. . Then, the transferred ink is solidified by heating or the like to form the fingers 31 and the like.
  • a thermosetting type conductive paste in which the binder resin and the conductive filler are mixed is preferable.
  • a small amount of solvent for example, an organic solvent such as an alcohol, glycol ether, or hydrocarbon, or a mixed solvent thereof
  • solvent for example, an organic solvent such as an alcohol, glycol ether, or hydrocarbon, or a mixed solvent thereof
  • the finger and the bus bar are printed in different printing processes, and different conductive pastes are used in each printing process.
  • the Young's modulus (25 ° C.) of the fingers 31 and 41 is more than 1 to 50 GPa, and the Young's modulus (25 ° C.) of the bus bars 32 and 42 is 0.05 to 1 GPa.
  • the Young's modulus is measured using a TMA (thermal mechanical analysis) method.
  • the Young's modulus is obtained by measuring the amount of strain with respect to compressive stress at room temperature (25 ° C.).
  • the content of the conductive filler in the bus bars 32 and 42 (relative to the total weight of the electrode constituent components) is preferably lower than the content of the conductive filler in the fingers 31 and 41. That is, it is preferable to change the content of the conductive filler in accordance with the function of each electrode.
  • the former is less than 85% by weight and the latter is 85% by weight or more.
  • the finger 31 and the bus bar 32 have different binder resin compositions
  • the finger 41 has the same composition as the finger 31
  • the bus bar 42 has the same composition as the bus bar 32.
  • the bus bars 32 and 42 have a conductive filler content of 70 to 85% by weight, preferably 80 to 85% by weight, and a Young's modulus of 0.07 to 0.7 GPa, preferably 0.1 to 0%. .5 GPa is particularly preferable.
  • the Young's modulus (25 ° C.) of the fingers 31 and 41 is preferably 10 to 40 GPa, particularly preferably 15 to 35 GPa.
  • the binder resin constituting the fingers 31 and 41 preferably contains more than 90 to 100% by weight of thermosetting resin.
  • thermosetting resin for example, at least one selected from the group consisting of epoxy resins, urethane resins, urea resins, acrylic resins, imide resins, and phenol resins can be used.
  • an epoxy resin and a urethane resin are preferable, and an epoxy resin as a main component (50% by weight or more) is particularly preferable.
  • a small amount of silicone resin or the like may be added to epoxy resin or the like.
  • the thermosetting resin may be a resin classified into a plurality of groups (for example, a resin that can be classified into both an epoxy resin and a urethane resin).
  • epoxy resins examples include alicyclic epoxy resins, chain epoxy resins, bisphenol A type epoxy resins, epoxy phenol novolac type resins, polyglycidyl ether type epoxy resins, polyalkylene ether type epoxy resins, epoxy acrylate resins, and fatty acid-modified resins.
  • examples include epoxy resins and urethane-modified epoxy resins.
  • the binder resin constituting the bus bars 32 and 42 contains 50 to 90% by weight of the thermosetting resin and 10 to 50% by weight of rubber or elastomer having a glass transition temperature (hereinafter referred to as Tg) of 25 ° C. or less. Is preferred. More preferably, the former is 60 to 85% by weight and the latter is 15 to 40% by weight, and particularly preferably, the former is 70 to 80% by weight and the latter is 20 to 30% by weight. Tg is a value measured with a differential scanning calorimeter (DSC).
  • the elastomer may be a thermoplastic elastomer or a crosslinked elastomer.
  • the above rubber means a crosslinkable polymer having a Tg of 25 ° C. or less, preferably 0 ° C. or less, particularly preferably ⁇ 20 ° C. or less.
  • the crosslinked structure can be formed by vulcanization or the like.
  • the rubber for example, at least one selected from the group consisting of diene rubber, olefin rubber, urethane rubber, acrylic rubber, silicon-containing rubber, halogen-containing rubber, and modified products thereof may be used. it can.
  • the rubber may be classified into a plurality of groups.
  • Diene rubbers include natural rubber, butadiene rubber, isoprene rubber, methyl rubber, butyl rubber, polypentadiene rubber, norbornene rubber, nitrile rubber (acrylonitrile-butadiene copolymer, acrylonitrile-isoprene copolymer, etc.), styrene-butadiene copolymer.
  • An example is a united rubber.
  • olefin rubber examples include ethylene-propylene rubber, ethylene-propylene-diene copolymer rubber, polyisobutylene rubber, polyisobutyl ether rubber, polycyclopentene rubber, maleic acid-modified ethylene-propylene copolymer rubber, and the like.
  • urethane rubbers examples include polyether urethane rubber and polyester urethane rubber.
  • acrylic rubber examples include acrylic ester-acrylonitrile copolymer rubber, acrylic ester-chloroethyl vinyl ether copolymer rubber, and acrylic ester-butadiene copolymer rubber.
  • silicon-containing rubber examples include silicone rubber (methyl vinyl silicone rubber, methyl phenyl vinyl silicone rubber, etc.).
  • halogen-containing rubbers examples include chloroprene rubber, brominated butyl rubber, chlorinated butyl rubber, hydrin rubber (such as epichlorohydrin rubber), chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, maleic acid-modified chlorinated polyethylene rubber, and fluororubber (vinylidene fluoro). Ride rubber, fluorine-containing vinyl ether rubber, fluorine-containing phosphazene rubber) and the like.
  • the properties required for the rubber material to be used include a low Tg in order to maintain adhesion and flexibility at low temperatures, and degradation at the highest temperature (about 120 ° C.) of the solar cell module 10 (thermal decomposition, oxidation degradation) , Fluidization) is low, and the heat resistance is high.
  • the rubber material needs to have appropriate compatibility and dispersibility with the thermosetting resin from the viewpoint of the stability of the conductive paste. If such characteristics are satisfied, it is possible to maintain functions such as cell protection and adhesion.
  • the thermoplastic elastomer means a non-crosslinkable polymer having a Tg of 25 ° C. or lower, preferably 0 ° C. or lower, particularly preferably ⁇ 20 ° C. or lower.
  • the thermoplastic elastomer include, for example, styrene thermoplastic elastomers, olefin thermoplastic elastomers, urethane thermoplastic elastomers, ester thermoplastic elastomers, acrylic thermoplastic elastomers, silicone thermoplastic elastomers, and modified products thereof. At least one selected from the group consisting of can be used.
  • thermoplastic elastomers styrene-based thermoplastic elastomers, urethane-based thermoplastic elastomers, and silicone-based thermoplastic elastomers are preferable, and silicone-based thermoplastic elastomers and urethane-based thermoplastic elastomers are particularly preferable.
  • the thermoplastic elastomer may be classified into a plurality of groups.
  • Styrenic thermoplastic elastomers include styrene AB type diblock copolymers such as styrene-ethylene-butylene copolymer (SEB), styrene-butadiene-styrene copolymer (SBS), and hydrogenated SBS (SEBS).
  • SEB styrene-ethylene-butylene copolymer
  • SBS styrene-butadiene-styrene copolymer
  • SEBS hydrogenated SBS
  • Styrene-isoprene-styrene copolymer SIS
  • SEPS hydrogenated product of SIS
  • SIBS styrene-isobutylene-styrene copolymer
  • SIBS styrene-butadiene-
  • SIBS styrene-based ABAB type tetrablock copolymers
  • Examples of the urethane-based thermoplastic elastomer include polymers having a hard segment composed of a low molecular diol and diisocyanate and a soft segment composed of a high molecular diol.
  • Examples of the low molecular diol include aliphatic dihydric alcohols having 2 to 15 carbon atoms, alicyclic dihydric alcohols having 5 to 15 carbon atoms, and aromatic dihydric alcohols having 6 to 15 carbon atoms. . Of these, dihydric alcohols and dihydric phenols are preferable, and ethylene glycol, hydroquinone, and bisphenol A are particularly preferable.
  • diisocyanate examples include aromatic diisocyanates having 6 to 20 carbon atoms, aliphatic diisocyanates having 2 to 18 carbon atoms, alicyclic diisocyanates having 4 to 15 carbon atoms, and aromatic aliphatic diisocyanates having 8 to 15 carbon atoms. be able to. Of these, aromatic diisocyanates and aliphatic diisocyanates are preferable, and TDI (tolylene diisocyanate), MDI (diphenylmethane diisocyanate), and HDI (hexamethylene diisocyanate) are particularly preferable.
  • aromatic diisocyanates and aliphatic diisocyanates are preferable, and TDI (tolylene diisocyanate), MDI (diphenylmethane diisocyanate), and HDI (hexamethylene diisocyanate) are particularly preferable.
  • a polyether having a weight average molecular weight of 500 to 10,000 such as an alkylene oxide adduct of a low molecular diol, a polyester having a weight average molecular weight of 500 to 10,000, a polycarbonate having a weight average molecular weight of 500 to 10,000, etc. should be used.
  • an alkylene oxide adduct of a dihydric alcohol and an alkylene oxide adduct of a dihydric phenol are preferable, and an alkylene oxide adduct of ethylene glycol and an alkylene oxide adduct of bisphenol A are particularly preferable.
  • silicone-based thermoplastic elastomer examples include polydimethylsiloxane (PDMS), polymethylphenylsiloxane, and polydiphenylsiloxane.
  • the weight average molecular weight (Mw) of the thermoplastic elastomer is somewhat different depending on the composition, etc., but is preferably 20,000 to 500,000, more preferably 30,000 to 300,000, and particularly preferably 40,000 to 150,000. preferable.
