WO2023008119A1 - 正極、電池、および正極の製造方法 - Google Patents

正極、電池、および正極の製造方法 Download PDF

Info

Publication number
WO2023008119A1
WO2023008119A1 PCT/JP2022/026777 JP2022026777W WO2023008119A1 WO 2023008119 A1 WO2023008119 A1 WO 2023008119A1 JP 2022026777 W JP2022026777 W JP 2022026777W WO 2023008119 A1 WO2023008119 A1 WO 2023008119A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
solid electrolyte
carbon black
Prior art date
Application number
PCT/JP2022/026777
Other languages
English (en)
French (fr)
Inventor
勇祐 西尾
賢治 長尾
出 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023538379A priority Critical patent/JPWO2023008119A1/ja
Priority to CN202280051646.5A priority patent/CN117693829A/zh
Publication of WO2023008119A1 publication Critical patent/WO2023008119A1/ja
Priority to US18/407,531 priority patent/US20240145726A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to positive electrodes, batteries, and methods of manufacturing positive electrodes.
  • Patent Document 1 discloses a battery with a positive electrode containing a positive electrode active material and a solid electrolyte.
  • the positive electrode in one aspect of the present disclosure is A positive electrode comprising a mixture of a positive active material, a solid electrolyte and a conductive material,
  • the conductive material contains carbon black having an average particle size of 100 nm or less, When the cross section of the positive electrode is observed using a scanning electron microscope, a region where the carbon black is concentrated between the positive electrode active material and the solid electrolyte is observed.
  • the resistance of the battery can be reduced.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode in Embodiment 1.
  • FIG. 2 is a flow chart showing a method for manufacturing a positive electrode according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 1.
  • FIG. 4 is a flow chart showing a method for manufacturing a positive electrode in Modification 1.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 2.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 3.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
  • FIG. 8 is a cross-sectional SEM image of the positive electrode of Example 1.
  • Patent Literature 1 discloses a battery with a positive electrode containing a positive electrode active material and a solid electrolyte. Patent Literature 1 describes that the positive electrode may contain a conductive aid such as carbon black.
  • the inventors have conducted extensive research on methods for reducing the resistance of all-solid-state lithium-ion batteries. As a result, the inventors have found that the resistance of the battery decreases as the amount of carbon black particles arranged on the surface of the positive electrode active material increases. This is presumably because the carbon black increases electron conduction paths formed on the surface of the positive electrode active material, thereby increasing the effective reaction area of the positive electrode active material. Based on this knowledge, the present inventors have further discovered a coverage ratio of carbon black on the surface of the positive electrode active material in the positive electrode, at which lithium ion conduction between the positive electrode active material and the solid electrolyte is less likely to be inhibited.
  • the positive electrode according to the first aspect of the present disclosure is A positive electrode comprising a mixture of a positive active material, a solid electrolyte and a conductive material,
  • the conductive material contains carbon black having an average particle size of 100 nm or less, When the cross section of the positive electrode is observed using a scanning electron microscope, a region where the carbon black is concentrated between the positive electrode active material and the solid electrolyte is observed.
  • the effective reaction area of the positive electrode active material increases due to the region where the carbon black existing between the positive electrode active material and the solid electrolyte is concentrated. Thereby, the resistance of the battery can be lowered.
  • x determined by the following formula (1) may satisfy 0% ⁇ x ⁇ 100%.
  • x (3 ⁇ c)/(4 ⁇ a ⁇ b) ⁇ 10 5
  • a is the BET (Brunauer-Emmett-Teller) specific surface area (m 2 /g) of the positive electrode active material
  • b is the average particle size (nm) of the carbon black
  • c It is the ratio of the mass of the carbon black to the mass of the positive electrode active material contained in the positive electrode, and the density of the carbon black is 2.0 (g/cm 3 ). According to the above configuration, it is possible to reduce the resistance of the battery.
  • x may satisfy 5% ⁇ x ⁇ 60%. According to the above configuration, the resistance of the battery can be further reduced.
  • x may satisfy 10% ⁇ x ⁇ 50%. According to the above configuration, the resistance of the battery can be further reduced.
  • x1 may satisfy 15% ⁇ x1 ⁇ 40%. According to the above configuration, the resistance of the battery can be further reduced.
  • a may satisfy 0 ⁇ a ⁇ 1.5 in the formula (1). According to the above configuration, it is easy to effectively arrange carbon black on the surface of the positive electrode active material.
  • the conductive material may further contain a fibrous carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the ratio of the mass of the conductive material to the mass of the positive electrode active material is 0.03 or less, good too. According to the above configuration, the electrically conductive material is less likely to inhibit lithium ion conduction between the positive electrode active material and the solid electrolyte.
  • the carbon black may have an average particle size of 25 nm or less. According to the above configuration, carbon black is more likely to adhere to the surface of the positive electrode active material.
  • the carbon black may contain acetylene black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
  • the solid electrolyte is at least one selected from the group consisting of a sulfide solid electrolyte and a halide solid electrolyte. may contain. According to the above configuration, it is possible to improve the output characteristics of the battery.
  • the positive electrode active material may have a layered rock salt structure.
  • transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
  • the positive electrode according to any one of the first to twelfth aspects may further include a coating layer that covers at least part of the surface of the positive electrode active material. According to the above configuration, the resistance of the battery can be further reduced.
  • the battery according to the fourteenth aspect of the present disclosure includes a positive electrode according to any one of the first to thirteenth aspects; a negative electrode; an electrolyte layer provided between the positive electrode and the negative electrode; Prepare.
  • the effective reaction area of the positive electrode active material increases in the positive electrode. Thereby, the resistance of the battery can be lowered.
  • the electrolyte layer may contain a sulfide solid electrolyte. According to the above configuration, it is possible to improve the output characteristics of the battery.
  • a method for manufacturing a positive electrode according to a sixteenth aspect of the present disclosure includes: A method for manufacturing a positive electrode according to any one of the first to thirteenth aspects, mixing the positive electrode active material and the carbon black; further mixing the solid electrolyte with the mixture containing the positive electrode active material and the carbon black; including.
  • carbon black can be preferentially arranged on the surface of the positive electrode active material. Therefore, carbon black tends to concentrate on the surface of the positive electrode active material. Thereby, a positive electrode having an increased effective reaction area of the positive electrode active material can be obtained. As a result, a battery with reduced resistance can be obtained.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode 1000 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode 1000 according to Embodiment 1.
  • the cathode 1000 includes a mixture of cathode active material 110 , solid electrolyte 100 and conductive material 140 .
  • Conductive material 140 includes carbon black 150 having an average particle size of 100 nm or less. When observing the cross section of positive electrode 1000 using a scanning electron microscope (SEM), a region where carbon black 150 is concentrated between positive electrode active material 110 and solid electrolyte 100 is observed.
  • SEM scanning electron microscope
  • an electron conduction path is easily formed on the surface of the positive electrode active material 110 by the region where the carbon black 150 existing between the positive electrode active material 110 and the solid electrolyte 100 is concentrated. Therefore, the effective reaction area of the positive electrode active material 110 is increased. Thereby, the resistance of the battery can be lowered.
  • the photographing magnification when observing the cross section of the positive electrode 1000 using a scanning electron microscope (SEM) is 10,000 times.
  • the average particle size of carbon black 150 can be measured, for example, using a TEM image obtained by a transmission electron microscope (TEM). Specifically, the average particle diameter is obtained by calculating the average value of the area equivalent circle diameters of 20 arbitrarily selected carbon black 150 particles using a TEM image.
  • TEM transmission electron microscope
  • the area of the carbon black 150 covering the surface of the positive electrode active material 110 is larger than the area of the carbon black 150 covering the surface of the solid electrolyte 100. may According to the above configuration, the effective reaction area of the positive electrode active material 110 is further increased.
  • the carbon black 150 may be concentrated on the surface of the positive electrode active material 110 when the cross section of the positive electrode 1000 is observed using a scanning electron microscope. According to the above configuration, the effective reaction area of the positive electrode active material 110 is further increased.
  • the value of x obtained by the following formula (1) may satisfy 0% ⁇ x ⁇ 100%.
  • a is the BET (Brunauer-Emmett-Teller) specific surface area (m 2 /g) of the positive electrode active material 110 .
  • b is the average particle size (nm) of carbon black 150;
  • c is the mass ratio of the carbon black 150 to the mass of the positive electrode active material 110 contained in the positive electrode 1000 .
  • the density ⁇ of carbon black 150 is 2.0 (g/cm 3 ).
  • the value of x determined by Equation (1) is a parameter corresponding to the coverage of the surface of the positive electrode active material 110 with the carbon black 150. Therefore, according to the above configuration, the resistance of the battery can be reduced.
  • Equation (1) is derived as follows. Assume that there are n carbon blacks 150 per unit mass (1 g) of the positive electrode active material 110 . A cross-sectional area (m 2 ) per piece of carbon black 150 is defined as ⁇ . At this time, the value of x obtained by the formula (1) is obtained by dividing the total ⁇ t of the cross-sectional area ⁇ (m 2 ) of the carbon black 150 per unit mass (1 g) of the positive electrode active material 110 into the unit mass of the positive electrode active material 110 ( It can be obtained by dividing by the surface area of the carbon black 150 per 1 g) (that is, the BET specific surface area a (m 2 /g) of the positive electrode active material 110) and expressing it as a percentage.
  • a total ⁇ t of cross-sectional areas ⁇ (m 2 ) of the carbon black 150 per unit mass (1 g) of the positive electrode active material 110 is obtained using the following formula (i).
  • the cross-sectional area ⁇ (m 2 ) of the carbon black 150 is obtained by the following formula (ii) using the average particle diameter b (nm) of the carbon black 150.
  • the number n of carbon blacks 150 per unit mass (1 g) of the positive electrode active material 110 is the ratio c of the mass of the carbon black 150 to the mass of the positive electrode active material 110 contained in the positive electrode 1000 and the carbon black 150 is obtained by the following formula (iii) using the known density ⁇ (g/cm 3 ) of .
  • v is the volume (cm 3 ) per piece of carbon black 150;
  • n c/( ⁇ v)...(iii)
  • the volume v (cm 3 ) of the carbon black 150 is obtained by the following formula (iv) using the average particle diameter b (nm) of the carbon black 150.
  • x may satisfy 5% ⁇ x ⁇ 60%. According to the above configuration, the resistance of the battery can be further reduced.
  • x may satisfy 10% ⁇ x ⁇ 50%. According to the above configuration, the resistance of the battery can be further reduced.
  • x may satisfy 15% ⁇ x ⁇ 40%. According to the above configuration, the resistance of the battery can be further reduced.
  • a may satisfy 0 ⁇ a ⁇ 1.5. According to the above configuration, it is easy to effectively dispose the carbon black 150 on the surface of the positive electrode active material 110 .
  • the ratio of the mass of the conductive material 140 to the mass of the positive electrode active material 110 may be 0.03 or less. According to the above configuration, the electrically conductive material is less likely to inhibit lithium ion conduction between the positive electrode active material and the solid electrolyte.
  • the conductive material 140 contains carbon black 150 as a main component, and also contains unavoidable impurities, or starting materials, by-products, decomposition products, etc. used when synthesizing carbon black 150. good too.
  • main component means the component contained in the largest amount in terms of mass ratio.
  • the conductive material 140 may contain, for example, 100% carbon black 150 in terms of mass ratio with respect to the entire conductive material 140, excluding impurities that are unavoidably mixed.
  • the conductive material 140 may be composed of carbon black 150 only.
  • the conductive material 140 may contain carbon black 150 having an average particle size of 25 nm or less. According to the above configuration, carbon black 150 is more likely to adhere to the surface of positive electrode active material 110 .
  • the shape of the conductive material 140 is not particularly limited.
  • the shape of the conductive material 140 may be, for example, acicular, spherical, oval, or the like.
  • the shape of the carbon black 150 contained in the conductive material 140 may be, for example, spherical, oval, or the like.
  • the shape of carbon black 150 may be spherical.
  • the surface of the spherical or ellipsoidal shape may have an uneven shape.
  • Examples of carbon black 150 include acetylene black, furnace black, channel black, thermal black, and ketjen black. Carbon black 150 may contain acetylene black and may contain furnace black. Carbon black 150 may include both acetylene black and furnace black. When the carbon black 150 contains acetylene black, it is possible to further improve the electron conductivity of the positive electrode. Carbon black 150 may be acetylene black or furnace black. Carbon black 150 may consist of acetylene black and furnace black.
  • the positive electrode active material 110 a material that can be used as a positive electrode active material for all-solid-state lithium ion batteries can be used.
  • the positive electrode active material 110 include LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li -Mn spinel, lithium titanate, lithium metal phosphate, and transition metal oxides.
  • LiNi x Me 1-x O 2 x satisfies 0.5 ⁇ x ⁇ 1, and Me includes at least one selected from the group consisting of Co, Mn and Al.
  • LiNi x Co 1-x O 2 x satisfies 0 ⁇ x ⁇ 0.5.
  • O4 can be mentioned.
  • Lithium titanate includes Li 4 Ti 5 O 12 .
  • Lithium metal phosphates include LiFePO4 , LiMnPO4 , LiCoPO4 , and LiNiPO4 .
  • Transition metal oxides include V2O5 and MoO3 .
  • the positive electrode active material 110 includes LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li— It may be a lithium-containing composite oxide selected from Mn spinel, lithium metal phosphate, and the like.
