WO2023008083A1 - 異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法 - Google Patents

異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法 Download PDF

Info

Publication number
WO2023008083A1
WO2023008083A1 PCT/JP2022/026199 JP2022026199W WO2023008083A1 WO 2023008083 A1 WO2023008083 A1 WO 2023008083A1 JP 2022026199 W JP2022026199 W JP 2022026199W WO 2023008083 A1 WO2023008083 A1 WO 2023008083A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
layer
conductive sheet
elastomer composition
anisotropically
Prior art date
Application number
PCT/JP2022/026199
Other languages
English (en)
French (fr)
Inventor
克典 西浦
大典 山田
祐一 伊東
真雄 堀
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202280052894.1A priority Critical patent/CN117716582A/zh
Priority to KR1020247002740A priority patent/KR20240024996A/ko
Priority to JP2023538365A priority patent/JPWO2023008083A1/ja
Publication of WO2023008083A1 publication Critical patent/WO2023008083A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to an anisotropically conductive sheet and its manufacturing method, an electrical inspection device, and an electrical inspection method.
  • An electrical inspection is usually performed by electrically contacting a substrate (having electrodes) of an electrical inspection device and a terminal of an object to be inspected such as a semiconductor device, and applying a predetermined voltage between the terminals of the object to be inspected. by reading the current of An anisotropically conductive sheet is placed between the substrate of the electrical inspection device and the object to be inspected in order to ensure electrical contact between the electrodes of the substrate of the electrical inspection device and the terminals of the object to be inspected. be.
  • An anisotropically conductive sheet is a sheet that has conductivity in the thickness direction and insulation in the surface direction, and is used as a probe (contactor) in electrical inspection. Such an anisotropically conductive sheet is used with a pressing load applied to ensure electrical connection between the board of the electrical inspection apparatus and the inspection object. Therefore, the anisotropically conductive sheet is required to be easily elastically deformed in the thickness direction.
  • Such an anisotropic conductive sheet includes a base sheet having a plurality of through holes penetrating in the thickness direction, a plurality of conductive portions arranged in the plurality of through holes, and end faces of the plurality of conductive portions.
  • An electrical connector having a plurality of covering conductive protrusions is known (see, for example, US Pat. It is said that the conductive portion may be a metal thin film (plated film) or the like formed on the inner wall surface of the through hole.
  • an indentation load is applied to the surface of the anisotropically conductive sheet while the object to be inspected is placed thereon.
  • the metal thin films formed on the wall surfaces of the plurality of holes are formed by repeated pressurization and depressurization by pushing.
  • the conductive layer is easily cracked or peeled off, and poor conduction is likely to occur.
  • variations in resistance values between the plurality of conductive layers are likely to occur.
  • the present invention has been made in view of the above problems, and an anisotropically conductive sheet capable of suppressing cracks and peeling of the conductive layer and maintaining good conductivity even when pressurization and depressurization by pushing is repeated, and
  • An object of the present invention is to provide a manufacturing method, an electrical inspection apparatus, and an electrical inspection method thereof.
  • the anisotropically conductive sheet of the present invention has a first surface located on one side in the thickness direction, a second surface located on the other side, and a portion extending between the first surface and the second surface.
  • an insulating layer having a plurality of through holes; a plurality of first conductive layers disposed on inner wall surfaces of the plurality of through holes; and the first conductive layers inside the plurality of through holes.
  • the method for producing an anisotropically conductive sheet of the present invention comprises a first surface located on one side in the thickness direction, a second surface located on the other side, and a gap between the first surface and the second surface.
  • an anisotropic conductive sheet that can suppress cracks and peeling of the conductive layer and maintain good conductivity even when pressure and pressure are repeatedly pressed by pressing, a method for manufacturing the same, an electrical inspection device, and an electrical An inspection method can be provided.
  • FIG. 1A is a partial plan view showing an anisotropically conductive sheet according to the present embodiment
  • FIG. 1B is a partially enlarged sectional view of the anisotropically conductive sheet of FIG. 1A taken along line 1B-1B
  • FIG. 2 is a partially enlarged cross-sectional view of the anisotropically conductive sheet of FIG. 1A taken along line 1B-1B
  • 3A to 3D are partial enlarged cross-sectional views showing the method for manufacturing an anisotropically conductive sheet according to this embodiment.
  • 4A and 4B are partially enlarged cross-sectional views showing the method for manufacturing an anisotropically conductive sheet according to this embodiment.
  • FIG. 5A is a cross-sectional view showing an electrical inspection apparatus according to this embodiment
  • FIG. 5A is a cross-sectional view showing an electrical inspection apparatus according to this embodiment
  • FIG. 5B is a bottom view showing an example of an inspection object.
  • FIG. 6 is a partially enlarged cross-sectional view of an anisotropically conductive sheet according to a modification.
  • 7A and 7B are partially enlarged plan views around through holes on the first surface of an anisotropically conductive sheet according to a modification.
  • FIG. 8 is a partially enlarged plan view of the first surface of an anisotropically conductive sheet according to a modification.
  • FIG. 9 is a partially enlarged cross-sectional view of an anisotropically conductive sheet according to a modification.
  • FIG. 10 is a schematic diagram showing a method of measuring electrical resistance using the electrical inspection apparatus of FIG. 5A.
  • FIG. 1A is a partially enlarged plan view of anisotropically conductive sheet 10 according to the present embodiment
  • FIG. 1B is a partially enlarged view of line 1B-1B of anisotropically conductive sheet 10 of FIG. 1A. It is a sectional view.
  • FIG. 2 is a partially enlarged cross-sectional view of the anisotropically conductive sheet 10 of FIG. 1 taken along line 1B-1B. All the drawings below are schematic diagrams, and the scale and the like are different from the actual ones.
  • an anisotropically conductive sheet 10 includes an insulating layer 11 having a first surface 11a, a second surface 11b, and a plurality of through holes 12 penetrating therebetween; A plurality of first conductive layers 13A arranged on the inner wall surface of each of the through holes 12, and a plurality of first conductive layers 13A arranged on the first surface 11a and the second surface 11b and continuous with the (one or more) first conductive layers 13A The plurality of second conductive layers 13B, the plurality of first groove portions 14a and the plurality of second groove portions 14b arranged between the plurality of second conductive layers 13, and the insides of the plurality of through holes 12 (first conductive and a plurality of conductive fillings 15 filled in a plurality of cavities 12') surrounded by layer 13A.
  • the inspection object is arranged on the first surface 11a of the insulating layer 11 (one surface of the anisotropically conductive sheet 10).
  • the insulating layer 11 has a first surface 11a located on one side in the thickness direction, a second surface 11b located on the other side in the thickness direction, and penetrates between the first surface 11a and the second surface 11b. and a plurality of through holes 12 (see FIGS. 1A and 1B).
  • the insulating layer 11 has elasticity such that it is elastically deformed when pressure is applied in the thickness direction. That is, it is preferable that the insulating layer 11 includes at least an elastic layer.
  • the elastic layer preferably comprises a crosslinked elastomer composition.
  • the elastomer contained in the elastomer composition is not particularly limited, but examples thereof include silicone rubber, urethane rubber (urethane-based polymer), acrylic rubber (acrylic-based polymer), and ethylene-propylene-diene copolymer (EPDM). , chloroprene rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polybutadiene rubber, natural rubber, polyester-based thermoplastic elastomer, olefin-based thermoplastic elastomer, and fluorine-based rubber. Among them, silicone rubber is preferable.
  • the silicone rubber may be either an addition condensation type or a radical type.
  • the elastomer composition may further contain a cross-linking agent as necessary.
  • the cross-linking agent can be appropriately selected according to the type of elastomer.
  • silicone rubber cross-linking agents include addition reaction catalysts such as metals, metal compounds, metal complexes (platinum, platinum compounds, their complexes, etc.) having catalytic activity for hydrosilylation reactions; benzoyl peroxide, bis -Organic peroxides such as 2,4-dichlorobenzoyl peroxide, dicumyl peroxide and di-t-butyl peroxide.
  • cross-linking agents for acrylic rubbers (acrylic polymers) include epoxy compounds, melamine compounds, isocyanate compounds, and the like.
  • the crosslinked product of the silicone rubber composition may be an addition crosslinked product of a silicone rubber composition containing an organopolysiloxane having a hydrosilyl group (SiH group), an organopolysiloxane having a vinyl group, and an addition reaction catalyst, or a vinyl addition crosslinked product of a silicone rubber composition containing an organopolysiloxane having a group and an addition reaction catalyst; crosslinked product of a silicone rubber composition containing an organopolysiloxane having a SiCH 3 group and an organic peroxide curing agent, etc. is included.
  • a silicone rubber composition containing an organopolysiloxane having a hydrosilyl group (SiH group), an organopolysiloxane having a vinyl group, and an addition reaction catalyst or a vinyl addition crosslinked product of a silicone rubber composition containing an organopolysiloxane having a group and an addition reaction catalyst; crosslinked product of a silicone rubber composition containing an organopol
  • the elastomer composition may further contain other components such as tackifiers, silane coupling agents and fillers, if necessary.
  • the glass transition temperature of the crosslinked product of the elastomer composition is not particularly limited, but is preferably ⁇ 40° C. or lower, more preferably ⁇ 50° C. or lower, from the viewpoint of making it difficult for terminals to be inspected to be damaged. preferable.
  • the glass transition temperature can be measured according to JIS K 7095:2012.
  • the storage modulus at 25° C. of the crosslinked product of the elastomer composition is preferably 1.0 ⁇ 10 7 Pa or less, more preferably 1.0 ⁇ 10 5 to 9.0 ⁇ 10 6 Pa.
  • the storage modulus of the crosslinked product of the elastomer composition can be measured according to JIS K 7244-1:1998/ISO6721-1:1994.
  • the glass transition temperature and storage modulus of the crosslinked product of the elastomer composition can be adjusted by the composition of the elastomer composition.
  • the axial direction of the through hole 12 may be substantially parallel to the thickness direction of the insulating layer 11 (for example, the angle with respect to the thickness direction of the insulating layer 11 is 10° or less), or may be inclined (for example, The angle with respect to the thickness direction may be more than 10° and 50° or less, preferably 20 to 45°.
  • the axial direction of through hole 12 is substantially parallel to the thickness direction of insulating layer 11 (see FIG. 1B).
  • the axial direction refers to the direction of a line that connects the center of gravity (or center) of the opening of the through hole 12 on the side of the first surface 11a and the opening on the side of the second surface 11b.
  • the shape of the opening of the through-hole 12 on the first surface 11a is not particularly limited, and may be, for example, a square or other polygon.
  • the shape of the opening of through-hole 12 in first surface 11a is circular (see FIGS. 1A and 1B).
  • the shape of the opening of the through-hole 12 on the side of the first surface 11a and the shape of the opening on the side of the second surface 11b may be the same or different. From the viewpoint of connection stability with respect to, the same is preferable.
  • the equivalent circle diameter D of the openings of the through-holes 12 on the first surface 11a side may be set so that the center-to-center distance (pitch) p of the openings of the plurality of through-holes 12 falls within the range described later. It is not limited, but preferably 1 to 330 ⁇ m, more preferably 2 to 200 ⁇ m, even more preferably 10 to 100 ⁇ m (see FIG. 2).
  • the equivalent circle diameter D of the opening of the through hole 12 on the first surface 11a side is the equivalent circle diameter of the opening of the through hole 12 when viewed along the axial direction of the through hole 12 from the first surface 11a side. (the diameter of a perfect circle corresponding to the area of the opening).
  • the equivalent circle diameter D of the opening of the through hole 12 on the first surface 11a side and the equivalent circle diameter D of the opening of the through hole 12 on the second surface 11b side may be the same or different. good.
  • the center-to-center distance (pitch) p of the openings of the plurality of through holes 12 on the first surface 11a side is not particularly limited, and can be appropriately set according to the pitch of the terminals of the inspection object (see FIG. 2).
  • the pitch of HBM (High Bandwidth Memory) terminals as the inspection object is 55 ⁇ m
  • the pitch of PoP (Package on Package) terminals is 400 to 650 ⁇ m.
  • the distance p can be, for example, 5-650 ⁇ m.
  • the center-to-center distance p of the openings of the plurality of through holes 12 on the first surface 11a side should be 5 to 55 ⁇ m. is more preferred.
  • the center-to-center distance p between the openings of the plurality of through holes 12 on the first surface 11a side refers to the minimum value among the center-to-center distances between the openings of the plurality of through holes 12 on the first surface 11a side.
  • the center of the opening of the through hole 12 is the center of gravity of the opening.
  • the center-to-center distance p of the openings of the plurality of through holes 12 may be constant in the axial direction, or may be different.
  • the ratio (T/D) of the axial length of the through-hole 12 (that is, the thickness T of the insulating layer 11) and the equivalent circle diameter D of the opening of the through-hole 12 on the first surface 11a side (T/D) is not particularly limited. is preferably 3 to 40 (see FIG. 2).
  • the thickness of the insulating layer 11 is not particularly limited as long as it can ensure insulation at non-conducting portions, but can be, for example, 40 to 700 ⁇ m, preferably 100 to 400 ⁇ m.
  • Conductive layer 13 (first conductive layer 13A, second conductive layer 13B)
  • the conductive layer 13 is arranged corresponding to one or more through-holes 12 (or cavities 12') (see FIG. 1B).
  • the conductive layer 13 includes a first conductive layer 13A arranged on the inner wall surface of the through hole 12, and on the first surface 11a and the second surface 11b (around the opening of the through hole 12). It has one or more first conductive layers 13A and a continuous second conductive layer 13B.
  • Two adjacent conductive layers 13 and 13 (or two second conductive layers 13B and 13B) are insulated by a first groove portion 14a and a second groove portion 14b (see FIG. 1B). That is, the unit conductive layer 13 surrounded by the dashed line functions as one conductive path (see FIGS. 1A and 1B).
  • the material forming the first conductive layer 13A and the material forming the second conductive layer 13B may be the same or different, and are the same from the viewpoints of easy manufacturing and stable conduction. Preferably.
  • the volume resistivity of the material forming the conductive layer 13 (the first conductive layer 13A, the second conductive layer 13B ) is not particularly limited as long as it provides sufficient electrical conductivity. It is preferably 4 ⁇ m or less, more preferably 1.0 ⁇ 10 ⁇ 5 to 1.0 ⁇ 10 ⁇ 9 ⁇ m.
  • the volume resistivity of the material forming the conductive layer 13 can be measured by the method described in ASTM D991.
  • the material constituting the conductive layer 13 may have a volume resistivity that satisfies the above range.
  • materials forming the conductive layer 13 include metal materials such as copper, gold, platinum, silver, nickel, tin, iron, or alloys thereof, and carbon materials such as carbon black.
  • the conductive layer 13 preferably contains one or more selected from the group consisting of gold, silver and copper (as a main component) from the viewpoint of having high conductivity and flexibility. “Contained as a main component” means, for example, 70 mass % or more, preferably 80 mass % or more of the conductive layer 13 .