  • the weight average molecular weight (Mw) is a relative value in terms of polystyrene, and is measured by the GPC method.
  • the solar cell module 10 including the solar cell 11 by controlling the Young's modulus of the bus bars 32 and 42 to 0.05 to 1 GPa, without impairing the conductivity necessary for transmitting the carrier to the wiring member 15, Adhesion between the bus bars 32 and 42 and the wiring member 15 can be improved. Furthermore, the influence of the stress generated due to the connection of the wiring member 15 can be reduced. Examples of the stress include stress generated due to the difference in coefficient of linear expansion between the bus bars 32 and 42 and the wiring material 15, stress applied when the wiring material 15 is crimped, and a resin film as the second protective member 13. There are stresses caused by expansion and contraction. The stress is likely to occur at the interface between the bus bars 32 and 42 and the wiring member 15 and at the interface between the bus bars 32 and 42 and the photoelectric conversion unit 20.
  • the bus bars 32 and 42 have flexibility suitable as a connection portion of the wiring member 15, the bus bars 32 and 42 are easily deformed by the pressure applied when the wiring member 15 is crimped, and the contact area with the wiring member 15 can be improved. Thereby, adhesiveness with the wiring material 15 improves, for example, peeling of the wiring material 15 can be suppressed also in a high temperature or cold environment. And since the bus-bars 32 and 42 are flexible and easy to elastically deform, the said stress can be absorbed and the influence can be relieved. Thereby, damages, such as a crack of a photoelectric conversion part 20, a crack, and a brittle fracture, can be controlled. The bus bars 32 and 42 can sufficiently suppress damage such as cracks even when the photoelectric conversion unit 20 is thin.
  • flexibility of an electrode improves but manufacturing cost can be reduced by making the content rate of the electroconductive filler in the bus bars 32 and 42 lower than the fingers 31 and 41.
  • FIG. Alternatively, while suppressing an increase in manufacturing cost, the width of the bus bars 32 and 42 can be increased to disperse the stress, thereby further improving the stress relaxation performance.
  • the content of the conductive filler in the bus bars 32 and 42 is too low, the conductivity necessary for transmitting the carrier to the wiring member 15 is impaired. Therefore, by adding rubber or thermoplastic elastomer having rubber elasticity at room temperature or lower to the binder resin of the bus bars 32 and 42, the flexibility of the electrode can be further improved without impairing the conductivity.
  • the fingers 31 and 41 have a higher conductive filler content than the bus bars 32 and 42 to control the Young's modulus from 1 to 50 GPa.
  • the solar cell module 10 having good photoelectric conversion characteristics can be provided by controlling the Young's modulus of the electrode within an appropriate range in accordance with the function of each electrode.
  • a metal thin film 41 x such as silver may be formed on the back surface of the photoelectric conversion unit 20 instead of the fingers 41.
  • the second electrode 40x includes a metal thin film 41x and a bus bar 42x formed thereon.
  • the metal thin film 41x collects the carriers generated by the photoelectric conversion unit 20, and the bus bar 42x collects the carriers collected by the metal thin film 41x.
  • the bus bar 42x may be formed on a part of the metal thin film 41x.
  • the Young's modulus may be different between the bus bar 32 and the bus bar 42.
  • a glass substrate is usually applied to the first protective member 12 and a resin film such as a PET film is usually applied to the second protective member 13, so that the second protective member 12 is more second than the first electrode 30 side.
  • the first electrode 30 is formed using the same conductive paste without changing the Young's modulus of the finger 31 and the bus bar 32, and the Young's modulus of the finger 31 and the bus bar 32 is changed only with the second electrode 40. May be.
  • a photoelectric conversion part for evaluation is produced by the following procedure. Note that the same photoelectric conversion unit is used in all examples and comparative examples.
  • a clean n-type single crystal silicon substrate (hereinafter referred to as a substrate) is prepared by anisotropically etching the (100) plane using an aqueous potassium hydroxide (KOH) solution to form a texture structure on the light receiving surface and the back surface.
  • KOH potassium hydroxide
  • the substrate is placed in a vacuum chamber, and an i-type amorphous silicon film and an n-type amorphous silicon film are sequentially formed on the back surface of the substrate by CVD.
  • silane gas (SiH 4 ) is used as a source gas.
  • silane (SiH 4 ), hydrogen (H 2 ), and phosphine (PH 3 ) are used as source gases.
  • an i-type amorphous silicon film and a p-type amorphous silicon film are sequentially formed by CVD.
  • diborane (B 2 H 6 ) is used as a source gas instead of PH 3 .
  • a TCO film containing indium oxide as a main component is formed on the n-type amorphous silicon film and the p-type amorphous silicon film by sputtering.
  • the photoelectric conversion portion having the layer structure of TCO film / i-type amorphous silicon film / p-type amorphous silicon film / substrate / i-type amorphous silicon film / n-type amorphous silicon film / TCO film is obtained. Produced.
  • a light receiving surface electrode is formed on the light receiving surface of the produced photoelectric conversion unit, and a back electrode is formed on the back surface of the photoelectric conversion unit.
  • the light-receiving surface electrode is formed of two bus bars and 50 fingers orthogonal thereto, both of which are formed by printing a conductive paste having the following composition on the light-receiving surface by screen printing.
  • the finger is printed, and then the bus bar is printed.
  • the printing conditions such as the squeegee angle and the printing pressure are the same.
  • a part of the solvent of the conductive paste transferred by the temporary drying step 150 ° C. ⁇ 15 minutes
  • the back electrode is made up of two bus bars and 250 fingers orthogonal thereto.
  • the back electrode is printed in the same manner as in the case of the light receiving surface electrode, except that the pattern of the openings of the screen plate is different. Thereafter, the solvent of the conductive paste transferred in the main drying step (200 ° C. ⁇ 60 minutes) is removed, and the binder resin is thermally cured. In this way, a solar cell including a light-receiving surface electrode and a back electrode having the following dimensions and the like was manufactured.
  • the produced solar cells are arranged on the same plane, and adjacent solar cells are connected to each other with a wiring material to produce a solar cell module.
  • the wiring member is connected to the bus bar using a film adhesive (epoxy resin adhesive).
  • a film adhesive is arranged on the bus bar, and then a wiring material is arranged on the adhesive.
  • the wiring material covers the entire area on the bus bar and is arranged so as not to be applied to the fingers.
  • a wiring material and a bus-bar are connected by attaching a heat seal bar on a wiring material and carrying out thermocompression bonding.
  • the string of solar cells obtained by connecting the wiring materials is laminated using EVA (filler), a glass substrate (first protective member), and a PET film (second protective member).
  • the module material is placed in a state of being superimposed on the heater. From the heater side, it arrange
  • the output correlation is a value indicating a change in the fill factor (FF) before and after modularization, and is calculated by [FF immediately after modularization / FF of solar cell immediately after electrode formation] ⁇ 100 (%).
  • the result of the temperature cycle test is a change in the maximum output Pmax before and after 400 cycles (holding at the minimum temperature ( ⁇ 40 ° C.) and the maximum temperature (90 ° C.) for 30 minutes and changing each temperature in 90 minutes). And is calculated by [Pmax after cycle test / Pmax before cycle test] ⁇ 100 (%).
  • Example 2 to 8 Comparative Examples 1 to 3> A solar cell was produced and evaluated in the same manner as in Example 1 except that the composition of the binder resin constituting the bus bar was changed to that shown in Table 1.
  • Elastomer B Urethane rubber (Tg; -30 ° C)
  • Elastomer C Olefin rubber (Tg; -55 ° C)
  • the solar cell modules of the examples all had an output correlation of 99.5% or higher, and the Pmax change rate by the temperature cycle test was 95.0% or higher. That is, the solar cell module of the example is excellent in initial output characteristics, and the characteristics are not easily deteriorated by long-term use.
  • This excellent characteristic is that the Young's modulus (25 ° C) of the bus bar is controlled within the range of 0.05 to 1 GPa, and the Young's modulus (25 ° C) of the finger is controlled within the range of 1 to 50 GPa. It was obtained by.
  • the solar cell module of the comparative example had a high initial output characteristic but the characteristic was easily deteriorated (Comparative Example 1) or a low initial output characteristic (Comparative Examples 2 and 3). Further, by controlling the Young's modulus (25 ° C.) of the bus bar within the range of 0.1 to 1 GPa with the elastomer content of 10 to 30% by weight, the output correlation is 99.5% or more and the temperature Particularly excellent characteristics are obtained in which the rate of change in Pmax by the cycle test is 99.1% or more.