  • the positive electrode active material 110 When the positive electrode active material 110 is a lithium-containing composite oxide, the positive electrode active material 110 may have a layered rock salt structure. In the layered rock salt structure, transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
  • Solid electrolyte 100 may contain at least one selected from the group consisting of sulfide solid electrolytes and halide solid electrolytes. According to the above configuration, it is possible to improve the output characteristics of the battery.
  • the solid electrolyte 100 may be a mixture of a sulfide solid electrolyte and a halide solid electrolyte.
  • Sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like are included. Also, a sulfide solid electrolyte having an Argyrodite structure, such as Li6PS5Cl , Li6PS5Br , and Li6PS5I , may be used. LiX , Li2O , MOq , LipMOq , etc. may be added to these sulfide solid electrolytes.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • M is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe and Zn.
  • p and q are natural numbers respectively.
  • One or more sulfide solid electrolytes selected from the above materials may be used.
  • the ionic conductivity of the sulfide solid electrolyte can be further improved.
  • the charge/discharge efficiency of the battery can be further improved.
  • a halide solid electrolyte is represented, for example, by the following compositional formula (2).
  • M contains at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X includes at least one selected from the group consisting of F, Cl, Br, and I;
  • metal elements are B, Si, Ge, As, Sb and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and All elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
  • the halide solid electrolyte represented by the compositional formula (2) has high ionic conductivity compared to a halide solid electrolyte such as LiI composed of Li and a halogen element. Therefore, according to the halide solid electrolyte represented by the compositional formula (2), the ionic conductivity of the halide solid electrolyte can be further improved.
  • M may be at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
  • X may be at least one selected from the group consisting of F, Cl, Br, and I.
  • the halide solid electrolyte containing Y may be, for example, a compound represented by the composition formula LiaMebYcX6 .
  • Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
  • m is the valence of the element Me.
  • X is at least one selected from the group consisting of F, Cl, Br and I;
  • Me may be, for example, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb.
  • the ionic conductivity of the halide solid electrolyte can be further improved.
  • the following materials can be used as the halide solid electrolyte.
  • the ionic conductivity of the halide solid electrolyte can be further improved.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A1).
  • composition formula (A1) X is at least one selected from the group consisting of F, Cl, Br and I. Also, 0 ⁇ d ⁇ 2 is satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A2).
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A3).
  • composition formula (A3) 0 ⁇ 0.15 is satisfied in the composition formula (A3).
  • the halide solid electrolyte may be a material represented by the following compositional formula (A4).
  • composition formula (A4) 0 ⁇ 0.25 is satisfied in the composition formula (A4).
  • the halide solid electrolyte may be a material represented by the following compositional formula (A5).
  • Me includes at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Me may be at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
  • composition formula (A5) -1 ⁇ ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ - a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and ( x+y) ⁇ 6 is satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A6).
  • Me includes at least one selected from the group consisting of Al, Sc, Ga and Bi. Me may be at least one selected from the group consisting of Al, Sc, Ga and Bi.
  • composition formula (A6) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1+ ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied .
  • the halide solid electrolyte may be a material represented by the following compositional formula (A7).
  • Me includes at least one selected from the group consisting of Zr, Hf and Ti. Me may be at least one selected from the group consisting of Zr, Hf and Ti.
  • composition formula (A7) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
  • the halide solid electrolyte may be a material represented by the following compositional formula (A8).
  • Me includes at least one selected from the group consisting of Ta and Nb. Me may be at least one selected from the group consisting of Ta and Nb.
  • composition formula (A8) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
  • halide solid electrolyte more specifically, for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li(Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. can be used.
  • X is at least one selected from the group consisting of F, Cl, Br and I.
  • the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
  • “(Al, Ga, In)” is synonymous with “at least one selected from the group consisting of Al, Ga and In”. The same is true for other elements.
  • the halide solid electrolyte does not have to contain sulfur. According to the above configuration, generation of hydrogen sulfide gas can be suppressed. Therefore, it is possible to realize a battery with improved safety.
  • the shape of the solid electrolyte 100 is not particularly limited.
  • the shape of the solid electrolyte 100 may be, for example, needle-like, spherical, or oval.
  • the shape of the solid electrolyte 100 may be particulate.
  • the median diameter of the solid electrolyte 100 may be 100 ⁇ m or less.
  • positive electrode active material 110 and solid electrolyte 100 can form a good dispersion state in positive electrode 1000 . This improves the charge/discharge characteristics of the battery.
  • the median diameter of the solid electrolyte 100 may be 10 ⁇ m or less. According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode 1000 .
  • the median diameter of the solid electrolyte 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a better dispersed state in the positive electrode 1000 .
  • the shape of the positive electrode active material 110 is not particularly limited.
  • the shape of the positive electrode active material 110 may be, for example, acicular, spherical, or oval.
  • the shape of the positive electrode active material 110 may be particulate.
  • the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less. When the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode 1000 . This improves the charge/discharge characteristics of the battery. When the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is sufficiently ensured. This allows the battery to operate at high output.
  • the median diameter of the positive electrode active material 110 may be larger than the median diameter of the solid electrolyte 100 . Thereby, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersed state.
  • the median diameter means the particle size (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the solid electrolyte 100 and the positive electrode active material 110 may be in contact with each other.
  • the positive electrode 1000 may contain a plurality of solid electrolyte 100 particles and a plurality of positive electrode active material 110 particles.
  • the content of the solid electrolyte 100 and the content of the positive electrode active material 110 may be the same or different.
  • the positive electrode 1000 may contain multiple conductive materials 140 .
  • the positive electrode 1000 may contain multiple carbon blacks 150 .
  • FIG. 2 is a flow chart showing a method for manufacturing the positive electrode 1000. As shown in FIG. The positive electrode 1000 can be manufactured by each step shown in the flow chart.
  • the positive electrode active material 110 and the carbon black 150 are mixed (step S1).
  • the positive electrode active material 110 and carbon black 150 satisfy the parameter limits of formula (1) above.
  • a solvent and carbon black 150 may be prepared and the carbon black 150 may be mixed with the solvent, and then the positive electrode active material 110 may be added to and mixed with the obtained mixture.
  • the obtained mixture containing positive electrode active material 110 and carbon black 150 is further mixed with solid electrolyte 100 (step S2).
  • a positive electrode material slurry containing a mixture of the positive electrode active material 110, the solid electrolyte 100 and the carbon black 150 is obtained.
  • the positive electrode 1000 is obtained by applying the prepared slurry onto a current collector and drying it.
  • the positive electrode active material 110 and the carbon black 150 are first mixed instead of mixing the positive electrode active material 110, the solid electrolyte 100 and the carbon black 150 all at once. After that, the obtained mixture is further mixed with the solid electrolyte 100 .
  • carbon black 150 can be preferentially arranged on the surface of positive electrode active material 110 . Therefore, carbon black 150 tends to concentrate on the surface of positive electrode active material 110 . Thereby, the positive electrode 1000 in which the effective reaction area of the positive electrode active material 110 is increased is obtained. As a result, a battery with reduced resistance can be obtained.
  • the positive electrode 1000 of the present disclosure is you can't get it.
  • the method of mixing the positive electrode active material 110 and the carbon black 150 is not particularly limited.
  • the method for further mixing solid electrolyte 100 into the mixture containing positive electrode active material 110 and carbon black 150 is not particularly limited.
  • the positive electrode active material 110 and the carbon black 150 may be mixed using a machine such as a homogenizer.
  • a machine such as a homogenizer may be used to further mix the solid electrolyte 100 into the mixture containing the positive electrode active material 110 and the conductive material 140 . Uniform mixing can be achieved by using a homogenizer.
  • the mixing ratio of positive electrode active material 110 and solid electrolyte 100 is not particularly limited.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a positive electrode 1001 in Modification 1.
  • conductive material 140 further includes fibrous carbon material 160 . That is, in Modification 1, conductive material 140 includes carbon black 150 and fibrous carbon material 160 . Thus, conductive material 140 may further include fibrous carbon material 160 . According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode 1001 .
  • fibrous carbon material 160 examples include fibrous carbon such as vapor-grown carbon fiber, carbon nanotube, and carbon nanofiber.
  • the fibrous carbon material 160 may contain any one of these materials, or may contain two or more of these materials.
  • the fibrous carbon material 160 may be composed of any one of these materials, or may be composed of two or more of these materials.
  • the positive electrode 1001 in Modification 1 may contain a plurality of fibrous carbon materials 160 .
  • FIG. 4 is a flow chart showing a method for manufacturing the positive electrode 1001. As shown in FIG. The positive electrode 1001 can be manufactured by each step shown in the flow chart.
  • the positive electrode active material 110 and the carbon black 150 are mixed (step S11).
  • Step S11 is the same step as step S1 in FIG.
  • the obtained mixture containing positive electrode active material 110 and carbon black 150 is further mixed with solid electrolyte 100 and fibrous carbon material 160 (step S12).
  • a positive electrode material slurry containing a mixture of the positive electrode active material 110 , the solid electrolyte 100 , the carbon black 150 and the fibrous carbon material 160 is obtained.
  • the positive electrode 1001 is obtained by applying the prepared slurry onto a current collector and drying it.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a positive electrode 1002 in Modification 2.
  • the positive electrode 1002 further includes a coating layer 120 that covers at least part of the surface of the positive electrode active material 110 .
  • the positive electrode active material 110 at least part of the surface of which is covered with the coating layer 120 is referred to as a "covered positive electrode active material 130".
  • positive electrode 1002 may further include coating layer 120 that covers at least part of the surface of positive electrode active material 110 . According to the above configuration, the resistance of the battery can be further reduced.
  • the coating layer 120 is in direct contact with the positive electrode active material 110 .
  • Coated positive electrode active material 130 in Embodiment 2 includes positive electrode active material 110 and a coating material.
  • the coating material forms the coating layer 120 by being present on at least part of the surface of the positive electrode active material 110 .
  • the coating layer 120 may evenly cover the positive electrode active material 110 . According to the above configuration, since the positive electrode active material 110 and the coating layer 120 are in close contact with each other, the resistance of the battery can be further reduced.
  • the coating layer 120 may cover only part of the surface of the positive electrode active material 110 .
  • the particles of the positive electrode active material 110 are in direct contact with each other through the portions not covered with the coating layer 120, thereby improving the electron conductivity between the particles of the positive electrode active material 110. As a result, it becomes possible to operate the battery at a high output.
  • the coating of the positive electrode active material 110 with the coating layer 120 suppresses the formation of an oxide film due to oxidative decomposition of other solid electrolytes during charging of the battery. As a result, the charging and discharging efficiency of the battery is improved.
  • Another solid electrolyte example is solid electrolyte 100 .
  • the coating material may contain Li and at least one selected from the group consisting of O, F and Cl.
  • the coating material is selected from the group consisting of lithium niobate, lithium phosphate, lithium titanate, lithium tungstate, lithium fluorozirconate, lithium fluoroaluminate, lithium fluorotitanate, and lithium fluoromagnesiumate. At least one may be included.
  • the coating material may be lithium niobate (LiNbO 3 ).
  • the positive electrode 1002 can be manufactured by replacing the positive electrode active material 110 with the coated positive electrode active material 130 in the manufacturing method of the positive electrode 1000 as shown in FIG.
  • the positive electrode active material 110 and the carbon black 150 contained in the coated positive electrode active material 130 satisfy the parameter limitation of the above formula (1).
  • the coated positive electrode active material 130 can be produced, for example, by the following method.
  • the coating layer 120 is formed on the surfaces of the particles of the positive electrode active material 110 .
  • a method for forming the coating layer 120 is not particularly limited. Methods for forming the coating layer 120 include a liquid phase coating method and a vapor phase coating method.
  • the precursor solution can be a mixed solution (sol solution) of a solvent, lithium alkoxide and niobium alkoxide.
  • Lithium alkoxides include lithium ethoxide.
  • Niobium alkoxides include niobium ethoxide.
  • Solvents are, for example, alcohols such as ethanol. The amounts of lithium alkoxide and niobium alkoxide are adjusted according to the target composition of the coating layer 120 . Water may be added to the precursor solution, if desired.
  • the precursor solution may be acidic or alkaline.
  • the method of applying the precursor solution to the surface of the positive electrode active material 110 is not particularly limited.
