WO2023008119A1 - 正極、電池、および正極の製造方法 - Google Patents
正極、電池、および正極の製造方法 Download PDFInfo
- Publication number
- WO2023008119A1 WO2023008119A1 PCT/JP2022/026777 JP2022026777W WO2023008119A1 WO 2023008119 A1 WO2023008119 A1 WO 2023008119A1 JP 2022026777 W JP2022026777 W JP 2022026777W WO 2023008119 A1 WO2023008119 A1 WO 2023008119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- solid electrolyte
- carbon black
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 37
- 239000007774 positive electrode material Substances 0.000 claims abstract description 172
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 132
- 239000006229 carbon black Substances 0.000 claims abstract description 101
- 239000004020 conductor Substances 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 36
- 150000004820 halides Chemical class 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 28
- 239000003792 electrolyte Substances 0.000 claims description 27
- 239000011247 coating layer Substances 0.000 claims description 26
- 239000006230 acetylene black Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 239000003575 carbonaceous material Substances 0.000 claims description 17
- 239000002203 sulfidic glass Substances 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 5
- 235000019241 carbon black Nutrition 0.000 description 90
- 239000000463 material Substances 0.000 description 31
- 229910052744 lithium Inorganic materials 0.000 description 27
- 238000000576 coating method Methods 0.000 description 22
- 239000007773 negative electrode material Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 19
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 239000002243 precursor Substances 0.000 description 15
- 239000002002 slurry Substances 0.000 description 14
- -1 lithium alkoxide Chemical class 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 229910013716 LiNi Inorganic materials 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229920000049 Carbon (fiber) Polymers 0.000 description 7
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910052794 bromium Inorganic materials 0.000 description 7
- 239000004917 carbon fiber Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- 229910052740 iodine Inorganic materials 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000006232 furnace black Substances 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910015645 LiMn Inorganic materials 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910052752 metalloid Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000004549 pulsed laser deposition Methods 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910008088 Li-Mn Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910010854 Li6PS5Br Inorganic materials 0.000 description 1
- 229910010848 Li6PS5Cl Inorganic materials 0.000 description 1
- 229910011279 LiCoPO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910016252 LiMn1.5Co0.5O4 Inorganic materials 0.000 description 1
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013084 LiNiPO4 Inorganic materials 0.000 description 1
- 229910006327 Li—Mn Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- ZTILUDNICMILKJ-UHFFFAOYSA-N niobium(v) ethoxide Chemical compound CCO[Nb](OCC)(OCC)(OCC)OCC ZTILUDNICMILKJ-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229940070721 polyacrylate Drugs 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to positive electrodes, batteries, and methods of manufacturing positive electrodes.
- Patent Document 1 discloses a battery with a positive electrode containing a positive electrode active material and a solid electrolyte.
- the positive electrode in one aspect of the present disclosure is A positive electrode comprising a mixture of a positive active material, a solid electrolyte and a conductive material,
- the conductive material contains carbon black having an average particle size of 100 nm or less, When the cross section of the positive electrode is observed using a scanning electron microscope, a region where the carbon black is concentrated between the positive electrode active material and the solid electrolyte is observed.
- the resistance of the battery can be reduced.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode in Embodiment 1.
- FIG. 2 is a flow chart showing a method for manufacturing a positive electrode according to Embodiment 1.
- FIG. 3 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 1.
- FIG. 4 is a flow chart showing a method for manufacturing a positive electrode in Modification 1.
- FIG. 5 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 2.
- FIG. 6 is a cross-sectional view showing a schematic configuration of a positive electrode in Modification 3.
- FIG. 7 is a cross-sectional view showing a schematic configuration of a battery according to Embodiment 2.
- FIG. 8 is a cross-sectional SEM image of the positive electrode of Example 1.
- Patent Literature 1 discloses a battery with a positive electrode containing a positive electrode active material and a solid electrolyte. Patent Literature 1 describes that the positive electrode may contain a conductive aid such as carbon black.
- the inventors have conducted extensive research on methods for reducing the resistance of all-solid-state lithium-ion batteries. As a result, the inventors have found that the resistance of the battery decreases as the amount of carbon black particles arranged on the surface of the positive electrode active material increases. This is presumably because the carbon black increases electron conduction paths formed on the surface of the positive electrode active material, thereby increasing the effective reaction area of the positive electrode active material. Based on this knowledge, the present inventors have further discovered a coverage ratio of carbon black on the surface of the positive electrode active material in the positive electrode, at which lithium ion conduction between the positive electrode active material and the solid electrolyte is less likely to be inhibited.
- the positive electrode according to the first aspect of the present disclosure is A positive electrode comprising a mixture of a positive active material, a solid electrolyte and a conductive material,
- the conductive material contains carbon black having an average particle size of 100 nm or less, When the cross section of the positive electrode is observed using a scanning electron microscope, a region where the carbon black is concentrated between the positive electrode active material and the solid electrolyte is observed.
- the effective reaction area of the positive electrode active material increases due to the region where the carbon black existing between the positive electrode active material and the solid electrolyte is concentrated. Thereby, the resistance of the battery can be lowered.
- x determined by the following formula (1) may satisfy 0% ⁇ x ⁇ 100%.
- x (3 ⁇ c)/(4 ⁇ a ⁇ b) ⁇ 10 5
- a is the BET (Brunauer-Emmett-Teller) specific surface area (m 2 /g) of the positive electrode active material
- b is the average particle size (nm) of the carbon black
- c It is the ratio of the mass of the carbon black to the mass of the positive electrode active material contained in the positive electrode, and the density of the carbon black is 2.0 (g/cm 3 ). According to the above configuration, it is possible to reduce the resistance of the battery.
- x may satisfy 5% ⁇ x ⁇ 60%. According to the above configuration, the resistance of the battery can be further reduced.
- x may satisfy 10% ⁇ x ⁇ 50%. According to the above configuration, the resistance of the battery can be further reduced.
- x1 may satisfy 15% ⁇ x1 ⁇ 40%. According to the above configuration, the resistance of the battery can be further reduced.
- a may satisfy 0 ⁇ a ⁇ 1.5 in the formula (1). According to the above configuration, it is easy to effectively arrange carbon black on the surface of the positive electrode active material.
- the conductive material may further contain a fibrous carbon material. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
- the ratio of the mass of the conductive material to the mass of the positive electrode active material is 0.03 or less, good too. According to the above configuration, the electrically conductive material is less likely to inhibit lithium ion conduction between the positive electrode active material and the solid electrolyte.
- the carbon black may have an average particle size of 25 nm or less. According to the above configuration, carbon black is more likely to adhere to the surface of the positive electrode active material.
- the carbon black may contain acetylene black. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode.
- the solid electrolyte is at least one selected from the group consisting of a sulfide solid electrolyte and a halide solid electrolyte. may contain. According to the above configuration, it is possible to improve the output characteristics of the battery.
- the positive electrode active material may have a layered rock salt structure.
- transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
- the positive electrode according to any one of the first to twelfth aspects may further include a coating layer that covers at least part of the surface of the positive electrode active material. According to the above configuration, the resistance of the battery can be further reduced.
- the battery according to the fourteenth aspect of the present disclosure includes a positive electrode according to any one of the first to thirteenth aspects; a negative electrode; an electrolyte layer provided between the positive electrode and the negative electrode; Prepare.
- the effective reaction area of the positive electrode active material increases in the positive electrode. Thereby, the resistance of the battery can be lowered.
- the electrolyte layer may contain a sulfide solid electrolyte. According to the above configuration, it is possible to improve the output characteristics of the battery.
- a method for manufacturing a positive electrode according to a sixteenth aspect of the present disclosure includes: A method for manufacturing a positive electrode according to any one of the first to thirteenth aspects, mixing the positive electrode active material and the carbon black; further mixing the solid electrolyte with the mixture containing the positive electrode active material and the carbon black; including.