Abstract

 本発明に係る太陽電池10は、光電変換部20と、光電変換部20の受光面上に設けられた第1電極30と、光電変換部20の裏面上に設けられた第2電極40とを備え、第1電極30及び第2電極40は、バインダ樹脂と導電性フィラーとを含んで構成されヤング率(25℃)が0.05~1GPaであるバスバー32,42を有する。本発明の太陽電池は、上記の構成とすることにより、キャリアの伝達に必要な導電性を損なうことなく、バスバーの密着性を向上させることができる。

Description

太陽電池及び太陽電池モジュール
 本発明は、太陽電池及び太陽電池モジュールに関する。
 太陽電池は、受光により発生したキャリアを収集するために、光電変換部の主面上に電極を備える。かかる電極には、通常、光電変換部の広範囲からキャリアを収集するフィンガーと、各フィンガーが接続されて、各フィンガーからキャリアを集めるバスバーとが含まれる。
 フィンガーは、キャリアを効率良く収集するため、低抵抗損失であることが要求される。一方、バスバーには、モジュール化に際して太陽電池同士を接続する配線材が取り付けられるため、配線材との良好な接続性が要求される。例えば、特許文献1には、焼結型の導電性材料を用いて形成されたフィンガーと、熱硬化型の導電性材料を用いて形成されたバスバーとを備える太陽電池が開示されている。
特開2008-205137号公報
 上記従来技術によれば、キャリアを効率良く収集でき、且つバスバーと配線材との良好な接続性を実現できる。しかしながら、太陽電池の普及が急速に進んでいる現状において、さらなる光電変換効率の向上が要求されている。
 本発明の一態様に係る太陽電池は、光電変換部と、光電変換部の主面上に設けられた電極とを備え、電極は、バインダ樹脂と導電性フィラーとを含んで構成されたバスバーを有し、バスバーのヤング率(25℃)は、0.05~1GPaである。
 本発明によれば、良好な光電変換特性を有する太陽電池を提供することができる。
本発明の実施形態の一例である太陽電池モジュールを示す断面図である。 本発明の実施形態の一例である太陽電池を受光面側から見た平面図である。 図2のA‐A線断面を示す図である。 図3のB部拡大図において、バスバーに配線材を取り付けた様子を示す図である。 本発明の実施形態の一例である太陽電池の変形例を示す図である。
 図面を参照して、本発明の実施形態を詳細に説明する。
 本発明は、以下の実施形態に限定されない。また、実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1は、太陽電池モジュール10の一部を示す断面図である。
 太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に配置される第1保護部材12と、太陽電池11の裏面側に配置される第2保護部材13とを備える。複数の太陽電池11は、第1保護部材12と第2保護部材13とにより挟持されると共に、エチレン酢酸ビニル共重合体(EVA)等の樹脂からなる充填剤14の層中に封止されている。
 太陽電池モジュール10は、さらに、各太陽電池11を電気的に接続する配線材15を備える。また、太陽電池モジュール10は、通常、配線材15同士を接続する渡り配線材、フレーム、端子ボックス(いずれも図示せず)などを備える。
 ここで、「受光面」とは、太陽電池11の外部から光が主に入射する主面を意味する。例えば、光電変換素子11に入射する光のうち50%超過~100%が受光面側から入射する。また、「裏面」とは、受光面と反対側の面を意味する。換言すると、主面のうち後述する電極面積が大きい方が裏面となる。
 太陽電池11は、太陽光等の光を受光することでキャリアを生成する光電変換部20と、光電変換部20の受光面上に設けられた受光面電極である第1電極30と、光電変換部20の裏面上に設けられた裏面電極である第2電極40とを備える。太陽電池モジュール10では、光電変換部20で生成されたキャリアが第1電極30及び第2電極40により収集され、配線材15を介して外部に出力される。尚、太陽電池11の裏面では、受光面と比べて光電変換特性に対する遮光ロスの影響が少ないため、第1電極30よりも大面積に第2電極40を形成できる。
 第1保護部材12には、例えば、ガラス基板や樹脂基板、樹脂フィルム等の透光性を有する部材を用いることができるが、耐久性等の観点からガラス基板が好適である。第2保護部材13には、第1保護部材12と同様の部材を用いることができるが、コストの削減や軽量化等の観点から、ポリエチレンテレフタレート(PET)製等の樹脂基板又は樹脂フィルムが好適である。尚、裏面側からの受光を想定しない場合、第2保護部材13は、不透明な基板や樹脂フィルムとしてもよく、例えば、アルミ箔をラミネートした積層基材であってもよい。
 配線材15は、隣接して配置される太陽電池11同士を接続する。配線材15の一端側は、隣接して配置される太陽電池11のうち、一方の太陽電池11の第1電極30に取り付けられる。配線材15の他端側は、他方の太陽電池11の第2電極40に接続される。つまり、配線材15は、隣接する太陽電池11の間で太陽電池モジュール10の厚み方向に折れ曲がり、隣接する太陽電池11を電気的に直列に接続する。太陽電池モジュール10では、後述するように、接着剤16を用いてバスバー32,42と配線材15とを接続する。接着剤16には、非導電性の樹脂接着剤や銀(Ag)等の導電性フィラーを含有する導電性の樹脂接着剤を用いることができるが、非導電性或いは異方導電性の樹脂接着剤が好適である。
 以下、図2~図4を参照しながら、さらに太陽電池11の構成について詳説する。
 図2は、太陽電池11を受光面側から見た平面図である。図3は、図2のA‐A線断面図であって、フィンガー31が延びる方向に沿って太陽電池11を厚み方向に切断した断面を示す。図4は、図3のB部拡大図において、配線材15の接続形態を示す。
 光電変換部20は、例えば、結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、又はインジウム燐(InP)等の半導体材料からなる基板を有する。光電変換部20は、例えば、n型単結晶シリコン基板の受光面上に、i型非晶質シリコン層と、p型非晶質シリコン層と、酸化インジウム等を主成分とする透光性導電酸化物(TCO:Transparent Conductive Oxide)からなる透明導電層とを順に有する。また、n型単結晶シリコン基板の裏面上に、i型非晶質シリコン層と、n型非晶質シリコン層と、透明導電層とを順に有する。尚、光電変換部20はこの構成に限定されるものではなく、種々の構成を採ることができる。
 光電変換部20の受光面は、テクスチャ構造21(図4参照)を有することが好適である。テクスチャ構造21とは、表面反射を抑制し、光電変換部20の光吸収量を増大させる表面凹凸構造である。テクスチャ構造21の凹凸高さ、即ち凹部の深さは、1μm~15μmが好適であり、5μm~10μmが特に好適である。テクスチャ構造21の具体例としては、(100)面を有する単結晶シリコンからなる基板の受光面に異方性エッチングを施すことによって得られるピラミッド状(四角錐状や四角錐台状)の凹凸構造が例示できる。或いは、結晶シリコンからなる基板の受光面に等方性エッチングを施すことによって得られる凹凸構造が例示できる。尚、テクスチャ構造21は、裏面にも設けられることが好ましい。
 第1電極30は、例えば、複数(例えば、50本)のフィンガー31と、複数(例えば、2本)のバスバー32とを含んで構成される。フィンガー31は、光電変換部20で生成されたキャリアを収集するキャリア収集用の電極であり、受光面上の広範囲に形成される細線状の電極である。バスバー32は、フィンガー31からキャリアを集電する電極であって、全てのフィンガー31に電気的に接続されている。バスバー32は配線材15が接続される接続用の電極でもある。
