WO2023007856A1 - 原料供給システムおよび原料供給方法 - Google Patents
原料供給システムおよび原料供給方法 Download PDFInfo
- Publication number
- WO2023007856A1 WO2023007856A1 PCT/JP2022/014963 JP2022014963W WO2023007856A1 WO 2023007856 A1 WO2023007856 A1 WO 2023007856A1 JP 2022014963 W JP2022014963 W JP 2022014963W WO 2023007856 A1 WO2023007856 A1 WO 2023007856A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waste plastic
- raw material
- material supply
- cracked oil
- slaked lime
- Prior art date
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229920003023 plastic Polymers 0.000 claims abstract description 177
- 239000004033 plastic Substances 0.000 claims abstract description 177
- 239000002699 waste material Substances 0.000 claims abstract description 176
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 89
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 89
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 89
- 238000007872 degassing Methods 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000000197 pyrolysis Methods 0.000 claims description 92
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 63
- 239000004800 polyvinyl chloride Substances 0.000 claims description 54
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 53
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 53
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 52
- 229930195733 hydrocarbon Natural products 0.000 claims description 27
- 150000002430 hydrocarbons Chemical class 0.000 claims description 27
- 230000008929 regeneration Effects 0.000 claims description 27
- 238000011069 regeneration method Methods 0.000 claims description 27
- 239000000460 chlorine Substances 0.000 claims description 25
- -1 polyethylene terephthalate Polymers 0.000 claims description 25
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 24
- 229910052801 chlorine Inorganic materials 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 17
- 238000011033 desalting Methods 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 7
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 5
- 238000010612 desalination reaction Methods 0.000 abstract 3
- 239000003921 oil Substances 0.000 description 105
- 235000019198 oils Nutrition 0.000 description 104
- 239000007789 gas Substances 0.000 description 35
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 23
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 22
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 22
- 238000012545 processing Methods 0.000 description 22
- 239000011575 calcium Substances 0.000 description 11
- 238000003860 storage Methods 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000004064 recycling Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- AAEHPKIXIIACPQ-UHFFFAOYSA-L calcium;terephthalate Chemical compound [Ca+2].[O-]C(=O)C1=CC=C(C([O-])=O)C=C1 AAEHPKIXIIACPQ-UHFFFAOYSA-L 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000005711 Benzoic acid Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005115 demineralization Methods 0.000 description 2
- 230000002328 demineralizing effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000010808 liquid waste Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019476 oil-water mixture Nutrition 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/12—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/14—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/16—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/07—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/04—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
- C10B57/06—Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/008—Controlling or regulating of liquefaction processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G33/00—Dewatering or demulsification of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G5/00—Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
- C10G5/04—Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G70/00—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
- C10G70/04—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
- C10G70/06—Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08J2327/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a raw material supply system and a raw material supply method for pyrolyzing waste plastics containing polyvinyl chloride (PVC) and polyethylene terephthalate (PET), and in particular, while processing PVC and PET contained in the waste plastics,
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- the present invention relates to a raw material supply system and a raw material supply method for supplying waste plastics to a pyrolysis furnace.
- Waste plastics include PVC (polyvinyl chloride) and PET (polyethylene terephthalate) in addition to PS (polystyrene), PP (polypropylene), and PE (polyethylene).
- PS polystyrene
- PP polypropylene
- PE polyethylene
- Patent Document 1 describes supplying slaked lime and waste plastics to a rotary kiln and desalting PVC-derived chlorine in the waste plastics while thermally decomposing the waste plastics.
- waste plastics often contain PET as well as PVC, and when processing waste plastics, it is necessary to treat not only PVC but also PET.
- phthalate ester the main component of PET
- PVC polyvinyl ethylene glycol
- the present invention improves the efficiency of chemical recycling and prevents fouling and corrosion of equipment by appropriately treating PVC and PET contained in waste plastic before sending the waste plastic to a pyrolysis furnace.
- a raw material supply system for pyrolyzing waste plastics containing polyvinyl chloride and polyethylene terephthalate comprising a slaked lime supply device for supplying slaked lime to the waste plastics, and polyvinyl chloride and polyethylene in the waste plastics.
- An operation control unit for issuing a command to the slaked lime supply device to feed slaked lime of 1 to 4 times the total number of moles of terephthalate into the waste plastic, and while heating the waste plastic and the slaked lime, a molten desalting device for desalting the polyvinyl chloride and hydrolyzing the polyethylene terephthalate by mixing the waste plastic with the slaked lime; and a molten desalting device connected to the molten desalting device.
- a raw material supply system comprising a degassing hopper that stores the waste plastic melted by the degassing hopper, and a raw material feeder that feeds the melted waste plastic in the degassing hopper to a pyrolysis furnace.
- the raw material supply system further includes a weight measuring instrument for measuring the weight of the waste plastic before the slaked lime is added, and the operation control unit measures the weight of the waste plastic. Based on the value, the amount of the slaked lime to be put into the waste plastic is adjusted.
- the raw material supply system further includes a cracked oil property measuring instrument for measuring properties of cracked oil recovered from the pyrolysis gas discharged from the pyrolysis furnace, and the operation control unit controls the The amount of the slaked lime to be put into the waste plastic is adjusted based on the measured value of the properties of the cracked oil.
- the cracked oil property measuring instrument includes a chlorine concentration measuring instrument that measures the concentration of chlorine in the cracked oil, an acid concentration measuring instrument that measures the concentration of acid in the cracked oil, and a pH of the cracked oil. at least one of a pH meter for measuring and a pH meter for measuring the pH of water separated from the cracked oil.
- the raw material supply system further includes a water scrubber for collecting cracked oil by condensing gaseous hydrocarbons generated from the heated waste plastic, and the water scrubber is moved to the degassing hopper. Concatenated.