  • the thickness of the conductive layer 13 may be within a range in which sufficient conduction is obtained and the through hole 12 is not blocked (a range in which the cavity 12' is formed). Further, the thickness of the conductive layer 13 (especially the second conductive layer 13B) is such that when the insulating layer 11 is pressed in the thickness direction, the plurality of conductive layers 13 (especially the second conductive layer 13B) sandwich the first groove portion 14a or the second groove portion 14b. It is sufficient that the conductive layers 13B) do not come into contact with each other. Specifically, the thickness of conductive layer 13 (especially second conductive layer 13B) is preferably smaller than the width and depth of first groove 14a and second groove 14b.
  • the thickness of the conductive layer 13 can be 0.1 to 5 ⁇ m. If the thickness of the conductive layer 13 is more than a certain value, it is easy to obtain sufficient conduction. Hard to get off.
  • the thickness t of the conductive layer 13 refers to the thickness in the direction parallel to the thickness direction of the insulating layer 11 on the first surface 11a and the second surface 11b (that is, the second conductive layer 13B). On the inner wall surface (that is, the first conductive layer 13A), the thickness is in the direction orthogonal to the thickness direction of the insulating layer 11 (see FIG. 2).
  • First groove portion 14a and second groove portion 14b are grooves (grooves) formed on one surface and the other surface of the anisotropically conductive sheet 10, respectively. Specifically, the first groove portion 14a is arranged between the plurality of second conductive layers 13B (or the plurality of conductive layers 13) on the first surface 11a to provide insulation therebetween. The second groove portion 14b is arranged between the plurality of second conductive layers 13B (or the plurality of conductive layers 13) on the second surface 11b to provide insulation therebetween.
  • the cross-sectional shape of the first groove portion 14a (or the second groove portion 14b) in the direction orthogonal to the extending direction is not particularly limited, and may be any of quadrangular, semicircular, U-shaped, and V-shaped. good.
  • the cross-sectional shape of the first groove portion 14a (or the second groove portion 14b) is quadrangular.
  • the width w and the depth d of the first groove portion 14a (or the second groove portion 14b) are such that when the anisotropically conductive sheet 10 is pressed in the thickness direction, it is It is preferable that the second conductive layer 13B on one side and the second conductive layer 13B on the other side do not contact each other (see FIG. 2).
  • the width w of the first groove portion 14a is preferably larger than the thickness of the second conductive layer 13B (or the conductive layer 13). It is preferably 2 to 40 times the thickness.
  • the width w of the first groove portion 14a (or the second groove portion 14b) is perpendicular to the direction in which the first groove portion 14a (or the second groove portion 14b) extends on the first surface 11a (or the second surface 11b). is the maximum width in the direction of
  • the depth d of the first groove portion 14a may be the same as or larger than the thickness of the second conductive layer 13B (or the conductive layer 13). That is, the deepest part of first groove portion 14 a (or second groove portion 14 b ) may be positioned on first surface 11 a of insulating layer 11 or may be positioned inside insulating layer 11 .
  • the second conductive layer 13B (or the conductive layer 13) on one side and the second conductive layer 13B (or the conductive layer 13) on either side of the first groove portion 14a (or the second groove portion 14b) are set to a range in which they do not come into contact with each other.
  • the depth d of the first groove portion 14a is preferably larger than the thickness of the second conductive layer 13B (or the conductive layer 13), and the second conductive layer 13B (or More preferably, it is 1.5 to 100 times the thickness of the conductive layer 13).
  • the depth d of the first groove portion 14a (or the second groove portion 14b) is the depth from the surface of the second conductive layer 13B (or the conductive layer 13) to the deepest portion in the direction parallel to the thickness direction of the insulating layer 11. (See Figure 2).
  • the width w and depth d of the first groove portion 14a and the second groove portion 14b may be the same or different.
  • conductive filler 15 The conductive filler 15 is filled in the cavity 12' surrounded by the first conductive layer 13A (or the conductive layer 13) (of the through-hole 12), and maintains the conductivity while maintaining the first conductive layer 13A. (or the conductive layer 13) can be suppressed from being peeled off.
  • the conductive filler 15 preferably fills 50% or more of the volume in the cavity 12', preferably the entire cavity 12', from the viewpoint of facilitating maintenance of conductivity. That is, the end portion of the conductive filler 15 on the side of the first surface 11a (or the end portion on the side of the second surface 11b) substantially coincides with the first surface 11a (or the second surface 11b) of the insulating layer 11. is preferred.
  • the conductive filler 15 contains a crosslinked product of a conductive elastomer composition containing conductive particles and an elastomer.
  • Materials constituting the conductive particles are not particularly limited, but include metal particles such as copper, gold, platinum, silver, nickel, tin, iron, or alloys thereof, and carbon particles such as carbon black. .
  • particles containing (as a main component) one or more selected from the group consisting of gold, silver, and copper are preferred from the viewpoint of excellent conductivity and flexibility.
  • "Contained as a main component” means, for example, 50% by mass or more, preferably 60% by mass or more, relative to the conductive elastomer composition.
  • the material forming the conductive particles may be the same as or different from the material forming the first conductive layer 13A and the second conductive layer 13B (or the conductive layer 13).
  • the average particle size of the conductive particles is not particularly limited as long as it can fill the inside of the cavity 12 ′, but for example, about 0.3 to 30% of the circle equivalent diameter of the through hole 12 on the first surface 11a side. can be Specifically, the average particle size of the conductive particles can be about 0.3 to 30 ⁇ m.
  • the average particle size of the conductive particles is the 50% particle size (D50) measured with a laser diffraction particle size analyzer. It is the particle size at the point where the particle size is cumulatively 50% by mass from the smaller particle size in the volume-based particle size distribution.
  • the type of elastomer is not particularly limited, and the same elastomer as that used for the elastomer composition forming the insulating layer 11 can be used.
  • the type of elastomer used for the conductive elastomer composition may be the same as or different from the type of elastomer used for the elastomer composition forming insulating layer 11 .
  • silicone rubber is preferable from the viewpoint of flexibility.
  • the silicone rubber may be either addition condensation type or radical type as described above.
  • the content of the elastomer is preferably 5-50% by mass with respect to the total amount of the conductive particles and the elastomer.
  • the elastomer content is 5% by mass or more, the adhesion to the first conductive layer 13A (or the conductive layer 13) is likely to increase, and the crosslinked product of the conductive elastomer composition has sufficient flexibility. It is easier to suppress cracks and peeling of the first conductive layer 13A (or the conductive layer 13). If the content of the elastomer is 50% by mass or less, the conductivity is less likely to be impaired, so even if cracks occur in the first conductive layer 13A (or the conductive layer 13), it is easy to ensure the conductivity. .
  • the conductive elastomer composition may further contain other components such as a cross-linking agent as necessary.
  • a cross-linking agent is not particularly limited, and the same cross-linking agent as that used for the elastomer composition forming the insulating layer 11 can be used.
  • the storage modulus at 25°C of the crosslinked product of the conductive elastomer composition is not particularly limited, but usually tends to be higher than the storage modulus at 25°C of the crosslinked product of the elastomer composition that constitutes the insulating layer 11. .
  • the pressure is moderately low from the viewpoint of suppressing troubles due to concentration of the pressure on the conductive filler 15 when pushing.
  • the storage elastic modulus at 25° C. of the crosslinked product of the conductive elastomer composition is preferably 1 to 300 MPa, more preferably 2 to 200 MPa. Storage modulus can be measured in compressive deformation mode in a manner similar to that described above.
  • the storage modulus of the crosslinked product of the conductive elastomer composition can be adjusted by the composition of the composition. For example, if the content of the conductive particles is reduced, the storage modulus of the crosslinked product of the composition is lowered.
  • the crosslinked product of the conductive elastomer composition preferably has a certain level of conductivity or more.
  • the volume resistivity of the crosslinked product of the conductive elastomer composition is preferably 10 ⁇ 2 ⁇ m or less.
  • the conductive elastomer composition may remain on the first surface 11a of the insulating layer 11 and the like in the manufacturing process of the anisotropically conductive sheet 10. Even so, the electrical connection between the conductive layer 13 (or the second conductive layer 13B) and the terminals of the test object is less likely to be disturbed.
  • the volume resistivity of the crosslinked product of the conductive elastomer composition is more preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 ⁇ m. Volume resistivity can be measured by the same method as above.
  • the anisotropically conductive sheet 10 of the present embodiment has a conductive filling filled inside the cavity 12′ (cavity derived from the through hole 12) surrounded by the conductive layer 13 (or the first conductive layer 13A). has an object 15;
  • the conductive filler 15 can adhere well to and reinforce the conductive layer 13 (or the first conductive layer 13A). Therefore, even if the pressure is repeatedly applied or removed during an electrical inspection, the conductive layer 13 can be prevented from cracking or peeling (from the inner wall surface of the through-hole 12), and stable electrical connection can be achieved. can be done.
  • FIGS. 3A to 3D, 4A and B are cross-sectional schematic diagrams showing a method for producing the anisotropically conductive sheet 10 according to the present embodiment.
  • the anisotropically conductive sheet 10 is produced by: 1) a step of preparing an insulating sheet 21 (insulating layer) having a plurality of through holes 12 (see FIGS. 3A and 3B); 3) a step of forming one continuous conductive layer 22 on the surface of (see FIG. 3C); 4) forming the first groove 14a and the second groove 14b on the first surface 21a and the second surface 21b of the insulating sheet 21 filled with the conductive elastomer composition (see FIG. 3D), respectively; , dividing the conductive layer 22 into a plurality of conductive layers 13 (see FIGS. 4A and 4B).
  • the conductive layer 13 is the conductive layer 13 (the first conductive layer 13A and the second conductive layer 13B) described above (see the broken line portion in FIG. 1B).
  • an insulating sheet 21 is prepared (see FIG. 3A).
  • the insulating sheet 21 is, for example, a sheet containing a crosslinked product of the elastomer composition.
  • the formation of the through holes 12 can be performed by any method. For example, it can be carried out by a method of mechanically forming holes (for example, press processing, punch processing), a laser processing method, or the like. Among them, it is more preferable to form the through-holes 12 by a laser processing method because it is possible to form the through-holes 12 that are fine and have high shape accuracy.
  • the laser can be an excimer laser, a carbon dioxide laser, a YAG laser, etc., which can accurately perforate resin. Among them, it is preferable to use an excimer laser.
  • the pulse width of the laser is not particularly limited, and may be any of microsecond laser, nanosecond laser, picosecond laser, and femtosecond laser. Also, the wavelength of the laser is not particularly limited.
  • the opening diameter of the through-hole 12 tends to be large on the laser-irradiated surface of the insulating layer 11, which is irradiated with the laser for the longest time. In other words, it tends to have a tapered shape in which the opening diameter increases from the inside of the insulating layer 11 toward the laser irradiation surface.
  • laser processing may be performed using an insulating sheet 21 further having a sacrificial layer (not shown) on the laser-irradiated surface.
  • a laser processing method for the insulating sheet 21 having a sacrificial layer can be performed, for example, by a method similar to that described in International Publication No. 2007/23596.
  • one continuous conductive layer 22 is formed over the entire surface of the insulating sheet 21 in which the plurality of through holes 12 are formed (see FIG. 3C). Specifically, the conductive layer 22 is formed continuously on the inner wall surfaces of the plurality of through holes 12 and the first surface 21a and the second surface 21b around the openings of the insulating sheet 21 . Thereby, a plurality of cavities 12 ′ surrounded by the conductive layer 13 corresponding to the plurality of through holes 12 are formed.
  • the conductive layer 22 can be formed by any method, a plating method (e.g., an electroless plating method) is preferred because a thin and uniform thickness of the conductive layer 22 can be formed without blocking the through holes 12. or electroplating method).
  • a plating method e.g., an electroless plating method
  • step 3 the conductive elastomer composition L is filled inside the plurality of cavities 12′ (inside the plurality of through holes 12) surrounded by the conductive layer 13 of the obtained insulating sheet 21 (Fig. 3D reference).
  • the conductive elastomer composition L may further contain a solvent and the like in addition to the above conductive particles and elastomer.
  • the viscosity of the conductive elastomer composition L at 25°C is not particularly limited, but it can be, for example, 100 Pa ⁇ s or less, preferably 10 to 80 Pa ⁇ s, from the viewpoint of filling the insides of the plurality of cavities 12'.
  • the viscosity of the conductive elastomer composition can be measured with a known viscometer at 25°C.
  • the method of filling the conductive elastomer composition L is not particularly limited. can be done.
  • the conductive elastomer composition L filled inside the plurality of cavities 12' is crosslinked.
  • the conductive elastomer composition L contains a solvent, it is preferable to further dry it.
  • the cross-linking method may be, for example, heating, depending on the type of elastomer and cross-linking agent.
  • the heating temperature can be, for example, 100 to 200° C. in the case of silicone rubber.
  • first groove portion 14a and the second groove portion 14b are formed in the first surface 21a and the second surface 21b of the insulating sheet 21, respectively, and the conductive layer 22 is formed into a plurality of conductive layers 13 (or second groove portions 13).
  • conductive layer 13B (see FIGS. 4A and B). Thereby, a plurality of conductive layers 13 shown in FIG. 1B are formed.
  • a plurality of first grooves 14a and second grooves 14b can be formed by any method. For example, it is preferable to form the plurality of first grooves 14a and the plurality of second grooves 14b by a laser processing method. In the present embodiment, the plurality of first grooves 14a (or the plurality of second grooves 14b) can be formed in a grid pattern on the first surface 21a (or the second surface 21b).
  • the method for manufacturing the anisotropically conductive sheet 10 according to the present embodiment may further include steps other than those described above, if necessary. For example, 5) pretreatment for facilitating the formation of the conductive layer 22 may be performed between the steps 2) and 3).
  • Step 5 It is preferable to perform desmearing (pretreatment) on the insulating sheet 21 having the plurality of through-holes 12 to facilitate the formation of the conductive layer 22 .
  • Desmear treatment includes a wet method and a dry method, and either method may be used.
  • wet desmear treatment known wet processes such as the sulfuric acid method, the chromic acid method, and the permanganate method can be adopted in addition to the alkali treatment.
  • Plasma treatment is an example of dry desmear treatment.
  • the insulating sheet 21 is composed of a crosslinked product of a silicone-based elastomer composition
  • plasma treatment of the insulating sheet 21 not only enables ashing/etching, but also oxidizes the surface of silicone, A film can be formed.
  • the silica film the plating solution can easily enter the through holes 12 and the adhesion between the conductive layer 22 and the inner wall surfaces of the through holes 12 can be enhanced.
  • the oxygen plasma treatment can be performed using, for example, a plasma asher, a high-frequency plasma etching device, or a microwave plasma etching device.
  • cross-linking of the conductive elastomer composition may be performed after step 4) instead of step 3).
  • the obtained anisotropically conductive sheet can preferably be used for electrical inspection.
  • FIG. 5A is a cross-sectional view showing an example of an electrical inspection apparatus 100 according to the present embodiment