  • the precursor solution can be applied to the surface of the cathode active material 110 using a tumbling flow granulation coating apparatus.
  • the precursor solution can be sprayed onto the positive electrode active material 110 while rolling and flowing the positive electrode active material 110 to apply the precursor solution to the surface of the positive electrode active material 110 . .
  • a precursor film is formed on the surface of the positive electrode active material 110 .
  • the positive electrode active material 110 coated with the precursor coating is heat-treated.
  • the heat treatment promotes gelation of the precursor coating to form the coating layer 120 .
  • the coated positive electrode active material 130 is obtained.
  • the coating layer 120 covers substantially the entire surface of the positive electrode active material 110 .
  • the thickness of the covering layer 120 is generally uniform.
  • the vapor phase coating method includes a pulsed laser deposition (PLD) method, a vacuum deposition method, a sputtering method, a thermal chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and the like.
  • PLD pulsed laser deposition
  • CVD thermal chemical vapor deposition
  • a plasma chemical vapor deposition method and the like.
  • an ion-conducting material as a target is irradiated with a high-energy pulse laser (eg, KrF excimer laser, wavelength: 248 nm) to deposit sublimated ion-conducting material on the surface of the positive electrode active material 110 .
  • a high-energy pulse laser eg, KrF excimer laser, wavelength: 248 nm
  • high-density sintered LiNbO 3 is used as a target.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of the positive electrode 1003 in Modification 3.
  • Positive electrode 1003 has the same configuration as positive electrode 1001 in modification 1, except that it further includes coating layer 120 that covers at least part of the surface of positive electrode active material 110 .
  • the positive electrode 1003 has the same configuration as the positive electrode 1002 in Modification 2, except that the conductive material 140 further contains a fibrous carbon material 160 .
  • the positive electrode 1003 may further include a coating layer 120 covering at least a portion of the surface of the positive electrode active material 110, and the conductive material 140 further includes a fibrous carbon material 160. good too. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode 1003 .
  • the positive electrode 1003 in Modification 3 may contain a plurality of fibrous carbon materials 160 .
  • the positive electrode 1003 can be manufactured by replacing the positive electrode active material 110 with the coated positive electrode active material 130 in the manufacturing method of the positive electrode 1001 as shown in FIG.
  • the positive electrode active material 110 and the carbon black 150 contained in the coated positive electrode active material 130 satisfy the parameter limitation of the above formula (1).
  • the coated positive electrode active material 130 can be manufactured by the method described in Modification 2, for example.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
  • a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • the positive electrode 201 is the positive electrode according to any one of the first embodiment and the first to third modifications.
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • the effective reaction area of the positive electrode active material 110 in the positive electrode 201 is increased. Thereby, the resistance of the battery 2000 can be lowered.
  • the volume ratio “v1:100 ⁇ v1” between the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 is 30 ⁇ v1 ⁇ 95.
  • v1 represents the volume ratio of the positive electrode active material 110 when the total volume of the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v1 is satisfied.
  • v1 ⁇ 95 the battery 2000 can operate at high output.
  • the volume ratio “v11:100-v11” between the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 is 30 ⁇ v11 ⁇ 95.
  • v11 represents the volume ratio of the coated positive electrode active material 130 when the total volume of the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
  • 30 ⁇ v11 a sufficient energy density of the battery 2000 can be secured.
  • v11 ⁇ 95 the battery 2000 can operate at high output.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • the electrolyte layer 202 is a layer containing an electrolyte.
  • the electrolyte is, for example, a solid electrolyte. That is, electrolyte layer 202 may be a solid electrolyte layer.
  • the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain a solid electrolyte having the same composition as solid electrolyte 100 . According to the above configuration, the charge/discharge efficiency of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain a halide solid electrolyte having a composition different from that of the solid electrolyte 100 .
  • the electrolyte layer 202 may contain a sulfide solid electrolyte.
  • the electrolyte layer 202 may contain only one solid electrolyte selected from the materials listed as solid electrolytes.
  • the electrolyte layer 202 may contain two or more solid electrolytes selected from the materials listed as solid electrolytes. In this case, the plurality of solid electrolytes have compositions different from each other.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
  • the negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material.
  • Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used for the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal, lithium alloys, and the like.
  • carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • the capacity density can be improved by using silicon (Si), tin (Sn), a silicon compound, a tin compound, or the like.
  • the negative electrode 203 may contain a solid electrolyte. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and the battery 2000 can operate at high output.
  • the solid electrolyte contained in negative electrode 203 the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, negative electrode 203 may contain a solid electrolyte having the same composition as that of solid electrolyte 100 .
  • the shape of the solid electrolyte contained in the negative electrode 203 in Embodiment 2 is not particularly limited.
  • the shape of the solid electrolyte contained in the negative electrode 203 may be acicular, spherical, oval, or the like, for example.
  • the shape of the solid electrolyte contained in the negative electrode 203 may be particulate.
  • the median diameter of the solid electrolyte may be 100 ⁇ m or less.
  • the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the solid electrolyte contained in the negative electrode 203 may be 10 ⁇ m or less, or may be 1 ⁇ m or less. According to the above configuration, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 .
  • the median diameter of the solid electrolyte contained in the negative electrode 203 may be smaller than the median diameter of the negative electrode active material. According to the above configuration, the negative electrode active material and the solid electrolyte can form a better dispersion state in the negative electrode 203 .
  • the shape of the negative electrode active material in Embodiment 2 is not particularly limited.
  • the shape of the negative electrode active material may be, for example, acicular, spherical, or oval.
  • the shape of the negative electrode active material may be particulate.
  • the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
  • the median diameter of the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material is sufficiently ensured. This allows battery 2000 to operate at high output.
  • the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte contained in the negative electrode 203 . Thereby, the negative electrode active material and the solid electrolyte can form a good dispersed state.
  • the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
  • v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte contained in the negative electrode 203 is taken as 100.
  • a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v2 is satisfied.
  • v2 ⁇ 95 the battery 2000 can operate at high output.
  • the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of the negative electrode 203 is 500 ⁇ m or less, the battery 2000 can operate at high output.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, Carboxymethyl cellulose etc.
  • the negative electrode 203 may contain a conductive aid for the purpose of improving electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black, furnace black, and ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, aluminum, and the like.
  • conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole, and polythiophene. Cost reduction can be achieved when a carbon conductive aid is used.
  • Shapes of the battery 2000 in Embodiment 2 include, for example, a coin shape, a cylindrical shape, a rectangular shape, a sheet shape, a button shape, a flat shape, and a laminated shape.
  • Examples 1 to 7 and Comparative Examples 1 to 2 LiNi 0.8 (Co, Mn) 0.2 O 2 (hereinafter referred to as NCM) was used as the positive electrode active material.
  • NCM LiNi 0.8 (Co, Mn) 0.2 O 2
  • NCM was used as a positive electrode active material.
  • LiNbO 3 was used as the coating material.
  • a coating layer containing LiNbO 3 was formed by a liquid phase coating method. Specifically, first, a precursor solution of an ion conductive material was applied to the surface of the NCM. This formed a precursor coating on the surface of the NCM. The NCM coated with the precursor coating was then heat treated. Gelation of the precursor film progressed by the heat treatment, and a coating layer made of LiNbO 3 was formed. As a result, a coated positive electrode active material (hereinafter referred to as Nb-NCM) was obtained.
  • the BET specific surface area a of the produced Nb-NCM was 0.36 m 2 /g.
  • the mixing ratio of Nb-NCM and LPS was 70:30 by volume.
  • the ratio c of the mass of acetylene black to the mass of Nb-NCM was 0.0030.
  • the ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0030.
  • the positive electrode was produced by apply
  • Li 2 TiO 3 (hereinafter referred to as LTO) was used as a negative electrode active material.
  • a binder, solvent, LPS and carbon fiber (VGCF-H, manufactured by Showa Denko) were mixed in an argon glove box with a dew point of ⁇ 60° C. or less, and dispersed using a homogenizer. This gave a mixture of binder, solvent, LPS and VGCF-H.
  • LTO which is a solid electrolyte, was added to the mixture, mixed, and dispersed with a homogenizer to prepare a slurry of the negative electrode material. The prepared slurry was applied onto a current collector and dried on a hot plate to prepare a negative electrode.
  • the mixing ratio of LTO and LPS was 65:35 by volume.
  • the ratio of VGCF-H mass to LTO mass was 0.024.
  • VGCF is a registered trademark of Showa Denko K.K.
  • LPS, binder and solvent were mixed and dispersed using a homogenizer. This produced a slurry containing LPS.
  • the prepared slurry was applied to a substrate and dried on a hot plate to prepare an electrolyte layer.
  • the prepared negative electrode and electrolyte layer were laminated, and the substrate was removed from the electrolyte layer after pressure molding while heating.
  • the positive electrode was laminated on the side opposite to the negative electrode of the molded body so that the electrolyte layer and the positive electrode were in contact with each other, and pressure molding was performed while heating. After attaching a current collecting lead to the obtained molded article, the molded article was placed in a laminate packaging material and the packaging material was sealed. Thus, a battery of Example 1 was produced.
  • Example 7>> In the manufacturing process of the positive electrode, the mass ratio of VGCF-H to the mass of Nb-NCM was 0.020. The ratio c of the mass of acetylene black to the mass of Nb-NCM was 0.0048. The ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0248. A battery of Example 7 was obtained in the same manner as in Example 4 except for this.
  • VGCF-H carbon fiber
  • the binder, solvent and VGCF-H were mixed in an argon glove box with a dew point of ⁇ 60° C. or lower and dispersed using a homogenizer.
  • Nb-NCM as a coating active material
  • LPS as a solid electrolyte were added and mixed at once, and dispersed by a homogenizer to prepare a positive electrode material slurry.
  • the mass ratio of VGCF-H to the mass of Nb-NCM was 0.008.
  • the ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0080.
  • a battery of Comparative Example 1 was obtained in the same manner as in Example 1 except for these.
  • the battery was placed in a constant temperature bath at 25°C and connected to a charge/discharge device.
  • DCR Direct Current Resistance
  • Vo is the voltage before discharging for 10 seconds.
  • V is the voltage after discharging for 10 seconds.
  • S is the contact area between the positive electrode and the electrolyte layer.
  • I is the current value and is 24 mA.
  • Table 1 shows the DCR ratio based on the DCR calculated by the above formula (4) together with the value of x obtained by the above formula (1).
  • the DCR ratio in Table 1 is a normalized value with the DCR of the battery of Comparative Example 2 set to 100.
  • NCA LiNi 0.8 (Co, Al) 0.2 O 2
  • NCA was used as the positive electrode active material in the manufacturing process of the coated positive electrode active material. Other steps were the same as in Example 1 to produce a coated positive electrode active material (hereinafter referred to as Nb-NCA).
  • the BET specific surface area a of the produced Nb-NCA was 0.75 m 2 /g.
  • Example 8 In the manufacturing process of the positive electrode, the ratio c of the mass of acetylene black to the mass of Nb-NCA was 0.0048. The ratio of the total mass of conductive material to the mass of Nb-NCA was 0.0048. A battery of Example 8 was obtained in the same manner as in Example 1 except for this.
  • VGCF-H carbon fiber
  • the binder, solvent and VGCF-H were mixed in an argon glove box with a dew point of ⁇ 60° C. or lower and dispersed using a homogenizer.
  • Nb-NCA as a coating active material
  • LPS as a solid electrolyte were added and mixed at once and dispersed with a homogenizer to prepare a slurry of positive electrode material.
  • the mass ratio of VGCF-H to the mass of Nb-NCA was 0.024.
  • the ratio of the total mass of conductive material to the mass of Nb-NCA was 0.0240.
  • a battery of Comparative Example 3 was obtained in the same manner as in Example 8 except for these.
  • Table 2 shows the DCR ratio based on the DCR calculated by the above formula (4) together with the value of x obtained by the above formula (1).
  • the DCR ratio in Table 2 is a value normalized by setting the DCR of the battery of Comparative Example 3 to 100.
  • FIG. 8 is a cross-sectional SEM image of the positive electrode of Example 1 by a scanning electron microscope.
  • the imaging magnification was 10,000 times.
  • carbon black could be preferentially arranged on the surface of the positive electrode active material. Therefore, when the cross section of the positive electrode was observed using a scanning electron microscope, a region where carbon black was concentrated between the positive electrode active material and the solid electrolyte was observed. Specifically, the area of the carbon black covering the surface of the positive electrode active material was larger than the area of the carbon black covering the surface of the solid electrolyte. Similar results were observed for other examples.
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.
  • Reference Signs List 1000 1001, 1002, 1003 positive electrode 100 solid electrolyte 110 positive electrode active material 120 coating layer 130 coated positive electrode active material 140 conductive material 150 carbon black 160 fibrous carbon material 2000 battery 201 positive electrode 202 electrolyte layer 203 negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極1000は、正極活物質110、固体電解質100および導電性材料140の混合物を備える。導電性材料140は、100nm以下の平均粒径を有するカーボンブラック150を含む。走査型電子顕微鏡を用いて正極1000の断面を観察したときに、正極活物質110と固体電解質100の間にカーボンブラック150が集中して存在する領域が観察される。