- the pyrolysis furnace is a pyrolysis furnace of a fluidized bed furnace
- the fluidized bed furnace has the pyrolysis furnace and the medium regeneration furnace in which a fluidized medium circulates
- the raw material supply system comprises the A fluidized medium transfer line is further provided for sending part of the fluidized medium from the medium regeneration furnace to the molten demineralizer, and the part of the fluidized medium constitutes a heat source of the molten demineralizer.
- a raw material supply method is provided in which the waste plastic that has been melted by decomposition and heating is sent to a pyrolysis furnace.
- the raw material supply method further includes the step of measuring the weight of the waste plastic before the slaked lime is added, and the amount of the slaked lime to be added to the waste plastic is determined by the weight of the waste plastic. adjusted based on the thickness measurement.
- the raw material supply method further includes the step of measuring the properties of the cracked oil recovered from the pyrolysis gas discharged from the pyrolysis furnace, and the amount of slaked lime to be put into the waste plastic is Adjustment is made based on the measured values of the properties of the cracked oil.
- the property of the cracked oil is at least one of the concentration of chlorine in the cracked oil, the concentration of acid in the cracked oil, the pH of the cracked oil, and the pH of water separated from the cracked oil.
- the method further includes the step of condensing gaseous hydrocarbons generated from the heated waste plastic with a water scrubber to recover cracked oil.
- the pyrolysis furnace is a pyrolysis furnace of a fluidized bed furnace, the fluidized bed furnace has the pyrolysis furnace and the medium regeneration furnace in which a fluidized medium circulates, and part of the fluidized medium is A portion of the fluidized medium is sent from the medium regeneration furnace to the molten demineralizer and used as a heat source for the molten demineralizer.
- the following effects are obtained. Since 1 to 4 times the total number of moles of PVC (polyvinyl chloride) and PET (polyethylene terephthalate) in the waste plastic is added to the waste plastic, slaked lime is added to the waste plastic. Adequate hydrolysis is achieved. As a result, appropriate chemical recycling of waste plastics can be achieved in the subsequent pyrolysis furnace. Furthermore, equipment corrosion and fouling can be suppressed (reliability improvement), and an improvement in cracked oil yield (mainly benzene) can be expected.
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- the amount of slaked lime to be added to the waste plastic is automatically determined based on the weight of the waste plastic to be treated or the properties of the cracked oil recovered from the pyrolysis gas generated by pyrolysis of the waste plastic in the pyrolysis furnace. adjusted to The weight of PVC and PET in the weight of the waste plastic can be determined by investigating the composition of the waste plastic in advance.
- the properties (for example, pH) of the cracked oil recovered from the pyrolysis gas may change depending on the amount of slaked lime added. Therefore, based on these pieces of information, an appropriate amount of slaked lime can be added to the waste plastic. Gaseous hydrocarbons generated from the heated waste plastic are condensed by a water scrubber and recovered as cracked oil. Therefore, the yield of cracked oil is improved.
- FIG. 1 is a schematic diagram illustrating one embodiment of a processing system for processing waste plastics
- FIG. FIG. 3 is a schematic diagram of another embodiment of a processing system
- FIG. 4 is a schematic diagram showing yet another embodiment of a processing system
- FIG. 4 is a schematic diagram showing yet another embodiment of a processing system
- 1 is a schematic diagram illustrating one embodiment of a fluidized bed processing system for processing waste plastics
- FIG. 1 is a schematic diagram of another embodiment of a fluidized bed treatment system for treating waste plastics
- FIG. 1 is a schematic diagram illustrating one embodiment of a processing system for processing waste plastics.
- Waste plastics to be treated include at least PVC (polyvinyl chloride) and PET (polyethylene terephthalate).
- the waste plastic may further contain at least one of PS (polystyrene), PP (polypropylene) and PE (polyethylene).
- the processing system includes a pyrolysis furnace 6 that pyrolyzes waste plastics to produce a pyrolysis gas containing pyrolysis products such as hydrocarbons, and supplies waste plastics to the pyrolysis furnace 6.
- a raw material supply system 2 is provided.
- the type of the pyrolysis furnace 6 is not particularly limited, and may be, for example, a fluidized-bed pyrolysis furnace, which will be described later, or a kiln-type pyrolysis furnace.
- the raw material supply system 2 not only has the function of supplying waste plastics to the pyrolysis furnace 6, but also has the function of processing PVC and PET contained in the waste plastics before being supplied to the pyrolysis furnace 6. More specifically, the raw material supply system 2 includes a slaked lime supply device 12 that feeds slaked lime into the waste plastic, and a total mole number of PVC (polyvinyl chloride) and PET (polyethylene terephthalate) in the waste plastic that is 1 to 4 times the total number of moles.
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- the operation control unit 15 issues a command to the slaked lime supply device 12 so that the slaked lime of the number of moles is put into the waste plastic, and the waste plastic and the slaked lime are mixed while heating the waste plastic and the slaked lime to produce PVC.
- a raw material feeder 22 is provided to send the melted waste plastic inside to the pyrolysis furnace 6 .
- the raw material supply system 2 is further equipped with a weight measuring instrument 25 that measures the weight of the waste plastic before the slaked lime is added. After the weight of the raw material waste plastic is measured by a weight measuring instrument 25, it is put into the raw material hopper 27 of the melt demineralization apparatus 18. As shown in FIG.
- the weight measuring instrument 25 is, for example, a weighing conveyor capable of transporting the waste plastic while measuring the weight of the waste plastic.
- the weight measuring instrument 25 is connected to the operation control section 15 so that the measured value of the weight of the waste plastic is sent to the operation control section 15 .
- the operation control unit 15 is configured to adjust (or determine) the amount of slaked lime to be put into the waste plastic based on the measured weight of the waste plastic.
- the slaked lime supply device 12 is connected to the raw material hopper 27 of the molten demineralizer 18 , and feeds an amount of slaked lime determined by the operation control unit 15 into the raw material hopper 27 of the molten demineralizer 18 . Therefore, the raw material hopper 27 of the molten desalting apparatus 18 is charged with the raw material waste plastic and slaked lime.