- carbon black can be preferentially arranged on the surface of the positive electrode active material. Therefore, carbon black tends to concentrate on the surface of the positive electrode active material. Thereby, a positive electrode having an increased effective reaction area of the positive electrode active material can be obtained. As a result, a battery with reduced resistance can be obtained.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode 1000 according to Embodiment 1.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a positive electrode 1000 according to Embodiment 1.
- the cathode 1000 includes a mixture of cathode active material 110 , solid electrolyte 100 and conductive material 140 .
- Conductive material 140 includes carbon black 150 having an average particle size of 100 nm or less. When observing the cross section of positive electrode 1000 using a scanning electron microscope (SEM), a region where carbon black 150 is concentrated between positive electrode active material 110 and solid electrolyte 100 is observed.
- SEM scanning electron microscope
- an electron conduction path is easily formed on the surface of the positive electrode active material 110 by the region where the carbon black 150 existing between the positive electrode active material 110 and the solid electrolyte 100 is concentrated. Therefore, the effective reaction area of the positive electrode active material 110 is increased. Thereby, the resistance of the battery can be lowered.
- the photographing magnification when observing the cross section of the positive electrode 1000 using a scanning electron microscope (SEM) is 10,000 times.
- the average particle size of carbon black 150 can be measured, for example, using a TEM image obtained by a transmission electron microscope (TEM). Specifically, the average particle diameter is obtained by calculating the average value of the area equivalent circle diameters of 20 arbitrarily selected carbon black 150 particles using a TEM image.
- TEM transmission electron microscope
- the area of the carbon black 150 covering the surface of the positive electrode active material 110 is larger than the area of the carbon black 150 covering the surface of the solid electrolyte 100. may According to the above configuration, the effective reaction area of the positive electrode active material 110 is further increased.
- the carbon black 150 may be concentrated on the surface of the positive electrode active material 110 when the cross section of the positive electrode 1000 is observed using a scanning electron microscope. According to the above configuration, the effective reaction area of the positive electrode active material 110 is further increased.
- the value of x obtained by the following formula (1) may satisfy 0% ⁇ x ⁇ 100%.
- a is the BET (Brunauer-Emmett-Teller) specific surface area (m 2 /g) of the positive electrode active material 110 .
- b is the average particle size (nm) of carbon black 150;
- c is the mass ratio of the carbon black 150 to the mass of the positive electrode active material 110 contained in the positive electrode 1000 .
- the density ⁇ of carbon black 150 is 2.0 (g/cm 3 ).
- the value of x determined by Equation (1) is a parameter corresponding to the coverage of the surface of the positive electrode active material 110 with the carbon black 150. Therefore, according to the above configuration, the resistance of the battery can be reduced.
- Equation (1) is derived as follows. Assume that there are n carbon blacks 150 per unit mass (1 g) of the positive electrode active material 110 . A cross-sectional area (m 2 ) per piece of carbon black 150 is defined as ⁇ . At this time, the value of x obtained by the formula (1) is obtained by dividing the total ⁇ t of the cross-sectional area ⁇ (m 2 ) of the carbon black 150 per unit mass (1 g) of the positive electrode active material 110 into the unit mass of the positive electrode active material 110 ( It can be obtained by dividing by the surface area of the carbon black 150 per 1 g) (that is, the BET specific surface area a (m 2 /g) of the positive electrode active material 110) and expressing it as a percentage.
- a total ⁇ t of cross-sectional areas ⁇ (m 2 ) of the carbon black 150 per unit mass (1 g) of the positive electrode active material 110 is obtained using the following formula (i).
- the cross-sectional area ⁇ (m 2 ) of the carbon black 150 is obtained by the following formula (ii) using the average particle diameter b (nm) of the carbon black 150.
- the number n of carbon blacks 150 per unit mass (1 g) of the positive electrode active material 110 is the ratio c of the mass of the carbon black 150 to the mass of the positive electrode active material 110 contained in the positive electrode 1000 and the carbon black 150 is obtained by the following formula (iii) using the known density ⁇ (g/cm 3 ) of .
- v is the volume (cm 3 ) per piece of carbon black 150;
- n c/( ⁇ v)...(iii)
- the volume v (cm 3 ) of the carbon black 150 is obtained by the following formula (iv) using the average particle diameter b (nm) of the carbon black 150.
- x may satisfy 5% ⁇ x ⁇ 60%. According to the above configuration, the resistance of the battery can be further reduced.
- x may satisfy 10% ⁇ x ⁇ 50%. According to the above configuration, the resistance of the battery can be further reduced.
- x may satisfy 15% ⁇ x ⁇ 40%. According to the above configuration, the resistance of the battery can be further reduced.
- a may satisfy 0 ⁇ a ⁇ 1.5. According to the above configuration, it is easy to effectively dispose the carbon black 150 on the surface of the positive electrode active material 110 .
- the ratio of the mass of the conductive material 140 to the mass of the positive electrode active material 110 may be 0.03 or less. According to the above configuration, the electrically conductive material is less likely to inhibit lithium ion conduction between the positive electrode active material and the solid electrolyte.
- the conductive material 140 contains carbon black 150 as a main component, and also contains unavoidable impurities, or starting materials, by-products, decomposition products, etc. used when synthesizing carbon black 150. good too.
- main component means the component contained in the largest amount in terms of mass ratio.
- the conductive material 140 may contain, for example, 100% carbon black 150 in terms of mass ratio with respect to the entire conductive material 140, excluding impurities that are unavoidably mixed.
- the conductive material 140 may be composed of carbon black 150 only.
- the conductive material 140 may contain carbon black 150 having an average particle size of 25 nm or less. According to the above configuration, carbon black 150 is more likely to adhere to the surface of positive electrode active material 110 .
- the shape of the conductive material 140 is not particularly limited.
- the shape of the conductive material 140 may be, for example, acicular, spherical, oval, or the like.
- the shape of the carbon black 150 contained in the conductive material 140 may be, for example, spherical, oval, or the like.
- the shape of carbon black 150 may be spherical.
- the surface of the spherical or ellipsoidal shape may have an uneven shape.
- Examples of carbon black 150 include acetylene black, furnace black, channel black, thermal black, and ketjen black. Carbon black 150 may contain acetylene black and may contain furnace black. Carbon black 150 may include both acetylene black and furnace black. When the carbon black 150 contains acetylene black, it is possible to further improve the electron conductivity of the positive electrode. Carbon black 150 may be acetylene black or furnace black. Carbon black 150 may consist of acetylene black and furnace black.
- the positive electrode active material 110 a material that can be used as a positive electrode active material for all-solid-state lithium ion batteries can be used.
- the positive electrode active material 110 include LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li -Mn spinel, lithium titanate, lithium metal phosphate, and transition metal oxides.
- LiNi x Me 1-x O 2 x satisfies 0.5 ⁇ x ⁇ 1, and Me includes at least one selected from the group consisting of Co, Mn and Al.
- LiNi x Co 1-x O 2 x satisfies 0 ⁇ x ⁇ 0.5.
- O4 can be mentioned.
- Lithium titanate includes Li 4 Ti 5 O 12 .
- Lithium metal phosphates include LiFePO4 , LiMnPO4 , LiCoPO4 , and LiNiPO4 .
- Transition metal oxides include V2O5 and MoO3 .
- the positive electrode active material 110 includes LiCoO 2 , LiNi x Me 1-x O 2 , LiNi x Co 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMnO 2 , Li— It may be a lithium-containing composite oxide selected from Mn spinel, lithium metal phosphate, and the like.
- the positive electrode active material 110 When the positive electrode active material 110 is a lithium-containing composite oxide, the positive electrode active material 110 may have a layered rock salt structure. In the layered rock salt structure, transition metals and lithium are regularly arranged to form a two-dimensional plane, so lithium can diffuse two-dimensionally. Therefore, according to the above configuration, the energy density of the battery can be improved.
- Solid electrolyte 100 may contain at least one selected from the group consisting of sulfide solid electrolytes and halide solid electrolytes. According to the above configuration, it is possible to improve the output characteristics of the battery.