Description

正極、電池、および正極の製造方法
 本開示は、正極、電池、および正極の製造方法に関する。
 特許文献1には、正極活物質および固体電解質を含む正極を備えた電池が開示されている。
特開2015-076180号公報
 従来技術においては、電池の抵抗をさらに低下させることが望まれる。
 本開示の一様態における正極は、
 正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
 前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
 走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される。
 本開示によれば、電池の抵抗を低下させることができる。
図1は、実施の形態1における正極の概略構成を示す断面図である。 図2は、実施の形態1における正極の製造方法を示すフローチャートである。 図3は、変形例1における正極の概略構成を示す断面図である。 図4は、変形例1における正極の製造方法を示すフローチャートである。 図5は、変形例2における正極の概略構成を示す断面図である。 図6は、変形例3における正極の概略構成を示す断面図である。 図7は、実施の形態2における電池の概略構成を示す断面図である。 図8は、実施例1の正極の断面SEM像である。
 (本開示の基礎となった知見)
 特許文献1には、正極活物質および固体電解質を含む正極を備えた電池が開示されている。特許文献1には、正極が、カーボンブラックなどの導電助剤を含んでいてもよいことが記載されている。
 本発明者らは、全固体リチウムイオン電池の抵抗を低下させる方法について鋭意研究した。その結果、正極において、正極活物質の表面に配置するカーボンブラックの粒子の量が増加するにつれて、電池の抵抗が低下するという知見を得た。これは、カーボンブラックによって、正極活物質の表面に形成される電子伝導パスが増加し、これにより、正極活物質の有効な反応面積が増加するためと推測される。本発明者らは、さらに、当該知見に基づき、正極において、正極活物質と固体電解質との間のリチウムイオン伝導が阻害されにくい、カーボンブラックによる正極活物質の表面の被覆率を発見した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る正極は、
 正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
 前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
 走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される。
 以上の構成によれば、正極活物質と固体電解質の間に存在するカーボンブラックが集中して存在する領域によって、正極活物質の有効な反応面積が増加する。これにより、電池の抵抗を低下させることができる。
 本開示の第2態様において、例えば、第1態様に係る正極では、以下の式(1)により求められるxは、0%<x<100%を満たしてもよい。
 x=(3・c)/(4・a・b)×105・・・(1)
 前記式(1)において、aは前記正極活物質のBET(Brunauer-Emmett-Teller)比表面積(m2/g)であり、bは前記カーボンブラックの平均粒径(nm)であり、cは前記正極に含まれる前記正極活物質の質量に対する前記カーボンブラックの質量の比率であり、前記カーボンブラックの密度は2.0(g/cm3)である。以上の構成によれば、電池の抵抗を低下させることができる。
 本開示の第3態様において、例えば、第2態様に係る正極では、前記式(1)において、xは、5%≦x≦60%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 本開示の第4態様において、例えば、第2態様に係る正極では、前記式(1)において、xは、10%≦x≦50%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 本開示の第5態様において、例えば、第2態様に係る正極では、前記式(1)において、x1は、15%≦x1≦40%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 本開示の第6態様において、例えば、第2から第5態様のいずれか1つに係る正極では、前記式(1)において、aは、0<a≦1.5を満たしてもよい。以上の構成によれば、正極活物質の表面にカーボンブラックを効果的に配置しやすい。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る正極では、前記導電性材料は、繊維状炭素材料をさらに含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る正極では、前記正極活物質の質量に対する前記導電性材料の質量の比率は、0.03以下であってもよい。以上の構成によれば、導電性材料によって正極活物質と固体電解質との間のリチウムイオン伝導が阻害されにくい。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る正極では、前記カーボンブラックは、25nm以下の平均粒径を有していてもよい。以上の構成によれば、正極活物質の表面にカーボンブラックがより付着しやすくなる。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る正極では、前記カーボンブラックはアセチレンブラックを含んでいてもよい。以上の構成によれば、正極における電子伝導度をより向上させることができる。
 本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る正極では、前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る正極では、前記正極活物質は、層状岩塩構造を有していてもよい。層状岩塩構造は、遷移金属とリチウムとが規則的に配列して二次元平面を形成するため、リチウムの二次元拡散が可能である。そのため、以上の構成によれば、電池のエネルギー密度を向上させることができる。
 本開示の第13態様において、例えば、第1から第12態様のいずれか1つに係る正極では、前記正極活物質の表面の少なくとも一部を被覆する被覆層をさらに備えていてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 本開示の第14態様に係る電池は、
 第1から第13態様のいずれか1つに係る正極と、
 負極と、
 前記正極と前記負極との間に設けられた電解質層と、
 を備える。
 以上の構成によれば、正極において正極活物質の有効な反応面積が増加する。これにより、電池の抵抗を低下させることができる。
 本開示の第15態様において、例えば、第14態様に係る電池では、前記電解質層は、硫化物固体電解質を含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 本開示の第16態様に係る正極の製造方法は、
 第1から第13態様のいずれか1つに係る正極の製造方法であって、
 前記正極活物質と前記カーボンブラックとを混合することと、
 前記正極活物質および前記カーボンブラックを含む混合物に、さらに前記固体電解質を混合することと、
 を含む。
 以上の構成によれば、カーボンブラックを正極活物質の表面に優先的に配置させることができる。そのため、正極活物質の表面にカーボンブラックが集中して存在しやすい。これにより、正極活物質の有効な反応面積を増加させた正極が得られる。結果として、抵抗を低下させた電池を得ることができる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 (実施の形態1)
 [正極]
 図1は、実施の形態1における正極1000の概略構成を示す断面図である。
 正極1000は、正極活物質110、固体電解質100および導電性材料140の混合物を含む。導電性材料140は、100nm以下の平均粒径を有するカーボンブラック150を含む。走査型電子顕微鏡(SEM)を用いて正極1000の断面を観察したときに、正極活物質110と固体電解質100の間にカーボンブラック150が集中して存在する領域が観察される。
 以上の構成によれば、正極活物質110と固体電解質100の間に存在するカーボンブラック150が集中して存在する領域によって、正極活物質110の表面に電子伝導パスが形成されやすい。そのため、正極活物質110の有効な反応面積が増加する。これにより、電池の抵抗を低下させることができる。
 本開示において、走査型電子顕微鏡(SEM)を用いて正極1000の断面を観察したときの撮影倍率は、1万倍である。
 カーボンブラック150の平均粒径は、例えば、透過型電子顕微鏡(TEM)によるTEM像を用いて測定することができる。具体的には、TEM像を用いて、任意に選択した20個のカーボンブラック150の粒子の面積円相当径の平均値を算出することにより、平均粒径が求められる。
 走査型電子顕微鏡を用いて正極1000の断面を観察したときに、正極活物質110の表面をカーボンブラック150が覆っている面積が、固体電解質100の表面をカーボンブラック150が覆っている面積より大きくてもよい。以上の構成によれば、正極活物質110の有効な反応面積がより増加する。
 走査型電子顕微鏡を用いて正極1000の断面を観察したときに、カーボンブラック150は、正極活物質110の表面に集中して存在していてもよい。以上の構成によれば、正極活物質110の有効な反応面積がより増加する。
 以下の式(1)により求められるxは、0%<x<100%を満たしてもよい。
 x=(3・c)/(4・a・b)×105・・・(1)
 式(1)において、aは正極活物質110のBET(Brunauer-Emmett-Teller)比表面積(m2/g)である。bはカーボンブラック150の平均粒径(nm)である。cは正極1000に含まれる正極活物質110の質量に対するカーボンブラック150の質量の比率である。カーボンブラック150の密度ρは2.0(g/cm3)である。
 式(1)により求められるxの値は、カーボンブラック150による正極活物質110の表面の被覆率に相当するパラメータである。したがって、以上の構成によれば、電池の抵抗を低下させることができる。
 式(1)は、以下のようにして導き出される。正極活物質110の単位質量(1g)当たり、n個のカーボンブラック150が存在しているとする。カーボンブラック150の1個当たりの断面積(m2)をσと定義する。このとき、式(1)により求められるxの値は、正極活物質110の単位質量(1g)当たりのカーボンブラック150の断面積σ(m2)の合計σtを正極活物質110の単位質量(1g)当たりのカーボンブラック150の表面積(すなわち、正極活物質110のBET比表面積a(m2/g))で除し、百分率化することにより求められうる。
 正極活物質110の単位質量(1g)当たりのカーボンブラック150の断面積σ(m2)の合計σtは、以下の式(i)を用いて求められる。
 σt=σ1+σ2+σ3…+σn=Σσn・・・(i)
 式(i)において、カーボンブラック150の断面積σ(m2)は、カーボンブラック150の平均粒径b(nm)を用いて、以下の式(ii)により求められる。
 σ=(b/2)×(b/2)×π×10-18・・・(ii)
 式(i)において、正極活物質110の単位質量(1g)当たりのカーボンブラック150の個数nは、正極1000に含まれる正極活物質110の質量に対するカーボンブラック150の質量の比率cおよびカーボンブラック150の既知の密度ρ(g/cm3)を用いて、以下の式(iii)により求められる。vは、カーボンブラック150の1個当たりの体積(cm3)である。
 n=c/(ρ・v)・・・(iii)
 式(iii)において、カーボンブラック150の体積v(cm3)は、カーボンブラック150の平均粒径b(nm)を用いて、以下の式(iv)により求められる。
 v=(4π/3)×(b/2)3×10-21・・・(iv)
 式(1)において、xは、5%≦x≦60%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 式(1)において、xは、10%≦x≦50%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 式(1)において、xは、15%≦x≦40%を満たしてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 式(1)において、aは、0<a≦1.5を満たしてもよい。以上の構成によれば、正極活物質110の表面にカーボンブラック150を効果的に配置しやすい。
 正極活物質110の質量に対する導電性材料140の質量の比率は、0.03以下であってもよい。以上の構成によれば、導電性材料によって正極活物質と固体電解質との間のリチウムイオン伝導が阻害されにくい。
 (導電性材料)
 導電性材料140は、カーボンブラック150を主成分として含みながら、さらに、不可避的な不純物、または、カーボンブラック150を合成する際に用いられる出発原料、副生成物および分解生成物などを含んでいてもよい。本開示において、「主成分」は、質量比で最も多く含まれた成分を意味する。
 導電性材料140は、例えば、混入が不可避的な不純物を除いて、導電性材料140の全体に対する質量割合でカーボンブラック150を100%含んでいてもよい。
 このように、導電性材料140はカーボンブラック150のみから構成されていてもよい。
 導電性材料140は、25nm以下の平均粒径を有するカーボンブラック150を含んでいてもよい。以上の構成によれば、正極活物質110の表面にカーボンブラック150がより付着しやすくなる。
 導電性材料140の形状は、特に限定されない。導電性材料140の形状は、例えば、針状、球状、楕円球状などであってもよい。
 導電性材料140に含まれるカーボンブラック150の形状は、例えば、球状、楕円球状などであってもよい。カーボンブラック150の形状は、球状であってもよい。カーボンブラック150の形状が球状または楕円球状の場合、球状または楕円球状の表面は凹凸形状を有していてもよい。
 カーボンブラック150としては、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック、およびケッチェンブラックなどが挙げられる。カーボンブラック150は、アセチレンブラックを含んでいてもよく、ファーネスブラックを含んでいてもよい。カーボンブラック150は、アセチレンブラックおよびファーネスブラックをいずれも含んでいてもよい。カーボンブラック150がアセチレンブラックを含んでいる場合には、正極における電子伝導度をより向上させることができる。カーボンブラック150は、アセチレンブラックであってもよく、ファーネスブラックであってもよい。カーボンブラック150は、アセチレンブラックおよびファーネスブラックから構成されていてもよい。