- the place where the slaked lime is put into the waste plastic is not limited to the raw material hopper 27, and for example, the slaked lime may be put into the waste plastic storage section or the conveying section.
- the operation control unit 15 includes a storage device 15a in which programs are stored, and an arithmetic device 15b that executes calculations according to instructions included in the programs.
- the storage device 15a includes a main storage device such as a random access memory (RAM) and an auxiliary storage device such as a hard disk drive (HDD) and solid state drive (SSD).
- Examples of the arithmetic unit 15b include a CPU (central processing unit) and a GPU (graphic processing unit).
- the specific configuration of the operation control unit 15 is not limited to this embodiment.
- the molten desalting device 18 includes the raw material hopper 27 , a first raw material feeder 29 connected to the raw material hopper 27 , and a heater 30 for heating the first raw material feeder 29 .
- the waste plastics and slaked lime charged into the raw material hopper 27 are mixed by the first raw material feeder 29 while being heated by the heater 30 and sent to the degassing hopper 20 .
- the heater 30 is configured to heat the waste plastic and slaked lime within the range of 250°C to 350°C.
- the structure and arrangement of the heater 30 are not particularly limited as long as the mixture of waste plastic and slaked lime can be heated within the range of 250.degree. C. to 350.degree.
- Specific examples of the heater 30 include a steam heater, an electric heater, and a heater using heated inert gas (for example, nitrogen gas) as a heat source.
- the heating method may be direct heating, indirect heating, or a combination thereof.
- the molten demineralizer 18 heats a mixture of waste plastic and slaked lime with a heater 30 to demineralize PVC contained in the waste plastic. More specifically, chlorine contained in PVC is thermally separated as HCl (hydrogen chloride) by heating at 250°C to 350°C. The generated HCl is dry treated with slaked lime, and chlorine in HCl is fixed to the slaked lime as Ca salt (CaCl 2 ). As a result, it is possible to avoid contact and reaction between cracked oil in the pyrolysis gas generated in the subsequent pyrolysis furnace 6 and chlorine, and to reduce the production of organochlorine compounds.
- HCl hydrogen chloride
- the molten demineralizer 18 heats the mixture of waste plastic and slaked lime with the heater 30 to hydrolyze the PET contained in the waste plastic. More specifically, PET is heated with slaked lime to 250° C. to 350° C. to produce calcium terephthalate. Since this calcium terephthalate is thermally decomposed in the pyrolysis furnace 6, the production of sublimable benzoic acid and terephthalic acid is suppressed, and the yield of cracked oil (especially benzene) is improved.
- the amount of slaked lime put into the waste plastic is automatically adjusted by the operation control section 15 based on the weight of the waste plastic to be treated.
- the weight of PVC and PET in the weight of the waste plastic can be determined by investigating the composition of the waste plastic in advance. Therefore, based on the command from the operation control unit 15, the slaked lime supply device 12 can supply the waste plastic with an amount of slaked lime that can appropriately treat both PVC and PET in the waste plastic.
- the weight of PVC and PET in the weight of waste plastic is, more specifically, the weight of chlorine and acid in the weight of waste plastic. Therefore, the amount of slaked lime put into the waste plastic is the amount necessary to treat the chlorine and acid contained in the waste plastic. Examples of amounts of slaked lime supplied to waste plastics are shown below.
- W (kg/H) is the weight measurement value of the waste plastic
- x (wt%) is the ratio of PVC
- y (wt%) is the ratio of PET
- the amount of slaked lime w (kg/H) for one mole is given by the following formula.
- the waste plastic is melted by being heated to 250°C to 350°C by the melting demineralizer 18.
- the waste plastic is uniformly mixed with the slaked lime, thereby improving the efficiency of dechlorination of PVC and hydrolysis of PET.
- the melted waste plastic is transferred to the degassing hopper 20 by the first raw material feeder 29 .
- the measured value of the weight measuring device 25 is sent to the drive unit of the first raw material feeder 29 , and the first raw material feeder 29 operates according to the measured value of the weight measuring device 25 .
- the air present in the gaps of the waste plastic, the gaseous HCl not fixed to the slaked lime as Ca salt, and the gaseous hydrocarbon are separated from the molten waste plastic.
- the air in the waste plastic is separated and the supply of air from the raw material supply system 2 to the pyrolysis furnace 6 can be prevented.
- the raw material supply system 2 is equipped with a level sensor 31 that detects the liquid level of the liquid waste plastic accumulated in the degassing hopper 20 .
- the measured value of the liquid level of the waste plastic is sent to the drive section of the first raw material feeder 29 .
- the first raw material feeder 29 operates so that the liquid level of the waste plastic in the degassing hopper 20 is within a predetermined range.
- the predetermined range here is at least a level at which the sealability between the pyrolysis furnace 6 and the degassing hopper 20 is secured in consideration of pressure fluctuations in the pyrolysis furnace 6, and degassing It means that the volume of the air hopper 20 is below a level at which there is no risk of exceeding the volume.
- the raw material feeder 22 has a second raw material feeder 32 that feeds the molten waste plastic in the degassing hopper 20 to the pyrolysis furnace 6 .
- the second raw material feeder 32 is configured to continuously or intermittently feed waste plastics to the pyrolysis furnace 6 . Waste plastics processed by the raw material supply system 2 are pyrolyzed in the pyrolysis chamber 6 to generate pyrolysis gas.
- the raw material supply system 2 further includes a water scrubber 35 that collects cracked oil by condensing gaseous hydrocarbons (HC) generated from the waste plastic heated by the molten demineralizer 18 .
- a water scrubber 35 is connected to the degassing hopper 20 .
- Gaseous hydrocarbons (HC) generated from the molten waste plastics in degassing hopper 20 and hydrogen chloride not fixed in slaked lime are sent to water scrubber 35 .