 太陽電池11では、2本のバスバー32が所定の間隔を空けて互いに平行に配置され、これに交差して複数のフィンガー31が配置されている。複数のフィンガー31は、一部がバスバー32の各々から受光面の端縁側に延び、残りが2本のバスバー32を繋ぐように配置される。尚、本実施形態では、第2電極40も、複数(例えば、250本)のフィンガー41と、複数(例えば、2本)のバスバー42とを含んで構成され、第1電極30と同様の電極配置を有する。
 フィンガー31の幅は、特に限定されないが、遮光ロス低減等の観点から30μm~150μmが好適である。バスバー32からの距離が遠くなるほど幅を細くしてもよく、この場合、最細部の幅は30μm~80μmが好適である。バスバー32の幅は、例えば、0.5mm~1.5mmが好適であり、配線材15の接続により発生する応力の緩和等の観点から、配線材15の幅の80~100%(同等)とすることが特に好適である。尚、第2電極40では、フィンガー41の幅をフィンガー31よりも太くすることが好適であり、例えば、60μm~250μmに設定する。
 フィンガー31及びバスバー32の高さは、特に限定されないが、抵抗損失低減等の観点から40μm~150μmが好適である。また、バスバー32の高さh2は、配線材15との電気的接続を良好にするため、フィンガー31の高さh1と同等かh1よりも高いことが好適である(図4参照)。ここで、高さh1,h2とは、光電変換部20の最上面(テクスチャ構造21の凸部)から各々の電極の最上面までの長さであって、走査型電子顕微鏡(SEM)を用いた断面観察により計測される値の平均値である。尚、第2電極40は、第1電極30よりも電極面積が大きいため、第1電極30の場合よりも電極高さを低くできる。バスバー42の高さは、第1電極30の場合と同様に、フィンガー41の高さと同等かh1よりも高くすることが好適である
 フィンガー31,41、及びバスバー32,42は、バインダ樹脂と導電性フィラーとを含んで構成される。導電性フィラーには、例えば、銀(Ag)、銅(Cu)、ニッケル(Ni)等の金属粒子やカーボン、又はこれらの混合物などが用いられる。これらのうち、銀粒子が好適である。銀粒子の形状は、特に限定されず、球状や紡錘状、針状、フレーク状、イガ栗状等であってもよい。銀粒子等の導電性フィラーは、バインダ樹脂中に分散されており、その含有量は、電極構成成分の全重量に対して、70~95重量%が好ましく、75~92重量%がより好ましく、80~90重量%が特に好ましい。バインダ樹脂の含有量は、電極構成成分の全重量に対して、5~30重量%が好ましく、8~25重量%がより好ましく、10~20重量%が特に好ましい。尚、電極構成成分には、フィラー分散剤等の添加剤が少量含まれていてもよい。
 フィンガー31,41、及びバスバー32,42は、スクリーン印刷法により形成されることが好適である。フィンガー31等のスクリーン印刷法では、例えば、フィンガー31等の形状に対応した開口部を有するスクリーン版、及びスキージを用いて、光電変換部20の主面上に電極構成成分を含むインクを転写する。そして、転写されたインクを加熱等により固化させてフィンガー31等を形成する。インクとしては、上記バインダ樹脂と上記導電性フィラーとを混合した加熱硬化タイプの導電性ペーストが好適である。当該導電性ペーストには、粘度調整等の目的で少量の溶剤(例えば、アルコール系、グリコールエーテル系、炭化水素系等の有機溶剤、又はこれらの混合溶剤等)を加えても良い。尚、フィンガーとバスバーとは、別の印刷工程で印刷され、各印刷工程で異なる導電性ペーストが使用される。
 太陽電池11では、フィンガー31,41のヤング率(25℃)が、1超過~50GPaであり、バスバー32,42のヤング率(25℃)が、0.05~1GPaである。
 ヤング率は、TMA(thermal mechanical analysis)法を用いて測定する。ヤング率は、室温(25℃)にて圧縮応力に対する歪み量を測定することにより得られる。これらの関係式を下記に示す。
  σ=E・ε(σ:応力,E:ヤング率,ε:歪み)
 バスバー32,42における上記導電性フィラーの含有率(電極構成成分の全重量に対する)は、フィンガー31,41における上記導電性フィラーの含有率よりも低いことが好適である。即ち、各電極の機能に合わせて導電性フィラーの含有率を変更することが好適である。好ましくは、前者が85重量%未満、後者が85重量%以上である。フィンガー31,41における導電性フィラーの含有率を高くすることで、フィンガー31,41の抵抗損失を低減することができる。尚、導電性フィラーの含有率を下げると、電極の柔軟性が高まり、ヤング率が下がる傾向にある。
 バスバー32,42の抵抗の大幅な上昇を抑制しながら、柔軟性をさらに高めるため、上記バインダ樹脂の組成を各電極の機能に合わせて変更することが好適である。本実施形態では、フィンガー31及びバスバー32は、各々のバインダ樹脂の組成が互いに異なり、フィンガー41はフィンガー31と同一組成、バスバー42はバスバー32と同一組成である。バスバー32,42は、導電性フィラーの含有率を70~85重量%、好ましくは80~85重量%とし、且つヤング率を0.07~0.7GPaとすることが好ましく、0.1~0.5GPaとすることが特に好ましい。尚、フィンガー31,41のヤング率(25℃)は、10~40GPaが好ましく、15~35GPaが特に好ましい。
 以下、上記バインダ樹脂の組成について詳説する。
 フィンガー31,41を構成するバインダ樹脂は、熱硬化性樹脂を90超過~100重量%含有することが好適である。上記熱硬化性樹脂としては、例えば、エポキシ系樹脂、ウレタン系樹脂、ウレア系樹脂、アクリル系樹脂、イミド系樹脂、及びフェノール系樹脂からなる群より選択される少なくとも1種を用いることができる。これらのうち、エポキシ系樹脂、及びウレタン系樹脂が好ましく、エポキシ系樹脂を主成分(50重量%以上)とすることが特に好ましい。また、エポキシ系樹脂等に、少量のシリコーン系樹脂等を加えてもよい。尚、上記熱硬化性樹脂は、複数のグループに分類されるもの(例えば、エポキシ系樹脂及びウレタン系樹脂の両方に分類できる樹脂)であってもよい。
 上記エポキシ系樹脂としては、脂環式エポキシ樹脂、鎖状エポキシ樹脂、ビスフェノールA型エポキシ樹脂、エポキシフェノールノボラック型樹脂、ポリグリシジルエーテル型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、エポキシアクリレート樹脂、脂肪酸変性エポキシ樹脂、ウレタン変性エポキシ樹脂等が例示できる。
 バスバー32,42を構成するバインダ樹脂は、上記熱硬化性樹脂を50~90重量%、及びガラス転移温度(以下、Tgという)が25℃以下であるゴム又はエラストマーを10~50重量%含有することが好適である。より好ましくは、前者が60~85重量%、後者が15~40重量%であり、特に好ましくは、前者が70~80重量%、後者が20~30重量%である。尚、Tgは、示差走査型熱量計(DSC)で測定した値である。エラストマーは、熱可塑性エラストマーでも良いし、架橋エラストマーでも良い。
 上記ゴムは、Tgが25℃以下、好ましくは0℃以下、特に好ましくは-20℃以下の架橋性のポリマーを意味する。架橋構造は、加硫等により形成できる。上記ゴムとしては、例えば、ジエン系ゴム、オレフィン系ゴム、ウレタン系ゴム、アクリル系ゴム、含ケイ素ゴム、含ハロゲンゴム、及びこれらの変性物からなる群より選択される少なくとも1種を用いることができる。尚、上記ゴムは、複数のグループに分類されるものであってもよい。
 ジエン系ゴムとしては、天然ゴム、ブタジエンゴム、イソプレンゴム、メチルゴム、ブチルゴム、ポリペンタジエンゴム、ノルボルネンゴム、ニトリルゴム(アクリロニトリル-ブタジエン共重合体、アクリロニトリル-イソプレン共重合体等)、スチレン-ブタジエン共重合体ゴム等が例示できる。