- the solid electrolyte 100 may be a mixture of a sulfide solid electrolyte and a halide solid electrolyte.
- Sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 and the like are included. Also, a sulfide solid electrolyte having an Argyrodite structure, such as Li6PS5Cl , Li6PS5Br , and Li6PS5I , may be used. LiX , Li2O , MOq , LipMOq , etc. may be added to these sulfide solid electrolytes.
- X is at least one selected from the group consisting of F, Cl, Br and I.
- M is at least one selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe and Zn.
- p and q are natural numbers respectively.
- One or more sulfide solid electrolytes selected from the above materials may be used.
- the ionic conductivity of the sulfide solid electrolyte can be further improved.
- the charge/discharge efficiency of the battery can be further improved.
- a halide solid electrolyte is represented, for example, by the following compositional formula (2).
- M contains at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
- X includes at least one selected from the group consisting of F, Cl, Br, and I;
- metal elements are B, Si, Ge, As, Sb and Te.
- Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and All elements contained in groups 13 to 16 of the periodic table except Se. That is, the term “semimetallic element” or “metallic element” refers to a group of elements that can become cations when an inorganic compound is formed with a halogen element.
- the halide solid electrolyte represented by the compositional formula (2) has high ionic conductivity compared to a halide solid electrolyte such as LiI composed of Li and a halogen element. Therefore, according to the halide solid electrolyte represented by the compositional formula (2), the ionic conductivity of the halide solid electrolyte can be further improved.
- M may be at least one element selected from the group consisting of metal elements other than Li and metalloid elements.
- X may be at least one selected from the group consisting of F, Cl, Br, and I.
- the halide solid electrolyte containing Y may be, for example, a compound represented by the composition formula LiaMebYcX6 .
- Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
- m is the valence of the element Me.
- X is at least one selected from the group consisting of F, Cl, Br and I;
- Me may be, for example, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta and Nb.
- the ionic conductivity of the halide solid electrolyte can be further improved.
- the following materials can be used as the halide solid electrolyte.
- the ionic conductivity of the halide solid electrolyte can be further improved.
- the halide solid electrolyte may be a material represented by the following compositional formula (A1).
- composition formula (A1) X is at least one selected from the group consisting of F, Cl, Br and I. Also, 0 ⁇ d ⁇ 2 is satisfied.
- the halide solid electrolyte may be a material represented by the following compositional formula (A2).
- X is at least one selected from the group consisting of F, Cl, Br and I.
- the halide solid electrolyte may be a material represented by the following compositional formula (A3).
- composition formula (A3) 0 ⁇ 0.15 is satisfied in the composition formula (A3).
- the halide solid electrolyte may be a material represented by the following compositional formula (A4).
- composition formula (A4) 0 ⁇ 0.25 is satisfied in the composition formula (A4).
- the halide solid electrolyte may be a material represented by the following compositional formula (A5).
- Me includes at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Me may be at least one selected from the group consisting of Mg, Ca, Sr, Ba and Zn.
- composition formula (A5) -1 ⁇ ⁇ ⁇ 2, 0 ⁇ a ⁇ 3, 0 ⁇ (3-3 ⁇ + a), 0 ⁇ (1 + ⁇ - a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and ( x+y) ⁇ 6 is satisfied.
- the halide solid electrolyte may be a material represented by the following compositional formula (A6).
- Me includes at least one selected from the group consisting of Al, Sc, Ga and Bi. Me may be at least one selected from the group consisting of Al, Sc, Ga and Bi.
- composition formula (A6) ⁇ 1 ⁇ 1, 0 ⁇ a ⁇ 2, 0 ⁇ (1+ ⁇ a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied .
- the halide solid electrolyte may be a material represented by the following compositional formula (A7).
- Me includes at least one selected from the group consisting of Zr, Hf and Ti. Me may be at least one selected from the group consisting of Zr, Hf and Ti.
- composition formula (A7) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.5, 0 ⁇ (3-3 ⁇ -a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
- the halide solid electrolyte may be a material represented by the following compositional formula (A8).
- Me includes at least one selected from the group consisting of Ta and Nb. Me may be at least one selected from the group consisting of Ta and Nb.
- composition formula (A8) -1 ⁇ ⁇ ⁇ 1, 0 ⁇ a ⁇ 1.2, 0 ⁇ (3-3 ⁇ -2a), 0 ⁇ (1 + ⁇ -a), 0 ⁇ x ⁇ 6, 0 ⁇ y ⁇ 6, and (x+y) ⁇ 6 are satisfied.
- halide solid electrolyte more specifically, for example, Li 3 YX 6 , Li 2 MgX 4 , Li 2 FeX 4 , Li(Al, Ga, In) X 4 , Li 3 (Al, Ga, In) X 6 , etc. can be used.
- X is at least one selected from the group consisting of F, Cl, Br and I.
- the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
- “(Al, Ga, In)” is synonymous with “at least one selected from the group consisting of Al, Ga and In”. The same is true for other elements.
- the halide solid electrolyte does not have to contain sulfur. According to the above configuration, generation of hydrogen sulfide gas can be suppressed. Therefore, it is possible to realize a battery with improved safety.
- the shape of the solid electrolyte 100 is not particularly limited.
- the shape of the solid electrolyte 100 may be, for example, needle-like, spherical, or oval.
- the shape of the solid electrolyte 100 may be particulate.
- the median diameter of the solid electrolyte 100 may be 100 ⁇ m or less.
- positive electrode active material 110 and solid electrolyte 100 can form a good dispersion state in positive electrode 1000 . This improves the charge/discharge characteristics of the battery.
- the median diameter of the solid electrolyte 100 may be 10 ⁇ m or less. According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode 1000 .
- the median diameter of the solid electrolyte 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, the positive electrode active material 110 and the solid electrolyte 100 can form a better dispersed state in the positive electrode 1000 .
- the shape of the positive electrode active material 110 is not particularly limited.
- the shape of the positive electrode active material 110 may be, for example, acicular, spherical, or oval.
- the shape of the positive electrode active material 110 may be particulate.
- the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less. When the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersion state in the positive electrode 1000 . This improves the charge/discharge characteristics of the battery. When the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is sufficiently ensured. This allows the battery to operate at high output.
- the median diameter of the positive electrode active material 110 may be larger than the median diameter of the solid electrolyte 100 . Thereby, the positive electrode active material 110 and the solid electrolyte 100 can form a good dispersed state.
- the median diameter means the particle size (d50) when the cumulative volume in the volume-based particle size distribution is equal to 50%.
- the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
- the solid electrolyte 100 and the positive electrode active material 110 may be in contact with each other.
- the positive electrode 1000 may contain a plurality of solid electrolyte 100 particles and a plurality of positive electrode active material 110 particles.
- the content of the solid electrolyte 100 and the content of the positive electrode active material 110 may be the same or different.
- the positive electrode 1000 may contain multiple conductive materials 140 .
- the positive electrode 1000 may contain multiple carbon blacks 150 .
- FIG. 2 is a flow chart showing a method for manufacturing the positive electrode 1000. As shown in FIG. The positive electrode 1000 can be manufactured by each step shown in the flow chart.
- the positive electrode active material 110 and the carbon black 150 are mixed (step S1).
- the positive electrode active material 110 and carbon black 150 satisfy the parameter limits of formula (1) above.
- a solvent and carbon black 150 may be prepared and the carbon black 150 may be mixed with the solvent, and then the positive electrode active material 110 may be added to and mixed with the obtained mixture.
- the obtained mixture containing positive electrode active material 110 and carbon black 150 is further mixed with solid electrolyte 100 (step S2).
- a positive electrode material slurry containing a mixture of the positive electrode active material 110, the solid electrolyte 100 and the carbon black 150 is obtained.
- the positive electrode 1000 is obtained by applying the prepared slurry onto a current collector and drying it.
- the positive electrode active material 110 and the carbon black 150 are first mixed instead of mixing the positive electrode active material 110, the solid electrolyte 100 and the carbon black 150 all at once. After that, the obtained mixture is further mixed with the solid electrolyte 100 .
- carbon black 150 can be preferentially arranged on the surface of positive electrode active material 110 . Therefore, carbon black 150 tends to concentrate on the surface of positive electrode active material 110 . Thereby, the positive electrode 1000 in which the effective reaction area of the positive electrode active material 110 is increased is obtained. As a result, a battery with reduced resistance can be obtained.
- the positive electrode 1000 of the present disclosure is you can't get it.
- the method of mixing the positive electrode active material 110 and the carbon black 150 is not particularly limited.
- the method for further mixing solid electrolyte 100 into the mixture containing positive electrode active material 110 and carbon black 150 is not particularly limited.
- the positive electrode active material 110 and the carbon black 150 may be mixed using a machine such as a homogenizer.
- a machine such as a homogenizer may be used to further mix the solid electrolyte 100 into the mixture containing the positive electrode active material 110 and the conductive material 140 . Uniform mixing can be achieved by using a homogenizer.
- the mixing ratio of positive electrode active material 110 and solid electrolyte 100 is not particularly limited.
- FIG. 3 is a cross-sectional view showing a schematic configuration of a positive electrode 1001 in Modification 1.
- conductive material 140 further includes fibrous carbon material 160 . That is, in Modification 1, conductive material 140 includes carbon black 150 and fibrous carbon material 160 . Thus, conductive material 140 may further include fibrous carbon material 160 . According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode 1001 .
- fibrous carbon material 160 examples include fibrous carbon such as vapor-grown carbon fiber, carbon nanotube, and carbon nanofiber.
- the fibrous carbon material 160 may contain any one of these materials, or may contain two or more of these materials.
- the fibrous carbon material 160 may be composed of any one of these materials, or may be composed of two or more of these materials.
- the positive electrode 1001 in Modification 1 may contain a plurality of fibrous carbon materials 160 .
- FIG. 4 is a flow chart showing a method for manufacturing the positive electrode 1001. As shown in FIG. The positive electrode 1001 can be manufactured by each step shown in the flow chart.
- the positive electrode active material 110 and the carbon black 150 are mixed (step S11).
- Step S11 is the same step as step S1 in FIG.
- the obtained mixture containing positive electrode active material 110 and carbon black 150 is further mixed with solid electrolyte 100 and fibrous carbon material 160 (step S12).
- a positive electrode material slurry containing a mixture of the positive electrode active material 110 , the solid electrolyte 100 , the carbon black 150 and the fibrous carbon material 160 is obtained.
- the positive electrode 1001 is obtained by applying the prepared slurry onto a current collector and drying it.
- FIG. 5 is a cross-sectional view showing a schematic configuration of a positive electrode 1002 in Modification 2.
- the positive electrode 1002 further includes a coating layer 120 that covers at least part of the surface of the positive electrode active material 110 .
- the positive electrode active material 110 at least part of the surface of which is covered with the coating layer 120 is referred to as a "covered positive electrode active material 130".
- positive electrode 1002 may further include coating layer 120 that covers at least part of the surface of positive electrode active material 110 . According to the above configuration, the resistance of the battery can be further reduced.
- the coating layer 120 is in direct contact with the positive electrode active material 110 .
- Coated positive electrode active material 130 in Embodiment 2 includes positive electrode active material 110 and a coating material.
- the coating material forms the coating layer 120 by being present on at least part of the surface of the positive electrode active material 110 .
- the coating layer 120 may evenly cover the positive electrode active material 110 . According to the above configuration, since the positive electrode active material 110 and the coating layer 120 are in close contact with each other, the resistance of the battery can be further reduced.
- the coating layer 120 may cover only part of the surface of the positive electrode active material 110 .
- the particles of the positive electrode active material 110 are in direct contact with each other through the portions not covered with the coating layer 120, thereby improving the electron conductivity between the particles of the positive electrode active material 110. As a result, it becomes possible to operate the battery at a high output.
- the coating of the positive electrode active material 110 with the coating layer 120 suppresses the formation of an oxide film due to oxidative decomposition of other solid electrolytes during charging of the battery. As a result, the charging and discharging efficiency of the battery is improved.
- Another solid electrolyte example is solid electrolyte 100 .
- the coating material may contain Li and at least one selected from the group consisting of O, F and Cl.
- the coating material is selected from the group consisting of lithium niobate, lithium phosphate, lithium titanate, lithium tungstate, lithium fluorozirconate, lithium fluoroaluminate, lithium fluorotitanate, and lithium fluoromagnesiumate. At least one may be included.
- the coating material may be lithium niobate (LiNbO 3 ).
- the positive electrode 1002 can be manufactured by replacing the positive electrode active material 110 with the coated positive electrode active material 130 in the manufacturing method of the positive electrode 1000 as shown in FIG.
- the positive electrode active material 110 and the carbon black 150 contained in the coated positive electrode active material 130 satisfy the parameter limitation of the above formula (1).
- the coated positive electrode active material 130 can be produced, for example, by the following method.
- the coating layer 120 is formed on the surfaces of the particles of the positive electrode active material 110 .
- a method for forming the coating layer 120 is not particularly limited. Methods for forming the coating layer 120 include a liquid phase coating method and a vapor phase coating method.
- the precursor solution can be a mixed solution (sol solution) of a solvent, lithium alkoxide and niobium alkoxide.
- Lithium alkoxides include lithium ethoxide.
- Niobium alkoxides include niobium ethoxide.
- Solvents are, for example, alcohols such as ethanol. The amounts of lithium alkoxide and niobium alkoxide are adjusted according to the target composition of the coating layer 120 . Water may be added to the precursor solution, if desired.
- the precursor solution may be acidic or alkaline.
- the method of applying the precursor solution to the surface of the positive electrode active material 110 is not particularly limited.
- the precursor solution can be applied to the surface of the cathode active material 110 using a tumbling flow granulation coating apparatus.
- the precursor solution can be sprayed onto the positive electrode active material 110 while rolling and flowing the positive electrode active material 110 to apply the precursor solution to the surface of the positive electrode active material 110 . .
- a precursor film is formed on the surface of the positive electrode active material 110 .
- the positive electrode active material 110 coated with the precursor coating is heat-treated.
- the heat treatment promotes gelation of the precursor coating to form the coating layer 120 .
- the coated positive electrode active material 130 is obtained.
- the coating layer 120 covers substantially the entire surface of the positive electrode active material 110 .
- the thickness of the covering layer 120 is generally uniform.
- the vapor phase coating method includes a pulsed laser deposition (PLD) method, a vacuum deposition method, a sputtering method, a thermal chemical vapor deposition (CVD) method, a plasma chemical vapor deposition method, and the like.
- PLD pulsed laser deposition
- CVD thermal chemical vapor deposition
- a plasma chemical vapor deposition method and the like.
- an ion-conducting material as a target is irradiated with a high-energy pulse laser (eg, KrF excimer laser, wavelength: 248 nm) to deposit sublimated ion-conducting material on the surface of the positive electrode active material 110 .
- a high-energy pulse laser eg, KrF excimer laser, wavelength: 248 nm
- high-density sintered LiNbO 3 is used as a target.
- FIG. 6 is a cross-sectional view showing a schematic configuration of the positive electrode 1003 in Modification 3.
- Positive electrode 1003 has the same configuration as positive electrode 1001 in modification 1, except that it further includes coating layer 120 that covers at least part of the surface of positive electrode active material 110 .
- the positive electrode 1003 has the same configuration as the positive electrode 1002 in Modification 2, except that the conductive material 140 further contains a fibrous carbon material 160 .
- the positive electrode 1003 may further include a coating layer 120 covering at least a portion of the surface of the positive electrode active material 110, and the conductive material 140 further includes a fibrous carbon material 160. good too. According to the above configuration, it is possible to further improve the electron conductivity of the positive electrode 1003 .
- the positive electrode 1003 in Modification 3 may contain a plurality of fibrous carbon materials 160 .