- the water scrubber 35 sprays water (alkaline water in this embodiment) onto the gaseous hydrocarbons (HC) and hydrogen chloride passing through it.
- the hydrocarbons (HC) and hydrogen chloride within the water scrubber 35 contact water, resulting in neutralization of the hydrogen chloride (HCl) and condensation of gaseous hydrocarbons (HC) to form cracked oil.
- a mixture of cracked oil and water is discharged from the water scrubber 35 and sent to the oil-water separator 37 .
- the oil-water separator 37 is configured to separate cracked oil from water.
- the specific configuration of the oil-water separator 37 is not particularly limited, for example, a coalescer or a sedimentation tank can be used for the oil-water separator 37 .
- the cracked oil separated by the oil-water separator 37 is sent to the cracked oil storage tank 38 and stored in the cracked oil storage tank 38 .
- the water separated from the cracked oil by the oil-water separator 37 is sent through a separated water discharge line 41 to a waste water treatment device (not shown).
- the gaseous hydrocarbons (HC) generated from the waste plastic heated by the molten demineralizer 18 are recovered as cracked oil by the water scrubber 35.
- a specific configuration of the water scrubber 35 to be used is not particularly limited, and a known water scrubber can be used.
- the water scrubber 35 can be a tower having gas passages formed therein and a scrubbing tower having spray nozzles for spraying water onto the gas flowing through the passages.
- the hydrocarbon gas containing HCl (hydrogen chloride) generated in the degassing hopper 20 and not fixed to the slaked lime is led to a combustion furnace (not shown), and the hydrocarbon gas containing HCl is placed in the combustion furnace. Combustion treatment is also possible.
- the water scrubber 35 is arranged downstream of the oil scrubber 40 described below.
- An oil scrubber 40 is connected to the pyrolysis furnace 6 .
- the pyrolysis gas generated in the pyrolysis furnace 6 is first sent to the oil scrubber 40 and then sent to the water scrubber 35 .
- the oil scrubber 40 cools the pyrolysis gas by spraying cracked oil already recovered from the pyrolysis gas or oil separately procured from the outside to the pyrolysis gas, thereby removing gaseous cracked oil in the pyrolysis gas. (hydrocarbons) are condensed. Both the condensed cracked oil and the sprayed oil are discharged from the oil scrubber 40 and stored in the cracked oil storage tank 38 .
- the pyrolysis gas leaving the oil scrubber 40 is sent to the water scrubber 35 and further cooled by the water scrubber 35, and the cracked oil remaining in the pyrolysis gas is recovered.
- the pyrolysis gas discharged from the pyrolysis furnace 6 is cooled in two stages, the oil scrubber 40 and the water scrubber 35 . Since the oil obtained by the oil scrubber 40 and the water scrubber 35 have different cooling temperatures, they have different distillation characteristics. Therefore, the oil obtained from the oil scrubber 40 and the water scrubber 35 may be stored separately.
- the specific configuration of the used oil scrubber 40 is not particularly limited, and a known oil scrubber can be used.
- the oil scrubber 40 can be a tower with gas passages formed therein and a scrubbing tower equipped with spray nozzles for spraying oil onto the gas flowing through the passages.
- FIG. 2 is a schematic diagram showing another embodiment of a processing system for processing waste plastics.
- the raw material supply system 2 includes a cracked oil property measuring instrument 45 that measures the properties of the cracked oil recovered from the pyrolysis gas discharged from the pyrolysis furnace 6 .
- the cracked oil property measuring instrument 45 is arranged downstream of the water scrubber 35 and is configured to measure the properties of the cracked oil discharged from the water scrubber 35 . More specifically, as shown in FIG. 2, the cracked oil property measuring instrument 45 is arranged downstream of the oil-water separator 37 that separates the oil-water mixture discharged from the water scrubber 35 into cracked oil and water. It is connected to a pipe extending from the vessel 37 to the cracked oil storage tank 38 . In one embodiment, as shown in FIG. 3 , the cracked oil property meter 45 may be arranged downstream of the oil scrubber 40 and may measure the properties of the cracked oil discharged from the oil scrubber 40 .
- the properties of the cracked oil include the concentration of chlorine in the cracked oil, the concentration of acid in the cracked oil, the pH of the cracked oil, and the pH of the water separated from the cracked oil.
- the properties of these cracked oils can vary depending on the amount of slaked lime put into the raw material hopper 27 of the molten demineralizer 18 . For example, if the amount of slaked lime is too large relative to the amount of PVC and PET in the waste plastic, the cracked oil recovered from the pyrolysis gas exhibits a high pH value. Therefore, an appropriate amount of slaked lime can be added to the waste plastic based on the measured values of the properties of the cracked oil.
- the properties of the cracked oil are at least one of the concentration of chlorine in the cracked oil, the concentration of acid in the cracked oil, the pH of the cracked oil, and the pH of water separated from the cracked oil, or a combination of two or more. may be
- the cracked oil property measuring instrument 45 include a chlorine concentration measuring instrument that measures the concentration of chlorine in the cracked oil, an acid concentration measuring instrument that measures the concentration of acid in the cracked oil, and a pH that measures the pH of the cracked oil. and a pH meter that measures the pH of the water separated from the cracked oil. If the cracked oil property measuring device 45 is a pH measuring device that measures the pH of the water separated from the cracked oil, the cracked oil property measuring device 45 can measure the cracked oil by the oil-water separator 37 as shown in FIG. It is connected to a separated water discharge line 41 for discharging water separated from. This separated water discharge line 41 is connected to the oil-water separator 37 .
- the cracked oil property measuring instrument 45 includes a chlorine concentration measuring instrument that measures the concentration of chlorine in the cracked oil, an acid concentration measuring instrument that measures the concentration of acid in the cracked oil, a pH measuring instrument that measures the pH of the cracked oil, and It may be at least one, or a combination of two or more, of pH meters that measure the pH of water separated from the cracked oil.