 (正極活物質)
 正極活物質110として、全固体リチウムイオン電池の正極活物質として使用可能な材料が用いられうる。正極活物質110としては、LiCoO2、LiNixMe1-x2、LiNixCo1-x2、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル、チタン酸リチウム、リン酸金属リチウム、および遷移金属酸化物が挙げられる。LiNixMe1-x2において、xは0.5≦x<1を満たし、MeはCo、MnおよびAlからなる群より選ばれる少なくとも1つ以上を含む。LiNixCo1-x2において、xは0<x<0.5を満たす。異種元素置換Li-Mnスピネルとしては、LiMn1.5Ni0.54、LiMn1.5Al0.54、LiMn1.5Mg0.54、LiMn1.5Co0.54、LiMn1.5Fe0.54、およびLiMn1.5Zn0.54が挙げられる。チタン酸リチウムとして、Li4Ti512が挙げられる。リン酸金属リチウムとして、LiFePO4、LiMnPO4、LiCoPO4、およびLiNiPO4が挙げられる。遷移金属酸化物として、V25、およびMoO3が挙げられる。
 正極活物質110は、LiCoO2、LiNixMe1-x2、LiNixCo1-x2、LiNi1/3Co1/3Mn1/32、LiMnO2、異種元素置換Li-Mnスピネル、リン酸金属リチウムなどから選ばれるリチウム含有複合酸化物であってもよい。
 正極活物質110がリチウム含有複合酸化物である場合、正極活物質110は、層状岩塩構造を有していてもよい。層状岩塩構造は、遷移金属とリチウムとが規則的に配列して二次元平面を形成するため、リチウムの二次元拡散が可能である。そのため、以上の構成によれば、電池のエネルギー密度を向上させることができる。
 (固体電解質)
 固体電解質100は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
 固体電解質100は、硫化物固体電解質とハロゲン化物固体電解質との混合物であってもよい。
 硫化物固体電解質としては、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212などが挙げられる。また、Li6PS5Cl、Li6PS5Br、Li6PS5Iなどに代表されるArgyrodite構造の硫化物固体電解質が用いられうる。これらの硫化物固体電解質に、LiX、Li2O、MOq、LipMOqなどが添加されてもよい。ここで、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。また、Mは、P、Si、Ge、B、Al、Ga、In、FeおよびZnからなる群より選ばれる少なくとも1つである。pおよびqは、それぞれ、自然数である。上記の材料から選ばれる1つまたは2つ以上の硫化物固体電解質が使用されうる。
 以上の構成によれば、硫化物固体電解質のイオン伝導度をより向上させることができる。これにより、電池の充放電効率をより向上させることができる。
 ハロゲン化物固体電解質は、例えば、以下の組成式(2)により表される。
 Liαβγ ・・・式(2)
 ここで、α、β、およびγは、それぞれ独立して、0より大きい値である。Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つの元素を含む。Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つを含む。
 本開示において、「半金属元素」とは、B、Si、Ge、As、SbおよびTeである。「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く周期表13族から16族中に含まれるすべての元素である。すなわち、「半金属元素」または「金属元素」とは、ハロゲン元素と無機化合物を形成した際に、カチオンとなりうる元素群である。
 組成式(2)で表されるハロゲン化物固体電解質は、Liおよびハロゲン元素からなるLiIなどのハロゲン化物固体電解質と比較して、高いイオン伝導度を有する。そのため、組成式(2)で表されるハロゲン化物固体電解質によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 組成式(2)において、Mは、Li以外の金属元素および半金属元素からなる群より選ばれる少なくとも1つの元素であってもよい。
 組成式(2)において、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つであってもよい。
 組成式(2)は、2.5≦α≦3、1≦β≦1.1、およびγ=6、を満たしてもよい。以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 組成式(2)において、Mは、Y(=イットリウム)を含んでいてもよい。すなわち、ハロゲン化物固体電解質は、金属元素としてYを含んでいてもよい。以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 Yを含むハロゲン化物固体電解質は、例えば、LiaMebc6の組成式で表される化合物であってもよい。ここで、a+mb+3c=6、および、c>0が満たされる。Meは、LiおよびYを除く金属元素と半金属元素とからなる群より選ばれる少なくとも1つの元素である。mは、元素Meの価数である。Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 Meは、例えば、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、TaおよびNbからなる群より選ばれる少なくとも1つであってもよい。
 以上の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 ハロゲン化物固体電解質として、例えば、以下の材料が使用されうる。以下の構成によれば、ハロゲン化物固体電解質のイオン伝導度をより向上させることができる。
 ハロゲン化物固体電解質は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3dd6 ・・・式(A1)
 組成式(A1)において、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。また、0<d<2が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A2)により表される材料であってもよい。
 Li3YX6 ・・・式(A2)
 組成式(A2)において、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 ハロゲン化物固体電解質は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl6 ・・・式(A3)
 組成式(A3)において、0<δ≦0.15が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ1+δBr6 ・・・式(A4)
 組成式(A4)において、0<δ≦0.25が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ+a1+δ-aMeaCl6-x-yBrxy ・・・式(A5)
 組成式(A5)において、Meは、Mg、Ca、Sr、BaおよびZnからなる群より選ばれる少なくとも1つを含む。Meは、Mg、Ca、Sr、BaおよびZnからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A5)において、-1<δ<2、0<a<3、0<(3-3δ+a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ1+δ-aMeaCl6-x-yBrxy ・・・式(A6)
 組成式(A6)において、Meは、Al、Sc、GaおよびBiからなる群より選ばれる少なくとも1つを含む。Meは、Al、Sc、GaおよびBiからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A6)において、-1<δ<1、0<a<2、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-a1+δ-aMeaCl6-x-yBrxy ・・・式(A7)
 組成式(A7)において、Meは、Zr、HfおよびTiからなる群より選ばれる少なくとも1つを含む。Meは、Zr、HfおよびTiからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A7)において、-1<δ<1、0<a<1.5、0<(3-3δ-a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質は、下記の組成式(A8)により表される材料であってもよい。
 Li3-3δ-2a1+δ-aMeaCl6-x-yBrxy ・・・式(A8)
 組成式(A8)において、Meは、TaおよびNbからなる群より選ばれる少なくとも1つを含む。Meは、TaおよびNbからなる群より選ばれる少なくとも1つであってもよい。
 組成式(A8)において、-1<δ<1、0<a<1.2、0<(3-3δ-2a)、0<(1+δ-a)、0≦x≦6、0≦y≦6、および(x+y)≦6、が満たされる。
 ハロゲン化物固体電解質として、より具体的には、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6などが使用されうる。ここで、Xは、F、Cl、BrおよびIからなる群より選ばれる少なくとも1つである。
 本開示において、化学式中の表記「(A,B,C)」は、「A、B、およびCからなる群より選ばれる少なくとも1つ」を意味する。例えば、「(Al,Ga,In)」は、「Al、GaおよびInからなる群より選ばれる少なくとも1つ」と同義である。他の元素の場合でも同様である。
 ハロゲン化物固体電解質は、硫黄を含んでいなくてもよい。以上の構成によれば、硫化水素ガスの発生を抑制できる。そのため、安全性を向上させた電池を実現することが可能となる。
 固体電解質100の形状は、特に限定されない。固体電解質100の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、固体電解質100の形状は、粒子状であってもよい。
 例えば、固体電解質100の形状が粒子状(例えば、球状)の場合、固体電解質100のメジアン径は、100μm以下であってもよい。固体電解質100のメジアン径が100μm以下の場合、正極1000において正極活物質110と固体電解質100とが、良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。
 固体電解質100のメジアン径は10μm以下であってもよい。以上の構成によれば、正極1000において正極活物質110と固体電解質100とが、良好な分散状態を形成できる。
 固体電解質100のメジアン径は、正極活物質110のメジアン径より小さくてもよい。以上の構成によれば、正極1000において正極活物質110と固体電解質100とが、より良好な分散状態を形成できる。
 正極活物質110の形状は、特に限定されない。正極活物質110の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、正極活物質110の形状は、粒子状であってもよい。
 正極活物質110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。正極活物質110のメジアン径が0.1μm以上の場合、正極1000において正極活物質110と固体電解質100とが、良好な分散状態を形成しうる。これにより、電池の充放電特性が向上する。正極活物質110のメジアン径が100μm以下の場合、正極活物質110内のリチウムの拡散速度が十分に確保される。これにより、電池が高出力で動作しうる。
 正極活物質110のメジアン径は、固体電解質100のメジアン径よりも大きくてもよい。これにより、正極活物質110と固体電解質100とが、良好な分散状態を形成できる。
 本開示において、メジアン径とは、体積基準の粒度分布における累積体積が50%に等しい場合の粒径(d50)を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 正極1000において、固体電解質100と正極活物質110とは、互いに接触していてもよい。
 正極1000は、複数の固体電解質100の粒子および複数の正極活物質110の粒子を含んでいてもよい。
 正極1000において、固体電解質100の含有量と正極活物質110の含有量とは、互いに同じであってもよいし、異なっていてもよい。
 正極1000は、複数の導電性材料140を含んでいてもよい。
 正極1000は、複数のカーボンブラック150を含んでいてもよい。
 <正極の製造方法>
 正極1000の製造方法について、図2を参照しながら説明する。図2は、正極1000の製造方法を示すフローチャートである。正極1000は、フローチャートに示す各ステップにより製造されうる。
 まず、正極活物質110とカーボンブラック150とを混合する(ステップS1)。正極活物質110およびカーボンブラック150は、上記式(1)のパラメータ限定を満たしている。ステップS1では、例えば、溶媒とカーボンブラック150を準備し、溶媒にカーボンブラック150を混合した後、得られた混合物に、正極活物質110を添加し混合してもよい。次に、得られた正極活物質110およびカーボンブラック150を含む混合物に、さらに固体電解質100を混合する(ステップS2)。これにより、正極活物質110、固体電解質100およびカーボンブラック150の混合物を含む正極材料のスラリーが得られる。作製したスラリーを集電体上に塗布し、乾燥させることで、正極1000が得られる。
 本実施の形態では、正極活物質110、固体電解質100およびカーボンブラック150を一度に混合するのではなく、まず、正極活物質110とカーボンブラック150とを混合している。その後、得られた混合物にさらに固体電解質100を混合している。このような製造方法によれば、カーボンブラック150を正極活物質110の表面に優先的に配置させることができる。そのため、正極活物質110の表面にカーボンブラック150が集中して存在しやすい。これにより、正極活物質110の有効な反応面積を増加させた正極1000が得られる。結果として、抵抗を低下させた電池を得ることができる。
 正極活物質110およびカーボンブラック150が、上記式(1)のパラメータ限定を満たしていても、正極活物質110、固体電解質100およびカーボンブラック150を同時に混合した場合には、本開示の正極1000を得ることはできない。