- the positive electrode 1003 can be manufactured by replacing the positive electrode active material 110 with the coated positive electrode active material 130 in the manufacturing method of the positive electrode 1001 as shown in FIG.
- the positive electrode active material 110 and the carbon black 150 contained in the coated positive electrode active material 130 satisfy the parameter limitation of the above formula (1).
- the coated positive electrode active material 130 can be manufactured by the method described in Modification 2, for example.
- Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
- FIG. 7 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
- FIG. 7 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 2.
- a battery 2000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
- the positive electrode 201 is the positive electrode according to any one of the first embodiment and the first to third modifications.
- Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
- the effective reaction area of the positive electrode active material 110 in the positive electrode 201 is increased. Thereby, the resistance of the battery 2000 can be lowered.
- the volume ratio “v1:100 ⁇ v1” between the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 is 30 ⁇ v1 ⁇ 95.
- v1 represents the volume ratio of the positive electrode active material 110 when the total volume of the positive electrode active material 110 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
- a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v1 is satisfied.
- v1 ⁇ 95 the battery 2000 can operate at high output.
- the volume ratio “v11:100-v11” between the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 is 30 ⁇ v11 ⁇ 95.
- v11 represents the volume ratio of the coated positive electrode active material 130 when the total volume of the coated positive electrode active material 130 and the solid electrolyte 100 contained in the positive electrode 201 is 100.
- 30 ⁇ v11 a sufficient energy density of the battery 2000 can be secured.
- v11 ⁇ 95 the battery 2000 can operate at high output.
- the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
- the electrolyte layer 202 is a layer containing an electrolyte.
- the electrolyte is, for example, a solid electrolyte. That is, electrolyte layer 202 may be a solid electrolyte layer.
- the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, electrolyte layer 202 may contain a solid electrolyte having the same composition as solid electrolyte 100 . According to the above configuration, the charge/discharge efficiency of the battery 2000 can be further improved.
- the electrolyte layer 202 may contain a halide solid electrolyte having a composition different from that of the solid electrolyte 100 .
- the electrolyte layer 202 may contain a sulfide solid electrolyte.
- the electrolyte layer 202 may contain only one solid electrolyte selected from the materials listed as solid electrolytes.
- the electrolyte layer 202 may contain two or more solid electrolytes selected from the materials listed as solid electrolytes. In this case, the plurality of solid electrolytes have compositions different from each other.
- electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
- the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
- the negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions).
- the negative electrode 203 contains, for example, a negative electrode active material.
- Metal materials, carbon materials, oxides, nitrides, tin compounds, silicon compounds, etc. can be used for the negative electrode active material.
- the metal material may be a single metal.
- the metal material may be an alloy.
- metallic materials include lithium metal, lithium alloys, and the like.
- carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
- the capacity density can be improved by using silicon (Si), tin (Sn), a silicon compound, a tin compound, or the like.
- the negative electrode 203 may contain a solid electrolyte. According to the above configuration, the lithium ion conductivity inside the negative electrode 203 is increased, and the battery 2000 can operate at high output.
- the solid electrolyte contained in negative electrode 203 the material exemplified as solid electrolyte 100 in Embodiment 1 may be used. That is, negative electrode 203 may contain a solid electrolyte having the same composition as that of solid electrolyte 100 .
- the shape of the solid electrolyte contained in the negative electrode 203 in Embodiment 2 is not particularly limited.
- the shape of the solid electrolyte contained in the negative electrode 203 may be acicular, spherical, oval, or the like, for example.
- the shape of the solid electrolyte contained in the negative electrode 203 may be particulate.
- the median diameter of the solid electrolyte may be 100 ⁇ m or less.
- the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
- the median diameter of the solid electrolyte contained in the negative electrode 203 may be 10 ⁇ m or less, or may be 1 ⁇ m or less. According to the above configuration, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 .
- the median diameter of the solid electrolyte contained in the negative electrode 203 may be smaller than the median diameter of the negative electrode active material. According to the above configuration, the negative electrode active material and the solid electrolyte can form a better dispersion state in the negative electrode 203 .
- the shape of the negative electrode active material in Embodiment 2 is not particularly limited.
- the shape of the negative electrode active material may be, for example, acicular, spherical, or oval.
- the shape of the negative electrode active material may be particulate.
- the median diameter of the negative electrode active material may be 0.1 ⁇ m or more and 100 ⁇ m or less.
- the median diameter of the negative electrode active material is 0.1 ⁇ m or more, the negative electrode active material and the solid electrolyte can form a good dispersion state in the negative electrode 203 . Thereby, the charge/discharge characteristics of the battery 2000 are improved.
- the median diameter of the negative electrode active material is 100 ⁇ m or less, the diffusion rate of lithium in the negative electrode active material is sufficiently ensured. This allows battery 2000 to operate at high output.
- the median diameter of the negative electrode active material may be larger than the median diameter of the solid electrolyte contained in the negative electrode 203 . Thereby, the negative electrode active material and the solid electrolyte can form a good dispersed state.
- the volume ratio "v2:100-v2" between the negative electrode active material and the solid electrolyte contained in the negative electrode 203 may satisfy 30 ⁇ v2 ⁇ 95.
- v2 represents the volume ratio of the negative electrode active material when the total volume of the negative electrode active material and the solid electrolyte contained in the negative electrode 203 is taken as 100.
- a sufficient energy density of the battery 2000 can be ensured when 30 ⁇ v2 is satisfied.
- v2 ⁇ 95 the battery 2000 can operate at high output.
- the thickness of the negative electrode 203 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the negative electrode 203 is 10 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured. When the thickness of the negative electrode 203 is 500 ⁇ m or less, the battery 2000 can operate at high output.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
- a binder is used to improve the binding properties of the material that constitutes the electrode.
- Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, Carboxymethyl cellulose etc.
- the negative electrode 203 may contain a conductive aid for the purpose of improving electronic conductivity.
- conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black, furnace black, and ketjen black, conductive fibers such as carbon fiber or metal fiber, carbon fluoride, aluminum, and the like.
- conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, conductive polymer compounds such as polyaniline, polypyrrole, and polythiophene. Cost reduction can be achieved when a carbon conductive aid is used.
- Shapes of the battery 2000 in Embodiment 2 include, for example, a coin shape, a cylindrical shape, a rectangular shape, a sheet shape, a button shape, a flat shape, and a laminated shape.
- Examples 1 to 7 and Comparative Examples 1 to 2 LiNi 0.8 (Co, Mn) 0.2 O 2 (hereinafter referred to as NCM) was used as the positive electrode active material.
- NCM LiNi 0.8 (Co, Mn) 0.2 O 2
- NCM was used as a positive electrode active material.
- LiNbO 3 was used as the coating material.
- a coating layer containing LiNbO 3 was formed by a liquid phase coating method. Specifically, first, a precursor solution of an ion conductive material was applied to the surface of the NCM. This formed a precursor coating on the surface of the NCM. The NCM coated with the precursor coating was then heat treated. Gelation of the precursor film progressed by the heat treatment, and a coating layer made of LiNbO 3 was formed. As a result, a coated positive electrode active material (hereinafter referred to as Nb-NCM) was obtained.
- the BET specific surface area a of the produced Nb-NCM was 0.36 m 2 /g.
- the mixing ratio of Nb-NCM and LPS was 70:30 by volume.
- the ratio c of the mass of acetylene black to the mass of Nb-NCM was 0.0030.
- the ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0030.
- the positive electrode was produced by apply
- Li 2 TiO 3 (hereinafter referred to as LTO) was used as a negative electrode active material.
- a binder, solvent, LPS and carbon fiber (VGCF-H, manufactured by Showa Denko) were mixed in an argon glove box with a dew point of ⁇ 60° C. or less, and dispersed using a homogenizer. This gave a mixture of binder, solvent, LPS and VGCF-H.
- LTO which is a solid electrolyte, was added to the mixture, mixed, and dispersed with a homogenizer to prepare a slurry of the negative electrode material. The prepared slurry was applied onto a current collector and dried on a hot plate to prepare a negative electrode.