- the cracked oil property measuring instrument 45 is connected to the operation control unit 15, and the measured values of the properties of the cracked oil are sent to the operation control unit 15.
- the operation control unit 15 is configured to adjust (or determine) the amount of slaked lime to be put into the waste plastic based on the measured value of the property of the cracked oil instead of the measured value of the weight of the waste plastic. there is If the property (composition) of the waste plastic changes significantly, the ratio control is performed based on the weight measurement value of the waste plastic, and during normal operation, it is switched to feedback control based on the measurement value from the cracked oil property measuring instrument 45, and the amount of slaked lime supplied. may be adjusted.
- the amount of slaked lime to be put into the waste plastic depends on the properties of the cracked oil contained in the pyrolysis gas discharged from the pyrolysis furnace 6 (for example, acid concentration, chlorine concentration, pH). is automatically adjusted by the operation control unit 15 based on. Therefore, based on the command from the operation control unit 15, the slaked lime supply device 12 can supply the waste plastic with an amount of slaked lime that can appropriately treat both PVC and PET in the waste plastic.
- FIG. 5 is a schematic diagram showing one embodiment of a waste plastic processing system using a fluidized bed furnace.
- the configuration and operation of this embodiment, which are not specifically described, are the same as those of the embodiment described with reference to FIG.
- a fluidized bed furnace 1 equipped with a pyrolysis furnace 6 and a medium regeneration furnace 7 is incorporated into a processing system. That is, the processing system of this embodiment includes a fluidized bed furnace 1 and a raw material supply system 2 for supplying waste plastics to the pyrolysis furnace 6 of the fluidized bed furnace 1 .
- the pyrolysis furnace 6 in the embodiment shown in FIG. 5 corresponds to the pyrolysis furnace 6 in the embodiment shown in FIG.
- the fluidized bed furnace 1 includes a pyrolysis furnace 6 that pyrolyzes waste plastics to generate pyrolysis gas containing pyrolysis products such as hydrocarbons, and a medium regeneration furnace 7 that burns the residue of the pyrolyzed waste plastics.
- a pyrolysis furnace 6 that pyrolyzes waste plastics to generate pyrolysis gas containing pyrolysis products such as hydrocarbons
- a medium regeneration furnace 7 that burns the residue of the pyrolyzed waste plastics.
- the overall shape of the fluidized bed furnace 1 is not particularly limited, it has, for example, a cylindrical shape or a rectangular shape.
- Fluid media for example, silica sand
- a fluidizing gas G is supplied to the pyrolysis furnace 6 and the medium regeneration furnace 7 in order to fluidize the fluidized medium.
- the raw material supply system 2 is connected to the pyrolysis furnace 6 , and waste plastic is supplied into the pyrolysis furnace 6 by the raw material supply system 2 .
- the configuration of the raw material supply system 2 is the same as the embodiment described with reference to FIG.
- the waste plastic While the fluidized medium circulates between the pyrolysis furnace 6 and the medium regeneration furnace 7 , the waste plastic is fed into the pyrolysis furnace 6 by the raw material supply system 2 .
- the waste plastic is heated by the fluidizing medium in the pyrolysis furnace 6, and becomes pyrolysis gas after pyrolysis.
- the residue of the waste plastic is carried to the medium regeneration furnace 7 by the fluid medium, and is combusted in the medium regeneration furnace 7 .
- the waste plastic residue is burned in the medium regeneration furnace 7 to heat the fluid medium.
- Exhaust gas generated in the medium regeneration furnace 7 is sent to an exhaust gas treatment device (not shown).
- the fluidized medium heated in the medium regeneration furnace 7 moves into the pyrolysis furnace 6 and functions within the pyrolysis furnace 6 as a heat source.
- the fluidized bed furnace 1 in which the fluidized medium circulates in this way is called an internal circulation fluidized bed gasification system.
- PVC(HCl) means hydrogen chloride derived from chlorine in PVC
- TPA means terephthalic acid
- TP-Ca means calcium terephthalate.
- the hydrocarbon gas containing HCl (hydrogen chloride) generated in the degassing hopper 20 and not fixed in slaked lime may be led to the medium regeneration furnace 7 through the hydrocarbon gas transfer line 50 .
- Hydrocarbon gas containing HCl is combusted in the medium regeneration furnace 7, and HCl (hydrogen chloride) is desalted and neutralized in an exhaust gas treatment facility downstream of the medium regeneration furnace 7.
- the molten demineralizer 18 is generally supplied with an equimolar amount or more of slaked lime. Further, in the medium regeneration furnace 7, part of the Ca salt (CaCl 2 ) generated by the neutralization reaction is thermally decomposed. Therefore, the fluidized medium heated in the medium regeneration furnace 7 may be used as the heat source for the molten demineralizer 18 . More specifically, as shown in FIG. 6, part of the fluidized medium from the medium regeneration furnace 7 is sent to the molten demineralizer 18 through the fluidized medium transfer line 51, and the molten demineralizer 18 separates waste plastics, slaked lime, and fluidized waste plastics. By mixing with the medium, the fluid medium itself may be used as a heat source. According to this embodiment, the thermally decomposed Ca salt and unreacted slaked lime contained in the fluid medium can be reused to reduce the supply amount of slaked lime.
- the present invention can be used for a raw material supply system and a raw material supply method for pyrolyzing waste plastics containing polyvinyl chloride (PVC) and polyethylene terephthalate (PET). It can be used for a raw material supply system and a raw material supply method for supplying waste plastics to a pyrolysis furnace while being treated.