  • FIG. 5B is a bottom view showing an example of an inspection object 120 used in the electrical inspection method.
  • the electrical inspection apparatus 100 uses the anisotropically conductive sheet 10 of FIG. 1B, and is an apparatus for inspecting electrical characteristics (such as continuity) between terminals 121 (between measurement points) of an object 120 to be inspected, for example. .
  • electrical characteristics such as continuity
  • the inspection object 120 is also shown.
  • the electrical inspection device 100 has an inspection substrate 110 having a plurality of electrodes and an anisotropically conductive sheet 10.
  • the inspection substrate 110 has a plurality of electrodes 111 facing each measurement point of the inspection object 120 on the surface facing the inspection object 120 .
  • the anisotropically conductive sheet 10 is arranged on the surface of the test substrate 110 on which the electrodes 111 are arranged so that the electrodes 111 and the conductive layer 13 on the second surface 11b side of the anisotropically conductive sheet 10 are in contact with each other. It is
  • the electrical inspection apparatus 100 inserts the guide pins 110A of the inspection board 110 into the positioning holes (not shown) of the anisotropically conductive sheet 10 to position the anisotropically conductive sheet 10 on the inspection board 110.
  • the electrical inspection apparatus 100 inserts the guide pins 110A of the inspection board 110 into the positioning holes (not shown) of the anisotropically conductive sheet 10 to position the anisotropically conductive sheet 10 on the inspection board 110.
  • An object to be inspected 120 is arranged on the anisotropically conductive sheet 10, and these are pressurized by a pressurizing jig so as to be fixed.
  • the inspection object 120 is not particularly limited, but examples include various semiconductor devices (semiconductor packages) such as HBM and PoP, electronic components, printed circuit boards, and the like. If the test object 120 is a semiconductor package, the measurement points may be bumps (terminals). Further, when the inspection object 120 is a printed circuit board, the measurement point can be a land for measurement provided on a conductive pattern or a land for component mounting.
  • the inspection object 120 is, for example, a chip having a total of 264 solder ball electrodes (material: lead-free solder) with a diameter of 0.2 mm and a height of 0.17 mm, arranged at a pitch of 0.3 mm. included (see FIG. 5B).
  • the electrical inspection method laminates an inspection substrate 110 having an electrode 111 and an inspection object 120 with an anisotropically conductive sheet 10 interposed therebetween, and inspects the substrate. and a step of electrically connecting the electrodes 111 of the test substrate 110 and the terminals 121 of the test object 120 via the anisotropically conductive sheet 10 .
  • the electrodes 111 of the inspection substrate 110 and the terminals 121 of the inspection object 120 are sufficiently easily conducted through the anisotropically conductive sheet 10, so that the inspection object 120 may be pressurized, or may be brought into contact under a heated atmosphere.
  • Anisotropically conductive sheet 10 includes conductive filler 15 containing a crosslinked product of a conductive elastomer composition filled inside cavity 12 ′ (inside through hole 12 ).
  • conductive filler 15 containing a crosslinked product of a conductive elastomer composition filled inside cavity 12 ′ (inside through hole 12 ).
  • the insulating layer 11 is an elastic layer containing a crosslinked product of an elastomer composition.
  • the insulating layer 11 is not limited to this. It may further have other layers.
  • the insulating layer 11 preferably includes at least an elastic layer containing a crosslinked product of an elastomer composition, and further includes a heat-resistant resin layer within a range that does not impair the elasticity as a whole.
  • the heat-resistant resin layer contains a heat-resistant resin composition having a glass transition temperature higher than that of the crosslinked elastomer composition forming the elastic layer.
  • the conductive filler 15 filled in the through-hole 12 (or the cavity 12 ′) can usually have a higher storage modulus than the crosslinked elastomer composition forming the insulating layer 11 . Therefore, during an electrical inspection, the pressure when pushing is likely to be concentrated on the portion of the conductive filler 15, and it is difficult to return to the original shape even if the pressure is released. As a result, gaps are likely to be formed in the thickness direction of the sheet near the opening 12a of the through-hole 12 (or cavity 12'), making it difficult to maintain sufficient conductivity.
  • the insulating layer 11 further includes the heat-resistant resin layer 11Y, it is possible to prevent the pressure from being excessively concentrated on the conductive filler 15 during pressing. A gap is less likely to be formed in the thickness direction of the sheet near the opening 12a, and conductivity is less likely to be impaired.
  • FIG. 6 is a partially enlarged cross-sectional view of an anisotropically conductive sheet according to a modification.
  • the insulating layer 11 has an elastic layer 11X and a heat-resistant resin layer 11Y.
  • the elastic layer 11X and the heat-resistant resin layer 11Y may each be one, or two or more.
  • the insulating layer 11 includes one elastic layer 11X and two heat-resistant resin layers 11Y (a first heat-resistant resin layer including the first surface 11a and a second and a second heat-resistant resin layer including the surface 11b (see FIG. 6).
  • the glass transition temperature of the heat-resistant resin composition forming the heat-resistant resin layer 11Y is preferably higher than the glass transition temperature of the cross-linked elastomer composition forming the elastic layer 11X. Specifically, since the electrical test is performed at about -40 to 150°C, the glass transition temperature of the heat-resistant resin composition is preferably 150°C or higher, more preferably 150 to 500°C. preferable. The glass transition temperature of the heat-resistant resin composition can be measured by the same method as described above.
  • the linear expansion coefficient of the heat-resistant resin composition forming the heat-resistant resin layer 11Y is preferably lower than the linear expansion coefficient of the crosslinked elastomer composition forming the elastic layer 11X.
  • the linear expansion coefficient of the heat-resistant resin composition forming the heat-resistant resin layer 11Y is preferably 60 ppm/K or less, more preferably 50 ppm/K.
  • the storage elastic modulus at 25° C. of the heat-resistant resin composition forming the heat-resistant resin layer 11Y is higher than the storage elastic modulus at 25° C. of the crosslinked elastomer composition forming the elastic layer 11X. preferable.
  • the composition of the heat-resistant resin composition is not particularly limited as long as the glass transition temperature, linear expansion coefficient, or storage elastic modulus satisfies the above ranges.
  • the resin contained in the heat-resistant resin composition is preferably a heat-resistant resin whose glass transition temperature satisfies the above range; examples thereof include polyamide, polycarbonate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, Engineering plastics such as polyetheretherketone, polyimide, and polyetherimide, acrylic resins, urethane resins, epoxy resins, and olefin resins are included.
  • the heat-resistant resin composition may further contain other components such as fillers, if necessary.
  • compositions of the heat-resistant resin compositions forming the two heat-resistant resin layers 11Y may be the same or different.
  • the heat-resistant resin layer 11Y including the first surface 11a (or the second surface 11b) is immersed in a chemical solution during, for example, an electroless plating process, the heat-resistant resin composition forming these layers has chemical resistance. It is preferred to have
  • the thickness of the heat-resistant resin layer 11Y is not particularly limited, it is preferably thinner than the thickness Tx of the elastic layer 11X from the viewpoint of preventing the elasticity of the insulating layer 11 from being impaired (see FIG. 2).
  • the ratio (Ty/Tx) of the thickness of the heat-resistant resin layer 11Y to the thickness Tx of the elastic layer 11X is, for example, preferably 1/99 to 30/70, more preferably 2/98 to 10/90. It is more preferable to have
  • the ratio of the thickness of the heat-resistant resin layer 11Y is at least a certain value, it is possible to give the insulating layer 11 appropriate hardness (resilience) to the extent that the elasticity (ease of deformation) of the insulating layer 11 is not impaired.
  • the thicknesses Ty of the two heat-resistant resin layers 11Y may be the same or different, but are preferably the same from the viewpoint of preventing the anisotropic conductive sheet 10 from warping, for example.
  • the thickness ratio of the two heat-resistant resin layers 11Y is preferably 0.8 to 1.2, for example.
  • the depth d of the first groove portion 14a is the heat-resistant resin layer including the first surface 11a. It is preferably thicker than the thickness of the layer 11Y (or the heat-resistant resin layer 11Y including the second surface 11b). If the first groove portion 14a (or the depth of the second groove portion 14b) is larger than the thickness of the heat-resistant resin layer 11Y, the heat-resistant resin layer 11Y is completely cut off. , the surrounding conductive layer 13 is not pushed together, and it is easy to suppress concentration of excessive pressure on the conductive filler 15 .
  • the heat-resistant resin layer 11Y has a higher elastic modulus than the elastic layer 11X.
  • the surrounding conductive layer 13 is likely to be pushed together.
  • the surrounding conductive layers 13 can also be prevented from being pushed together, and the influence on the surrounding conductive layers 13 can be reduced.
  • the insulating layer 11 may further have layers other than those described above, if necessary. Examples of other layers include an adhesive layer (not shown) disposed between two elastic layers 11X when there are two.
  • the insulating layer 11 when the insulating layer 11 includes the heat-resistant resin layer 11Y, the insulating layer 11 has a region (non It preferably further includes a groove region 16 (see FIG. 1A).
  • the heat-resistant resin layer 11Y when the heat-resistant resin layer 11Y is completely divided by the first groove portion 14a (or the second groove portion 14b), it may be difficult to suppress thermal deformation (thermal expansion or thermal contraction) of the elastic layer 11X.
  • the non-groove region 16 in which the first groove 14a (or the second groove 14b) is not formed within a range that does not interfere with electrical conduction the thermal deformation of the elastic layer 11X can be suppressed by the heat-resistant resin layer 11Y. can be done. Only one non-groove region 16 may be provided on the entire first surface 11a (or second surface 11b) (see FIG. 1A), or a plurality of non-groove regions 16 may be provided so as to surround the plurality of conductive layers 13. good.
  • FIG. 1A an example in which one conductive layer 13 (or second conductive layer 13B) is arranged for one through-hole 12 (or first conductive layer 13A) is shown (see FIG. 1A). ), but not limited to.
  • FIGS. 7A and B are partially enlarged plan views around the through-hole 12 in the first surface 11a of the anisotropically conductive sheet 10 according to the modification. As shown in FIGS. 7A and B, one conductive layer 13 (or second conductive layer 13B) may be arranged for two or more through holes 12 (or first conductive layer 13A).
  • FIG. 8 is a partially enlarged plan view of the first surface 11a of the anisotropically conductive sheet 10 according to the modification.
  • at least a portion of the plurality of second conductive layers 13B (or conductive layers 13) may differ from each other in area or shape, depending on the type of inspection object 120.
  • FIG. 8 a chip, which is one of the inspection objects 120, may have a plurality of terminals assigned to the same signal. In this case, rather than forming one second conductive layer 13B for each terminal of the chip (that is, each through hole 12) (see FIG.
  • each terminal to which the same signal is assigned (that is, multiple It is preferable to form one large-area second conductive layer 13B (13B-1, 13B-2 or 13B-3) for each through-hole 12 (see FIG. 8).
  • the second conductive layer 13B-1 can correspond to GND (ground) and the second conductive layer 13B-3 can correspond to the power supply line.
  • the resistance value between these terminals can be reduced during an electrical inspection, so that it is resistant to noise and the potential is likely to be stable. As a result, inspection accuracy is likely to be improved.
  • the second conductive layer 13B is arranged on the first surface 11a and the second surface 11b is shown, but the present invention is not limited to this.
  • the second conductive layer 13B may be arranged on neither the first surface 11a nor the second surface 11b, or may be arranged on only one of the first surface 11a and the second surface 11b.
  • FIG. 9 is a partially enlarged cross-sectional view of an anisotropically conductive sheet 10 according to a modification. As shown in FIG. 9, the second conductive layer 13B may be arranged on only one of the first surface 11a and the second surface 11b.
  • an anisotropically conductive sheet is used for electrical inspection is shown, but the present invention is not limited to this, and electrical connection between two electronic members, such as between a glass substrate and a flexible printed circuit board, is possible. It can also be used for electrical connection between substrates and electronic components mounted on the substrate.
  • Conductive Elastomer Composition As a conductive elastomer composition, ThreeBond 3303B (containing Ag particles, silicone rubber and a cross-linking agent) manufactured by ThreeBond was prepared.
  • the conductive elastomer composition was heated at 170° C. for 30 minutes to obtain a crosslinked product with a film thickness of 4 mm.
  • the storage elastic modulus of the obtained crosslinked product was measured at 25° C. in compression deformation mode in accordance with JIS K 7244-1:1998/ISO6721-1:1994 and found to be 2.8 MPa.
  • volume resistivity of the crosslinked product of the resulting conductive elastomer composition was measured by the method described in ASTM D 991 and found to be 3 ⁇ 10 ⁇ 5 ⁇ m.
  • Example 1 As an insulating sheet, a silicone rubber sheet having a plurality of through-holes 12 (equivalent circle diameter of openings of the plurality of through-holes 12 on the first surface 11a side: 85 ⁇ m) was prepared. A continuous gold (Au) layer was formed on the surface of this sheet (the inner wall surface of the through hole 12, the first surface 11a and the second surface 11b) by a plating method. Next, the conductive elastomer composition is dropped onto the first surface 11a of the obtained sheet, and the conductive elastomer composition is poured into the cavities 12' corresponding to the through holes 12 while vacuuming from the second surface 21b side. was introduced and filled.
  • Au gold
  • the conductive elastomer composition was crosslinked (cured) by heating at 170°C. Then, a plurality of first grooves 14a and a plurality of second grooves 14b were formed on the first surface 11a and the second surface 11b of the obtained sheet, respectively, to divide the conductive layer into a plurality of conductive layers 13. As shown in FIG. Thereby, an anisotropically conductive sheet was obtained.
  • the anisotropically conductive sheet 10 is positioned on the test substrate 110 by inserting the guide pins 110A of the test substrate 110 into the positioning holes (not shown) of the anisotropically conductive sheet 10. placed.
  • a test chip 120 as an object to be inspected was placed on the anisotropically conductive sheet 10 and fixed with a pressure jig.
  • test chip 120 As the test chip 120, a total of 264 solder ball electrodes (material: lead-free solder) having a diameter of 0.2 mm and a height of 0.17 mm are arranged at a pitch of 0.3 mm. Two of them were electrically connected to each other by wiring inside the test chip 120 (see FIG. 5B).
  • the electrical resistance value was measured by the following method.
  • a DC current of 10 mA was constantly applied by the DC power supply 130 and the constant current control device 131, and the voltage between the external terminals of the test substrate 110 during pressurization was measured by the voltmeter 132 ( See Figure 10).
  • V measured voltage value
  • I 1 10 mA
  • the electrical resistance value R1 includes, in addition to the electrical resistance values of the two conductive layers 13, 13, the electrical resistance value between the electrodes of the test chip 120 and the electrical resistance value between the external terminals of the test substrate 110. include. Then, the electrical resistance value R1 was measured for the conductive layer 13 of the anisotropic conductive sheet in contact with the 264 electrodes of the solder balls, and the average value was obtained.
  • Table 1 shows the evaluation results.
  • the resistance value after the cycle (average value ) can be reduced.
  • an anisotropic conductive sheet capable of suppressing cracking and peeling of the conductive layer and maintaining good conductivity even after repeated pressurization and depressurization by pressing, and an electrical inspection method using the sheet are provided. I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Leads Or Probes (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