- the mixing ratio of LTO and LPS was 65:35 by volume.
- the ratio of VGCF-H mass to LTO mass was 0.024.
- VGCF is a registered trademark of Showa Denko K.K.
- LPS, binder and solvent were mixed and dispersed using a homogenizer. This produced a slurry containing LPS.
- the prepared slurry was applied to a substrate and dried on a hot plate to prepare an electrolyte layer.
- the prepared negative electrode and electrolyte layer were laminated, and the substrate was removed from the electrolyte layer after pressure molding while heating.
- the positive electrode was laminated on the side opposite to the negative electrode of the molded body so that the electrolyte layer and the positive electrode were in contact with each other, and pressure molding was performed while heating. After attaching a current collecting lead to the obtained molded article, the molded article was placed in a laminate packaging material and the packaging material was sealed. Thus, a battery of Example 1 was produced.
- Example 7>> In the manufacturing process of the positive electrode, the mass ratio of VGCF-H to the mass of Nb-NCM was 0.020. The ratio c of the mass of acetylene black to the mass of Nb-NCM was 0.0048. The ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0248. A battery of Example 7 was obtained in the same manner as in Example 4 except for this.
- VGCF-H carbon fiber
- the binder, solvent and VGCF-H were mixed in an argon glove box with a dew point of ⁇ 60° C. or lower and dispersed using a homogenizer.
- Nb-NCM as a coating active material
- LPS as a solid electrolyte were added and mixed at once, and dispersed by a homogenizer to prepare a positive electrode material slurry.
- the mass ratio of VGCF-H to the mass of Nb-NCM was 0.008.
- the ratio of the total mass of conductive material to the mass of Nb-NCM was 0.0080.
- a battery of Comparative Example 1 was obtained in the same manner as in Example 1 except for these.
- the battery was placed in a constant temperature bath at 25°C and connected to a charge/discharge device.
- DCR Direct Current Resistance
- Vo is the voltage before discharging for 10 seconds.
- V is the voltage after discharging for 10 seconds.
- S is the contact area between the positive electrode and the electrolyte layer.
- I is the current value and is 24 mA.
- Table 1 shows the DCR ratio based on the DCR calculated by the above formula (4) together with the value of x obtained by the above formula (1).
- the DCR ratio in Table 1 is a normalized value with the DCR of the battery of Comparative Example 2 set to 100.
- NCA LiNi 0.8 (Co, Al) 0.2 O 2
- NCA was used as the positive electrode active material in the manufacturing process of the coated positive electrode active material. Other steps were the same as in Example 1 to produce a coated positive electrode active material (hereinafter referred to as Nb-NCA).
- the BET specific surface area a of the produced Nb-NCA was 0.75 m 2 /g.
- Example 8 In the manufacturing process of the positive electrode, the ratio c of the mass of acetylene black to the mass of Nb-NCA was 0.0048. The ratio of the total mass of conductive material to the mass of Nb-NCA was 0.0048. A battery of Example 8 was obtained in the same manner as in Example 1 except for this.
- VGCF-H carbon fiber
- the binder, solvent and VGCF-H were mixed in an argon glove box with a dew point of ⁇ 60° C. or lower and dispersed using a homogenizer.
- Nb-NCA as a coating active material
- LPS as a solid electrolyte were added and mixed at once and dispersed with a homogenizer to prepare a slurry of positive electrode material.
- the mass ratio of VGCF-H to the mass of Nb-NCA was 0.024.
- the ratio of the total mass of conductive material to the mass of Nb-NCA was 0.0240.
- a battery of Comparative Example 3 was obtained in the same manner as in Example 8 except for these.
- Table 2 shows the DCR ratio based on the DCR calculated by the above formula (4) together with the value of x obtained by the above formula (1).
- the DCR ratio in Table 2 is a value normalized by setting the DCR of the battery of Comparative Example 3 to 100.
- FIG. 8 is a cross-sectional SEM image of the positive electrode of Example 1 by a scanning electron microscope.
- the imaging magnification was 10,000 times.
- carbon black could be preferentially arranged on the surface of the positive electrode active material. Therefore, when the cross section of the positive electrode was observed using a scanning electron microscope, a region where carbon black was concentrated between the positive electrode active material and the solid electrolyte was observed. Specifically, the area of the carbon black covering the surface of the positive electrode active material was larger than the area of the carbon black covering the surface of the solid electrolyte. Similar results were observed for other examples.
- the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.
- Reference Signs List 1000 1001, 1002, 1003 positive electrode 100 solid electrolyte 110 positive electrode active material 120 coating layer 130 coated positive electrode active material 140 conductive material 150 carbon black 160 fibrous carbon material 2000 battery 201 positive electrode 202 electrolyte layer 203 negative electrode
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される。
特許文献1には、正極活物質および固体電解質を含む正極を備えた電池が開示されている。特許文献1には、正極が、カーボンブラックなどの導電助剤を含んでいてもよいことが記載されている。
本開示の第1態様に係る正極は、
正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される。
x=(3・c)/(4・a・b)×105・・・(1)
前記式(1)において、aは前記正極活物質のBET(Brunauer-Emmett-Teller)比表面積(m2/g)であり、bは前記カーボンブラックの平均粒径(nm)であり、cは前記正極に含まれる前記正極活物質の質量に対する前記カーボンブラックの質量の比率であり、前記カーボンブラックの密度は2.0(g/cm3)である。以上の構成によれば、電池の抵抗を低下させることができる。
第1から第13態様のいずれか1つに係る正極と、
負極と、
前記正極と前記負極との間に設けられた電解質層と、
を備える。
第1から第13態様のいずれか1つに係る正極の製造方法であって、
前記正極活物質と前記カーボンブラックとを混合することと、
前記正極活物質および前記カーボンブラックを含む混合物に、さらに前記固体電解質を混合することと、
を含む。
[正極]
図1は、実施の形態1における正極1000の概略構成を示す断面図である。
導電性材料140は、カーボンブラック150を主成分として含みながら、さらに、不可避的な不純物、または、カーボンブラック150を合成する際に用いられる出発原料、副生成物および分解生成物などを含んでいてもよい。本開示において、「主成分」は、質量比で最も多く含まれた成分を意味する。
正極活物質110として、全固体リチウムイオン電池の正極活物質として使用可能な材料が用いられうる。正極活物質110としては、LiCoO2、LiNixMe1-xO2、LiNixCo1-xO2、LiNi1/3Co1/3Mn1/3O2、LiMnO2、異種元素置換Li-Mnスピネル、チタン酸リチウム、リン酸金属リチウム、および遷移金属酸化物が挙げられる。LiNixMe1-xO2において、xは0.5≦x<1を満たし、MeはCo、MnおよびAlからなる群より選ばれる少なくとも1つ以上を含む。LiNixCo1-xO2において、xは0<x<0.5を満たす。異種元素置換Li-Mnスピネルとしては、LiMn1.5Ni0.5O4、LiMn1.5Al0.5O4、LiMn1.5Mg0.5O4、LiMn1.5Co0.5O4、LiMn1.5Fe0.5O4、およびLiMn1.5Zn0.5O4が挙げられる。チタン酸リチウムとして、Li4Ti5O12が挙げられる。リン酸金属リチウムとして、LiFePO4、LiMnPO4、LiCoPO4、およびLiNiPO4が挙げられる。遷移金属酸化物として、V2O5、およびMoO3が挙げられる。
固体電解質100は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含んでいてもよい。以上の構成によれば、電池の出力特性を向上させることができる。
正極1000の製造方法について、図2を参照しながら説明する。図2は、正極1000の製造方法を示すフローチャートである。正極1000は、フローチャートに示す各ステップにより製造されうる。
図3は、変形例1における正極1001の概略構成を示す断面図である。正極1001において、導電性材料140は、繊維状炭素材料160をさらに含む。すなわち、変形例1において、導電性材料140は、カーボンブラック150および繊維状炭素材料160を含む。このように、導電性材料140は、繊維状炭素材料160をさらに含んでいてもよい。以上の構成によれば、正極1001における電子伝導度をより向上させることができる。
正極1001の製造方法について、図4を参照しながら説明する。図4は、正極1001の製造方法を示すフローチャートである。正極1001は、フローチャートに示す各ステップにより製造されうる。
図5は、変形例2における正極1002の概略構成を示す断面図である。正極1002は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさらに備える。被覆層120によって表面の少なくとも一部を被覆されている正極活物質110を、「被覆正極活物質130」と称する。このように、正極1002は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含んでいてもよい。以上の構成によれば、電池の抵抗をより低下させることができる。
正極1002は、図2に示すような正極1000の製造方法において、正極活物質110を被覆正極活物質130に置き換えることで製造されうる。被覆正極活物質130に含まれる正極活物質110、およびカーボンブラック150は、上記式(1)のパラメータ限定を満たしている。
図6は、変形例3における正極1003の概略構成を示す断面図である。正極1003は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含むことを除いて、変形例1における正極1001と同じ構成を有する。また、正極1003は、導電性材料140が繊維状炭素材料160をさらに含むことを除いて、変形例2における正極1002と同じ構成を有する。このように、正極1003は、正極活物質110の表面の少なくとも一部を被覆する被覆層120をさら含んでいてもよく、かつ、導電性材料140は、繊維状炭素材料160をさらに含んでいてもよい。以上の構成によれば、正極1003における電子伝導度をより向上させることができる。
正極1003は、図4に示すような正極1001の製造方法において、正極活物質110を被覆正極活物質130に置き換えることで製造されうる。被覆正極活物質130に含まれる正極活物質110、およびカーボンブラック150は、上記式(1)のパラメータ限定を満たしている。被覆正極活物質130は、例えば、変形例2において説明した方法により製造されうる。
以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
[硫化物固体電解質の作製]
露点-60℃以下のアルゴングローブボックス内で、原料粉末であるLi2SおよびP2S5を、モル比でLi2S:P2S5=75:25となるように秤量した。原料粉末を乳鉢で粉砕および混合して混合物を得た。その後、遊星型ボールミル(フリッチュ社製、P-7型)を用い、10時間、510rpmの条件で混合物をミリング処理した。これにより、ガラス状の固体電解質を得た。得られた固体電解質を不活性雰囲気、270度、2時間の条件で熱処理した。これにより、硫化物固体電解質であるガラスセラミックス状のLi2S-P2S5(以下、LPSと表記する)を作製した。
正極活物質として、NCMを用いた。被覆材料として、LiNbO3を用いた。液相被覆法により、LiNbO3を含む被覆層を形成した。具体的には、まず、イオン伝導材料の前駆体溶液をNCMの表面に塗布した。これにより、NCMの表面に前駆体被膜を形成した。その後、前駆体被膜によって被覆されたNCMを熱処理した。熱処理によって前駆体被膜のゲル化が進行し、LiNbO3からなる被覆層が形成された。これにより、被覆正極活物質(以後、Nb-NCMと表記する)が得られた。作製したNb-NCMのBET比表面積aは、0.36m2/gであった。
導電性材料として、平均粒径23nmのアセチレンブラックを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびアセチレンブラックを混合し、ホモジナイザーを用いて分散させた。これにより、バインダ、溶媒およびアセチレンブラックの混合物を得た。混合物に被覆活物質であるNb-NCMを添加および混合し、ホモジナイザーで分散させた。その後、固体電解質であるLPSを混合物にさらに添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMおよびLPSの混合比率は、体積比率で70:30であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0030であった。作製したスラリーを集電体上に塗布し、ホットプレート上で乾燥させることで、正極を作製した。
負極活物質として、Li2TiO3(以下、LTOと表記する)を用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒、LPSおよび炭素繊維(VGCF-H、昭和電工社製)を混合し、ホモジナイザーを用いて分散させた。これにより、バインダ、溶媒、LPSおよびVGCF-Hの混合物を得た。混合物に固体電解質であるLTOを添加および混合し、ホモジナイザーで分散させ、負極材料のスラリーを作製した。作製したスラリーを集電体上に塗布し、ホットプレート上で乾燥させることで、負極を作製した。LTOおよびLPSの混合比率は、体積比率で65:35であった。LTOの質量に対するVGCF-Hの質量の比率は、0.024であった。なお、「VGCF」は、昭和電工株式会社の登録商標である。
正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。これ以外は実施例1と同様にして、実施例2の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率は、0.0065であった。これ以外は実施例1と同様にして、実施例2の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するアセチレンブラックの質量の比率は、0.0048であった。また、正極の作製工程において、固体電解質としてのLPSを添加、混合する際に、さらに、導電性材料として炭素繊維(VGCF-H)を添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.016であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0208であった。これら以外は実施例1と同様にして、実施例4の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0013であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0213であった。これら以外は実施例4と同様にして、実施例5の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0230であった。これ以外は実施例4と同様にして、実施例6の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCMの質量に対するアセチレンブラックの質量の比率cは、0.0048であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0248であった。これ以外は実施例4と同様にして、実施例7の電池を得た。
正極の作製工程において、導電性材料として、炭素繊維(VGCF-H)のみを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびVGCF-Hを混合し、ホモジナイザーを用いて分散させた。ここに、被覆活物質であるNb-NCMおよび固体電解質であるLPSを一度に添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.008であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0080であった。これら以外は実施例1と同様にして、比較例1の電池を得た。
正極の作製工程において、Nb-NCMの質量に対するVGCF-Hの質量の比率は、0.024であった。Nb-NCMの質量に対する導電性材料の合計質量の比率は、0.0240であった。これ以外は比較例1と同様にして、比較例2の電池を得た。
実施例1から7および比較例1から2の電池を用い、以下の条件で、充放電試験を実施した。
被覆正極活物質の作製工程において、正極活物質としてNCAを用いた。これ以外の工程は実施例1と同様にして、被覆正極活物質(以後、Nb-NCAと表記する)を作製した。作製したNb-NCAのBET比表面積aは、0.75m2/gであった。
正極の作製工程において、Nb-NCAの質量に対するアセチレンブラックの質量の比率cは、0.0013であった。また、正極の作製工程において、固体電解質としてのLPSを添加、混合する際に、さらに、導電性材料として炭素繊維(VGCF-H)を添加、混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCAの質量に対するVGCF-Hの質量の比率は、0.020であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0213であった。これら以外は実施例8と同様にして、実施例9の電池を得た。
正極の作製工程において、Nb-NCAの質量に対するアセチレンブラックの質量の比率cは、0.0030であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0230であった。これら以外の工程は実施例9と同様にして、実施例10の電池を得た。
正極の作製工程において、導電性材料として、炭素繊維(VGCF-H)のみを用いた。露点-60℃以下のアルゴングローブボックス内で、バインダ、溶媒およびVGCF-Hを混合し、ホモジナイザーを用いて分散させた。ここに、被覆活物質であるNb-NCAおよび固体電解質であるLPSを一度に添加および混合し、ホモジナイザーで分散させ、正極材料のスラリーを作製した。Nb-NCAの質量に対するVGCF-Hの質量の比率は、0.024であった。Nb-NCAの質量に対する導電性材料の合計質量の比率は、0.0240であった。これら以外は実施例8と同様にして、比較例3の電池を得た。