 正極活物質110とカーボンブラック150とを混合する方法は特に限定されない。正極活物質110およびカーボンブラック150を含む混合物にさらに固体電解質100を混合する方法は特に限定さない。例えば、ホモジナイザーなどの機械を用いて正極活物質110とカーボンブラック150とを混合してもよい。同様に、ホモジナイザーなどの機械を用いて正極活物質110および導電性材料140を含む混合物にさらに固体電解質100を混合してもよい。ホモジナイザーを用いることで、均一な混合を達成できる。正極活物質110と固体電解質100との混合比率は特に限定されない。
 (変形例1)
 図3は、変形例1における正極1001の概略構成を示す断面図である。正極1001において、導電性材料140は、繊維状炭素材料160をさらに含む。すなわち、変形例1において、導電性材料140は、カーボンブラック150および繊維状炭素材料160を含む。このように、導電性材料140は、繊維状炭素材料160をさらに含んでいてもよい。以上の構成によれば、正極1001における電子伝導度をより向上させることができる。
 繊維状炭素材料160として、気相法炭素繊維、カーボンナノチューブ、カーボンナノファイバーなどの繊維状炭素が挙げられる。繊維状炭素材料160は、これらの材料のいずれか1つを含んでいてもよく、これらの材料の2つ以上を含んでいてもよい。繊維状炭素材料160は、これらの材料のいずれか1つから構成されていてもよく、これらの材料の2つ以上から構成されていてもよい。
 変形例1における正極1001は、複数の繊維状炭素材料160を含んでいてもよい。
 <正極の製造方法>
 正極1001の製造方法について、図4を参照しながら説明する。図4は、正極1001の製造方法を示すフローチャートである。正極1001は、フローチャートに示す各ステップにより製造されうる。
 まず、正極活物質110とカーボンブラック150とを混合する(ステップS11)。ステップS11は、図2のステップS1と同じステップである。次に、得られた正極活物質110およびカーボンブラック150を含む混合物に、さらに固体電解質100と繊維状炭素材料160とを混合する(ステップS12)。これにより、正極活物質110、固体電解質100、カーボンブラック150および繊維状炭素材料160の混合物を含む正極材料のスラリーが得られる。作製したスラリーを集電体上に塗布し、乾燥させることで、正極1001が得られる。
 (変形例2)
 図5は、変形例2における正極1002の概略構成を示す断面図である。正極1002は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさらに備える。被覆層120によって表面の少なくとも一部を被覆されている正極活物質110を、「被覆正極活物質130」と称する。このように、正極1002は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含んでいてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
 被覆層120は、正極活物質110に直接接している。
 以下、被覆層120を構成する材料を「被覆材料」と称する。実施の形態2における被覆正極活物質130は、正極活物質110および被覆材料を含んでいる。被覆材料が、正極活物質110の表面の少なくとも一部に存在することで被覆層120を形成している。
 被覆層120は、正極活物質110を一様に被覆していてもよい。以上の構成によれば、正極活物質110と被覆層120とが密接に接触するため、電池の抵抗をより低下させることができる。
 被覆層120は、正極活物質110の表面の一部のみを被覆していてもよい。被覆層120によって被覆されていない部分を介して、正極活物質110の粒子同士が直接接触することで、正極活物質110の粒子間の電子伝導度が向上する。その結果、電池の高出力での動作が可能となる。
 被覆層120による正極活物質110の被覆は、電池の充電中における他の固体電解質の酸化分解による酸化膜の形成を抑制する。その結果、電池の充放電効率が向上する。他の固体電解質の例は、固体電解質100である。
 被覆材料は、Liと、O、FおよびClからなる群より選ばれる少なくとも1つを含んでもよい。
 被覆材料は、ニオブ酸リチウム、リン酸リチウム、チタン酸リチウム、タングステン酸リチウム、フッ化ジルコニウム酸リチウム、フッ化アルミニウム酸リチウム、フッ化チタン酸リチウム、およびフッ化マグネシウム酸リチウムからなる群より選ばれる少なくとも1つを含んでいてもよい。
 被覆材料は、ニオブ酸リチウム(LiNbO3)であってもよい。
 <正極の製造方法>
 正極1002は、図2に示すような正極1000の製造方法において、正極活物質110を被覆正極活物質130に置き換えることで製造されうる。被覆正極活物質130に含まれる正極活物質110、およびカーボンブラック150は、上記式(1)のパラメータ限定を満たしている。
 ここで、被覆正極活物質130は、例えば、下記の方法により製造されうる。まず、正極活物質110の粒子の表面に被覆層120を形成する。被覆層120を形成する方法は特に限定されない。被覆層120を形成する方法としては、液相被覆法と気相被覆法とが挙げられる。
 例えば、液相被覆法においては、イオン伝導材料の前駆体溶液を正極活物質110の表面に塗布する。LiNbO3を含む被覆層120を形成する場合、前駆体溶液は、溶媒、リチウムアルコキシドおよびニオブアルコキシドの混合溶液(ゾル溶液)でありうる。リチウムアルコキシドとしては、リチウムエトキシドが挙げられる。ニオブアルコキシドとしては、ニオブエトキシドが挙げられる。溶媒は、例えば、エタノールなどのアルコールである。被覆層120の目標組成に応じて、リチウムアルコキシドおよびニオブアルコキシドの量を調整する。必要に応じて、前駆体溶液に水を加えてもよい。前駆体溶液は、酸性であってもよく、アルカリ性であってもよい。
 前駆体溶液を正極活物質110の表面に塗布する方法は特に限定されない。例えば、転動流動造粒コーティング装置を用いて前駆体溶液を正極活物質110の表面に塗布することができる。転動流動造粒コーティング装置によれば、正極活物質110を転動および流動させつつ、正極活物質110に前駆体溶液を吹き付け、前駆体溶液を正極活物質110の表面に塗布することができる。これにより、正極活物質110の表面に前駆体被膜が形成される。その後、前駆体被膜によって被覆された正極活物質110を熱処理する。熱処理によって前駆体被膜のゲル化が進行し、被覆層120が形成される。これにより、被覆正極活物質130が得られる。この時点において、被覆層120は、正極活物質110の表面の概ね全体を被覆している。被覆層120の厚さは概ね均一である。
 気相被覆法としては、パルスレーザー堆積(Pulsed Laser Deposition:PLD)法、真空蒸着法、スパッタリング法、熱化学気相堆積(Chemical Vapor Deposition:CVD)法、プラズマ化学気相堆積法などが挙げられる。例えば、PLD法においては、ターゲットとしてのイオン伝導材料にエネルギーの強いパルスレーザー(例えば、KrFエキシマレーザー、波長:248nm)を照射し、昇華したイオン伝導材料を正極活物質110の表面に堆積させる。LiNbO3の被覆層120を形成する場合、高密度に焼結したLiNbO3がターゲットとして用いられる。
 (変形例3)
 図6は、変形例3における正極1003の概略構成を示す断面図である。正極1003は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含むことを除いて、変形例1における正極1001と同じ構成を有する。また、正極1003は、導電性材料140が繊維状炭素材料160をさらに含むことを除いて、変形例2における正極1002と同じ構成を有する。このように、正極1003は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含んでいてもよく、かつ、導電性材料140は、繊維状炭素材料160をさらに含んでいてもよい。以上の構成によれば、正極1003における電子伝導度をより向上させることができる。
 変形例3における正極1003は、複数の繊維状炭素材料160を含んでいてもよい。
 <正極の製造方法>
 正極1003は、図4に示すような正極1001の製造方法において、正極活物質110を被覆正極活物質130に置き換えることで製造されうる。被覆正極活物質130に含まれる正極活物質110、およびカーボンブラック150は、上記式(1)のパラメータ限定を満たしている。被覆正極活物質130は、例えば、変形例2において説明した方法により製造されうる。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図7は、実施の形態2における電池2000の概略構成を示す断面図である。
 実施の形態2における電池2000は、正極201と、電解質層202と、負極203と、を備える。正極201は、実施の形態1および変形例1から3のいずれか1つの正極である。電解質層202は、正極201と負極203との間に配置される。
 以上の構成によれば、正極201において正極活物質110の有効な反応面積が増加する。これにより、電池2000の抵抗を低下させることができる。
 正極201が、実施の形態1における正極1000または正極1001の場合、正極201に含まれる、正極活物質110と固体電解質100との体積比率「v1:100-v1」について、30≦v1≦95が満たされてもよい。ここで、v1は、正極201に含まれる、正極活物質110および固体電解質100の合計体積を100としたときの正極活物質110の体積比率を表す。30≦v1を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v1≦95を満たす場合、電池2000が高出力で動作しうる。
 正極201が、実施の形態1における正極1002または正極1003の場合、正極201に含まれる、被覆正極活物質130と固体電解質100との体積比率「v11:100-v11」について、30≦v11≦95が満たされてもよい。ここで、v11は、正極201に含まれる、被覆正極活物質130および固体電解質100の合計体積を100としたときの被覆正極活物質130の体積比率を表す。30≦v11を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v11≦95を満たす場合、電池2000が高出力で動作しうる。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極201の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。正極201の厚みが500μm以下の場合、電池2000が高出力で動作しうる。
 電解質層202は、電解質を含む層である。当該電解質は、例えば、固体電解質である。すなわち、電解質層202は、固体電解質層であってもよい。電解質層202に含まれる固体電解質として、実施の形態1において固体電解質100として例示した材料を用いてもよい。すなわち、電解質層202は、固体電解質100の組成と同じ組成を有する固体電解質を含んでいてもよい。以上の構成によれば、電池2000の充放電効率をより向上させることができる。
 電解質層202は、固体電解質100の組成とは異なる組成を有するハロゲン化物固体電解質を含んでいてもよい。
 電解質層202は、硫化物固体電解質を含んでもよい。
 電解質層202は、固体電解質として挙げられた材料から選ばれる1つの固体電解質のみを含んでいてもよい。
 電解質層202は、固体電解質として挙げられた材料から選ばれる2つ以上の固体電解質を含んでもよい。この場合、複数の固体電解質は、互いに異なる組成を有する。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上の場合、正極201と負極203とが短絡しにくくなる。電解質層202の厚みが300μm以下の場合、電池2000が高出力で動作しうる。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出する特性を有する材料を含む。負極203は、例えば、負極活物質を含む。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。金属材料は、合金であってもよい。金属材料の例として、リチウム金属、リチウム合金などが挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、非晶質炭素などが挙げられる。珪素(Si)、錫(Sn)、珪素化合物、および錫化合物などを用いることで容量密度を向上させることができる。
 負極203は、固体電解質を含んでいてもよい。以上の構成によれば、負極203内部のリチウムイオン伝導度が高まり、電池2000が高出力で動作しうる。負極203に含まれる固体電解質として、実施の形態1において固体電解質100として例示した材料を用いてもよい。すなわち、負極203は、固体電解質100の組成と同じ組成を有する固体電解質を含んでいてもよい。
 実施の形態2における負極203に含まれる固体電解質の形状は、特に限定されない。負極203に含まれる固体電解質の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、負極203に含まれる固体電解質の形状は、粒子状であってもよい。
 負極203に含まれる固体電解質の形状が粒子状(例えば、球状)の場合、固体電解質のメジアン径は、100μm以下であってもよい。固体電解質のメジアン径が100μm以下の場合、負極203において負極活物質と固体電解質とが、良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。
 負極203に含まれる固体電解質のメジアン径は10μm以下であってもよく、1μm以下であってもよい。以上の構成によれば、負極203において負極活物質と固体電解質とが、良好な分散状態を形成できる。
 負極203に含まれる固体電解質のメジアン径は、負極活物質のメジアン径より小さくてもよい。以上の構成によれば、負極203において負極活物質と固体電解質とが、より良好な分散状態を形成できる。
 実施の形態2における負極活物質の形状は、特に限定されない。負極活物質の形状は、例えば、針状、球状、楕円球状などであってもよい。例えば、負極活物質の形状は、粒子状であってもよい。
 負極活物質のメジアン径は、0.1μm以上かつ100μm以下であってもよい。負極活物質のメジアン径が0.1μm以上の場合、負極203において負極活物質と固体電解質とが、良好な分散状態を形成しうる。これにより、電池2000の充放電特性が向上する。負極活物質のメジアン径が100μm以下の場合、負極活物質内のリチウム拡散速度が十分に確保される。これにより、電池2000が高出力で動作しうる。
 負極活物質のメジアン径は、負極203に含まれる固体電解質のメジアン径よりも大きくてもよい。これにより、負極活物質と固体電解質とが、良好な分散状態を形成できる。
 負極203に含まれる、負極活物質と固体電解質との体積比率「v2:100-v2」について、30≦v2≦95が満たされてもよい。ここで、v2は、負極203に含まれる、負極活物質および固体電解質の合計体積を100としたときの負極活物質の体積比率を表す。30≦v2を満たす場合、十分な電池2000のエネルギー密度を確保しうる。v2≦95を満たす場合、電池2000が高出力で動作しうる。
 負極203の厚みは、10μm以上かつ500μm以下であってもよい。負極203の厚みが10μm以上の場合、十分な電池2000のエネルギー密度を確保しうる。負極203の厚みが500μm以下の場合、電池2000が高出力で動作しうる。
 正極201、電解質層202、および負極203からなる群より選ばれる少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選ばれる2つ以上の材料の共重合体も結着剤として用いられうる。また、上記の材料から選ばれる2つ以上の混合物を結着剤として使用してもよい。
 負極203は、電子伝導度を向上させる目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック類、炭素繊維または金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛またはチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物などが用いられうる。炭素導電助剤を用いた場合、低コスト化を図ることができる。
 実施の形態2における電池2000の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型などが挙げられる。
 以下、実施例および比較例を用いて、本開示の詳細が説明される。
 まず、実施例1から7および比較例1から2を用いて、本開示の詳細が説明される。実施例1から7および比較例1から2では、正極活物質として、LiNi0.8(Co,Mn)0.22(以下、NCMと表記する)を用いた。
 ≪実施例1≫
 [硫化物固体電解質の作製]
 露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLi2SおよびP25を、モル比でLi2S:P25=75:25となるように秤量した。原料粉末を乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmの条件で混合物をミリング処理した。これにより、ガラス状の固体電解質を得た。得られた固体電解質を不活性雰囲気、270度、2時間の条件で熱処理した。これにより、硫化物固体電解質であるガラスセラミックス状のLi2S-P25(以下、LPSと表記する)を作製した。
 [被覆正極活物質の作製]
 正極活物質として、NCMを用いた。被覆材料として、LiNbO3を用いた。液相被覆法により、LiNbO3を含む被覆層を形成した。具体的には、まず、イオン伝導材料の前駆体溶液をNCMの表面に塗布した。これにより、NCMの表面に前駆体被膜を形成した。その後、前駆体被膜によって被覆されたNCMを熱処理した。熱処理によって前駆体被膜のゲル化が進行し、LiNbO3からなる被覆層が形成された。これにより、被覆正極活物質(以後、Nb-NCMと表記する)が得られた。作製したNb-NCMのBET比表面積aは、0.36m2/gであった。
 [正極の作製]
 導電性材料として、平均粒径23nmのアセチレンブラックを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびアセチレンブラックを混合し、ホモジナイザーを用いて分散させた。これにより、バインダ、溶媒およびアセチレンブラックの混合物を得た。混合物に被覆活物質であるNb-NCMを添加および混合し、ホモジナイザーで分散させた。その後、固体電解質であるLPSを混合物にさらに添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMおよびLPSの混合比率は、体積比率で70:30であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0030であった。作製したスラリーを集電体上に塗布し、ホットプレート上で乾燥させることで、正極を作製した。
 [電池の作製]
 負極活物質として、Li2TiO3(以下、LTOと表記する)を用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒、LPSおよび炭素繊維(VGCF-H、昭和電工社製)を混合し、ホモジナイザーを用いて分散させた。これにより、バインダ、溶媒、LPSおよびVGCF-Hの混合物を得た。混合物に固体電解質であるLTOを添加および混合し、ホモジナイザーで分散させ、負極材料のスラリーを作製した。作製したスラリーを集電体上に塗布し、ホットプレート上で乾燥させることで、負極を作製した。LTOおよびLPSの混合比率は、体積比率で65:35であった。LTOの質量に対するVGCF-Hの質量の比率は、0.024であった。なお、「VGCF」は、昭和電工株式会社の登録商標である。
 LPS、バインダおよび溶媒を混合し、ホモジナイザーを用いて分散させた。これにより、LPSを含むスラリーを作製した。作製したスラリーを基材に塗布し、ホットプレート上で乾燥させることで、電解質層を作製した。
 作製した負極と電解質層を積層し、加温しながら加圧成形した後に、電解質層から基材を除去した。次に、得られた成形体の負極とは反対側に、電解質層と正極とが接するように正極を積層し、加温しながら加圧成形した。得られた成形体に集電リードを取り付けた後、ラミネート包材に入れて包材を封止した。これにより、実施例1の電池を作製した。
 ≪実施例2≫
 正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。これ以外は実施例1と同様にして、実施例2の電池を得た。
 ≪実施例3≫
 正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率は、0.0065であった。これ以外は実施例1と同様にして、実施例2の電池を得た。
 ≪実施例4≫
 正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率は、0.0048であった。また、正極の作製工程において、固体電解質としてのLPSを添加、混合する際に、さらに、導電性材料として炭素繊維(VGCF-H)を添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.016であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0208であった。これら以外は実施例1と同様にして、実施例4の電池を得た。
 ≪実施例5≫
 正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0013であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0213であった。これら以外は実施例4と同様にして、実施例5の電池を得た。
 ≪実施例6≫
 正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0230であった。これ以外は実施例4と同様にして、実施例6の電池を得た。
 ≪実施例7≫
 正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0248であった。これ以外は実施例4と同様にして、実施例7の電池を得た。
 ≪比較例1≫
 正極の作製工程において、導電性材料として、炭素繊維(VGCF-H)のみを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびVGCF-Hを混合し、ホモジナイザーを用いて分散させた。ここに、被覆活物質であるNb-NCMおよび固体電解質であるLPSを一度に添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.008であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0080であった。これら以外は実施例1と同様にして、比較例1の電池を得た。
 ≪比較例2≫
 正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.024であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0240であった。これ以外は比較例1と同様にして、比較例2の電池を得た。
 (充放電試験)
 実施例1から7および比較例1から2の電池を用い、以下の条件で、充放電試験を実施した。
 電池を25℃の恒温槽に配置し、充放電装置に接続した。
 電池の理論容量に対して0.1Cレート(10時間率)となる電流値2mAで、電圧2.7Vまで定電流充電した後、電圧2.7Vで定電圧充電し、0.01Cレートとなる電流値0.2mAで終了した。その後、同様に0.1Cレート(10時間率)で、電圧1.5Vまで定電流放電した後、電圧1.5Vで0.01Cレートまで定電圧放電を実施した。
 その後、同様の条件で再度充電を実施し、0.1Cレートで、電圧2.2Vまで定電流放電した後、電圧2.2Vで0.01Cレートまで定電圧放電を実施した。さらに、休止後に電流値24mAで定電流放電を10秒間行った。以下の式(4)より算出される電池の直流抵抗をDCR(Direct Current Resistance)と記載する。
 DCR=(Vo-V)×S/I・・・(4)
 ここで、Voは10秒間の放電前の電圧である。Vは10秒間の放電後の電圧である。Sは正極と電解質層との接触面積である。Iは電流値であって、24mAである。
 実施例1から7および比較例1から2の電池について、上記式(4)により算出されたDCRに基づくDCR比率を、上記式(1)により求めたxの値とともに、表1に示す。表1におけるDCR比率は、比較例2の電池のDCRを100として規格化した値である。
Figure JPOXMLDOC01-appb-T000001
 次に、実施例8から10および比較例3を用いて、本開示の詳細が説明される。実施例8から10および比較例3では、正極活物質として、LiNi0.8(Co,Al)0.22(以下、NCAと表記する)を用いた。
 ≪実施例8≫
 被覆正極活物質の作製工程において、正極活物質としてNCAを用いた。これ以外の工程は実施例1と同様にして、被覆正極活物質(以後、Nb-NCAと表記する)を作製した。作製したNb-NCAのBET比表面積aは、0.75m2/gであった。
 正極の作製工程において、Nb-NCAの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0048であった。これ以外は実施例1と同様にして、実施例8の電池を得た。
 ≪実施例9≫
 正極の作製工程において、Nb-NCAの質量に対するアセチレンブラックの質量の比率cは、0.0013であった。また、正極の作製工程において、固体電解質としてのLPSを添加、混合する際に、さらに、導電性材料として炭素繊維(VGCF-H)を添加、混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCAの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0213であった。これら以外は実施例8と同様にして、実施例9の電池を得た。
 ≪実施例10≫
 正極の作製工程において、Nb-NCAの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0230であった。これら以外の工程は実施例9と同様にして、実施例10の電池を得た。
 ≪比較例3≫
 正極の作製工程において、導電性材料として、炭素繊維(VGCF-H)のみを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびVGCF-Hを混合し、ホモジナイザーを用いて分散させた。ここに、被覆活物質であるNb-NCAおよび固体電解質であるLPSを一度に添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCAの質量に対するVGCF-Hの質量の比率は、0.024であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0240であった。これら以外は実施例8と同様にして、比較例3の電池を得た。
 (充放電試験)
 実施例8から10および比較例3の電池を用い、実施例1から7および比較例1から2と同じ条件で、充放電試験を実施した。
 実施例8から10および比較例3の電池について、上記式(4)により算出されたDCRに基づくDCR比率を、上記式(1)により求めたxの値とともに、表2に示す。表2におけるDCR比率は、比較例3の電池のDCRを100として規格化した値である。
Figure JPOXMLDOC01-appb-T000002
 ≪考察≫
 表1および表2に示す結果から、本開示に係る正極の製造方法によって、カーボンブラックを正極活物質の表面に優先的に配置した場合、DCR比率が低下した。これは、正極活物質の表面に形成される電子伝導パスが増加したことにより、正極活物質の有効な反応面積が増加したためと考えられる。
 実施例1から10に示されるように、上記式(1)により求めたxの値が5%≦x≦60%を満たす場合、DCR比率は低く、正極活物質と固体電解質との間のリチウムイオン伝導はスムーズであった。
 (正極の断面観察)
 図8は、実施例1の正極の走査電子顕微鏡による断面SEM像である。撮影倍率は、1万倍であった。上述の正極の作製方法によれば、カーボンブラックを正極活物質の表面に優先的に配置させることができた。そのため、走査型電子顕微鏡を用いて正極の断面を観察したところ、正極活物質と固体電解質の間にカーボンブラックが集中して存在する領域が観察された。詳細には、正極活物質の表面をカーボンブラックが覆っている面積が、固体電解質の表面をカーボンブラックが覆っている面積より大きかった。他の実施例についても、同様の結果が観察された。
 本開示の電池は、例えば、全固体リチウム二次電池などとして利用されうる。
 1000,1001,1002,1003 正極
 100 固体電解質
 110 正極活物質
 120 被覆層
 130 被覆正極活物質
 140 導電性材料
 150 カーボンブラック
 160 繊維状炭素材料
 2000 電池
 201 正極
 202 電解質層
 203 負極

Claims (16)

  1.  正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
     前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
     走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される、
     正極。
  2.  以下の式(1)により求められるxは、0%<x<100%を満たし、
     x=(3・c)/(4・a・b)×105・・・(1)
     前記式(1)において、aは前記正極活物質のBET(Brunauer-Emmett-Teller)比表面積(m2/g)であり、bは前記カーボンブラックの平均粒径(nm)であり、cは前記正極に含まれる前記正極活物質の質量に対する前記カーボンブラックの質量の比率であり、前記カーボンブラックの密度は2.0(g/cm3)である、
     請求項1に記載の正極。
  3.  前記式(1)において、
     xは、5%≦x≦60%を満たす、
     請求項2に記載の正極。
  4.  前記式(1)において、
     xは、10%≦x≦50%を満たす、
     請求項2に記載の正極。
  5.  前記式(1)において、
     xは、15%≦x≦40%を満たす、
     請求項2に記載の正極。
  6.  前記式(1)において、
     aは、0<a≦1.5を満たす、
     請求項2から5のいずれか一項に記載の正極。
  7.  前記導電性材料は、繊維状炭素材料をさらに含む、
     請求項1から6のいずれか一項に記載の正極。
  8.  前記正極活物質の質量に対する前記導電性材料の質量の比率は、0.03以下である、
     請求項1から7のいずれか一項に記載の正極。
  9.  前記カーボンブラックは、25nm以下の平均粒径を有する、
     請求項1から8のいずれか一項に記載の正極。
  10.  前記カーボンブラックはアセチレンブラックを含む、
     請求項1から9のいずれか一項に記載の正極。
  11.  前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含む、
     請求項1から10のいずれか一項に記載の正極。
  12.  前記正極活物質は、層状岩塩構造を有する、
     請求項1から11のいずれか一項に記載の正極。
  13.  前記正極活物質の表面の少なくとも一部を被覆する被覆層をさらに備える、
     請求項1から12のいずれか一項に記載の正極。
  14.  請求項1から13のいずれか一項に記載の正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
     を備えた、
     電池。
  15.  前記電解質層は、硫化物固体電解質を含む、
     請求項14に記載の電池。
  16.  請求項1から13のいずれか一項に記載の正極の製造方法であって、
     前記正極活物質と前記カーボンブラックとを混合することと、
     前記正極活物質および前記カーボンブラックを含む混合物に、さらに前記固体電解質を混合することと、
     を含む、
     正極の製造方法。
PCT/JP2022/026777 2021-07-27 2022-07-06 正極、電池、および正極の製造方法 WO2023008119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023538379A JPWO2023008119A1 (ja) 2021-07-27 2022-07-06
CN202280051646.5A CN117693829A (zh) 2021-07-27 2022-07-06 正极、电池和正极的制造方法
US18/407,531 US20240145726A1 (en) 2021-07-27 2024-01-09 Cathode, battery, and method for manufacturing cathode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122767 2021-07-27
JP2021-122767 2021-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/407,531 Continuation US20240145726A1 (en) 2021-07-27 2024-01-09 Cathode, battery, and method for manufacturing cathode

Publications (1)

Publication Number Publication Date
WO2023008119A1 true WO2023008119A1 (ja) 2023-02-02

Family

ID=85086670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026777 WO2023008119A1 (ja) 2021-07-27 2022-07-06 正極、電池、および正極の製造方法

Country Status (4)

Country Link
US (1) US20240145726A1 (ja)
JP (1) JPWO2023008119A1 (ja)
CN (1) CN117693829A (ja)
WO (1) WO2023008119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558870A (zh) * 2024-01-11 2024-02-13 中国第一汽车股份有限公司 一种固态正极及其制备方法和固态电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062299A (ja) * 2008-09-03 2010-03-18 Fdk Corp 蓄電デバイス
WO2013140565A1 (ja) * 2012-03-22 2013-09-26 株式会社 東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062299A (ja) * 2008-09-03 2010-03-18 Fdk Corp 蓄電デバイス
WO2013140565A1 (ja) * 2012-03-22 2013-09-26 株式会社 東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558870A (zh) * 2024-01-11 2024-02-13 中国第一汽车股份有限公司 一种固态正极及其制备方法和固态电池

Also Published As

Publication number Publication date
CN117693829A (zh) 2024-03-12
JPWO2023008119A1 (ja) 2023-02-02
US20240145726A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
JP7540536B2 (ja) 全固体電池
WO2021157361A1 (ja) 正極材料および電池
WO2020174868A1 (ja) 正極材料、および、電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
WO2022254985A1 (ja) 被覆活物質、正極材料、正極および電池
US20240145726A1 (en) Cathode, battery, and method for manufacturing cathode
WO2023037756A1 (ja) 正極材料、正極および電池
WO2023002827A1 (ja) 正極材料および電池
WO2022255026A1 (ja) 被覆活物質、正極材料、正極および電池
WO2023008006A1 (ja) 正極材料、正極、および電池
WO2022244416A1 (ja) 複合正極活物質、正極材料、および電池
WO2022209686A1 (ja) 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法
JP7507385B2 (ja) 正極材料、および、電池
WO2023132303A1 (ja) 正極材料および電池
WO2023132304A1 (ja) 正極材料および電池
WO2023008005A1 (ja) 正極材料および電池
JP7336055B1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
US20240356040A1 (en) Positive electrode material and battery
US20240356039A1 (en) Positive electrode material and battery
JP4021651B2 (ja) リチウムイオン二次電池用正極板およびそれを用いたリチウムイオン二次電池
WO2022254869A1 (ja) 被覆活物質、電極材料および電池
WO2022254871A1 (ja) 被覆活物質、電極材料および電池
WO2023182458A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法
WO2022254870A1 (ja) 被覆活物質、電極材料および電池
US20240313201A1 (en) Coated active material, method for producing coated active material, positive electrode material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538379

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051646.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849184

Country of ref document: EP

Kind code of ref document: A1