異方導電性シートは、第1面と、第2面と、それらの間を貫通する複数の貫通孔とを有する絶縁層と、前記複数の貫通孔のそれぞれの内壁面に配置された複数の導電層と、前記複数の貫通孔のそれぞれの内部の、前記導電層で囲まれた空洞に充填された、複数の導電性充填物とを含む。複数の導電性充填物のそれぞれは、導電性粒子と、エラストマーとを含む導電性エラストマー組成物の架橋物を含む。

Description

異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法
 本発明は、異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法に関する。
 電子製品に搭載されるプリント配線板などの半導体デバイスは、通常、電気検査に供される。電気検査は、通常、電気検査装置の(電極を有する)基板と、半導体デバイスなどの検査対象物となる端子とを電気的に接触させ、検査対象物の端子間に所定の電圧を印加したときの電流を読み取ることにより行われる。そして、電気検査装置の基板の電極と、検査対象物の端子との電気的接触を確実に行うために、電気検査装置の基板と検査対象物との間に、異方導電性シートが配置される。
 異方導電性シートは、厚み方向に導電性を有し、面方向に絶縁性を有するシートであり、電気検査におけるプローブ(接触子)として用いられる。このような異方導電性シートは、電気検査装置の基板と検査対象物との間の電気的接続を確実に行うために、押し込み荷重を加えて使用される。そのため、異方導電性シートは、厚み方向に弾性変形しやすいことが求められている。
 そのような異方性導電シートとしては、厚み方向に貫通する複数の貫通孔を有する基材シートと、複数の貫通孔内に配置された複数の導電部と、当該複数の導電部の端面を覆う複数の導電性突出部とを有する電気コネクターが知られている(例えば特許文献1参照)。導電部は、貫通孔の内壁面に形成された金属薄膜(めっき膜)などであってもよいとされている。
特開2020-27859号公報
 ところで、電気検査時では、電気的接触を確実に行うため、異方導電性シートの表面に検査対象物が配置された状態で、押し込み荷重が加えられる。
 しかしながら、特許文献1のような異方導電性シートでは、押し込みによる加圧と除圧が繰り返されることにより、複数の穴部の壁面に形成された金属薄膜(貫通孔の内壁面に接合された導電層)にクラックや剥がれが生じやすく、導通不良が発生しやすいという問題があった。それにより、複数の導電層間の抵抗値のばらつきも生じやすいという問題もあった。
 本発明は、上記課題に鑑みてなされたものであり、押し込みによる加圧と除圧を繰り返しても、導電層のクラックや剥がれを抑制でき、良好な導電性を維持できる異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法を提供することを目的とする。
 上記課題は、以下の構成によって解決することができる。
 本発明の異方導電性シートは、厚み方向の一方の側に位置する第1面と、他方の側に位置する第2面と、前記第1面と前記第2面との間を貫通する複数の貫通孔とを有する絶縁層と、前記複数の貫通孔のそれぞれの内壁面に配置された複数の第1導電層と、前記複数の貫通孔のそれぞれの内部の、前記第1導電層で囲まれた空洞に充填された、複数の導電性充填物と、を含み、前記複数の導電性充填物のそれぞれは、導電性粒子と、エラストマーとを含む導電性エラストマー組成物の架橋物を含む。
 本発明の異方導電性シートの製造方法は、厚み方向の一方の側に位置する第1面と、他方の側に位置する第2面と、前記第1面と前記第2面との間を貫通する複数の貫通孔とを有する絶縁層を準備する工程と、前記複数の貫通孔の内壁面および前記第1面に連続した導電層を形成する工程と、前記導電層が形成された前記絶縁層の前記複数の貫通孔の内部に、導電性粒子と、エラストマーとを含む導電性エラストマー組成物を充填する工程と、前記導電性エラストマー組成物またはその架橋物が充填された前記絶縁層において、前記絶縁層の前記第1面上に複数の第1溝部を形成して、前記導電層を複数の導電層に分割する工程とを含む。
 本発明によれば、押し込みによる加圧と除圧を繰り返しても、導電層のクラックや剥がれを抑制でき、良好な導電性を維持できる異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法を提供することができる。
図1Aは、本実施の形態に係る異方導電性シートを示す部分平面図であり、図1Bは、図1Aの異方導電性シートの1B-1B線の部分拡大断面図である。 図2は、図1Aの異方導電性シートの1B-1B線の部分拡大断面図である。 図3A~Dは、本実施の形態に係る異方導電性シートの製造方法を示す部分拡大断面図である。 図4AおよびBは、本実施の形態に係る異方導電性シートの製造方法を示す部分拡大断面図である。 図5Aは、本実施の形態に係る電気検査装置を示す断面図であり、図5Bは、検査対象物の一例を示す底面図である。 図6は、変形例に係る異方導電性シートの部分拡大断面図である。 図7AおよびBは、変形例に係る異方導電性シートの第1面における貫通孔周辺の部分拡大平面図である。 図8は、変形例に係る異方導電性シートの第1面の部分拡大平面図である。 図9は、変形例に係る異方導電性シートの部分拡大断面図である。 図10は、図5Aの電気検査装置を用いた電気抵抗値の測定方法を示す模式図である。
 1.異方導電性シート
 図1Aは、本実施の形態に係る異方導電性シート10の部分拡大平面図であり、図1Bは、図1Aの異方導電性シート10の1B-1B線の部分拡大断面図である。図2は、図1の異方導電性シート10の1B-1B線の部分拡大断面図である。以下の図面は、いずれも模式図であって、縮尺などは実際のものとは異なる。
 図1AおよびBに示されるように、異方導電性シート10は、第1面11aと、第2面11bと、それらの間を貫通する複数の貫通孔12とを有する絶縁層11と、複数の貫通孔12のそれぞれの内壁面に配置された複数の第1導電層13Aと、第1面11aおよび第2面11bに配置され、(1または2以上の)第1導電層13Aと連続する複数の第2導電層13Bと、複数の第2導電層13の間に配置された複数の第1溝部14aおよび複数の第2溝部14bと、複数の貫通孔12のそれぞれの内部(第1導電層13Aで囲まれた複数の空洞12’)に充填された複数の導電性充填物15とを有する。そして、(貫通孔12の内壁面上の)第1導電層13Aと、それと連続して配置された(第1面11aおよび第2面11b上の)第2導電層13Bが、1つの導電層13として機能する(図1Bの破線で囲まれた部分)。
 本実施の形態では、絶縁層11の第1面11a(異方導電性シート10の一方の面)に、検査対象物が配置されることが好ましい。
 1-1.絶縁層11
 絶縁層11は、厚み方向の一方の側に位置する第1面11aと、厚み方向の他方の側に位置する第2面11bと、第1面11aと第2面11bとの間を貫通する複数の貫通孔12とを有する(図1AおよびB参照)。
 絶縁層11は、厚み方向に圧力が加わると、弾性変形するような弾性を有する。すなわち、絶縁層11は、少なくとも弾性層を含むことが好ましい。弾性層は、エラストマー組成物の架橋物を含むことが好ましい。
 エラストマー組成物に含まれるエラストマーは、特に制限されないが、その例には、シリコーンゴム、ウレタンゴム(ウレタン系ポリマー)、アクリル系ゴム(アクリル系ポリマー)、エチレン-プロピレン-ジエン共重合体(EPDM)、クロロプレンゴム、スチレン-ブタジエン共重合体、アクリルニトリル-ブタジエン共重合体、ポリブタジエンゴム、天然ゴム、ポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、フッ素系ゴムなどのエラストマーであることが好ましい。中でも、シリコーンゴムが好ましい。シリコーンゴムは、付加型縮合型、ラジカル型のいずれであってもよい。
 エラストマー組成物は、必要に応じて架橋剤をさらに含んでもよい。架橋剤は、エラストマーの種類に応じて適宜選択されうる。例えば、シリコーンゴムの架橋剤の例には、ヒドロシリル化反応の触媒活性を有する金属、金属化合物、金属錯体など(白金、白金化合物、それらの錯体など)の付加反応触媒や;ベンゾイルパーオキサイド、ビス-2,4-ジクロロベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイドなどの有機過酸化物が含まれる。アクリル系ゴム(アクリル系ポリマー)の架橋剤の例には、エポキシ化合物、メラミン化合物、イソシアネート化合物などが含まれる。
 例えば、シリコーンゴム組成物の架橋物としては、ヒドロシリル基(SiH基)を有するオルガノポリシロキサンと、ビニル基を有するオルガノポリシロキサンと、付加反応触媒とを含むシリコーンゴム組成物の付加架橋物やビニル基を有するオルガノポリシロキサンと、付加反応触媒とを含むシリコーンゴム組成物の付加架橋物;SiCH基を有するオルガノポリシロキサンと、有機過酸化物硬化剤とを含むシリコーンゴム組成物の架橋物などが含まれる。
 エラストマー組成物は、必要に応じて粘着付与剤、シランカップリング剤、フィラーなどの他の成分もさらに含んでもよい。
 エラストマー組成物の架橋物のガラス転移温度は、特に制限されないが、検査対象物の端子に傷を付きにくくする観点では、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。ガラス転移温度は、JIS K 7095:2012に準拠して測定することができる。
 エラストマー組成物の架橋物の25℃における貯蔵弾性率は、1.0×10Pa以下であることが好ましく、1.0×10~9.0×10Paであることがより好ましい。エラストマー組成物の架橋物の貯蔵弾性率は、JIS K 7244-1:1998/ISO6721-1:1994に準拠して測定することができる。
 エラストマー組成物の架橋物のガラス転移温度および貯蔵弾性率は、当該エラストマー組成物の組成により調整されうる。
 貫通孔12の軸方向は、絶縁層11の厚み方向に対して略平行(例えば、絶縁層11の厚み方向に対する角度が10°以下)であってもよいし、傾斜(例えば、絶縁層11の厚み方向に対する角度が10°超50°以下、好ましくは20~45°で傾斜)していてもよい。本実施の形態では、貫通孔12の軸方向は、絶縁層11の厚み方向に対して略平行である(図1B参照)。なお、軸方向とは、貫通孔12の第1面11a側の開口部と第2面11b側の開口部の重心(または中心)同士を結ぶ線の方向をいう。
 第1面11aにおける貫通孔12の開口部の形状は、特に制限されず、例えば四角形、その他の多角形などのいずれであってもよい。本実施の形態では、第1面11aにおける貫通孔12の開口部の形状は、円形である(図1AおよびB参照)。また、貫通孔12の第1面11a側の開口部の形状と、第2面11b側の開口部の形状とは、同じであってもよいし、異なってもよく、測定対象となる電子デバイスに対する接続安定性の観点では、同じであることが好ましい。
 第1面11a側における貫通孔12の開口部の円相当径Dは、複数の貫通孔12の開口部の中心間距離(ピッチ)pが後述の範囲となるように設定されればよく、特に制限されず、例えば1~330μmであることが好ましく、2~200μmであることがより好ましく、10~100μmであることがさらに好ましい(図2参照)。第1面11a側における貫通孔12の開口部の円相当径Dとは、第1面11a側から貫通孔12の軸方向に沿って見たときの、貫通孔12の開口部の円相当径(開口部の面積に相当する真円の直径)をいう。
 第1面11a側における貫通孔12の開口部の円相当径Dと、第2面11b側における貫通孔12の開口部の円相当径Dとは、同じであってもよいし、異なってもよい。