 オレフィン系ゴムとしては、エチレン-プロピレンゴム、エチレン-プロピレン-ジエン共重合体ゴム、ポリイソブチレンゴム、ポリイソブチルエーテルゴム、ポリシクロペンテンゴム、マレイン酸変性エチレン-プロピレン共重合体ゴム等が例示できる。
 ウレタン系ゴムとしては、ポリエーテルウレタンゴム、ポリエステルウレタンゴム等が例示できる。
 アクリル系ゴムとしては、アクリル酸エステル-アクリロニトリル共重合体ゴム、アクリル酸エステル-クロロエチルビニルエーテル共重合体ゴム、アクリル酸エステル-ブタジエン共重合体ゴム等が例示できる。
 含ケイ素ゴムとしては、シリコーンゴム(メチルビニルシリコーンゴム、メチルフェニルビニルシリコーンゴム等)等が例示できる。
 含ハロゲンゴムとしては、クロロプレンゴム、臭素化ブチルゴム、塩素化ブチルゴム、ヒドリンゴム(エピクロロヒドリンゴム等)、クロロスルホン化ポリエチレンゴム、塩素化ポリエチレンゴム、マレイン酸変性塩素化ポリエチレンゴム、フッ素ゴム(ビニリデンフルオロライドゴム、含フッ素ビニルエーテルゴム、含フッ素ホスファゼンゴム)等が例示できる。
 使用するゴム材に求められる特性としては、低温での密着性や柔軟性を保つためにTgが低いこと、太陽電池モジュール10の最高到達温度(約120℃)での劣化(熱分解、酸化劣化、流動化)が少ない等の耐熱性が高いことなどが挙げられる。また、ゴム材は、導電性ペーストの安定性等の観点から熱硬化性樹脂との適切な相溶性、分散性を有する必要がある。このような特性を満たすものであれば、セルの保護性、密着性などの機能を保つことが可能となる。
 上記熱可塑性エラストマーは、Tgが25℃以下、好ましくは0℃以下、特に好ましくは-20℃以下の非架橋性のポリマーを意味する。上記熱可塑性エラストマーとしては、例えば、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、アクリル系熱可塑性エラストマー、シリコーン系熱可塑性エラストマー、及びこれらの変性物からなる群より選択される少なくとも1種を用いることができる。これらのうち、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、及びシリコーン系熱可塑性エラストマーが好ましく、シリコーン系熱可塑性エラストマー、及びウレタン系熱可塑性エラストマーが特に好ましい。尚、上記熱可塑性エラストマーは、複数のグループに分類されるものであってもよい。
 スチレン系熱可塑性エラストマーとしては、スチレン-エチレン-ブチレン共重合体(SEB)等のスチレン系AB型ジブロック共重合体、スチレン-ブタジエン-スチレン共重合体(SBS)、SBSの水素添加物(SEBS)、スチレン-イソプレン-スチレン共重合体(SIS)、SISの水素添加物(SEPS)、スチレン-イソブチレン-スチレン共重合体(SIBS)等のスチレン系ABA型トリブロック共重合体、スチレン-ブタジエン-スチレン-ブタジエン(SBSB)等のスチレン系ABAB型テトラブロック共重合体等が例示できる。
 ウレタン系熱可塑性エラストマーとしては、低分子ジオールとジイソシアネートからなるハードセグメントと、高分子ジオールからなるソフトセグメントとを有するポリマー等が例示できる。
 低分子ジオールには、例えば、炭素数2~15の脂肪族二価アルコール、炭素数5~15の脂環式二価アルコール、炭素数6~15の芳香族二価アルコール等を用いることができる。これらのうち、二価アルコール及び二価フェノールが好ましく、エチレングリコール、ハイドロキノン、及びビスフェノールAが特に好ましい。
 ジイソシアネートには、例えば、炭素数6~20の芳香族ジイソシアネート、炭素数2~18の脂肪族ジイソシアネート、炭素数4~15の脂環式ジイソシアネート、炭素数8~15の芳香脂肪族ジイソシアネート等を用いることができる。これらのうち、芳香族ジイソシアネート、及び脂肪族ジイソシアネートが好ましく、TDI(トリレンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、及びHDI(ヘキサメチレンジイソシアネート)が特に好ましい。
 高分子ジオールには、低分子ジオールのアルキレンオキサイド付加物等の重量平均分子量が500~10000のポリエーテル、重量平均分子量が500~10000のポリエステル、重量平均分子量が500~10000のポリカーボネート等を用いることができる。これらのうち、二価アルコールのアルキレンオキサイド付加物、及び二価フェノールのアルキレンオキサイド付加物が好ましく、エチレングリコールのアルキレンオキサイド付加物、及びビスフェノールAのアルキレンオキサイド付加物が特に好ましい。
 シリコーン系熱可塑性エラストマーとしては、ポリジメチルシロキサン(PDMS)、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等が例示できる。
 上記熱可塑性エラストマーの重量平均分子量(Mw)は、組成等によって多少異なるが、20,000~500,000が好ましく、30,000~300,000がより好ましく、40,000~150,000が特に好ましい。ここで、重量平均分子量(Mw)は、ポリスチレン換算の相対値であり、GPC法により測定される。
 太陽電池11を含む太陽電池モジュール10によれば、バスバー32,42のヤング率を0.05~1GPaに制御することにより、配線材15へのキャリアの伝達に必要な導電性を損なうことなく、バスバー32,42と配線材15との密着性を向上させることができる。さらに、配線材15の接続に起因して発生する応力の影響を緩和できる。当該応力としては、例えば、バスバー32,42と配線材15との線膨張係数の違いに起因して発生する応力、配線材15の圧着時に加わる応力、第2保護部材13である樹脂フィルム等の伸縮に起因して発生する応力等がある。尚、当該応力は、バスバー32,42と配線材15との界面やバスバー32,42と光電変換部20との界面に発生し易い。
 つまり、バスバー32,42は、配線材15の接続部として好適な柔軟性を有するため配線材15の圧着時に加わる圧力によって変形し易く、配線材15との接触面積を向上させることができる。これにより、配線材15との密着性が向上し、例えば、高温又は寒冷環境下においても配線材15の剥離を抑制することができる。そして、バスバー32,42は、柔軟性が高く弾性変形し易いため、上記応力を吸収して、その影響を緩和することができる。これにより、光電変換部20の亀裂や割れ、脆性破壊等の損傷を抑制することができる。バスバー32,42は、光電変換部20の厚みが薄い場合であっても、亀裂等の損傷を十分に抑制することができる。
 また、バスバー32,42における導電性フィラーの含有率をフィンガー31,41よりも低くすることで、電極の柔軟性が向上するだけでなく、製造コストを削減できる。或いは、製造コストの上昇を抑制しながら、バスバー32,42の幅を太くして上記応力の分散を図り、上記応力の緩和性能をさらに高めることができる。
 但し、バスバー32,42における導電性フィラーの含有率を低くし過ぎると、配線材15へのキャリアの伝達に必要な導電性が損なわれる。そこで、バスバー32,42のバインダ樹脂に、室温以下でゴム弾性を有するゴム又は熱可塑性エラストマーを加えることによって、当該導電性を損なうことなく電極の柔軟性をさらに向上させることができる。
 尚、ゴム又は熱可塑性エラストマーを増やしすぎるとバスバー32,42の機械的な強度が低下してしまい、配線材15からの応力によりバスバー32,42中にマイクロクラックが発生し、キャリアの収集を阻害する可能性がある。
 一方、フィンガー31,41は、バスバー32,42よりも導電性フィラーの含有率を高めて、ヤング率を1超過~50GPaに制御する。これにより、光電変換部20の広範囲から効率良くキャリアを収集できる。
 以上のように、各電極の機能に合わせて、電極のヤング率を適切な範囲に制御することにより、良好な光電変換特性を有する太陽電池モジュール10を提供することができる。