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- Fluidized bed furnace 2
- Raw material supply system 6
- Pyrolysis furnace 7
- Media regeneration furnace 10
- Partition wall 12
- Slaked lime supply device 15
- Operation control unit 18
- Molten demineralization device 20
- Degassing hopper 22
- Raw material supplier 25
- Weight measuring instrument 27
- Raw material hopper 29
- First Raw material feeder 30
- Heater 31
- Level sensor 32
- Second raw material feeder 35
- Water scrubber 37
- Oil-water separator 38
- Cracked oil storage tank 40
- Cracked oil property measuring instrument 50
- Hydrocarbon gas transfer line 51 Fluid medium transfer line
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
PVC(ポリ塩化ビニル)は、熱分解されるときに、HCl(塩化水素)を発生し、これが下流機器を腐食させたり、廃プラスチックから回収された分解油中に塩素を含んだ化合物が混入することで製品油の品質を悪化させてしまう。
PET(ポリエチレンテレフタレート)は、熱分解炉で熱分解されるときに、安息香酸やテレフタル酸を発生する。これらの酸は、いずれも昇華性があり、下流側で堆積して、下流機器のファウリングおよび腐食、分解油への酸混入(結晶析出)による品質の悪化を引き起こす。
一態様では、前記原料供給システムは、前記熱分解炉から排出された熱分解ガスから回収された分解油の性状を計測する分解油性状計測器をさらに備えており、前記動作制御部は、前記分解油の性状の計測値に基づいて、前記廃プラスチックに投入すべき前記消石灰の量を調整するように構成されている。
一態様では、前記分解油性状計測器は、前記分解油中の塩素の濃度を計測する塩素濃度計測器、前記分解油中の酸の濃度を計測する酸濃度計測器、前記分解油のpHを計測するpH計測器、および前記分解油から分離された水のpHを計測するpH計測器のうちの少なくとも1つである。
一態様では、前記原料供給システムは、加熱された前記廃プラスチックから発生したガス状の炭化水素を凝縮させて分解油を回収する水スクラバをさらに備えており、前記水スクラバは前記脱気ホッパに連結されている。
一態様では、前記熱分解炉は、流動床炉の熱分解炉であり、前記流動床炉は、流動媒体が循環する前記熱分解炉と媒体再生炉を有し、前記原料供給システムは、前記流動媒体の一部を前記媒体再生炉から前記溶融脱塩装置に送る流動媒体移送ラインをさらに備えており、前記流動媒体の一部は前記溶融脱塩装置の熱源を構成する。
一態様では、前記原料供給方法は、前記熱分解炉から排出された熱分解ガスから回収された分解油の性状を計測する工程をさらに含み、前記廃プラスチックに投入すべき前記消石灰の量は、前記分解油の性状の計測値に基づいて調整される。
一態様では、前記分解油の性状は、前記分解油中の塩素の濃度、前記分解油中の酸の濃度、前記分解油のpH、および前記分解油から分離された水のpHのうちの少なくとも1つである。
一態様では、加熱された前記廃プラスチックから発生したガス状の炭化水素を水スクラバにより凝縮させて分解油を回収する工程をさらに含む。
一態様では、前記熱分解炉は、流動床炉の熱分解炉であり、前記流動床炉は、流動媒体が循環する前記熱分解炉と媒体再生炉を有し、前記流動媒体の一部を前記媒体再生炉から前記溶融脱塩装置に送り、前記流動媒体の一部を前記溶融脱塩装置の熱源として使用する。
廃プラスチック中のPVC(ポリ塩化ビニル)およびPET(ポリエチレンテレフタレート)の総モル数の1~4倍のモル数の消石灰が廃プラスチックに投入されるので、PVCの適切な脱塩処理と、PETの適切な加水分解が達成される。結果として、後段の熱分解炉において、廃プラスチックの適切なケミカルリサイクルが達成できる。さらに、機器の腐食、ファウリングが抑制できる(信頼性向上)と共に、分解油収率(主としてベンゼン)の向上が期待できる。
加熱された廃プラスチックから発生したガス状の炭化水素は、水スクラバにより凝縮され、分解油として回収される。したがって、分解油の収率が向上する。
図1は、廃プラスチックを処理するための処理システムの一実施形態を示す概略図である。処理対象となる廃プラスチックは、PVC(ポリ塩化ビニル)およびPET(ポリエチレンテレフタレート)を少なくとも含む。廃プラスチックは、さらに、PS(ポリスチレン)、PP(ポリプロピレン)、PE(ポリエチレン)のうちの少なくとも1つを含むこともある。
廃プラスチックの重量計測値をW(kg/H)、PVCの割合をx(wt%)、PETの割合をy(wt%)とすると、1倍モルの消石灰量w(kg/H)は以下の式で与えられる。
w=(W×x/100×0.57×74/35.5/2)+(W×y/100×0.33×74/16/4)
(2)廃プラスチック中のPVCとPETの混入量が不明な場合
廃プラスチックの重量計測値をW(kg/H)、元素分析結果による塩素割合をα(wt%)、酸素割合をβ(wt%)とすると、1倍モルの消石灰量w(kg/H)は以下の式で与えられる。
w=(W×α/100×74/35.5/2)+(W×β/100×74/16/4)
PVC(骨格):(C2H3Cl)n, 分子量=62.5, PVC中の塩素割合=57wt%
PET(骨格):(C10H8O4)n, 分子量=192, PET中の酸素割合=33wt%
消石灰:Ca(OH)2, 分子量=74
塩素の原子量:35.5
酸素の原子量:16
PVC(HCl)+Ca(OH)2→CaCl2+H2O
PET+Ca(OH)2→TPA+CaO→TP-Ca→CaCO3+Benzene
上記で、PVC(HCl)はPVC中の塩素由来の塩化水素、TPAはテレフタル酸、TP-Caはテレフタル酸カルシウムを意味する。
2 原料供給システム
6 熱分解炉
7 媒体再生炉
10 仕切壁
12 消石灰供給装置
15 動作制御部
18 溶融脱塩装置
20 脱気ホッパ
22 原料供給機
25 重量計測器
27 原料ホッパ
29 第1原料フィーダ
30 ヒーター
31 レベルセンサ
32 第2原料フィーダ
35 水スクラバ
37 油水分離器
38 分解油貯留槽
40 油スクラバ
41 分離水排出ライン
45 分解油性状計測器
50 炭化水素ガス移送ライン
51 流動媒体移送ライン
Claims (12)
- ポリ塩化ビニルおよびポリエチレンテレフタレートを含む廃プラスチックを熱分解するための原料供給システムであって、
前記廃プラスチックに消石灰を投入する消石灰供給装置と、
前記廃プラスチック中のポリ塩化ビニルおよびポリエチレンテレフタレートの総モル数の1~4倍のモル数の消石灰を前記廃プラスチックに投入するように、前記消石灰供給装置に指令を発する動作制御部と、
前記廃プラスチックと前記消石灰とを加熱しながら、前記廃プラスチックと前記消石灰と混合することで、前記ポリ塩化ビニルを脱塩処理し、かつ前記ポリエチレンテレフタレートを加水分解する溶融脱塩装置と、