 第1面11a側における複数の貫通孔12の開口部の中心間距離(ピッチ)pは、特に制限されず、検査対象物の端子のピッチに対応して適宜設定されうる(図2参照)。検査対象物としてのHBM(High Bandwidth Memory)の端子のピッチは55μmであり、PoP(Package on Package)の端子のピッチは400~650μmであることなどから、複数の貫通孔12の開口部の中心間距離pは、例えば5~650μmでありうる。中でも、検査対象物の端子の位置合わせを不要とする(アライメントフリーにする)観点では、第1面11a側における複数の貫通孔12の開口部の中心間距離pは、5~55μmであることがより好ましい。第1面11a側における、複数の貫通孔12の開口部の中心間距離pとは、第1面11a側における、複数の貫通孔12の開口部の中心間距離のうち最小値をいう。貫通孔12の開口部の中心は、開口部の重心である。また、複数の貫通孔12の開口部の中心間距離pは、軸方向に一定であってもよいし、異なってもよい。
 貫通孔12の軸方向の長さ(すなわち、絶縁層11の厚みT)と、第1面11a側における貫通孔12の開口部の円相当径Dの比(T/D)は、特に制限されないが、3~40であることが好ましい(図2参照)。
 絶縁層11の厚みは、非導通部分での絶縁性を確保できる程度であればよく、特に制限されないが、例えば40~700μm、好ましくは100~400μmでありうる。
 1-2.導電層13(第1導電層13A、第2導電層13B)
 導電層13は、1または2以上の貫通孔12(または空洞12’)に対応して配置されている(図1B参照)。具体的には、導電層13は、貫通孔12の内壁面に配置された第1導電層13Aと、第1面11aおよび第2面11b上(の当該貫通孔12の開口部の周囲)に配置され、1または2以上の第1導電層13Aと連続する第2導電層13Bとを有する。そして、隣り合う2つの導電層13および13(または2つの第2導電層13Bおよび13B)は、第1溝部14aおよび第2溝部14bによって絶縁されている(図1B参照)。すなわち、破線で囲まれた単位の導電層13が、1つの導電路として機能する(図1AおよびB参照)。
 第1導電層13Aを構成する材料および第2導電層13Bを構成する材料は、同じであってもよいし、異なってもよく、製造が簡易であり、導通も安定にしやすい観点では、同じであることが好ましい。
 導電層13(第1導電層13A、第2導電層13B)を構成する材料の体積抵抗率は、十分な導通が得られる程度であればよく、特に制限されないが、例えば1.0×10-4Ω・m以下であることが好ましく、1.0×10-5~1.0×10-9Ω・mであることがより好ましい。導電層13を構成する材料の体積抵抗率は、ASTM D 991に記載の方法で測定することができる。
 導電層13を構成する材料は、体積抵抗率が上記範囲を満たすものであればよい。導電層13を構成する材料の例には、銅、金、白金、銀、ニッケル、錫、鉄またはこれらのうち1種の合金などの金属材料や、カーボンブラックなどのカーボン材料が含まれる。中でも、導電層13は、高い導電性と柔軟性を有する観点から、金、銀および銅からなる群より選ばれる一以上を(主成分として)含むことが好ましい。主成分として含むとは、例えば導電層13に対して70質量%以上、好ましくは80質量%以上であることをいう。
 導電層13の厚みは、十分な導通が得られ、かつ貫通孔12を塞がないような範囲(空洞12’が形成されるような範囲)であればよい。また、導電層13(特に第2導電層13B)の厚みは、絶縁層11の厚み方向に押圧したときに、第1溝部14aまたは第2溝部14bを挟んで複数の導電層13(特に第2導電層13B)同士が接触しない範囲であればよい。具体的には、導電層13(特に第2導電層13B)の厚みは、第1溝部14aおよび第2溝部14bの幅および深さよりも小さいことが好ましい。
 具体的には、導電層13の厚みは、0.1~5μmでありうる。導電層13の厚みが一定以上であると、十分な導通が得られやすく、一定以下であると、貫通孔12が塞がれたり、導電層13との接触により検査対象物の端子が傷付いたりしにくい。なお、導電層13の厚みtは、第1面11aおよび第2面11b上(すなわち、第2導電層13B)では、絶縁層11の厚み方向と平行な方向の厚みをいい、貫通孔12の内壁面上(すなわち、第1導電層13A)では、絶縁層11の厚み方向に対して直交する方向の厚みである(図2参照)。
 1-3.第1溝部14aおよび第2溝部14b
 第1溝部14aおよび第2溝部14bは、異方導電性シート10の一方の面および他方の面にそれぞれ形成された溝(凹条)である。具体的には、第1溝部14aは、第1面11a上において複数の第2導電層13B(または複数の導電層13)の間に配置され、それらの間を絶縁する。第2溝部14bは、第2面11b上において複数の第2導電層13B(または複数の導電層13)の間に配置され、それらの間を絶縁する。
 第1溝部14a(または第2溝部14b)の、延設方向に対して直交する方向の断面形状は、特に制限されず、四角形、半円形、U字型、V字型のいずれであってもよい。本実施の形態では、第1溝部14a(または第2溝部14b)の断面形状は、四角形である。
 第1溝部14a(または第2溝部14b)の幅wおよび深さdは、異方導電性シート10を厚み方向に押圧したときに、第1溝部14a(または第2溝部14b)を介して一方の側の第2導電層13Bと、他方の側の第2導電層13Bとが接触しない範囲に設定されることが好ましい(図2参照)。
 具体的には、異方導電性シート10を厚み方向に押圧すると、第1溝部14a(または第2溝部14b)を介して一方の側の第2導電層13Bと、他方の側の第2導電層13Bとが近づいて接触しやすい。したがって、第1溝部14a(または第2溝部14b)の幅wは、第2導電層13B(または導電層13)の厚みよりも大きいことが好ましく、第2導電層13B(または導電層13)の厚みに対して2~40倍であることが好ましい。第1溝部14a(または第2溝部14b)の幅wは、第1面11a(または第2面11b)において、第1溝部14a(または第2溝部14b)が延設される方向に対して直交する方向の最大幅である(図2参照)。
 第1溝部14a(または第2溝部14b)の深さdは、第2導電層13B(または導電層13)の厚みと同じであってもよいし、それよりも大きくてもよい。すなわち、第1溝部14a(または第2溝部14b)の最深部は、絶縁層11の第1面11aに位置していてもよいし、絶縁層11の内部に位置していていもよい。中でも、第1溝部14a(または第2溝部14b)を挟んで一方の第2導電層13B(または導電層13)と他方の第2導電層13B(または導電層13)とが接触しない範囲に設定しやすくする観点から、第1溝部14a(または第2溝部14b)の深さdは、第2導電層13B(または導電層13)の厚みよりも大きいことが好ましく、第2導電層13B(または導電層13)の厚みに対して1.5~100倍であることがより好ましい。第1溝部14a(または第2溝部14b)の深さdは、絶縁層11の厚み方向と平行な方向において、第2導電層13B(または導電層13)の表面から最深部までの深さをいう(図2参照)。
 第1溝部14aと第2溝部14bの幅wおよび深さdは、それぞれ互いに同じであってもよいし、異なってもよい。
 1-4.導電性充填物15
 導電性充填物15は、(貫通孔12の)第1導電層13A(または導電層13)で囲まれた空洞12’内に充填されており、導電性を維持しつつ、第1導電層13A(または導電層13)の剥がれを抑制しうる。
 導電性充填物15は、導電性を維持しやすくする観点では、空洞12’内の体積の50%以上の割合、好ましくは空洞12’内の全体に充填されていることが好ましい。すなわち、導電性充填物15の第1面11a側の端部(または第2面11b側の端部)が、絶縁層11の第1面11a(または第2面11b)とほぼ一致していることが好ましい。
 導電性充填物15は、導電性粒子と、エラストマーとを含む導電性エラストマー組成物の架橋物を含む。
 導電性粒子を構成する材料は、特に制限されないが、銅、金、白金、銀、ニッケル、錫、鉄またはこれらのうち1種の合金などの金属粒子や、カーボンブラックなどのカーボン粒子が含まれる。中でも、導電性に優れ、かつ柔軟性を有する観点では、金、銀、および銅からなる群より選ばれる一以上を(主成分として)含む粒子が好ましい。主成分として含むとは、例えば導電性エラストマー組成物に対して50質量%以上、好ましくは60質量%以上であることをいう。導電性粒子を構成する材料は、第1導電層13Aおよび第2導電層13B(または導電層13)を構成する材料と同じであってもよいし、異なってもよい。
 導電性粒子の平均粒子径は、空洞12’の内部に充填できる程度であればよく、特に制限されないが、例えば第1面11a側における貫通孔12の円相当径の0.3~30%程度としうる。具体的には、導電性粒子の平均粒子径は、0.3~30μm程度としうる。導電性粒子の平均粒子径は、レーザー回折粒度測定装置にて測定された50%粒子径(D50)とする。体積基準粒度分布において粒子径の小さい方から累積して50質量%となる点の粒径である。
 エラストマーの種類は、特に制限されず、絶縁層11を構成するエラストマー組成物に使用されるエラストマーと同様のものを使用できる。導電性エラストマー組成物に使用されるエラストマーの種類は、絶縁層11を構成するエラストマー組成物に使用されるエラストマーの種類と同じであってもよいし、異なってもよい。中でも、柔軟性の観点などから、シリコーンゴムが好ましい。シリコーンゴムは、上記と同様、付加型縮合型、ラジカル型のいずれであってもよい。
 エラストマーの含有割合は、導電性粒子とエラストマーの合計量に対して5~50質量%であることが好ましい。エラストマーの含有割合が5質量%以上であると、第1導電層13A(または導電層13)への密着性が高まりやすく、かつ導電性エラストマー組成物の架橋物が十分な柔軟性を有するため、第1導電層13A(または導電層13)のクラックや剥がれをさらに抑制しやすい。エラストマーの含有割合が50質量%以下であると、導電性が損なわれにくいため、仮に第1導電層13A(または導電層13)にクラックが発生した場合であっても、導電性を確保しやすい。
 導電性エラストマー組成物は、必要に応じて架橋剤などの他の成分をさらに含んでもよい。架橋剤の種類は、特に制限されず、絶縁層11を構成するエラストマー組成物に使用される架橋剤と同様のものを使用できる。
 導電性エラストマー組成物の架橋物の25℃での貯蔵弾性率は、特に制限されないが、通常、絶縁層11を構成するエラストマー組成物の架橋物の25℃での貯蔵弾性率よりも高くなりやすい。ただし、押し込み時の圧力が導電性充填物15に集中することによる不具合を抑制する観点では、適度に低いことが好ましい。具体的には、導電性エラストマー組成物の架橋物の25℃での貯蔵弾性率は、1~300MPaであることが好ましく、2~200MPaであることがより好ましい。貯蔵弾性率は、上記と同様の方法で、圧縮変形モードで測定することができる。
 導電性エラストマー組成物の架橋物の貯蔵弾性率は、当該組成物の組成によって調整されうる。例えば、導電性粒子の含有割合を少なくすれば、当該組成物の架橋物の貯蔵弾性率は低くなる。
 導電性エラストマー組成物の架橋物は、一定以上の導電性を有することが好ましい。具体的には、導電性エラストマー組成物の架橋物の体積抵抗率は、10―2Ω・m以下であることが好ましい。導電性エラストマー組成物の架橋物の体積抵抗率が上記範囲であると、異方導電性シート10の製造工程において、導電性エラストマー組成物が、絶縁層11の第1面11aなどに残存した場合であっても、導電層13(または第2導電層13B)と検査対象物の端子との間の電気的接続が妨げられにくい。同様の観点から、導電性エラストマー組成物の架橋物の体積抵抗率は、1×10-8~1×10-2Ω・mであることがより好ましい。体積抵抗率は、上記と同様の方法で測定できる。
 1-5.作用
 本実施の形態の異方導電性シート10は、導電層13(または第1導電層13A)で囲まれた空洞12’(貫通孔12に由来する空洞)の内部に充填された導電性充填物15を有する。導電性充填物15は、導電層13(または第1導電層13A)と良好に密着し、補強しうる。そのため、電気検査の際に、押し込みによる加圧または除圧を繰り返しても、導電層13のクラックや(貫通孔12の内壁面からの)剥がれを抑制でき、安定して電気的接続を行うことができる。
 2.異方導電性シートの製造方法
 図3A~D、4AおよびBは、本実施の形態に係る異方導電性シート10の製造方法を示す断面模式図である。