 尚、本実施形態は、本発明の目的を損なわない範囲で適宜設計変更できる。
 例えば、図5に示されるように、フィンガー41の代わりに、銀等の金属薄膜41xを光電変換部20の裏面上に形成した構成とすることもできる。図5に例示する太陽電池11xにおいて、第2電極40xは、金属薄膜41xと、その上に形成されたバスバー42xとを含んで構成されている。金属薄膜41xは光電変換部20で生成されたキャリアを収集し、バスバー42xは金属薄膜41xで収集されたキャリアを集電する。バスバー42xは金属薄膜41x上の一部に形成されていれば良い。
 また、バスバー32とバスバー42とでヤング率を異ならせてもよい。例えば、バスバー42のヤング率をバスバー32のヤング率より低くすることは好適である。これは、第1保護部材12には、通常、ガラス基板が適用され、第2保護部材13には、通常、PETフィルム等の樹脂フィルムが適用されるため、第1電極30側よりも第2電極40側で上記応力が発生し易くなるからである。
 或いは、第1電極30では、フィンガー31及びバスバー32のヤング率を変化させず、同一の導電性ペーストを用いて形成し、第2電極40のみにおいて、フィンガー31及びバスバー32のヤング率を変化させてもよい。
 以下、実施例により本発明をさらに説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 評価用の光電変換部を以下の手順で作製する。尚、光電変換部は、全ての実施例・比較例で同じものを用いる。
 まず、水酸化カリウム(KOH)水溶液を用いて(100)面を異方性エッチングし、受光面及び裏面にテクスチャ構造を形成した清浄なn型単結晶シリコン基板(以下、基板という)を準備する。続いて、当該基板を真空チャンバ内に設置し、CVDにより、当該基板の裏面上にi型非晶質シリコン膜、n型非晶質シリコン膜を順に形成する。i型非晶質シリコン膜の形成工程では、シランガス(SiH4)を原料ガスとする。また、n型非晶質シリコン膜の形成工程では、シラン(SiH4)、水素(H2)、及びホスフィン(PH3)を原料ガスとする。基板の受光面にも、CVDにより、i型非晶質シリコン膜、p型非晶質シリコン膜を順に形成する。p型非晶質シリコン膜の形成工程では、PH3の代わりに、ジボラン(B26)を原料ガスとする。
 続いて、スパッタリングにより、n型非晶質シリコン膜上、及びp型非晶質シリコン膜上に、酸化インジウムを主成分とするTCO膜を形成する。こうして、TCO膜/i型非晶質シリコン膜/p型非晶質シリコン膜/基板/i型非晶質シリコン膜/n型非晶質シリコン膜/TCO膜の層構造を有する光電変換部を作製した。
 次に、作製した光電変換部の受光面上に受光面電極を、光電変換部の裏面上に裏面電極をそれぞれ形成する。
 受光面電極は、2本のバスバー、及びこれに直交する50本のフィンガーとし、いずれもスクリーン印刷により下記組成等を有する導電性ペーストを受光面上に印刷して形成する。まず、フィンガーを印刷し、次いでバスバーを印刷する。尚、各印刷工程において、スキージ角度、印圧等の印刷条件は同じとする。続いて、仮乾燥工程(150℃×15分)により転写された導電性ペーストの溶剤の一部を除去する。
 裏面電極は、2本のバスバー、及びこれに直交する250本のフィンガーとする。スクリーン版の開口部のパターンが異なる以外は、受光面電極の場合と同様にして裏面電極を印刷する。
 その後、本乾燥工程(200℃×60分)により転写された導電性ペーストの溶剤を除去し、バインダ樹脂を熱硬化させる。こうして、下記寸法等を有する受光面電極及び裏面電極を備える太陽電池を作製した。
<フィンガー用導電性ペースト>
[バインダ樹脂]ビスフェノールA型エポキシ樹脂
[導電性フィラー]銀粒子(粒径;1~10μm、形状;フレーク粉及び球状粉の混合型(配合比は50:50wt%)
[配合比]溶剤:バインダ樹脂:導電性フィラー=1:9:90wt%
<バスバー用導電性ペースト>
[導電性フィラー]フィンガーの場合と同じ
[バインダ樹脂]
  熱硬化性樹脂(60重量%);フィンガーの場合と同じ
  エラストマーA(40重量%);シリコーンゴム(Tg;-120℃)
[配合比]溶剤:バインダ樹脂:導電性フィラー=1:19:80
<受光面電極>
[フィンガー]高さ;40μm、ヤング率;30GPa
[バスバー]高さ;50μm、ヤング率;0.05GPa
<裏面電極>
[フィンガー]高さ;30μm、ヤング率;30GPa
[バスバー]高さ;40μm、ヤング率;0.05GPa
 次に、作製した複数の太陽電池を同一平面上に並べて、隣接する太陽電池同士を配線材で接続し、太陽電池モジュールを作製する。
 配線材は、フィルム状接着剤(エポキシ樹脂系接着剤)を用いてバスバー上に接続する。まず、フィルム状接着剤をバスバー上に配置し、次いで当該接着剤上に配線材を配置する。配線材は、バスバー上の全域を覆い、フィンガーにかからないように配置する。そして、配線材上にヒートシールバーを取り付けて熱圧着することにより、配線材とバスバーとを接続する。
 続いて、配線材を接続して得られた太陽電池のストリングをEVA(充填材)、ガラス基板(第1保護部材)、PETフィルム(第2保護部材)を用いてラミネートする。ラミネート装置では、ヒーター上にモジュール材料を重ね合わせた状態で置く。ヒーター側から、ガラス基板/EVAシート/ストリング/EVAシート/PETフィルムの順に配置して、真空状態で材料を150℃程度で加熱する。その後、大気圧下でヒーター側に材料を押し付けながら加熱を継続し、EVAを架橋させる。最後に、フレーム等を取り付ける。こうして、太陽電池モジュールを作製した。
 作製した太陽電池モジュールについて、太陽電池/太陽電池モジュールの出力相関、及び温度サイクル試験の評価を行った。評価結果は、電極のヤング率等と共に表1に示した。出力相関は、モジュール化前後の曲線因子(FF)の変化を示す値であり、[モジュール化直後のFF/電極を形成した直後の太陽電池のFF]×100(%)により算出される。温度サイクル試験の結果は、400サイクル(最低温度(-40℃)及び最高温度(90℃)で30分間保持し、それぞれの温度間を90分間で変えている)の前後の最大出力Pmaxの変化を示し、[サイクル試験後のPmax/サイクル試験前のPmax]×100(%)により算出される。
<実施例2~8、比較例1~3>
 バスバーを構成するバインダ樹脂の組成を表1に示すものに変更した以外は、実施例1と同様にして太陽電池の作製及び評価を行なった。
  エラストマーB;ウレタンゴム(Tg;-30℃)
  エラストマーC;オレフィンゴム(Tg;-55℃)
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の太陽電池モジュールは、いずれも出力相関が99.5%以上であり、且つ温度サイクル試験によるPmaxの変化率が95.0%以上であった。つまり、実施例の太陽電池モジュールは、初期の出力特性に優れると共に、その特性が長期の使用により劣化し難い。この優れた特性は、バスバーのヤング率(25℃)を0.05~1GPaの範囲内に制御することによって、またフィンガーのヤング率(25℃)を1超過~50GPaの範囲内に制御することによって得られたものである。
 一方、比較例の太陽電池モジュールは、初期の出力特性が高いがその特性が劣化し易いもの(比較例1)、或いは初期の出力特性が低いもの(比較例2,3)であった。
 また、エラストマーの含有量を10~30重量%として、バスバーのヤング率(25℃)を0.1~1GPaの範囲内に制御することにより、出力相関が99.5%以上であり、且つ温度サイクル試験によるPmaxの変化率が99.1%以上という、特に優れた特性が得られる。
 10 太陽電池モジュール、11 太陽電池、12 第1保護部材、13 第2保護部材、14 充填材、15 配線材、16 接着剤、20 光電変換部、21 テクスチャ構造、30 第1電極、31,41 フィンガー、32,42 バスバー、40 第2電極。