前記溶融脱塩装置に連結され、前記溶融脱塩装置により溶融した前記廃プラスチックを貯留する脱気ホッパと、
前記脱気ホッパ内の前記溶融した廃プラスチックを熱分解炉に送る原料供給機を備えている、原料供給システム。 - 前記原料供給システムは、前記消石灰が投入される前の前記廃プラスチックの重さを計測する重量計測器をさらに備えており、
前記動作制御部は、前記廃プラスチックの重さの計測値に基づいて、前記廃プラスチックに投入すべき前記消石灰の量を調整するように構成されている、請求項1に記載の原料供給システム。 - 前記原料供給システムは、前記熱分解炉から排出された熱分解ガスから回収された分解油の性状を計測する分解油性状計測器をさらに備えており、
前記動作制御部は、前記分解油の性状の計測値に基づいて、前記廃プラスチックに投入すべき前記消石灰の量を調整するように構成されている、請求項1に記載の原料供給システム。 - 前記分解油性状計測器は、前記分解油中の塩素の濃度を計測する塩素濃度計測器、前記分解油中の酸の濃度を計測する酸濃度計測器、前記分解油のpHを計測するpH計測器、および前記分解油から分離された水のpHを計測するpH計測器のうちの少なくとも1つである、請求項3に記載の原料供給システム。
- 前記原料供給システムは、加熱された前記廃プラスチックから発生したガス状の炭化水素を凝縮させて分解油を回収する水スクラバをさらに備えており、
前記水スクラバは前記脱気ホッパに連結されている、請求項1乃至4のいずれか一項に記載の原料供給システム。 - 前記熱分解炉は、流動床炉の熱分解炉であり、
前記流動床炉は、流動媒体が循環する前記熱分解炉と媒体再生炉を有し、
前記原料供給システムは、前記流動媒体の一部を前記媒体再生炉から前記溶融脱塩装置に送る流動媒体移送ラインをさらに備えており、前記流動媒体の一部は前記溶融脱塩装置の熱源を構成する、請求項1乃至5のいずれか一項に記載の原料供給システム。 - ポリ塩化ビニルおよびポリエチレンテレフタレートを含む廃プラスチックを熱分解するための原料供給方法であって、
前記廃プラスチック中のポリ塩化ビニルおよびポリエチレンテレフタレートの総モル数の1~4倍のモル数の消石灰を前記廃プラスチックに投入し、
前記廃プラスチックと前記消石灰とを加熱しながら、前記廃プラスチックと前記消石灰と混合することで、前記ポリ塩化ビニルを脱塩処理し、かつ前記ポリエチレンテレフタレートを加水分解し、
加熱されることにより溶融した前記廃プラスチックを熱分解炉に送る、原料供給方法。 - 前記原料供給方法は、前記消石灰が投入される前の前記廃プラスチックの重さを計測する工程をさらに含み、
前記廃プラスチックに投入すべき前記消石灰の量は、前記廃プラスチックの重さの計測値に基づいて調整される、請求項7に記載の原料供給方法。 - 前記原料供給方法は、前記熱分解炉から排出された熱分解ガスから回収された分解油の性状を計測する工程をさらに含み、
前記廃プラスチックに投入すべき前記消石灰の量は、前記分解油の性状の計測値に基づいて調整される、請求項7に記載の原料供給方法。 - 前記分解油の性状は、前記分解油中の塩素の濃度、前記分解油中の酸の濃度、前記分解油のpH、および前記分解油から分離された水のpHのうちの少なくとも1つである、請求項9に記載の原料供給方法。
- 加熱された前記廃プラスチックから発生したガス状の炭化水素を水スクラバにより凝縮させて分解油を回収する工程をさらに含む、請求項7乃至10のいずれか一項に記載の原料供給方法。
- 前記熱分解炉は、流動床炉の熱分解炉であり、
前記流動床炉は、流動媒体が循環する前記熱分解炉と媒体再生炉を有し、
前記流動媒体の一部を前記媒体再生炉から前記溶融脱塩装置に送り、前記流動媒体の一部を前記溶融脱塩装置の熱源として使用する、請求項7乃至11のいずれか一項に記載の原料供給方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/290,905 US20240343882A1 (en) | 2021-07-28 | 2022-03-28 | Raw-material supply system and raw-material supply method |
EP22848939.9A EP4378984A1 (en) | 2021-07-28 | 2022-03-28 | Raw material supply system and raw material supply method |
KR1020247005731A KR20240041345A (ko) | 2021-07-28 | 2022-03-28 | 원료 공급 시스템 및 원료 공급 방법 |
CN202280051248.3A CN117677655A (zh) | 2021-07-28 | 2022-03-28 | 原料供给系统及原料供给方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-123636 | 2021-07-28 | ||
JP2021123636A JP7121839B1 (ja) | 2021-07-28 | 2021-07-28 | 原料供給システムおよび原料供給方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007856A1 true WO2023007856A1 (ja) | 2023-02-02 |
Family
ID=82898001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/014963 WO2023007856A1 (ja) | 2021-07-28 | 2022-03-28 | 原料供給システムおよび原料供給方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240343882A1 (ja) |
EP (1) | EP4378984A1 (ja) |
JP (2) | JP7121839B1 (ja) |
KR (1) | KR20240041345A (ja) |
CN (1) | CN117677655A (ja) |
WO (1) | WO2023007856A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107058A (ja) | 1999-10-12 | 2001-04-17 | Mitsubishi Heavy Ind Ltd | 廃プラスチックの熱分解油化方法 |
JP2001114929A (ja) * | 1999-10-15 | 2001-04-24 | Kawasaki Steel Corp | プラスチック混合物の処理方法 |
JP2002179837A (ja) * | 2000-12-08 | 2002-06-26 | Toshiba Corp | 廃プラスチックの処理方法および処理装置 |
JP2004269838A (ja) * | 2003-03-10 | 2004-09-30 | Kyozo Kawachi | 塩化ビニール混入廃プラスチックの油化方法および装置 |
JP2008095024A (ja) * | 2006-10-13 | 2008-04-24 | Toshiba Corp | 廃プラスチックリサイクルシステム |
JP2008133398A (ja) * | 2006-11-29 | 2008-06-12 | Toshiba Corp | Petを含む樹脂の熱分解油化処理装置 |
-
2021
- 2021-07-28 JP JP2021123636A patent/JP7121839B1/ja active Active
-
2022