 本実施の形態に係る異方導電性シート10は、例えば、1)複数の貫通孔12を有する絶縁シート21(絶縁層)を準備する工程(図3AおよびB参照)と、2)絶縁シート21の表面に、1つの連続した導電層22を形成する工程(図3C参照)と、3)導電層22が形成された絶縁シート21の複数の貫通孔12の内部に、導電性エラストマー組成物を充填する工程(図3D参照)と、4)導電性エラストマー組成物が充填された絶縁シート21の第1面21aおよび第2面21bに、第1溝部14aおよび第2溝部14bをそれぞれ形成して、導電層22を複数の導電層13に分割する工程(図4AおよびB参照)と、を経て製造される。導電層13は、上記の導電層13(第1導電層13A、第2導電層13B)である(図1Bの破線部分参照)。
 1)の工程について
 まず、絶縁シート21を準備する(図3A参照)。絶縁シート21は、例えば、上記エラストマー組成物の架橋物を含むシートである。
 次いで、絶縁シート21に、複数の貫通孔12を形成する(図3B参照)。
 貫通孔12の形成は、任意の方法で行うことができる。例えば、機械的に孔を形成する方法(例えばプレス加工、パンチ加工)や、レーザー加工法などにより行うことができる。中でも、微細で、かつ形状精度の高い貫通孔12の形成が可能である点から、貫通孔12の形成は、レーザー加工法によって行うことがより好ましい。
 レーザーは、樹脂を精度良く穿孔できるエキシマレーザーや炭酸ガスレーザー、YAGレーザーなどを用いることができる。中でも、エキシマレーザーを用いることが好ましい。レーザーのパルス幅は、特に制限されず、マイクロ秒レーザー、ナノ秒レーザー、ピコ秒レーザー、フェムト秒レーザーのいずれであってもよい。また、レーザーの波長も、特に制限されない。
 なお、レーザー加工では、レーザーが照射される時間が最も長い、絶縁層11のレーザー照射面において、貫通孔12の開口径が大きくなりやすい。つまり、絶縁層11の内部からレーザーの照射面へ向かうにつれて開口径が大きくなるテーパ形状となりやすい。そのようなテーパ形状を低減する観点から、レーザーが照射される面に犠牲層(不図示)をさらに有する絶縁シート21を用いて、レーザー加工を行ってもよい。犠牲層を有する絶縁シート21のレーザー加工方法は、例えば国際公開第2007/23596号の内容と同様の方法で行うことができる。
 2)の工程について
 次いで、複数の貫通孔12が形成された絶縁シート21の表面全体に、1つの連続した導電層22を形成する(図3C参照)。具体的には、絶縁シート21の、複数の貫通孔12の内壁面と、その開口部の周囲の第1面21aおよび第2面21bとに連続して導電層22を形成する。それにより、複数の貫通孔12に対応する、導電層13で囲まれた複数の空洞12’が形成される。
 導電層22の形成は、任意の方法で行うことができるが、貫通孔12を塞ぐことなく、薄く、かつ均一な厚みの導電層22を形成しうる点から、めっき法(例えば無電解めっき法や電解めっき法)で行うことが好ましい。
 3)の工程について
 次いで、得られた絶縁シート21の、導電層13で囲まれた複数の空洞12’の内部(複数の貫通孔12の内部)に導電性エラストマー組成物Lを充填する(図3D参照)。
 導電性エラストマー組成物Lは、上記導電性粒子およびエラストマーのほか、溶剤などをさらに含んでもよい。
 導電性エラストマー組成物Lの25℃における粘度は、特に制限されないが、複数の空洞12’の内部への充填性の観点などから、例えば100Pa・s以下、好ましくは10~80Pa・sとしうる。導電性エラストマー組成物の粘度は、25℃において公知の粘度計にて測定されうる。
 導電性エラストマー組成物Lを充填する方法は、特に制限されないが、例えば第1面21a上に導電性エラストマー組成物Lを付与した状態で、第2面21b側から空洞12’内を真空引きして行うことができる。
 そして、複数の空洞12’の内部に充填した導電性エラストマー組成物Lを、架橋させる。なお、導電性エラストマー組成物Lが溶剤を含む場合は、さらに乾燥させることが好ましい。架橋方法は、エラストマーや架橋剤の種類にもよるが、例えば加熱でありうる。加熱温度は、例えばシリコーンゴムの場合は、100~200℃としうる。
 4)の工程について
 次いで、絶縁シート21の第1面21aおよび第2面21bに、第1溝部14aおよび第2溝部14bをそれぞれ形成して、導電層22を複数の導電層13(または第2導電層13B)に分割する(図4AおよびB参照)。それにより、図1Bに示される複数の導電層13を形成する。
 複数の第1溝部14aおよび第2溝部14bの形成は、任意の方法で行うことができる。例えば、複数の第1溝部14aおよび複数の第2溝部14bの形成は、レーザー加工法により行うことが好ましい。本実施の形態では、第1面21a(または第2面21b)では、複数の第1溝部14a(または複数の第2溝部14b)は、格子状に形成されうる。
 本実施の形態に係る異方導電性シート10の製造方法は、必要に応じて上記以外の他の工程をさらに含んでもよい。例えば、2)の工程と3)の工程の間に、5)導電層22を形成しやすくするための前処理を行ってもよい。
 5)の工程について
 複数の貫通孔12が形成された絶縁シート21について、導電層22を形成しやすくするためのデスミア処理(前処理)を行うことが好ましい。デスミア処理は、湿式法と乾式法があり、いずれの方法を用いてもよい。
 湿式法のデスミア処理としては、アルカリ処理のほか、硫酸法,クロム酸法,過マンガン酸塩法など、公知の湿式プロセスが採用されうる。
 乾式法のデスミア処理としては、プラズマ処理が挙げられる。例えば絶縁シート21が、シリコーン系エラストマー組成物の架橋物で構成されている場合、絶縁シート21をプラズマ処理することで、アッシング/エッチングが可能であるだけでなく、シリコーンの表面を酸化し、シリカ膜を形成することができる。シリカ膜を形成することで、めっき液が貫通孔12内に浸入しやすくしたり、導電層22と貫通孔12の内壁面との密着性を高めたりしうる。
 酸素プラズマ処理は、例えばプラズマアッシャーや高周波プラズマエッチング装置、マイクロ波プラズマエッチング装置を用いて行うことができる。
 また、導電性エラストマー組成物の架橋は、3)の工程ではなく、4)の工程の後に行ってもよい。
 得られた異方導電性シートは、好ましくは電気検査に用いることができる。
 3.電気検査装置および電気検査方法
 3-1.電気検査装置
 図5Aは、本実施の形態に係る電気検査装置100の一例を示す断面図であり、図5Bは、電気検査方法に用いた検査対象物120の一例を示す底面図である。
 電気検査装置100は、図1Bの異方導電性シート10を用いたものであり、例えば検査対象物120の端子121間(測定点間)の電気的特性(導通など)を検査する装置である。なお、同図では、電気検査方法を説明する観点から、検査対象物120も併せて図示している。
 図5Aに示されるように、電気検査装置100は、複数の電極を有する検査用基板110と、異方導電性シート10とを有する。
 検査用基板110は、検査対象物120に対向する面に、検査対象物120の各測定点に対向する複数の電極111を有する。
 異方導電性シート10は、検査用基板110の電極111が配置された面上に、当該電極111と、異方導電性シート10における第2面11b側の導電層13とが接するように配置されている。
 そして、電気検査装置100は、異方導電性シート10の位置決め穴(不図示)に、検査用基板110のガイドピン110Aを挿通させて、異方導電性シート10を検査用基板110上に位置決めして配置できるようになっている。そして、異方導電性シート10上に検査対象物120を配置し、これらを加圧治具で加圧し、固定できるようになっている。
 検査対象物120は、特に制限されないが、例えばHBMやPoPなどの各種半導体装置(半導体パッケージ)または電子部品、プリント基板などが挙げられる。検査対象物120が半導体パッケージである場合、測定点は、バンプ(端子)でありうる。また、検査対象物120がプリント基板である場合、測定点は、導電パターンに設けられる測定用ランドや部品実装用のランドでありうる。検査対象物120としては、例えば、直径0.2mm、高さ0.17mmのハンダボール電極(材質:鉛フリーハンダ)を合計で264個有し、0.3mmのピッチで配列されたチップなどが含まれる(図5B参照)。
 3-2.電気検査方法
 図5Aの電気検査装置100を用いた電気検査方法について説明する。
 図5Aに示されるように、本実施の形態に係る電気検査方法は、電極111を有する検査用基板110と、検査対象物120とを、異方導電性シート10を介して積層して、検査用基板110の電極111と、検査対象物120の端子121とを、異方導電性シート10を介して電気的に接続させる工程を有する。
 上記工程を行う際、検査用基板110の電極111と検査対象物120の端子121とを、異方導電性シート10を介して十分に導通させやすくする観点から、必要に応じて、検査対象物120を押圧して加圧したり、加熱雰囲気下で接触させたりしてもよい。
 3-3.作用
 本実施の形態に係る異方導電性シート10は、空洞12’の内部(貫通孔12の内部)に充填された、導電性エラストマー組成物の架橋物を含む導電性充填物15を含む。それにより、押し込みによる加圧と除圧を繰り返しても、導電層13のクラックや剥がれを抑制でき、良好な導電性を維持することができる。それにより、正確な電気検査を行うことができる。
 [変形例]
 なお、上記実施の形態では、絶縁層11が、エラストマー組成物の架橋物を含む弾性層からなる例を示したが、これに限定されず、弾性変形しうる範囲で、耐熱性樹脂層などの他の層をさらに有してもよい。
 例えば、絶縁層11は、少なくともエラストマー組成物の架橋物を含む弾性層を含み、全体として弾性を損なわない範囲で、耐熱性樹脂層をさらに含むことが好ましい。耐熱性樹脂層は、弾性層を構成するエラストマー組成物の架橋物よりもガラス転移温度が高い耐熱性樹脂組成物を含む。
 すなわち、貫通孔12(または空洞12’)に充填された導電性充填物15は、通常、絶縁層11を構成するエラストマー組成物の架橋物よりも高い貯蔵弾性率を有しうる。そのため、電気検査時に、導電性充填物15の部分に押し込み時の圧力が集中しやすく、除圧しても元の形状に戻りにくい。その結果、貫通孔12(または空洞12’)の開口部12a付近に、シートの厚み方向に隙間が形成されやすく、十分な導電性を維持しにくいことがある。これに対し、絶縁層11が、耐熱性樹脂層11Yをさらに含むことで、押し込み時の圧力が導電性充填物15に過度に集中しにくくしうるため、貫通孔12(または空洞12’)の開口部12a付近に、シートの厚み方向に隙間が形成されにくく、導電性が損なわれにくい。
 図6は、変形例に係る異方導電性シートの部分拡大断面図である。図6に示されるように、絶縁層11は、弾性層11Xと、耐熱性樹脂層11Yとを有する。
 弾性層11Xおよび耐熱性樹脂層11Yは、それぞれ1つであってもよいし、2以上あってもよい。本実施の形態では、絶縁層11は、1つの弾性層11Xと、それを挟むように配置された2つの耐熱性樹脂層11Y(第1面11aを含む第1耐熱性樹脂層と、第2面11bを含む第2耐熱性樹脂層)とを有する(図6参照)。
 耐熱性樹脂層11Yを構成する耐熱性樹脂組成物のガラス転移温度は、弾性層11Xを構成するエラストマー組成物の架橋物のガラス転移温度よりも高いことが好ましい。具体的には、電気検査は、約-40~150℃で行われることから、耐熱性樹脂組成物のガラス転移温度は、150℃以上であることが好ましく、150~500℃であることがより好ましい。耐熱性樹脂組成物のガラス転移温度は、前述と同様の方法で測定することができる。
 また、耐熱性樹脂層11Yを構成する耐熱性樹脂組成物の線膨脹係数は、弾性層11Xを構成するエラストマー組成物の架橋物の線膨脹係数よりも低いことが好ましい。具体的には、耐熱性樹脂層11Yを構成する耐熱性樹脂組成物の線膨脹係数は、60ppm/K以下であることが好ましく、50ppm/Kであることがより好ましい。
 また、耐熱性樹脂層11Yを構成する耐熱性樹脂組成物の25℃での貯蔵弾性率は、弾性層11Xを構成するエラストマー組成物の架橋物の25℃での貯蔵弾性率よりも高いことが好ましい。