Claims (9)

  1.  光電変換部と、
     前記光電変換部の主面上に設けられた電極と、
     を備え、
     前記電極は、バインダ樹脂と導電性フィラーとを含んで構成されたバスバーを有し、
     前記バスバーのヤング率(25℃)は、0.05~1GPaである太陽電池。
  2.  請求項1に記載の太陽電池あって、
     前記電極は、バインダ樹脂と導電性フィラーとを含んで構成されたフィンガーを有し、
     前記フィンガーのヤング率(25℃)は、1超過~50GPaである。
  3.  請求項2に記載の太陽電池あって、
     前記フィンガー及び前記バスバーは、各々の前記バインダ樹脂の組成が互いに異なる。
  4.  請求項3に記載の太陽電池あって、
     前記フィンガーを構成する前記バインダ樹脂は、エポキシ系樹脂、ウレタン系樹脂、ウレア系樹脂、アクリル系樹脂、イミド系樹脂、及びフェノール系樹脂からなる群より選択される少なくとも1種である熱硬化性樹脂を90超過~100重量%含有し、
     前記バスバーを構成する前記バインダ樹脂は、前記熱硬化性樹脂を50~90重量%、及びガラス転移温度が25℃以下であるゴム又は熱可塑性エラストマーを10~50重量%含有する。
  5.  請求項4に記載の太陽電池あって、
     前記ゴムは、ジエン系ゴム、オレフィン系ゴム、ウレタン系ゴム、アクリル系ゴム、含ケイ素ゴム、含ハロゲンゴム、及びこれらの変性物からなる群より選択される少なくとも1種である。
  6.  請求項4に記載の太陽電池あって、
     前記熱可塑性エラストマーは、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、エステル系熱可塑性エラストマー、アクリル系熱可塑性エラストマー、シリコーン系熱可塑性エラストマー、及びこれらの変性物からなる群より選択される少なくとも1種である。
  7.  請求項2~6のいずれか1項に記載の太陽電池あって、
     前記バスバーにおける前記導電性フィラーの含有率は、前記フィンガーにおける前記導電性フィラーの含有率よりも低い。
  8.  請求項2~7のいずれか1項に記載の太陽電池あって、
     前記バスバーの高さは、前記フィンガーの高さよりも高い。
  9.  請求項1~8のいずれか1項に記載の複数の太陽電池と、
     前記バスバーに取り付けられた配線材と、
     を備えた太陽電池モジュール。
PCT/JP2011/079802 2011-12-22 2011-12-22 太陽電池及び太陽電池モジュール WO2013094052A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013550026A JP5938695B2 (ja) 2011-12-22 2011-12-22 太陽電池及び太陽電池モジュール
PCT/JP2011/079802 WO2013094052A1 (ja) 2011-12-22 2011-12-22 太陽電池及び太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079802 WO2013094052A1 (ja) 2011-12-22 2011-12-22 太陽電池及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
WO2013094052A1 true WO2013094052A1 (ja) 2013-06-27