実施例8から10および比較例3の電池を用い、実施例1から7および比較例1から2と同じ条件で、充放電試験を実施した。
表1および表2に示す結果から、本開示に係る正極の製造方法によって、カーボンブラックを正極活物質の表面に優先的に配置した場合、DCR比率が低下した。これは、正極活物質の表面に形成される電子伝導パスが増加したことにより、正極活物質の有効な反応面積が増加したためと考えられる。
図8は、実施例1の正極の走査電子顕微鏡による断面SEM像である。撮影倍率は、1万倍であった。上述の正極の作製方法によれば、カーボンブラックを正極活物質の表面に優先的に配置させることができた。そのため、走査型電子顕微鏡を用いて正極の断面を観察したところ、正極活物質と固体電解質の間にカーボンブラックが集中して存在する領域が観察された。詳細には、正極活物質の表面をカーボンブラックが覆っている面積が、固体電解質の表面をカーボンブラックが覆っている面積より大きかった。他の実施例についても、同様の結果が観察された。
100 固体電解質
110 正極活物質
120 被覆層
130 被覆正極活物質
140 導電性材料
150 カーボンブラック
160 繊維状炭素材料
2000 電池
201 正極
202 電解質層
203 負極
Claims (16)
- 正極活物質、固体電解質および導電性材料の混合物を備えた正極であって、
前記導電性材料は、100nm以下の平均粒径を有するカーボンブラックを含み、
走査型電子顕微鏡を用いて前記正極の断面を観察したときに、前記正極活物質と前記固体電解質の間に前記カーボンブラックが集中して存在する領域が観察される、
正極。 - 以下の式(1)により求められるxは、0%<x<100%を満たし、
x=(3・c)/(4・a・b)×105・・・(1)
前記式(1)において、aは前記正極活物質のBET(Brunauer-Emmett-Teller)比表面積(m2/g)であり、bは前記カーボンブラックの平均粒径(nm)であり、cは前記正極に含まれる前記正極活物質の質量に対する前記カーボンブラックの質量の比率であり、前記カーボンブラックの密度は2.0(g/cm3)である、
請求項1に記載の正極。 - 前記式(1)において、
xは、5%≦x≦60%を満たす、
請求項2に記載の正極。 - 前記式(1)において、
xは、10%≦x≦50%を満たす、
請求項2に記載の正極。 - 前記式(1)において、
xは、15%≦x≦40%を満たす、
請求項2に記載の正極。 - 前記式(1)において、
aは、0<a≦1.5を満たす、
請求項2から5のいずれか一項に記載の正極。 - 前記導電性材料は、繊維状炭素材料をさらに含む、
請求項1から6のいずれか一項に記載の正極。 - 前記正極活物質の質量に対する前記導電性材料の質量の比率は、0.03以下である、
請求項1から7のいずれか一項に記載の正極。 - 前記カーボンブラックは、25nm以下の平均粒径を有する、
請求項1から8のいずれか一項に記載の正極。 - 前記カーボンブラックはアセチレンブラックを含む、
請求項1から9のいずれか一項に記載の正極。 - 前記固体電解質は、硫化物固体電解質およびハロゲン化物固体電解質からなる群より選ばれる少なくとも1つを含む、
請求項1から10のいずれか一項に記載の正極。 - 前記正極活物質は、層状岩塩構造を有する、
請求項1から11のいずれか一項に記載の正極。 - 前記正極活物質の表面の少なくとも一部を被覆する被覆層をさらに備える、
請求項1から12のいずれか一項に記載の正極。 - 請求項1から13のいずれか一項に記載の正極と、
負極と、
前記正極と前記負極との間に配置された電解質層と、
を備えた、
電池。 - 前記電解質層は、硫化物固体電解質を含む、
請求項14に記載の電池。 - 請求項1から13のいずれか一項に記載の正極の製造方法であって、
前記正極活物質と前記カーボンブラックとを混合することと、
前記正極活物質および前記カーボンブラックを含む混合物に、さらに前記固体電解質を混合することと、
を含む、
正極の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023538379A JPWO2023008119A1 (ja) | 2021-07-27 | 2022-07-06 | |
CN202280051646.5A CN117693829A (zh) | 2021-07-27 | 2022-07-06 | 正极、电池和正极的制造方法 |
US18/407,531 US20240145726A1 (en) | 2021-07-27 | 2024-01-09 | Cathode, battery, and method for manufacturing cathode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021122767 | 2021-07-27 | ||
JP2021-122767 | 2021-07-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/407,531 Continuation US20240145726A1 (en) | 2021-07-27 | 2024-01-09 | Cathode, battery, and method for manufacturing cathode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008119A1 true WO2023008119A1 (ja) | 2023-02-02 |
Family
ID=85086670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/026777 WO2023008119A1 (ja) | 2021-07-27 | 2022-07-06 | 正極、電池、および正極の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240145726A1 (ja) |
JP (1) | JPWO2023008119A1 (ja) |
CN (1) | CN117693829A (ja) |
WO (1) | WO2023008119A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117558870A (zh) * | 2024-01-11 | 2024-02-13 | 中国第一汽车股份有限公司 | 一种固态正极及其制备方法和固态电池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062299A (ja) * | 2008-09-03 | 2010-03-18 | Fdk Corp | 蓄電デバイス |
WO2013140565A1 (ja) * | 2012-03-22 | 2013-09-26 | 株式会社 東芝 | 電気化学セル、電気化学セルの製造方法、電池パック及び車 |
-
2022
- 2022-07-06 JP JP2023538379A patent/JPWO2023008119A1/ja active Pending
- 2022-07-06 CN CN202280051646.5A patent/CN117693829A/zh active Pending
- 2022-07-06 WO PCT/JP2022/026777 patent/WO2023008119A1/ja active Application Filing
-
2024
- 2024-01-09 US US18/407,531 patent/US20240145726A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062299A (ja) * | 2008-09-03 | 2010-03-18 | Fdk Corp | 蓄電デバイス |
WO2013140565A1 (ja) * | 2012-03-22 | 2013-09-26 | 株式会社 東芝 | 電気化学セル、電気化学セルの製造方法、電池パック及び車 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117558870A (zh) * | 2024-01-11 | 2024-02-13 | 中国第一汽车股份有限公司 | 一种固态正极及其制备方法和固态电池 |
Also Published As
Publication number | Publication date |
---|---|
CN117693829A (zh) | 2024-03-12 |
JPWO2023008119A1 (ja) | 2023-02-02 |
US20240145726A1 (en) | 2024-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7540536B2 (ja) | 全固体電池 | |
WO2021157361A1 (ja) | 正極材料および電池 | |
WO2020174868A1 (ja) | 正極材料、および、電池 | |
WO2022244445A1 (ja) | 被覆正極活物質、正極材料および電池 | |
WO2022254985A1 (ja) | 被覆活物質、正極材料、正極および電池 | |
US20240145726A1 (en) | Cathode, battery, and method for manufacturing cathode | |
WO2023037756A1 (ja) | 正極材料、正極および電池 | |
WO2023002827A1 (ja) | 正極材料および電池 | |
WO2022255026A1 (ja) | 被覆活物質、正極材料、正極および電池 | |
WO2023008006A1 (ja) | 正極材料、正極、および電池 | |
WO2022244416A1 (ja) | 複合正極活物質、正極材料、および電池 | |
WO2022209686A1 (ja) | 被覆正極活物質、正極材料、電池、および被覆正極活物質の製造方法 | |
JP7507385B2 (ja) | 正極材料、および、電池 | |
WO2023132303A1 (ja) | 正極材料および電池 | |
WO2023132304A1 (ja) | 正極材料および電池 | |
WO2023008005A1 (ja) | 正極材料および電池 | |
JP7336055B1 (ja) | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法 | |
US20240356040A1 (en) | Positive electrode material and battery | |
US20240356039A1 (en) | Positive electrode material and battery | |
JP4021651B2 (ja) | リチウムイオン二次電池用正極板およびそれを用いたリチウムイオン二次電池 | |
WO2022254869A1 (ja) | 被覆活物質、電極材料および電池 | |
WO2022254871A1 (ja) | 被覆活物質、電極材料および電池 | |
WO2023182458A1 (ja) | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池、リチウムイオン電池用正極活物質の製造方法及び全固体リチウムイオン電池用正極活物質の製造方法 | |
WO2022254870A1 (ja) | 被覆活物質、電極材料および電池 | |
US20240313201A1 (en) | Coated active material, method for producing coated active material, positive electrode material and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849184 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023538379 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051646.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849184 Country of ref document: EP Kind code of ref document: A1 |