 耐熱性樹脂組成物の組成は、ガラス転移温度、線膨脹係数または貯蔵弾性率が上記範囲を満たすものであればよく、特に制限されない。耐熱性樹脂組成物に含まれる樹脂は、ガラス転移温度が上記範囲を満たす耐熱性樹脂であることが好ましく;その例には、ポリアミド、ポリカーボネート、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミドなどのエンジニアリングプラスチック、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、オレフィン樹脂が含まれる。耐熱性樹脂組成物は、必要に応じてフィラーなどの他の成分をさらに含んでもよい。
 2つの耐熱性樹脂層11Yを構成する耐熱性樹脂組成物の組成は、同じであってもよいし、異なってもよい。また、第1面11a(または第2面11b)を含む耐熱性樹脂層11Yは、例えば無電解めっき処理などにおいて薬液に浸漬されるため、これらを構成する耐熱性樹脂組成物は、耐薬品性を有することが好ましい。
 耐熱性樹脂層11Yの厚みは、特に制限されないが、絶縁層11の弾性が損なわれにくくする観点では、弾性層11Xの厚みTxよりも薄いことが好ましい(図2参照)。具体的には、耐熱性樹脂層11Yの厚みと弾性層11Xの厚みTxの比(Ty/Tx)は、例えば1/99~30/70であることが好ましく、2/98~10/90であることがより好ましい。耐熱性樹脂層11Yの厚みの割合が一定以上であると、絶縁層11の弾性(変形しやすさ)を損なわない程度に、絶縁層11に適度な硬さ(コシ)を付与できる。それにより、ハンドリング性を高めることができるだけでなく、絶縁層11の伸縮などによって導電層13が破壊されたり、熱によって複数の貫通孔12の中心間距離が変動したりするのを抑制できる。
 2つの耐熱性樹脂層11Yの厚みTyは、同じであっても、異なっていてもよいが、例えば異方導電性シート10の反りなどを生じにくくする観点などから、同等であることが好ましい。2つの耐熱性樹脂層11Yの厚みの比は、例えば0.8~1.2であることが好ましい。
 耐熱性樹脂層が、異方導電性シート10の表面に配置される場合、第1溝部14aの深さd(または第2溝部14bの深さd)は、第1面11aを含む耐熱性樹脂層11Y(または第2面11bを含む耐熱性樹脂層11Y)の厚みよりも大きいことが好ましい。第1溝部14a(または第2溝部14bの深さ)が耐熱性樹脂層11Yの厚みよりも大きいと、耐熱性樹脂層11Yを完全に分断されるため、検査対象物120を載せて押し込んだ時に、周囲の導電層13が一緒に押し込まれなくなり、導電性充填物15に過度な圧力が集中するのを抑制しやすい。
 すなわち、耐熱性樹脂層11Yは、弾性層11Xよりも高い弾性率を有するため、第1溝部14aおよび第2溝部14bの深さが小さいと、耐熱性樹脂層11Yが完全には分断されないため、検査対象物120を異方導電性シート10上に載せて押し込んだ際に、周囲の導電層13も一緒に押し込まれやすい。
 これに対し、第1溝部14aおよび第2溝部14bの深さを上記のように大きくして、耐熱性樹脂層11Yを完全に分断することで、検査対象物120を載せて押し込んだ時の、周囲の導電層13も一緒に押し込まれないようにすることができ、周囲の導電層13への影響を低減することができる。
 絶縁層11は、必要に応じて上記以外の他の層をさらに有してもよい。他の層の例には、弾性層11Xが2つある場合は、それらの間に配置される接着層(不図示)などが含まれる。
 なお、絶縁層11が耐熱性樹脂層11Yを含む場合、絶縁層11は、第1面11a(または第2面11b)において、第1溝部14a(または第2溝部14b)が形成されない領域(非溝部領域)16(図1A参照)をさらに含むことが好ましい。
 すなわち、耐熱性樹脂層11Yが、第1溝部14a(または第2溝部14b)によって完全に分断されると、弾性層11Xの熱変形(熱膨張または熱収縮)を抑制しにくい場合がある。これに対し、導通に支障のない範囲で、第1溝部14a(または第2溝部14b)が形成されない非溝部領域16を設けることで、耐熱性樹脂層11Yによって弾性層11Xの熱変形を抑えることができる。非溝部領域16は、第1面11a(または第2面11b)において、全体に1つだけ設けられてもよいし(図1A参照)、複数の導電層13を取り囲むように複数設けられてもよい。
 また、上記実施の形態では、1つの貫通孔12(または第1導電層13A)に対して1つの導電層13(または第2導電層13B)が配置される例を示したが(図1A参照)、これに限定されない。
 図7AおよびBは、変形例に係る異方導電性シート10の第1面11aにおける貫通孔12周辺の部分拡大平面図である。図7AおよびBに示されるように、2以上の貫通孔12(または第1導電層13A)に対して1つの導電層13(または第2導電層13B)が配置されてもよい。
 また、上記実施の形態では、第1面11a(または第2面11b)において、複数の第2導電層13B(または導電層13)の少なくとも一部の面積または形状が互いに均等である例を示したが、これに限定されない。
 図8は、変形例に係る異方導電性シート10の第1面11aの部分拡大平面図である。図8に示されるように、検査対象物120の種類に応じて、複数の第2導電層13B(または導電層13)の少なくとも一部は、面積または形状が互いに異なっていてもよい。例えば、検査対象物120の一つであるチップは、同一の信号に対して複数の端子が割り当てられることがある。この場合、チップの端子ごと(すなわち、貫通孔12ごと)に1つの第2導電層13Bを形成するよりも(図1A参照)、同一の信号が割り当てられた複数の端子ごと(すなわち、複数の貫通孔12ごと)に1つの面積の大きな第2導電層13B(13B-1、13B-2または13B-3)を形成することが好ましい(図8参照)。例えば、第2導電層13B-1をGND(グラウンド)に対応させ、第2導電層13B-3を電源ラインに対応させることができる。それにより、電気検査時において、これらの端子間の抵抗値を低減できるため、ノイズに強く、電位が安定しやすい。それにより、検査精度が高まりやすい。
 また、上記実施の形態では、第2導電層13Bが、第1面11aおよび第2面11bにそれぞれ配置される例を示したが、これに限定されない。例えば、第2導電層13Bは、第1面11aおよび第2面11bのいずれにも配置されなくてもよいし、第1面11aと第2面11bのうち一方のみに配置されてもよい。
 図9は、変形例に係る異方導電性シート10の部分拡大断面図である。図9に示されるように、第2導電層13Bは、第1面11aと第2面11bのうち一方のみに配置されてもよい。
 また、上記実施の形態では、異方導電性シートを電気検査に用いる例を示したが、これに限定されず、2つの電子部材間の電気的接続、例えばガラス基板とフレキシブルプリント基板との間の電気的接続や、基板とそれに実装される電子部品との間の電気的接続などに用いることもできる。
 以下において、実施例を参照して本発明を説明する。実施例によって、本発明の範囲は限定して解釈されない。
 1.導電性エラストマー組成物の準備
 導電性エラストマー組成物として、スリーボンド社製ThreeBond 3303B(Ag粒子、シリコーンゴムおよび架橋剤含有)を準備した。
 (貯蔵弾性率の測定)
 まず、導電性エラストマー組成物を170℃で30分間加熱して、膜厚4mmの架橋物を得た。そして、得られた架橋物の貯蔵弾性率を、JIS K 7244-1:1998/ISO6721-1:1994に準拠して、圧縮変形モードで、25℃で測定したところ、2.8MPaであった。
 (体積抵抗率の測定)
 得られた導電性エラストマー組成物の架橋物の体積抵抗率を、ASTM D 991に記載の方法で測定したところ、3×10―5Ω・mであった。
 2.異方導電性シートの作製および評価
 [実施例1]
 絶縁シートとして、複数の貫通孔12(第1面11a側における複数の貫通孔12の開口部の円相当径85μm)を有する、シリコーンゴムシートを準備した。このシートの表面(貫通孔12の内壁面、第1面11aおよび第2面11b)に、めっき法により連続した金(Au)層を形成した。次いで、得られたシートの第1面11a上に、導電性エラストマー組成物を滴下し、貫通孔12に対応する空洞12’内に、第2面21b側から真空引きしながら導電性エラストマー組成物を導入および充填させた。その後、170℃で加熱して、導電性エラストマー組成物を架橋(硬化)させた。そして、得られたシートの第1面11aおよび第2面11bに、複数の第1溝部14aおよび第2溝部14bをそれぞれ形成して、導電層を複数の導電層13に分割した。それにより、異方導電性シートを得た。
 [比較例1]
 シートの貫通孔12に対応する空洞12’に導電性エラストマー組成物を充填しなかった以外は実施例1と同様にして、異方導電性シートを得た。
 [評価]
 得られた異方導電性シートについて、耐久試験を行い、耐久試験後の抵抗値を、以下の方法で評価した。
 (耐久試験)
 図5Aに示されるように、異方導電性シート10の位置決め穴(不図示)に、検査用基板110のガイドピン110Aを挿通させて、異方導電性シート10を検査用基板110に位置決めして配置した。この異方導電性シート10上に、検査対象物としてテスト用チップ120を配置し、これらを加圧治具で固定した。
 テスト用チップ120としては、直径0.2mm、高さ0.17mmのハンダボール電極(材質:鉛フリーハンダ)を合計で264個、0.3mmのピッチで配列され、これらのハンダボール電極のうち2個ずつが、テスト用チップ120内の配線で互いに電気的に接続されているものを使用した(図5B参照)。
 次いで、25℃において、加圧治具でテスト用チップ120に3kgの荷重を加え、その後、加圧を開放した。この操作を1加圧サイクルとし、30rpmで加圧サイクルを所定の回数繰り返した後、電気抵抗値を測定した。
 (電気抵抗値の測定)
 電気抵抗値の測定は、以下の方法で行った。異方導電性シート10、テスト用チップ120、および検査用基板110の電極111(検査用電極)およびその配線(不図示)を介して互いに電気的に接続された、検査用基板110の外部端子(不図示)間に、直流電源130および定電流制御装置131によって、10mAの直流電流を常時印加し、電圧計132によって、加圧時における検査用基板110の外部端子間の電圧を測定した(図10参照)。測定された電圧の値(V)をVとし、印加した直流電流をI(=10mA)として、下記の数式により、電気抵抗値Rを求めた。
Figure JPOXMLDOC01-appb-M000001
 なお、電気抵抗値Rには、2つの導電層13、13の電気抵抗値の他に、テスト用チップ120の電極間の電気抵抗値および検査用基板110の外部端子間の電気抵抗値が含まれている。
 そして、当該電気抵抗値Rの測定を、はんだボールの264個の電極と接触している、異方導電性シートの導電層13について行い、それらの平均値を求めた。
 評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、導電層13で囲まれた複数の空洞12’内に導電性エラストマー組成物の架橋物を充填することで、比較例1よりも、サイクル後の抵抗値(平均値)の増大を少なくしうることがわかる。
 本出願は、2021年7月30日出願の特願2021-126025に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書および図面に援用される。
 本発明によれば、押し込みによる加圧と除圧を繰り返しても、導電層のクラックや剥がれを抑制でき、良好な導電性を維持できる異方導電性シートおよびそれを用いた電気検査方法を提供するこができる。
 10 異方導電性シート
 11 絶縁層
 11a 第1面
 11b 第2面
 11X 弾性層
 11Y 耐熱性樹脂層
 12 貫通孔
 12’ 空洞
 13 導電層
 14a 第1溝部
 14b 第2溝部
 15 導電性充填物
 21 絶縁シート
 22 導電層
 100 電気検査装置
 110 検査用基板
 111 電極
 120 検査対象物
 121 (検査対象物の)端子
 L 導電性エラストマー組成物