Family

ID=48667976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079802 WO2013094052A1 (ja) 2011-12-22 2011-12-22 太陽電池及び太陽電池モジュール

Country Status (2)

Country Link
JP (1) JP5938695B2 (ja)
WO (1) WO2013094052A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178597A (ja) * 2014-02-28 2015-10-08 太陽インキ製造株式会社 導電性組成物および導電体
JP2016103642A (ja) * 2014-11-28 2016-06-02 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
KR20160064702A (ko) * 2014-11-28 2016-06-08 엘지전자 주식회사 태양 전지
WO2017026130A1 (ja) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 導電性組成物、導電体および基材
US20170157745A1 (en) * 2014-07-07 2017-06-08 Bando Chemical Industries, Ltd. Abrasive film
JP2017523607A (ja) * 2014-07-02 2017-08-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機エラストマーを含む導電性ペーストを使用した太陽電池電極の組み立て方法
WO2023008234A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 デバイス構造体及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044357A1 (fr) * 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Structure connectée et son procédé de fabrication
WO2008069035A1 (ja) * 2006-11-28 2008-06-12 Sanyo Electric Co., Ltd. 太陽電池モジュール
JP2008205137A (ja) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2009088152A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044357A1 (fr) * 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Structure connectée et son procédé de fabrication
WO2008069035A1 (ja) * 2006-11-28 2008-06-12 Sanyo Electric Co., Ltd. 太陽電池モジュール
JP2008205137A (ja) * 2007-02-19 2008-09-04 Sanyo Electric Co Ltd 太陽電池及び太陽電池モジュール
JP2009088152A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 太陽電池モジュール

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178597A (ja) * 2014-02-28 2015-10-08 太陽インキ製造株式会社 導電性組成物および導電体
JP2017523607A (ja) * 2014-07-02 2017-08-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機エラストマーを含む導電性ペーストを使用した太陽電池電極の組み立て方法
US20170157745A1 (en) * 2014-07-07 2017-06-08 Bando Chemical Industries, Ltd. Abrasive film
US10543582B2 (en) * 2014-07-07 2020-01-28 Bando Chemical Industries, Ltd. Abrasive film
US9722104B2 (en) 2014-11-28 2017-08-01 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR20210138534A (ko) * 2014-11-28 2021-11-19 엘지전자 주식회사 태양전지
KR20160064702A (ko) * 2014-11-28 2016-06-08 엘지전자 주식회사 태양 전지
US10014419B2 (en) 2014-11-28 2018-07-03 Lg Electronics Inc. Solar cell and method for manufacturing the same
US10230009B2 (en) 2014-11-28 2019-03-12 Lg Electronics Inc. Solar cell and method for manufacturing the same
US20190148573A1 (en) * 2014-11-28 2019-05-16 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2016103642A (ja) * 2014-11-28 2016-06-02 エルジー エレクトロニクス インコーポレイティド 太陽電池及びその製造方法
US11133426B2 (en) 2014-11-28 2021-09-28 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR102328425B1 (ko) * 2014-11-28 2021-11-18 엘지전자 주식회사 태양 전지
KR102545947B1 (ko) * 2014-11-28 2023-06-21 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지
US11239379B2 (en) 2014-11-28 2022-02-01 Lg Electronics Inc. Solar cell and method for manufacturing the same
KR102411967B1 (ko) * 2014-11-28 2022-06-22 엘지전자 주식회사 태양전지
KR20220086543A (ko) * 2014-11-28 2022-06-23 엘지전자 주식회사 태양전지
KR20220086542A (ko) * 2014-11-28 2022-06-23 엘지전자 주식회사 태양전지
KR102531378B1 (ko) 2014-11-28 2023-05-11 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지
US11616153B2 (en) 2014-11-28 2023-03-28 Shangrao Jinko Solar Technology Development Co., Ltd Solar cell and method for manufacturing the same
WO2017026130A1 (ja) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 導電性組成物、導電体および基材
WO2023008234A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 デバイス構造体及びその製造方法

Also Published As

Publication number Publication date
JPWO2013094052A1 (ja) 2015-04-27
JP5938695B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5938695B2 (ja) 太陽電池及び太陽電池モジュール
KR101282943B1 (ko) 태양전지 모듈
CN1825654B (zh) 太阳电池和半导体器件以及其制造方法
JP5014503B2 (ja) 太陽電池セル及び太陽電池モジュール
JP2008135655A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池セル
EP2573819B1 (en) Bifacial solar cell module
KR101282939B1 (ko) 태양전지 모듈
KR101621989B1 (ko) 태양전지 패널
JP5741450B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
EP2755243A1 (en) Solar cell module manufacturing method, solar cell module, and tab wire connection method
WO2008069035A1 (ja) 太陽電池モジュール
JP2010239167A (ja) 太陽電池モジュール
JP2008288333A (ja) 太陽電池モジュール及びその製造方法
JP5741451B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2019079916A (ja) バックコンタクト型太陽電池モジュール
US8975507B2 (en) Solar cell module
JP2013030734A (ja) 太陽電池モジュール
JP5014502B2 (ja) 太陽電池セルの製造方法及び太陽電池モジュールの製造方法
KR20120014314A (ko) 태양전지 패널
JP2015176917A (ja) 太陽電池モジュール及び車両用部材
JP2014207441A (ja) 太陽電池モジュール及び車両用部材
CN217983362U (zh) 光伏组件
JP2015192068A (ja) 太陽電池モジュール及び車両用部材
JP2014011320A (ja) 太陽電池モジュール
JP2012099613A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877694

Country of ref document: EP

Kind code of ref document: A1