- 2022-03-28 CN CN202280051248.3A patent/CN117677655A/zh active Pending
- 2022-03-28 KR KR1020247005731A patent/KR20240041345A/ko unknown
- 2022-03-28 US US18/290,905 patent/US20240343882A1/en active Pending
- 2022-03-28 WO PCT/JP2022/014963 patent/WO2023007856A1/ja active Application Filing
- 2022-03-28 EP EP22848939.9A patent/EP4378984A1/en active Pending
- 2022-08-05 JP JP2022125736A patent/JP2023021101A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107058A (ja) | 1999-10-12 | 2001-04-17 | Mitsubishi Heavy Ind Ltd | 廃プラスチックの熱分解油化方法 |
JP2001114929A (ja) * | 1999-10-15 | 2001-04-24 | Kawasaki Steel Corp | プラスチック混合物の処理方法 |
JP2002179837A (ja) * | 2000-12-08 | 2002-06-26 | Toshiba Corp | 廃プラスチックの処理方法および処理装置 |
JP2004269838A (ja) * | 2003-03-10 | 2004-09-30 | Kyozo Kawachi | 塩化ビニール混入廃プラスチックの油化方法および装置 |
JP2008095024A (ja) * | 2006-10-13 | 2008-04-24 | Toshiba Corp | 廃プラスチックリサイクルシステム |
JP2008133398A (ja) * | 2006-11-29 | 2008-06-12 | Toshiba Corp | Petを含む樹脂の熱分解油化処理装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20240041345A (ko) | 2024-03-29 |
CN117677655A (zh) | 2024-03-08 |
JP2023021101A (ja) | 2023-02-09 |
JP7121839B1 (ja) | 2022-08-18 |
US20240343882A1 (en) | 2024-10-17 |
JP2023019140A (ja) | 2023-02-09 |
EP4378984A1 (en) | 2024-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10150919B2 (en) | Method and a system for processing plastic waste | |
KR101789844B1 (ko) | 예열된 공급원료를 이용하는 카본 블랙의 제조 방법 및 그를 위한 장치 | |
US4718362A (en) | Waste destruction | |
JP2024504271A (ja) | Pvc含有混合プラスチック廃棄物熱分解のためのプロセス | |
CN110431639B (zh) | 放射性废物的热减容 | |
CN113195685A (zh) | 处理含碳材料的工艺和用于其的设备 | |
SE467483B (sv) | Foerfarande foer destruktion av halogenhaltiga substanser | |
WO2023007856A1 (ja) | 原料供給システムおよび原料供給方法 | |
US5686055A (en) | Process for recovering phthalic anhydride and hydrogen chloride from plastic materials | |
WO2023013163A1 (ja) | 熱分解ガスから分解油を回収するための処理装置および処理方法 | |
US6649135B1 (en) | Method of combustion or gasification in a circulating fluidized bed | |
JPS5958087A (ja) | エチレン分解炉の汚染及び腐食防止方法 | |
CZ280918B6 (cs) | Způsob zneškodňování odpadů a zařízení k provádění tohoto způsobu | |
KR19990071562A (ko) | 폐플라스틱을 오일로 전환시키는 장치 | |
TWI819970B (zh) | 由廢塑膠製造熱分解油的方法及廢塑膠油化設備 | |
CA1270405A (en) | Waste destruction | |
JP2006036804A (ja) | 有機系廃棄物から可燃性ガスの製造方法 | |
IT202100031964A1 (it) | Procedimento per il trattamento delle plastiche da riciclo. | |
JP2024508518A (ja) | 気液および液固分離システムによる有機高分子材料の端末分解 | |
RU2022119819A (ru) | Способ регенерации отходов органических полимеров произвольного состава | |
JP2001064654A (ja) | 廃プラスチックの油化システム | |
JPH0975737A (ja) | 触媒の製造方法 | |
MXPA97007530A (en) | Recovery of dimethyl tereftalate from polime mixtures | |
JPH11309338A (ja) | 塩化水素含有ガスの塩化水素除去方法及びこれに使用する粒状脱塩化水素反応剤の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22848939 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401000322 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051248.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18290905 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247005731 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247005731 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022848939 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202400464R Country of ref document: SG |
|
ENP | Entry into the national phase |
Ref document number: 2022848939 Country of ref document: EP Effective date: 20240228 |