Claims (17)

  1.  厚み方向の一方の側に位置する第1面と、他方の側に位置する第2面と、前記第1面と前記第2面との間を貫通する複数の貫通孔とを有する絶縁層と、
     前記複数の貫通孔のそれぞれの内壁面に配置された複数の第1導電層と、
     前記複数の貫通孔のそれぞれの内部の、前記第1導電層で囲まれた空洞に充填された、複数の導電性充填物と、
     を含み、
     前記複数の導電性充填物のそれぞれは、導電性粒子と、エラストマーとを含む導電性エラストマー組成物の架橋物を含む、
     異方導電性シート。
  2.  前記異方導電性シートは、
     前記第1面および前記第2面上に配置され、1または2以上の前記第1導電層と連通する複数の第2導電層をさらに有し、
     前記第1面上において、前記複数の第2導電層の間に配置され、それらを絶縁するための複数の第1溝部と、
     前記第2面上において、前記複数の第2導電層の間に配置され、それらを絶縁するための複数の第2溝部と、
     をさらに有する、
     請求項1に記載の異方導電性シート。
  3.  前記絶縁層は、エラストマー組成物の架橋物を含み、
     前記導電性エラストマー組成物の架橋物の25℃での貯蔵弾性率は、前記絶縁層を構成する前記エラストマー組成物の架橋物の25℃での貯蔵弾性率よりも高い、
     請求項1または2に記載の異方導電性シート。
  4.  前記導電性エラストマー組成物の架橋物の25℃での貯蔵弾性率は、1~300MPaである、
     請求項1または2に記載の異方導電性シート。
  5.  前記導電性エラストマー組成物に含まれる前記エラストマーは、シリコーンゴムである、
     請求項1または2に記載の異方導電性シート。
  6.  前記導電性エラストマー組成物の架橋物の体積抵抗率は、10―2Ω・m以下である、
     請求項1または2に記載の異方導電性シート。
  7.  前記導電性粒子は、金、銀および銅からなる群より選ばれる一以上の金属を含む、
     請求項1または2に記載の異方導電性シート。
  8.  前記第1導電層は、金、銀および銅からなる群より選ばれる一以上の金属を含む、
     請求項1または2に記載の異方導電性シート。
  9.  前記絶縁層は、エラストマー組成物の架橋物を含む弾性層と、
     前記エラストマー組成物の架橋物よりもガラス転移温度が高い耐熱性樹脂組成物を含む耐熱性樹脂層と
     を含む、
     請求項2に記載の異方導電性シート。
  10.  前記耐熱性樹脂組成物の25℃での貯蔵弾性率は、前記弾性層を構成する前記エラストマー組成物の架橋物の25℃での貯蔵弾性率よりも高い、
     請求項9に記載の異方導電性シート。
  11.  前記絶縁層は、
     前記第1面を含み、かつ前記耐熱性樹脂組成物を含む第1耐熱性樹脂層と、
     前記第2面を含み、かつ前記耐熱性樹脂組成物を含む第2耐熱性樹脂層と、
     前記第1耐熱性樹脂層と前記第2耐熱性樹脂層との間に配置された前記弾性層と、
     を有する、
     請求項9または10に記載の異方導電性シート。
  12.  前記第1溝部の深さは、前記第1耐熱性樹脂層の厚みよりも大きく、
     前記第2溝部の深さは、前記第2耐熱性樹脂層の厚みよりも大きい、
     請求項11に記載の異方導電性シート。
  13.  前記複数の第2導電層の少なくとも一部は、互いに面積または形状が異なっている、
     請求項12に記載の異方導電性シート。
  14.  検査対象物の電気検査に用いられる異方導電性シートであって、
     前記検査対象物は、前記第1面上に配置される、
     請求項1または2に記載の異方導電性シート。
  15.  厚み方向の一方の側に位置する第1面と、他方の側に位置する第2面と、前記第1面と前記第2面との間を貫通する複数の貫通孔とを有する絶縁層を準備する工程と、
     前記複数の貫通孔の内壁面および前記第1面に連続した導電層を形成する工程と、
     前記導電層が形成された前記絶縁層の前記複数の貫通孔の内部に、導電性粒子と、エラストマーとを含む導電性エラストマー組成物を充填する工程と、
     前記導電性エラストマー組成物またはその架橋物が充填された前記絶縁層において、前記絶縁層の前記第1面上に複数の第1溝部を形成して、前記導電層を複数の導電層に分割する工程と
     を含む、
     異方導電性シートの製造方法。
  16.  複数の電極を有する検査用基板と、
     前記検査用基板の前記複数の電極が配置された面上に配置された、請求項1または2に記載の異方導電性シートと、
     を有する、
     電気検査装置。
  17.  複数の電極を有する検査用基板と、端子を有する検査対象物とを、請求項1または2に記載の異方導電性シートを介して積層して、前記検査用基板の前記電極と、前記検査対象物の前記端子とを、前記異方導電性シートを介して電気的に接続する工程を有する、
     電気検査方法。
PCT/JP2022/026199 2021-07-30 2022-06-30 異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法 WO2023008083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280052894.1A CN117716582A (zh) 2021-07-30 2022-06-30 各向异性导电片及其制造方法、电检查装置与电检查方法
KR1020247002740A KR20240024996A (ko) 2021-07-30 2022-06-30 이방 도전성 시트 및 그 제조 방법, 전기 검사 장치, 및 전기 검사 방법
JP2023538365A JPWO2023008083A1 (ja) 2021-07-30 2022-06-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126025 2021-07-30
JP2021126025 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008083A1 true WO2023008083A1 (ja) 2023-02-02

Family

ID=85086721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026199 WO2023008083A1 (ja) 2021-07-30 2022-06-30 異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法

Country Status (5)

Country Link
JP (1) JPWO2023008083A1 (ja)
KR (1) KR20240024996A (ja)
CN (1) CN117716582A (ja)
TW (1) TW202319465A (ja)
WO (1) WO2023008083A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118977A (ja) * 1984-11-13 1986-06-06 シチズン時計株式会社 多電極コネクタ−構造
JPH07169542A (ja) * 1993-12-17 1995-07-04 Yamaichi Electron Co Ltd Icソケット
JP2005050782A (ja) * 2003-06-12 2005-02-24 Jsr Corp 異方導電性コネクター装置およびその製造方法並びに回路装置の検査装置
WO2021100825A1 (ja) * 2019-11-22 2021-05-27 三井化学株式会社 シートコネクタ、シートセット、電気検査装置および電気検査方法
JP2022020327A (ja) * 2020-07-20 2022-02-01 三井化学株式会社 異方導電性シート、異方導電性シートの製造方法、電気検査装置および電気検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7175132B2 (ja) 2018-08-10 2022-11-18 信越ポリマー株式会社 電気コネクターの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118977A (ja) * 1984-11-13 1986-06-06 シチズン時計株式会社 多電極コネクタ−構造
JPH07169542A (ja) * 1993-12-17 1995-07-04 Yamaichi Electron Co Ltd Icソケット
JP2005050782A (ja) * 2003-06-12 2005-02-24 Jsr Corp 異方導電性コネクター装置およびその製造方法並びに回路装置の検査装置
WO2021100825A1 (ja) * 2019-11-22 2021-05-27 三井化学株式会社 シートコネクタ、シートセット、電気検査装置および電気検査方法
JP2022020327A (ja) * 2020-07-20 2022-02-01 三井化学株式会社 異方導電性シート、異方導電性シートの製造方法、電気検査装置および電気検査方法

Also Published As

Publication number Publication date
KR20240024996A (ko) 2024-02-26
CN117716582A (zh) 2024-03-15
JPWO2023008083A1 (ja) 2023-02-02
TW202319465A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11921132B2 (en) Anisotropic conductive sheet, electrical inspection device and electrical inspection method
JP5018612B2 (ja) 異方導電性シートおよび異方導電性シートの製造方法
WO2021100825A1 (ja) シートコネクタ、シートセット、電気検査装置および電気検査方法
WO2023008083A1 (ja) 異方導電性シートおよびその製造方法、電気検査装置ならびに電気検査方法
JP2020027859A (ja) 電気コネクターの製造方法
US20240036102A1 (en) Anisotropic conductive sheet and electrical inspection method
JP3302635B2 (ja) 電気コネクタ及びその製造方法
WO2023074760A1 (ja) 異方導電性シート、電気検査装置及び電気検査方法
KR20240073907A (ko) 이방 도전성 시트, 전기 검사 장치 및 전기 검사 방법
JP7427087B2 (ja) 異方導電性シート、異方導電性シートの製造方法、電気検査装置および電気検査方法
JP6756996B1 (ja) 導電性部材の製造方法
WO2024048439A1 (ja) フレーム付き異方導電性シート、フレーム付き異方導電性シートの製造方法及び電気検査装置
WO2024080349A1 (ja) 異方導電性シート、電気検査装置及び電気検査方法
JPWO2020105693A1 (ja) 異方導電性シート、異方導電性複合シート、異方導電性シートセット、電気検査装置および電気検査方法
JP2008070271A (ja) シート状プローブおよびその製造方法ならびにその応用
JP2021128890A (ja) 異方導電性シート、電気検査装置および電気検査方法
JP2020027725A (ja) 電気コネクター及びその製造方法
JP2003255017A (ja) 電子デバイス検査用コンタクトシート
JP2020088012A (ja) 配線シート及びその製造方法
JP2004239900A (ja) 回路基板の検査装置および回路基板の検査方法
JP2020204535A (ja) 導電性部材
JP2001076787A (ja) 電気コネクタ及びこれを用いた接続構造
JP2003123869A (ja) 異方導電性コネクターおよびそれを有する検査装置並びに異方導電性コネクターの製造方法
JP2007265704A (ja) 複合導電性シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538365

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247002740

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002740

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18292379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280052894.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE