WO2023007790A1 - 断熱シート、断熱シートの製造方法及び組電池 - Google Patents
断熱シート、断熱シートの製造方法及び組電池 Download PDFInfo
- Publication number
- WO2023007790A1 WO2023007790A1 PCT/JP2022/007902 JP2022007902W WO2023007790A1 WO 2023007790 A1 WO2023007790 A1 WO 2023007790A1 JP 2022007902 W JP2022007902 W JP 2022007902W WO 2023007790 A1 WO2023007790 A1 WO 2023007790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat insulating
- inorganic
- fibers
- particles
- resin film
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 137
- 239000011347 resin Substances 0.000 claims abstract description 137
- 239000010954 inorganic particle Substances 0.000 claims abstract description 90
- 239000012784 inorganic fiber Substances 0.000 claims description 179
- 239000000835 fiber Substances 0.000 claims description 129
- 239000011810 insulating material Substances 0.000 claims description 111
- 239000002245 particle Substances 0.000 claims description 80
- 239000002105 nanoparticle Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 34
- 230000009477 glass transition Effects 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 16
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 239000011147 inorganic material Substances 0.000 claims description 6
- 238000007650 screen-printing Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 3
- 239000012774 insulation material Substances 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 53
- 238000012546 transfer Methods 0.000 description 28
- 239000000463 material Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 239000000377 silicon dioxide Substances 0.000 description 24
- 239000011230 binding agent Substances 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 17
- 230000014759 maintenance of location Effects 0.000 description 15
- 239000011164 primary particle Substances 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 229910044991 metal oxide Inorganic materials 0.000 description 11
- 150000004706 metal oxides Chemical class 0.000 description 11
- 238000000465 moulding Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- -1 and the like Polymers 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004964 aerogel Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000002557 mineral fiber Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 2
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 2
- 229940007718 zinc hydroxide Drugs 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910019440 Mg(OH) Inorganic materials 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 229910021513 gallium hydroxide Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- HDMKAUUMGFGBRJ-UHFFFAOYSA-N iron;dihydrate Chemical compound O.O.[Fe] HDMKAUUMGFGBRJ-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 description 1
- PMQJYWORJJEMQC-UHFFFAOYSA-N manganese;dihydrate Chemical compound O.O.[Mn] PMQJYWORJJEMQC-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920006306 polyurethane fiber Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011214 refractory ceramic Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/658—Means for temperature control structurally associated with the cells by thermal insulation or shielding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/047—Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/10—Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/026—Mattresses, mats, blankets or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
- F16L59/029—Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/653—Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6551—Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/231—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/289—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
- H01M50/293—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a heat insulating sheet, a manufacturing method thereof, and an assembled battery using the heat insulating sheet.
- a heat insulating sheet has been used in close proximity to the heating element or at least partly in contact with the heating element.
- the electric vehicle, hybrid vehicle, or the like is equipped with an assembled battery in which a plurality of battery cells are connected in series or in parallel to serve as a power source for an electric drive motor.
- Lithium-ion secondary batteries which have higher capacity and higher output than lead-acid batteries or nickel-metal hydride batteries, are mainly used for these battery cells.
- thermal runaway occurs in one battery cell (that is, in the case of an "abnormality"), heat may propagate to other adjacent battery cells, causing thermal runaway in other battery cells.
- Patent Document 1 discloses an insulator having an inorganic heat insulating material and a polymer coating layer disposed on the surface of the inorganic heat insulating material as a heat insulating material that can be placed between battery cells. It is described that the presence of the layer can prevent the components of the inorganic particle material contained in the inorganic heat insulating material from falling off.
- Patent Document 2 discloses a heat insulating material having on its surface a layer containing resin and expandable graphite and having a thickness of 10 ⁇ m to 3 mm.
- the present invention has been made in view of the above problems, and a heat insulating sheet that suppresses peeling of the resin layer, suppresses falling off of the heat insulating material components, has low thermal conductivity and is flame retardant, and a method for producing the same.
- a heat insulating sheet that suppresses peeling of the resin layer, suppresses falling off of the heat insulating material components, has low thermal conductivity and is flame retardant, and a method for producing the same.
- Another object of the present invention is to provide an assembled battery having the heat insulating sheet.
- the ratio (A/B) of the total area A of the resin film portion and the total area B of the hole portion, calculated by observing the image of the resin film side surface with a digital microscope, is 7/3 to 99/1.
- the inorganic particles are particles made of at least one inorganic material selected from oxide particles, carbide particles, nitride particles and inorganic hydrate particles, [1] to [ 7] The heat insulating sheet according to any one of the above items.
- the heat insulating material further comprises a first inorganic fiber and a second inorganic fiber having at least one different property selected from average fiber diameter, shape, and glass transition point, The heat insulating sheet according to any one of [1] to [8].
- the average fiber diameter of the first inorganic fibers is larger than the average fiber diameter of the second inorganic fibers, The heat insulating sheet according to [9], wherein the first inorganic fibers are linear or acicular, and the second inorganic fibers are dendritic or crimped.
- the first inorganic fibers are amorphous fibers;
- the second inorganic fibers are at least one fiber selected from amorphous fibers having a glass transition point higher than that of the first inorganic fibers and crystalline fibers,
- the inorganic particles include at least one selected from nanoparticles, hollow particles and porous particles;
- the first inorganic fibers are amorphous fibers, [9], wherein the second inorganic fiber is at least one inorganic fiber selected from amorphous fibers having a glass transition point higher than that of the first inorganic fibers, and crystalline fibers. insulation sheet.
- the heat insulating sheet according to any one of [1] to [12], which is used in an assembled battery in which a plurality of battery cells are connected in series or in parallel.
- a heat insulating sheet that suppresses peeling of the resin layer, suppresses falling off of the heat insulating material components, has low thermal conductivity, and is flame retardant, and a method for manufacturing the same.
- an assembled battery including a heat insulating sheet that suppresses peeling of the resin layer, suppresses falling off of the heat insulating material component, has low thermal conductivity, and is flame retardant.
- FIG. 1 is a plan view schematically showing a heat insulating sheet according to an embodiment of the invention.
- FIG. 2 is a cross-sectional view schematically showing a heat insulating sheet according to an embodiment of the invention.
- FIG. 3 is a cross-sectional SEM (Scanning Electron Microscope) image of a heat insulating sheet according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram for explaining a method for measuring the average thickness of the resin film in the heat insulating sheet according to the embodiment of the present invention.
- FIG. 5 is a cross-sectional view schematically showing a heat insulating sheet using a heat insulating material containing two types of inorganic particles.
- FIG. 1 is a plan view schematically showing a heat insulating sheet according to an embodiment of the invention.
- FIG. 2 is a cross-sectional view schematically showing a heat insulating sheet according to an embodiment of the invention.
- FIG. 3 is a cross-sectional SEM (S
- FIG. 6 is a cross-sectional view schematically showing an example of an assembled battery to which the heat insulating sheet according to the embodiment of the invention is applied.
- FIG. 7 is a drawing-substituting photograph of the surface of the heat insulating sheet of Example 1 taken with a digital microscope.
- FIG. 8 is a schematic diagram for explaining the measuring method in the example of the present invention.
- FIG. 9 is a schematic diagram for explaining the measuring method in the example of the present invention.
- the present inventors have made extensive studies to provide a heat insulating sheet that suppresses peeling of the resin layer, suppresses falling off of the heat insulating material components, has low thermal conductivity, and is flame retardant.
- the present inventors found that the above problem can be solved by providing a film-like resin film containing a resin on at least a part of the surface of the heat insulating material containing inorganic particles. Since the heat insulating sheet according to the embodiment of the present invention has a resin film on the surface of the heat insulating material, it is possible to suppress the falling-off of the inorganic particles contained in the heat insulating material. In addition, if the resin film is thin and has excellent flexibility, it is possible to suppress peeling from the heat insulating material due to differences in shrinkage during heating.
- the resin film is thin, the change in the resin content in the entire heat insulating sheet due to the provision of the resin film is small, and it is possible to suppress the deterioration of the flame retardancy and the increase of the thermal conductivity of the heat insulating sheet. .
- a heat insulating sheet includes a heat insulating material containing inorganic particles, and a resin film covering at least part of the surface of the heat insulating material.
- FIG. 1 is a plan view schematically showing a heat insulating sheet according to an embodiment of the invention.
- FIG. 2 is sectional drawing which showed typically the heat insulation sheet which concerns on embodiment of this invention.
- the heat insulating sheet 10 according to the present embodiment is formed by partially covering the surface of the heat insulating material 2 containing the inorganic particles 41 with the resin film 1 .
- the heat insulating material 2 may contain inorganic fibers 42 .
- the surface of the heat insulating material 2 preferably has an uncovered portion that is not covered with the resin film 1 , and the resin film 1 may have a plurality of holes 31 .
- a portion of the hole 31 can be an uncovered portion.
- FIG. 3 is a SEM (scanning electron microscope) image of a cross section of a heat insulating sheet according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram for explaining a method for measuring the average thickness of the resin film in the heat insulating sheet according to the embodiment of the present invention.
- the resin film 1 preferably has a non-uniform thickness.
- the thickness of the resin film 1 By making the thickness of the resin film 1 non-uniform, both the film strength provided by the thick (large film thickness) portion and the flexibility of the film provided by the thin (small film thickness) portion are achieved. can be done.
- the resin film 1 is irregularly curved along the surface shape of the heat insulating material 2 . Since the resin film is irregularly curved, the area of heat conduction with the heating element can be reduced, and an increase in the thermal conductivity of the heat insulating sheet can be suppressed.
- the thickness of the resin film is preferably greater than 0 and less than 100 ⁇ m.
- the thickness of the resin film is more preferably 1 ⁇ m or more, still more preferably 4 ⁇ m or more, and even more preferably 8 ⁇ m or more.
- the thickness of the resin film is more preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 15 ⁇ m or less.
- the thickness of the resin film is less than 100 ⁇ m, it is easy to obtain the effect of suppressing the peeling of the resin film from the heat insulating material, the effect of suppressing an increase in thermal conductivity, and the effect of suppressing a decrease in flame retardancy.
- the average thickness of the resin film is preferably 1 to 95 ⁇ m.
- the average thickness of the resin film is preferably 1 ⁇ m or more, more preferably 4 ⁇ m or more, and even more preferably 8 ⁇ m or more.
- the average thickness of the resin film is more preferably 50 ⁇ m or less, still more preferably 25 ⁇ m or less, and even more preferably 15 ⁇ m or less.
- the thickness of the resin film can be obtained by analyzing the SEM image of the cross section of the heat insulating sheet.
- the average thickness of the resin film is the average value obtained by measuring the thickness of the resin film at a plurality of locations at regular intervals. For example, as shown in FIGS. 3 and 4, by analyzing the SEM image of the cross section of the heat insulating sheet, the thickness of the resin film (arrows in the figure) is measured at seven measurement positions W1 to W7, and the average thickness is calculated. can do. Although there are seven measurement positions in FIG. 4, the number of measurement positions is not particularly limited as long as it is seven or more, preferably seven to ten. Specifically, the thickness and average thickness of the resin film can be measured by the methods described in Examples.
- the resin film may cover at least a portion of the surface of the heat insulating material, but it is preferable that the surface of the heat insulating material has a partially uncovered portion, and the resin film has a plurality of holes. is more preferable.
- the flexibility of the resin film is further improved, and peeling of the resin film from the surface of the heat insulating material can be further suppressed.
- the ratio (A/B) of the total area A of the resin film portion and the total area B of the hole portion calculated by observing the image of the resin film side with a digital microscope is 7/3 to 99/1. preferable.
- A/B is more preferably 8/2 or more, still more preferably 85/15 or more, and even more preferably 9/1 or more.
- A/B is preferably 99/1 or less, more preferably 97/3 or less.
- A/B is calculated by observing the surface of the heat insulating sheet on which the resin film is provided with a digital microscope (KEYENCE VHX-5000) at a magnification of 20 times, and the brightness setting range of 96-255 is the total hole portion. Area B and brightness setting range of 0 to 96 were calculated as total area A of the resin film portion.
- the type of resin that forms the resin film is not limited as long as the effects of the present invention can be obtained, but flame-retardant resins such as epoxy resins, melamine resins, silicone resins, urethane resins, polyvinyl Examples thereof include alcohol (PVA), acrylic resin, polyester resin, and the like, and resins having natural fire extinguishing properties and resins having a high oxygen index are more preferable.
- flame-retardant resins such as epoxy resins, melamine resins, silicone resins, urethane resins, polyvinyl
- PVA alcohol
- acrylic resin polyester resin
- resins having natural fire extinguishing properties and resins having a high oxygen index are more preferable.
- the resin film may contain components other than resin, such as organic fibers, inorganic fibers, organic fillers, inorganic fillers, organic pigments, and inorganic pigments.
- the heat insulating material used for the heat insulating sheet according to the present embodiment is not particularly limited as long as it contains inorganic particles and has a heat insulating effect. Thermal conductivity can be mentioned as an index representing the heat insulating effect.
- the thermal conductivity of the heat insulating material is preferably less than 1 (W / m K), /m ⁇ K), and more preferably less than 0.2 (W/m ⁇ K).
- the thermal conductivity of the heat insulating material is more preferably less than 0.1 (W/mK), more preferably less than 0.05 (W/mK), and more preferably less than 0.02 (W/mK). /m ⁇ K) is particularly preferred.
- thermal conductivity of the heat insulating material can be measured in accordance with the "testing method for thermal conductivity of refractories" described in JIS R 2251.
- inorganic particles inorganic particles of a single material may be used, or inorganic particles of two or more materials may be used in combination.
- the heating element can be cooled in multiple stages, and the endothermic action can be expressed in a wider temperature range, so that the heat insulation performance can be improved.
- the preferable material, shape and particle size of each inorganic particle are described below.
- Fig. 5 is a cross-sectional view schematically showing a heat insulating sheet using a heat insulating material containing two types of inorganic particles.
- the heat insulating material shown in FIG. 5 also contains two types of inorganic fibers, which will be described later.
- the first inorganic particles 51 and the second inorganic particles 54 at least one inorganic material selected from oxide particles, carbide particles, nitride particles, and inorganic hydrate particles is used from the viewpoint of heat transfer suppression effect. It is preferred to use particles consisting of, more preferably oxide particles. Inorganic balloons such as silica nanoparticles, metal oxide particles, microporous particles and hollow silica particles, particles made of thermally expandable inorganic materials, particles made of water-containing porous bodies, and the like can also be used. Hereinafter, the inorganic particles will be described in more detail, with small-diameter inorganic particles as first inorganic particles 51 and large-diameter inorganic particles as second inorganic particles 54 .
- First inorganic particles (Oxide particles) Since oxide particles have a high refractive index and a strong effect of diffusely reflecting light, the use of oxide particles as the inorganic particles can suppress radiant heat transfer, especially in a high temperature range such as abnormal heat generation.
- oxide particles at least one kind of particles selected from silica, titania, zirconia, zircon, barium titanate, zinc oxide and alumina can be used. That is, among the oxide particles that can be used as inorganic particles, only one kind may be used, or two or more kinds of oxide particles may be used.
- silica is a component with high heat insulation
- titania is a component with a higher refractive index than other metal oxides, and is highly effective in blocking radiant heat by diffusely reflecting light in a high temperature range of 500 ° C. or higher. Therefore, it is most preferable to use silica and titania as oxide particles.
- Average primary particle diameter of oxide particles 0.001 ⁇ m or more and 50 ⁇ m or less
- the particle size of oxide particles may affect the effect of reflecting radiant heat
- limiting the average primary particle size to a predetermined range makes it possible to obtain even higher heat insulation. That is, when the average primary particle diameter of the oxide particles is 0.001 ⁇ m or more, it is sufficiently larger than the wavelength of light that contributes to heating, and the light is efficiently diffusely reflected. Radiation heat transfer of heat inside is suppressed, and heat insulation can be further improved.
- the average primary particle diameter of the oxide particles is 50 ⁇ m or less, the number of contact points between particles does not increase even when compressed, and it is difficult to form paths for conductive heat transfer, so conductive heat transfer is particularly dominant. It is possible to reduce the influence on heat insulation in the normal temperature range.
- the average primary particle size can be determined by observing particles under a microscope, comparing with a standard scale, and averaging 10 arbitrary particles.
- nanoparticles refer to nanometer-order particles having an average primary particle diameter of less than 1 ⁇ m and having a spherical or nearly spherical shape. Since nanoparticles have a low density, conductive heat transfer is suppressed, and when nanoparticles are used as inorganic particles, voids are dispersed more finely, so that excellent heat insulation properties that suppress convective heat transfer can be obtained. For this reason, it is preferable to use nanoparticles because heat conduction between adjacent nanoparticles can be suppressed when the battery is normally used in the normal temperature range. Further, when fine particles such as silica nanoparticles are used in the heat insulating material, the heat insulating sheet of the present invention is likely to have the effect of suppressing the components of the heat insulating material from coming off.
- the insulation sheet is compressed due to the expansion associated with the thermal runaway of the battery cell, and even if the internal density increases, the conduction of the insulation sheet is reduced. An increase in heat transfer can be suppressed. This is presumably because fine voids are likely to be formed between nanoparticles due to the repulsive force of static electricity, and the particles are packed so as to have cushioning properties due to their low bulk density.
- the material when nanoparticles are used as the inorganic particles, the material is not particularly limited as long as it conforms to the above definition of nanoparticles.
- silica nanoparticles in addition to being a material with high heat insulating properties, silica nanoparticles have small contact points between particles, so the amount of heat conducted by silica nanoparticles is smaller than when silica particles with a large particle size are used.
- generally available silica nanoparticles have a bulk density of about 0.1 (g/cm 3 ). Even when a large compressive stress is applied to the silica nanoparticles, the size (area) and number of contact points between the silica nanoparticles do not significantly increase, and the heat insulating properties can be maintained. Therefore, it is preferable to use silica nanoparticles as the nanoparticles.
- silica nanoparticles wet silica, dry silica, aerogel, and the like can be used.
- Average primary particle size of nanoparticles 1 nm or more and 100 nm or less
- Average primary particle size of the nanoparticles By limiting the average primary particle size of the nanoparticles to a predetermined range, even higher heat insulating properties can be obtained. That is, when the average primary particle diameter of the nanoparticles is 1 nm or more and 100 nm or less, it is possible to suppress the convective heat transfer and conductive heat transfer of heat in the heat insulating material, especially in the temperature range of less than 500 ° C., and the heat insulating property is further improved. It can be improved further.
- the average primary particle size of the nanoparticles is more preferably 2 nm or more, and even more preferably 3 nm or more. On the other hand, the average primary particle size of the nanoparticles is more preferably 50 nm or less, even more preferably 10 nm or less.
- inorganic hydrate particles When the inorganic hydrate particles receive heat from the heating element and reach a thermal decomposition initiation temperature or higher, they thermally decompose, releasing their own water of crystallization to lower the temperature of the heating element and its surroundings, a so-called “endothermic effect”. express. In addition, after the water of crystallization is released, it becomes a porous body and exhibits heat insulating properties due to its numerous air holes.
- inorganic hydrates include aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), calcium hydroxide (Ca(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), iron hydroxide (Fe(OH) 2 ), manganese hydroxide (Mn(OH) 2 ), zirconium hydroxide (Zr(OH) 2 ), gallium hydroxide (Ga(OH) 3 ), and the like. .
- aluminum hydroxide has about 35% water of crystallization, and as shown in the following formula, it is thermally decomposed to release water of crystallization to exhibit endothermic action. After releasing the water of crystallization, it becomes porous alumina (Al 2 O 3 ) and functions as a heat insulating material. 2Al ( OH) 3 ⁇ Al2O3 + 3H2O
- the heat insulating sheet 10 is preferably interposed, for example, between battery cells.
- the temperature continues to rise to around 700°C. Therefore, the inorganic particles are preferably composed of an inorganic hydrate having a thermal decomposition initiation temperature of 200° C. or higher.
- the thermal decomposition initiation temperature of the inorganic hydrates listed above is about 200 ° C. for aluminum hydroxide, about 330 ° C. for magnesium hydroxide, about 580 ° C. for calcium hydroxide, about 200 ° C. for zinc hydroxide, and about 200 ° C. for iron hydroxide.
- the average secondary particle size of the inorganic hydrate particles is preferably 0.01 ⁇ m or more and 200 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less.
- Vermiculite particles made of thermally expandable inorganic material
- bentonite mica, perlite, etc.
- mica particles made of thermally expandable inorganic material
- water-containing porous material particles made of hydrous porous material
- water-containing porous material include zeolite, kaolinite, montmorillonite, acid clay, diatomaceous earth, wet silica, dry silica, aerogel, mica, vermiculite, and the like.
- the heat insulating material used in the present invention may contain inorganic balloons as inorganic particles.
- inorganic balloons When inorganic balloons are included, convective heat transfer or conductive heat transfer in the heat insulating material can be suppressed in a temperature range of less than 500° C., and the heat insulating properties of the heat insulating material can be further improved.
- At least one selected from shirasu balloons, silica balloons, fly ash balloons, barlite balloons, and glass balloons can be used as the inorganic balloons.
- Inorganic balloon content 60% by mass or less with respect to the total mass of the heat insulating material
- the content of the inorganic balloons is preferably 60% by mass or less with respect to the total mass of the heat insulating material.
- the average particle size of the inorganic balloons is preferably 1 ⁇ m or more and 100 ⁇ m or less.
- the second inorganic particles 54 are not particularly limited as long as they are different from the first inorganic particles 51 in material, particle size, and the like.
- the second inorganic particles 54 include oxide particles, carbide particles, nitride particles, inorganic hydrate particles, silica nanoparticles, metal oxide particles, inorganic balloons such as microporous particles and hollow silica particles, and thermally expandable inorganic particles. Particles made of material, particles made of water-containing porous material, etc. can be used, and the details thereof are as described above.
- the nanoparticles have extremely low conductive heat transfer and can maintain excellent heat insulating properties even when compressive stress is applied to the heat insulating sheet.
- metal oxide particles such as titania are highly effective in blocking radiant heat.
- the small-diameter inorganic particles enter the gaps between the large-diameter inorganic particles, resulting in a more dense structure and improving the heat transfer suppression effect. can. Therefore, when nanoparticles are used as the first inorganic particles 51, particles made of a metal oxide having a larger diameter than the first inorganic particles 51 are used as the second inorganic particles 54 for heat insulation. preferably contained in the material.
- metal oxides examples include silicon oxide, titanium oxide, aluminum oxide, barium titanate, zinc oxide, zircon, and zirconium oxide.
- titania is a component having a higher refractive index than other metal oxides, and has a high effect of diffusely reflecting light and blocking radiant heat in a high temperature range of 500° C. or higher. Therefore, titania is most preferably used.
- the average primary particle size of the second inorganic particles 54 is more preferably 5 ⁇ m or more and 30 ⁇ m or less, and most preferably 10 ⁇ m or less.
- first inorganic particles 51 are silica nanoparticles and the second inorganic particles 54 are metal oxides
- the content of the first inorganic particles 51 is the same as that of the first inorganic particles 51 and the second inorganic particles.
- it is 60% by mass or more and 95% by mass or less with respect to the total mass of 54, the amount of metal oxide particles necessary to suppress radiation heat transfer, the amount of metal oxide particles necessary to suppress conductive/convective heat transfer, and the cushioning properties required
- the amount of silica nanoparticles can be optimized.
- the heat insulating material preferably has first inorganic fibers 52 and second inorganic fibers 53 that differ from each other in at least one property selected from average fiber diameter, shape, and glass transition point.
- the average fiber diameter of the first inorganic fibers 52 is larger than the average fiber diameter of the second inorganic fibers 53, and the first inorganic fibers 52 are linear. Alternatively, it is needle-like, and the second inorganic fibers 53 are preferably dendritic or crimped.
- the first inorganic fibers 52 having a large average fiber diameter (thick diameter) have the effect of improving the mechanical strength and shape retention of the heat insulating sheet.
- the inclusion of the first inorganic fibers 52 in the heat insulating material increases the impact resistance.
- the impact from the outside includes, for example, pressing force due to expansion of the battery cell, wind pressure due to ignition of the battery cell, and the like.
- the first inorganic fibers 52 are linear or needle-like.
- the linear or needle-like fibers refer to fibers having a degree of crimp of less than 10%, preferably 5% or less, which will be described later.
- the average fiber diameter of the first inorganic fibers 52 is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. more preferred. If the first inorganic fibers 52 are too thick, the moldability and processability of the heat insulating material may be deteriorated. It is more preferable to have In addition, if the first inorganic fiber 52 is too long, the moldability and workability may be deteriorated, so the fiber length is preferably 100 mm or less. Furthermore, if the first inorganic fibers 52 are too short, the shape retention and mechanical strength are lowered, so the fiber length is preferably 0.1 mm or more.
- the second inorganic fibers 53 with a small average fiber diameter (thin diameter) have the effect of improving the retention of other inorganic fibers and inorganic particles and increasing the flexibility of the heat insulating material. Therefore, it is preferable to make the diameter of the second inorganic fibers 53 smaller than that of the first inorganic fibers 52 .
- the second inorganic fibers 53 are easily deformable and have flexibility in order to improve the retention of other inorganic fibers and inorganic particles. Therefore, the fine second inorganic fibers 53 preferably have an average fiber diameter of less than 1 ⁇ m, more preferably 0.1 ⁇ m or less. However, if the fine-diameter inorganic fibers are too fine, they are likely to break, and the ability to retain other inorganic fibers, inorganic particles, and the like decreases.
- the proportion of fibers that are entangled in the heat insulating material without holding other inorganic fibers or inorganic particles, etc. is increased, and in addition to a decrease in the holding capacity of other inorganic fibers, inorganic particles, etc., molding It becomes inferior also in a property and a shape retention property. Therefore, the average fiber diameter of the second inorganic fibers 53 is preferably 1 nm or more, more preferably 10 nm or more. In addition, if the second inorganic fibers 53 are too long, the formability and the shape retention deteriorate, so the fiber length of the second inorganic fibers 53 is preferably 0.1 mm or less.
- the second inorganic fibers 53 are preferably dendritic or curly.
- the second inorganic fibers 53 have such a shape, they are entangled with other inorganic fibers, inorganic particles, and the like in the heat insulating material. Therefore, the ability to retain other inorganic fibers, inorganic particles, and the like is improved.
- the heat insulating sheet receives a pressing force or wind pressure, the second inorganic fibers 53 are prevented from slipping and moving, thereby increasing the mechanical strength particularly against external pressing force and impact. improves.
- the dendritic structure is a two-dimensionally or three-dimensionally branched structure, and includes, for example, a feather shape, a tetrapod shape, a radial shape, and a three-dimensional network shape.
- the average fiber diameter can be obtained by measuring the diameters of the stem and branches at several points by SEM and calculating the average value.
- the crimped shape is a structure in which the fibers are bent in various directions.
- the degree of crimp from an electron micrograph. For example, it can be calculated from the following formula.
- Crimp degree (%) (fiber length - distance between fiber ends) / (fiber length) x 100
- both the fiber length and the distance between fiber ends are measured values on an electron micrograph. That is, the fiber length and the distance between fiber ends projected onto a two-dimensional plane are shorter than the actual values.
- the crimp degree of the second inorganic fibers 53 is preferably 10% or more, more preferably 30% or more.
- the first inorganic fibers 52 having different average fiber diameters and different fiber shapes are used as a method for improving the mechanical strength and shape retention of the heat transfer suppression sheet and the retention of inorganic particles, inorganic fibers, etc. and second inorganic fibers 53 are used.
- the mechanical strength, shape retention, and particle retention of the heat transfer suppressing sheet can be improved. can be made
- the first inorganic fibers 52 are amorphous fibers, and the second inorganic fibers 53 have a glass transition point higher than that of the first inorganic fibers 52. At least one fiber selected from amorphous fibers and crystalline fibers is preferred.
- the first inorganic particles 51 containing at least one selected from nanoparticles, hollow particles and porous particles together with the above two inorganic fibers the heat insulation performance can be further improved. .
- the melting point of crystalline inorganic fibers is usually higher than the glass transition point of amorphous inorganic fibers. Therefore, when the first inorganic fiber 52 is exposed to a high temperature, the surface softens earlier than the second inorganic fiber 53, and binds other inorganic fibers, inorganic particles, and the like. Therefore, by including the first inorganic fibers 52 as described above in the heat insulating material, the mechanical strength of the heat insulating layer can be improved.
- inorganic fibers having a melting point of less than 700° C. are preferable as the first inorganic fibers 52, and many amorphous inorganic fibers can be used. Among them, fibers containing SiO 2 are preferable, and glass fibers are more preferable because they are inexpensive, readily available, and excellent in handleability.
- the second inorganic fibers 53 are fibers made of at least one selected from amorphous fibers having a glass transition point higher than that of the first inorganic fibers 52 and crystalline fibers. Many crystalline inorganic fibers can be used as the second inorganic fibers 53 . If the second inorganic fibers 53 are made of crystalline fibers or have a glass transition point higher than that of the first inorganic fibers 52, the first inorganic fibers will Even if 52 softens, the second inorganic fibers 53 do not melt or soften. Therefore, it is possible to maintain the shape and continue to exist between the battery cells even during thermal runaway of the battery cells.
- examples of the second inorganic fibers 53 include ceramic fibers such as alumina fibers, alumina silicate fibers, and zirconia fibers, silica fibers, glass fibers, glass wool, rock wool, and carbon.
- Mineral fibers such as fiber, basalt fiber, soluble fiber, refractory ceramic fiber, airgel composite material, magnesium silicate fiber, alkaline earth silicate fiber, zirconia fiber, potassium titanate fiber, wollastonite, etc. can be used. .
- the fibers mentioned as the second inorganic fibers 53 if the melting point exceeds 1000° C., even if thermal runaway of the battery cell occurs, the second inorganic fibers 53 will not melt or soften.
- the shape can be maintained, it can be preferably used.
- the fibers mentioned as the second inorganic fibers 53 it is more preferable to use, for example, silica fibers, ceramic fibers such as alumina fibers and alumina silicate fibers, and mineral fibers. It is more preferable to use one with a temperature higher than 1000°C.
- the second inorganic fibers 53 are amorphous, any fiber having a glass transition point higher than that of the first inorganic fibers 52 can be used.
- a glass fiber having a glass transition point higher than that of the first inorganic fiber 52 may be used as the second inorganic fiber 53 .
- the various inorganic fibers exemplified may be used singly, or two or more types may be mixed and used.
- the first inorganic fibers 52 have a glass transition point lower than that of the second inorganic fibers 53, and when exposed to high temperatures, the first inorganic fibers 52 soften first.
- the inorganic fibers 52 can bind other inorganic fibers, inorganic particles, and the like.
- the second inorganic fibers 53 are amorphous and have a fiber diameter smaller than the fiber diameter of the first inorganic fibers 52, the first inorganic fibers 52 and the second inorganic fibers 53 If the glass transition points of and are close to each other, the second inorganic fibers 53 may soften first.
- the glass transition point of the second inorganic fibers 53 is preferably higher than the glass transition point of the first inorganic fibers 52 by 100° C. or more. , 300° C. or higher.
- the fiber length of the first inorganic fibers 52 is preferably 100 mm or less, preferably 0.1 mm or more.
- the fiber length of the second inorganic fibers 53 is preferably 0.1 mm or less.
- the first inorganic fibers 52 are amorphous fibers
- the second inorganic fibers 53 have a glass transition point higher than that of the first inorganic fibers 52.
- At least one fiber selected from amorphous fibers and crystalline fibers, and the average fiber diameter of the first inorganic fibers 52 is larger than the average fiber diameter of the second inorganic fibers 53 is preferred.
- the average fiber diameter of the first inorganic fibers 52 is preferably larger than that of the second inorganic fibers 53.
- the first inorganic fibers 52 having a large diameter are amorphous fibers
- the second inorganic fibers 53 having a small diameter are amorphous fibers having a glass transition point higher than that of the first inorganic fibers 52
- Fibers made of at least one selected from crystalline fibers are preferred.
- the second inorganic fibers 53 having a small diameter are fibers made of at least one selected from amorphous fibers having a glass transition point higher than that of the first inorganic fibers 52 and crystalline fibers. Since the second inorganic fibers 53 having a small diameter remain in the form of fibers even when the temperature rises, the structure of the heat insulating sheet can be maintained, and falling off of powder can be prevented.
- the fiber length of the first inorganic fibers 52 is preferably 100 mm or less, and preferably 0.1 mm or more.
- the fiber length of the second inorganic fibers 53 is preferably 0.1 mm or less.
- the heat insulating material may contain different inorganic fibers in addition to the first inorganic fibers 52 and the second inorganic fibers 53 described above.
- the content of the first inorganic fibers 52 is preferably 3% by mass or more and 30% by mass or less with respect to the total mass of the heat insulating material.
- the content of the inorganic fibers 53 in is preferably 3% by mass or more and 30% by mass or less with respect to the total mass of the heat insulating material.
- the content of the first inorganic fibers 52 is more preferably 5% by mass or more and 15% by mass or less with respect to the total mass of the heat insulating material
- the content of the second inorganic fibers 53 is It is more preferably 5% by mass or more and 15% by mass or less with respect to the total mass of.
- the heat insulating material used in the present invention has the effect of improving the strength of the heat insulating material in addition to the first inorganic particles 51 and second inorganic particles 54, the first inorganic fibers 52 and the second inorganic fibers 53.
- Components necessary for molding into a heat insulating material such as organic fibers, binders, and coloring agents, may also be included. Other components are also described in detail below.
- the heat insulating material in the present invention can be formed by sintering or the like even if it does not contain a binder. Therefore, it is preferable to add a binder in an appropriate content.
- the binder may be any material as long as it holds the inorganic particles together, and may be in any form such as a binder with adhesion, a fiber that physically entangles the particles, or a heat-resistant resin that adheres with adhesive force. do not have.
- the first inorganic fibers 52 and the second inorganic fibers 53 also function as binders.
- organic binder an inorganic binder, or the like can be used as the binder.
- organic binders polymer aggregates, acrylic emulsions, etc.
- inorganic binders silica sol, alumina sol, aluminum sulfate, etc. can be used. can. They act as adhesives when solvents such as water are removed.
- the organic fibers are not particularly limited, but synthetic fibers, natural fibers, pulp, etc. can be used.
- polyvinyl alcohol (PVA) fiber polyethylene fiber, nylon fiber, polyurethane fiber, ethylene-vinyl alcohol copolymer fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polytrimethylene terephthalate fiber, polyacetal fiber, polytetra
- PVA polyvinyl alcohol
- polyethylene fiber polyethylene fiber
- nylon fiber polyurethane fiber
- ethylene-vinyl alcohol copolymer fiber polyethylene terephthalate fiber
- polybutylene terephthalate fiber polytrimethylene terephthalate fiber
- polyacetal fiber polytetra
- fluoroethylene fiber polyetheretherketone fiber
- polyphenylene sulfide fiber polyamide fiber
- polyparaphenylphthalamide fiber polyparaphenylphthalamide fiber and the like.
- the binder content is preferably 60% by mass or less, more preferably 50% by mass or less, relative to the total mass of the heat insulating material. In the heat insulating material used in the present invention, the binder content is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the total mass of the heat insulating material.
- the thickness of the heat insulating material used in the present invention is not particularly limited, it is preferably in the range of 0.1 mm or more and 30 mm or less. When the thickness of the heat insulating material is within the above range, sufficient mechanical strength can be obtained, and the heat insulating material can be easily molded.
- the method for producing the heat insulating sheet according to the present embodiment is not particularly limited, for example, on the heat insulating material obtained by molding the heat insulating material containing inorganic particles into a sheet, It can be obtained by coating and drying the substance.
- the heat insulating sheet according to the present embodiment preferably has a resin film thickness of less than 100 ⁇ m, it is preferable to appropriately select a method for forming the resin film.
- the heat insulating material may be produced by molding a heat insulating material containing inorganic particles by a wet papermaking method, a dry molding method, a wet molding method, or by an extrusion molding method. Manufacturing methods for obtaining heat insulating materials by respective molding methods will be described below.
- Method for producing heat insulating material by wet papermaking method First, inorganic particles and, if necessary, inorganic fibers, organic fibers, or an organic binder as a binding material are mixed in water, and the mixture is stirred with a stirrer to prepare a mixed solution. After that, a wet sheet is produced by dehydrating the obtained mixed liquid through a mesh for filtration. Then, the heat insulating material can be obtained by heating and pressing the obtained wet sheet. Incidentally, before the heating and pressing steps, a through-drying process may be carried out in which hot air is passed through the wet sheet to dry the sheet. You can pressurize.
- Method for producing a heat insulating sheet by a dry molding method First, inorganic particles and, if necessary, inorganic fibers, organic fibers, or an organic binder as a binding material are put into a mixer such as a V-type mixer at a predetermined ratio. After the materials put into the mixer are sufficiently mixed, the mixture is put into a predetermined mold and pressed to obtain a heat insulating material. At the time of pressing, it may be heated as necessary.
- the above press pressure is preferably in the range of 0.98 to 9.80 MPa. If the pressing pressure is less than 0.98 MPa, the resulting heat insulating material may collapse without maintaining its strength. On the other hand, if the pressing pressure exceeds 9.80 MPa, there is a risk that workability will deteriorate due to excessive compression, and that solid heat transfer will increase due to an increase in bulk density, resulting in a reduction in heat insulating properties.
- a paste is first prepared by adding water to inorganic particles and, if necessary, inorganic fibers, organic fibers, or an organic binder as a binding material, and kneading the mixture with a kneader. After that, the obtained paste is extruded through a slit-shaped nozzle using an extruder and dried to obtain a heat insulating material.
- the organic binder it is preferable to use methyl cellulose, water-soluble cellulose ether, or the like, but any organic binder generally used in extrusion molding can be used without particular limitation.
- the method for forming the resin film is not particularly limited, it can be formed, for example, by applying a composition for forming a resin film to a heat insulating material and drying it.
- the raw material resin contained in the resin film-forming composition is not particularly limited as long as the effects of the present invention can be obtained, but flame-retardant resins are preferred, such as epoxy resins, melamine resins, and silicone resins. , urethane resin, polyvinyl alcohol (PVA), acrylic resin, polyester resin, etc., and resins having natural fire extinguishing properties and resins having a high oxygen index are more preferable.
- flame-retardant resins are preferred, such as epoxy resins, melamine resins, and silicone resins.
- urethane resin polyvinyl alcohol (PVA), acrylic resin, polyester resin, etc.
- resins having natural fire extinguishing properties and resins having a high oxygen index are more preferable.
- the resin film-forming composition may contain components other than the resin, and may contain, for example, organic fibers, inorganic fibers, organic fillers, inorganic fillers, organic pigments, inorganic pigments, and the like.
- the solvent used in the resin film-forming composition is not particularly limited, but includes water, organic solvents, and the like, and it is preferable to use water from the viewpoint of versatility.
- the resin concentration (resin content relative to the total mass of the resin film-forming composition) in the resin film-forming composition is preferably 25 to 100% by mass. By setting it as the said range, it becomes easy to form the resin film which has desired thickness and shape.
- coating methods for the composition include dip coating, die coating, bar code, spin coating, offset, spray coating, inkjet printing, screen printing, offset printing, flexographic printing, and gravure.
- Application by printing such as a printing method can be mentioned.
- the method of applying the resin film-forming composition is not particularly limited, but it is preferable to use a screen printing method or a spray coat printing method because it is easy to form a resin film having a desired thickness and shape, and a screen printing method is used. is more preferable.
- a heat insulating sheet according to an embodiment of the present invention is used for an assembled battery in which a plurality of battery cells are connected in series or in parallel. For example, it is suitably used as an assembled battery interposed between the battery cells.
- the heat insulating sheet according to the embodiment of the present invention it is preferable that a resin film is formed on all surfaces of the heat insulating sheet in contact with the battery cells.
- An assembled battery according to an embodiment of the present invention has a plurality of battery cells and a heat insulating sheet according to the present embodiment, and the plurality of battery cells are connected in series or in parallel.
- FIG. 6 is a cross-sectional view schematically showing an example of an assembled battery to which the heat insulating sheet according to the embodiment of the invention is applied.
- an assembled battery 100 according to an embodiment of the present invention includes a plurality of battery cells 20a, 20b, and 20c arranged in parallel and connected in series or in parallel and stored in a battery case 30.
- a heat insulating sheet 10 is interposed between the battery cells 20a, 20b, and 20c.
- the heat insulating sheet 10 has a resin film that covers at least a part of the surface of the heat insulating material, so that peeling of the resin film from the surface of the heat insulating material can be suppressed. , an increase in thermal conductivity and a decrease in flame retardancy can be suppressed. Further, when the heat insulating sheet 10 is interposed between the battery cells 20a, 20b, 20c, it is possible to suppress the heat transfer between the battery cells 20a, 20b, 20c during normal use.
- the presence of the heat insulating sheet 10 according to the present embodiment the heat transfer between the battery cells 20a, 20b, and 20c can be suppressed. Therefore, a chain of thermal runaway can be prevented, and adverse effects on other battery cells can be minimized.
- the assembled battery 100 of the present embodiment is not limited to the assembled battery illustrated in FIG.
- a heat insulating sheet 10 can also be placed between 20 a , 20 b , 20 c and the battery case 30 .
- the assembled battery 100 configured in this manner, it is possible to suppress the spread of the flame to the outside of the battery case 30 when a certain battery cell catches fire.
- the assembled battery 100 according to the present embodiment is used in an electric vehicle (EV) or the like, and may be placed under the floor of a passenger. In this case, even if the battery cell catches fire, the safety of the passenger can be ensured.
- the heat insulating sheet 10 can be placed not only between the battery cells, but also between the battery cells 20a, 20b, 20c and the battery case 30, it is necessary to prepare a new fireproof material. Therefore, the assembled battery 100 can be easily constructed at a low cost and safely.
- the heat insulating sheet 10 arranged between the battery cells 20a, 20b, 20c and the battery case 30 and the battery cells 20a, 20b, 20c have gaps even when they are in contact with each other. You may have However, if there is a gap between the heat insulating sheet 10 and the battery cells 20a, 20b, and 20c, the temperature of one of the plurality of battery cells may rise and expand in volume. However, deformation of the battery cells can be tolerated.
- the heat insulating sheet according to this embodiment can be easily bent depending on the selection of the type and thickness of the resin film and the heat insulating material. Therefore, the shape of the battery cells 20a, 20b, 20c and the battery case 30 is not affected, and any shape can be accommodated. Specifically, in addition to prismatic batteries, it can also be applied to cylindrical batteries, flat-plate batteries, and the like.
- the slurry was made into paper to obtain a heat insulating material, and a heat insulating material having no resin layer on the surface was used as a heat insulating sheet of Comparative Example 1. The drying was carried out at 110° C., and the resulting heat insulating material had a width of 80 mm, a length of 80 mm, and a thickness of 1 mm.
- composition for forming a resin layer an acrylic resin aqueous solution with a resin concentration of 50% by mass is used, and resin layers having a thickness of 60 ⁇ m and 300 ⁇ m are formed on the heat insulating material by a coating method using a bar coater, and heated at 140°C. By drying, heat insulating sheets of Comparative Examples 2 and 3 were obtained. As a result of visual observation of the resin layer-provided surfaces of the heat insulating sheets of Comparative Examples 2 and 3, cracks were observed in the resin layer in both heat insulating sheets.
- Example 1 As the resin film-forming composition, a polyvinyl alcohol (PVA) resin aqueous solution with a resin concentration of 10% by mass is used, the resin film-forming composition is applied on the heat insulating material by a screen printer, and dried by heating at 130 ° C. By doing so, a resin film was formed and a heat insulating sheet of Example 1 was obtained.
- PVA polyvinyl alcohol
- FIG. 7 is a drawing-substituting photograph of the surface of the heat insulating sheet of Example 1 taken with a digital microscope.
- the white portions represent the holes and the black portions represent the resin film.
- the ratio (A/B) between the total area A of the resin film portion and the total area B of the hole portion calculated by observing the images with a digital microscope was 17.5.
- the thickness of the resin film was measured at 45 points from the SEM image of the cross section of the heat insulating sheet under the conditions described later, the thickness was in the range of 0 to 40.3 ⁇ m, and the average thickness was 13.8 ⁇ m. The thickness of the holes was not measured.
- a ratio (A/B) between the total area A of the resin film portion and the total area B of the hole portion was calculated by observing the image of the surface on the resin film side with a digital microscope.
- A/B is calculated by observing the surface of the heat insulating sheet provided with the resin film at a magnification of 20 times with a digital microscope (KEYENCE VHX-5000), and the brightness setting range of 96-255 is the total hole portion.
- Area B and brightness setting range of 0 to 96 were calculated as total area A of the resin film portion.
- the thickness of the resin film is, for example, the average value obtained by measuring the thickness of the resin film at 45 points at 9 points at intervals of 35.8 ⁇ m in cross-sectional SEM images of 5 points on the heat insulating sheet, as shown in FIG.
- Thermal conductivity (W/m ⁇ K) was measured at room temperature (25° C.). The thermal conductivity was measured according to JIS A 1412-2, "Method for measuring thermal resistance and thermal conductivity of thermal insulating material, Part 2, heat flow meter method (HFM method)".
- compression rate As shown in FIG. 9, using a universal testing machine, the test material 23 was placed between the upper plate 21 and the lower plate 22, and the test material 23 was pressed by moving the upper plate 21 downward.
- the size of the test material 23 was set to 25 mm ⁇ 25 mm, the compression rate was set to 0.5 (mm/min), and the compression stress was set to 0.5 and 3.5 MPa. Then, assuming that the initial thickness of the test material 23 is D 0 (mm) and the amount of compression (reduced thickness) is D d (mm), the compression ratio C (%) was calculated by the following formula.
- C ( Dd /D0) x 100 The compressibility was measured for the heat insulating sheets of Example 1 and Comparative Example 1 (test material 23).
- Table 1 shows the evaluation results.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Thermal Insulation (AREA)
- Cell Separators (AREA)
- Laminated Bodies (AREA)
Abstract
Description
例えば特許文献1には、電池セル間に配置され得る断熱材として、無機断熱材料と、前記無機断熱材料の表面上に配置されたポリマーコーティング層とを有する絶縁体が開示されており、ポリマーコーティング層を有することにより、無機断熱材料中に含まれる無機粒子材料の成分脱落を防止できる旨が記載されている。
また、特許文献2には、樹脂及び膨張性黒鉛を有し、その厚さが10μm~3mmである層を表面に有する断熱材料が開示されている。
また、特許文献2に記載の断熱材料では、表面層に膨張率の高い黒鉛を配合しているため、バッテリーの熱暴走時に耐火性が不十分となる懸念があった。
前記断熱材の表面の少なくとも一部を被覆する樹脂皮膜と、を有する断熱シート。
〔3〕 前記樹脂皮膜の厚みは、0を超え100μm未満である、〔1〕又は〔2〕に記載の断熱シート。
〔4〕 前記樹脂皮膜は、前記断熱材の表面形状に沿って不規則に湾曲している、〔1〕~〔3〕のいずれか一つに記載の断熱シート。
〔5〕 前記樹脂皮膜は複数の孔を有する、〔1〕~〔4〕のいずれか一つに記載の断熱シート。
〔6〕 前記孔が、前記樹脂皮膜の全面に分散して配置された、〔5〕に記載の断熱シート。
〔7〕 前記樹脂皮膜側の面のデジタルマイクロスコープ画像観察により算出した、樹脂皮膜部分の総面積Aと孔部分の総面積Bとの比(A/B)が、7/3~99/1である、〔5〕又は〔6〕に記載の断熱シート。
〔8〕 前記無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子であることを特徴とする、〔1〕~〔7〕のいずれか一つに記載の断熱シート。
〔9〕 前記断熱材は、さらに、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維及び第2の無機繊維を有することを特徴とする、〔1〕~〔8〕のいずれか一つに記載の断熱シート。
〔10〕 前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きく、
前記第1の無機繊維が線状又は針状であり、前記第2の無機繊維が樹枝状又は縮れ状であることを特徴とする、〔9〕に記載の断熱シート。
〔11〕 前記第1の無機繊維は非晶質の繊維であり、
前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、
前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きいことを特徴とする、〔9〕に記載の断熱シート。
〔12〕 前記無機粒子が、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種を含み、
前記第1の無機繊維は非晶質の繊維であり、
前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の無機繊維である、〔9〕に記載の断熱シート。
〔13〕 複数の電池セルが直列又は並列に接続される組電池に使用される、〔1〕~〔12〕のいずれか一つに記載の断熱シート。
前記無機粒子を含む断熱材用材料をシート状に成形する工程と、
スクリーン印刷法又はスプレーコート印刷法により、前記シート状の断熱材の表面に樹脂皮膜形成用組成物を塗布し、前記樹脂皮膜を形成する工程と、を有する、断熱シートの製造方法。
本発明の実施形態に係る断熱シートは、断熱材表面に樹脂皮膜を有することにより、断熱材中に含まれる無機粒子の脱落を抑制することができる。また、この樹脂皮膜が、薄く柔軟性に優れる皮膜であると、加熱時の収縮差等による断熱材からの剥離を抑制することができる。
さらには、樹脂皮膜が薄いと、樹脂皮膜を設けたことによる断熱シート全体に占める樹脂の含有率の変化も小さく、断熱シートの難燃性低下や熱伝導率上昇といったことも抑制することができる。
本発明の実施形態に係る断熱シートは、無機粒子を含有する断熱材と、前記断熱材の表面の少なくとも一部を被覆する樹脂皮膜と、を有する。
本実施形態に係る断熱シートは、断熱材の表面の少なくとも一部が樹脂皮膜により被覆されている。
図1は、本発明の実施形態に係る断熱シートを模式的に示した平面図である。また、図2は、本発明の実施形態に係る断熱シートを模式的に示した断面図である。
図1及び図2に示す断熱シートにおいては、本実施形態に係る断熱シート10は、無機粒子41を含む断熱材2の表面の一部が樹脂皮膜1により被覆されている。断熱材2は無機繊維42を含んでいてもよい。
断熱材2の表面は、樹脂皮膜1により被覆されていない非被覆部分があることが好ましく、樹脂皮膜1は複数の孔31を有していてもよい。孔31の部分を非被覆部分とすることができる。樹脂皮膜1が複数の孔31を有することによって、樹脂皮膜の柔軟性がより向上し、断熱材表面からの剥離をさらに抑制することができる。また、断熱シートの熱伝導率上昇、難燃性低下をより抑制することができる。
また、図2~図4に示すように、樹脂皮膜1は、断熱材2の表面形状に沿って不規則に湾曲していることが好ましい。樹脂皮膜が不規則に湾曲していることによって、発熱体との熱伝導面積を小さくすることができ、断熱シートの熱伝導率上昇を抑制することができる。
樹脂皮膜の厚みは、1μm以上がより好ましく、4μm以上がさらに好ましく、8μm以上がよりさらに好ましい。また、樹脂皮膜の厚みは50μm以下がより好ましく、25μm以下がさらに好ましく、15μm以下がよりさらに好ましい。
樹脂皮膜の厚みを0超とすることにより、良好な皮膜強度となる。また、樹脂皮膜の厚みを100μm未満とすることにより、樹脂皮膜の断熱材からの剥離抑制効果、熱伝導率上昇抑制効果、難燃性低下抑制効果が得られやすい。
樹脂皮膜の平均厚みは、1μm以上が好ましく、4μm以上がより好ましく、8μm以上がさらに好ましい。また、樹脂皮膜の平均厚みは、50μm以下がより好ましく、25μm以下がさらに好ましく、15μm以下がよりさらに好ましい。
樹脂皮膜の平均厚みを1μm以上とすることにより、良好な皮膜強度となる。また、樹脂皮膜の平均厚みを95μm以下とすることにより、樹脂皮膜の断熱材からの剥離抑制効果、熱伝導率上昇抑制効果、難燃性低下抑制効果が得られやすい。
樹脂皮膜の平均厚みは、樹脂皮膜の厚みを一定間隔で複数箇所測定した平均値である。例えば、図3及び図4に示すように、断熱シートの断面のSEM画像の解析により、測定位置W1~W7の7箇所における樹脂皮膜の厚み(図中の矢印)を測定し、平均厚みを算出することができる。図4において測定位置は7箇所であるが、その数に特に限定はなく、7箇所以上であればよく、7~10箇所であることが好ましい。
樹脂皮膜の厚み、及び平均厚みは、具体的には実施例に記載の方法により測定することができる。
上記効果向上の観点から、孔は樹脂皮膜の全面に分散して配置されていることが好ましい。
A/Bは、8/2以上がより好ましく、85/15以上がさらに好ましく、9/1以上がよりさらに好ましい。また、A/Bは、99/1以下が好ましく、97/3以下がより好ましい。
A/Bを7/3以上とすることによって、断熱材中に含まれる無機粒子の脱落抑制効果、熱伝導率上昇抑制効果、難燃性低下抑制効果が得られやすい。
また、A/Bを99/1以下とすることにより、樹脂皮膜の剥離抑制効果が得られやすい。
本実施形態に係る断熱シートに用いられる断熱材としては、無機粒子を含有し、且つ、断熱効果を有するものであれば、特に限定されない。断熱効果を表す指標として、熱伝導率を挙げることができるが、本実施形態においては、断熱材の熱伝導率は1(W/m・K)未満であることが好ましく、0.5(W/m・K)未満であることがより好ましく、0.2(W/m・K)未満であることがより好ましい。さらに、断熱材の熱伝導率は0.1(W/m・K)未満であることがより好ましく、0.05(W/m・K)未満であることがより好ましく、0.02(W/m・K)未満であることが特に好ましい。
(酸化物粒子)
酸化物粒子は屈折率が高く、光を乱反射させる効果が強いため、無機粒子として酸化物粒子を使用すると、特に異常発熱などの高温度領域において輻射伝熱を抑制することができる。酸化物粒子としては、シリカ、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を使用することができる。すなわち、無機粒子として使用することができる上記酸化物粒子のうち、1種のみを使用してもよいし、2種以上の酸化物粒子を使用してもよい。特に、シリカは断熱性が高い成分であり、チタニアは他の金属酸化物と比較して屈折率が高い成分であって、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、酸化物粒子としてシリカ及びチタニアを用いることが最も好ましい。
酸化物粒子の粒子径は、輻射熱を反射する効果に影響を与えることがあるため、平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、酸化物粒子の平均一次粒子径が0.001μm以上であると、加熱に寄与する光の波長よりも十分に大きく、光を効率よく乱反射させるため、500℃以上の高温度領域において断熱材内における熱の輻射伝熱が抑制され、より一層断熱性を向上させることができる。
一方、酸化物粒子の平均一次粒子径が50μm以下であると、圧縮されても粒子間の接点や数が増えず、伝導伝熱のパスを形成しにくいため、特に伝導伝熱が支配的な通常温度域の断熱性への影響を小さくすることができる。
なお、本発明において平均一次粒子径は、顕微鏡で粒子を観察し、標準スケールと比較し、任意の粒子10個の平均をとることにより求めることができる。
本発明において、ナノ粒子とは、球形又は球形に近い平均一次粒子径が1μm未満のナノメートルオーダーの粒子を表す。ナノ粒子は低密度であるため伝導伝熱を抑制し、無機粒子としてナノ粒子を使用すると、更に空隙が細かく分散するため、対流伝熱を抑制する優れた断熱性を得ることができる。このため、通常の常温域の電池使用時において、隣接するナノ粒子間の熱の伝導を抑制することができる点で、ナノ粒子を使用することが好ましい。
また、断熱材中にシリカナノ粒子のような微細な粒子を用いる場合、本発明の断熱シートによる断熱材成分の脱落抑制効果が得られやすい。
ナノ粒子の平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。
すなわち、ナノ粒子の平均一次粒子径を1nm以上100nm以下とすると、特に500℃未満の温度領域において、断熱材内における熱の対流伝熱及び伝導伝熱を抑制することができ、断熱性をより一層向上させることができる。また、圧縮応力が印加された場合であっても、ナノ粒子間に残った空隙と、多くの粒子間の接点が伝導伝熱を抑制し、断熱シートの断熱性を維持することができる。
なお、ナノ粒子の平均一次粒子径は、2nm以上であることがより好ましく、3nm以上であることが更に好ましい。一方、ナノ粒子の平均一次粒子径は、50nm以下であることがより好ましく、10nm以下であることが更に好ましい。
無機水和物粒子は、発熱体からの熱を受けて熱分解開始温度以上になると熱分解し、自身が持つ結晶水を放出して発熱体及びその周囲の温度を下げる、所謂「吸熱作用」を発現する。また、結晶水を放出した後は多孔質体となり、無数の空気孔により断熱作用を発現する。
無機水和物の具体例として、水酸化アルミニウム(Al(OH)3)、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化亜鉛(Zn(OH)2)、水酸化鉄(Fe(OH)2)、水酸化マンガン(Mn(OH)2)、水酸化ジルコニウム(Zr(OH)2)、水酸化ガリウム(Ga(OH)3)等が挙げられる。
2Al(OH)3→Al2O3+3H2O
上記に挙げた無機水和物の熱分解開始温度は、水酸化アルミニウムは約200℃、水酸化マグネシウムは約330℃、水酸化カルシウムは約580℃、水酸化亜鉛は約200℃、水酸化鉄は約350℃、水酸化マンガンは約300℃、水酸化ジルコニウムは約300℃、水酸化ガリウムは約300℃であり、いずれも熱暴走を起こした電池セルの急激な昇温の温度範囲とほぼ重なり、温度上昇を効率よく抑えることができることから、好ましい無機水和物であるといえる。
また、第1の無機粒子51として、無機水和物粒子を使用した場合に、その平均粒子径が大きすぎると、断熱シート10の中心付近にある第1の無機粒子51(無機水和物)が、その熱分解温度に達するまでにある程度の時間を要するため、シート中心付近の第1の無機粒子51が熱分解しきれない場合がある。このため、無機水和物粒子の平均二次粒子径は、0.01μm以上200μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましい。
熱膨張性無機材料としては、バーミキュライト、ベントナイト、雲母、パーライト等を挙げることができる。
含水多孔質体の具体例としては、ゼオライト、カオリナイト、モンモリロナイト、酸性白土、珪藻土、湿式シリカ、乾式シリカ、エアロゲル、マイカ、バーミキュライト等が挙げられる。
本発明に用いる断熱材は、無機粒子として無機バルーンを含んでいてもよい。
無機バルーンが含まれると、500℃未満の温度領域において、断熱材内における熱の対流伝熱または伝導伝熱を抑制することができ、断熱材の断熱性をより一層向上させることができる。
無機バルーンとしては、シラスバルーン、シリカバルーン、フライアッシュバルーン、バーライトバルーン、およびガラスバルーンから選択された少なくとも1種を用いることができる。
無機バルーンの含有量としては、断熱材全質量に対し、60質量%以下が好ましい。
無機バルーンの平均粒子径としては、1μm以上100μm以下が好ましい。
断熱材に2種の無機粒子が含有されている場合に、第2の無機粒子54は、第1の無機粒子51と材質や粒子径等が異なっていれば特に限定されない。第2の無機粒子54としては、酸化物粒子、炭化物粒子、窒化物粒子、無機水和物粒子、シリカナノ粒子、金属酸化物粒子、マイクロポーラス粒子や中空シリカ粒子等の無機バルーン、熱膨張性無機材料からなる粒子、含水多孔質体からなる粒子等を使用することができ、これらの詳細については、上述のとおりである。
金属酸化物としては、酸化ケイ素、酸化チタン、酸化アルミニウム、チタン酸バリウム、酸化亜鉛、ジルコン、酸化ジルコニウム等を挙げることができる。特に、チタニアは他の金属酸化物と比較して屈折率が高い成分であり、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、チタニアを用いることが最も好ましい。
金属酸化物からなる第2の無機粒子54を断熱材に含有させる場合に、第2の無機粒子54の平均一次粒子径は、1μm以上50μm以下であると、500℃以上の高温度領域で効率よく輻射伝熱を抑制することができる。第2の無機粒子54の平均一次粒子径は、5μm以上30μm以下であることが更に好ましく、10μm以下であることが最も好ましい。
第1の無機粒子51がシリカナノ粒子であり、第2の無機粒子54が金属酸化物である場合に、第1の無機粒子51の含有量が、第1の無機粒子51と第2の無機粒子54との合計質量に対して、60質量%以上95質量%以下であると、輻射伝熱の抑制に必要な金属酸化物粒子の量と、伝導・対流伝熱の抑制とクッション性に必要なシリカナノ粒子の量を最適化できる。
その結果、電池の通常使用時における温度から500℃以上の高温までの広い温度領域にわたって、外部から圧縮力が加わってもバランスよく高い断熱性が得られると考えられる。
断熱材は、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維52及び第2の無機繊維53を有することも好ましい。性状が互いに異なる2種の無機繊維を含有することにより、断熱シートの機械的強度及び無機粒子の保持性を向上させることができる。
断熱材が、2種の無機繊維を含有する場合に、第1の無機繊維52の平均繊維径が、第2の無機繊維53の平均繊維径よりも大きく、第1の無機繊維52が線状又は針状であり、第2の無機繊維53が樹枝状又は縮れ状であることが好ましい。平均繊維径が大きい(太径の)第1の無機繊維52は、断熱シートの機械的強度や形状保持性を向上させる効果を有する。2種の無機繊維のうち一方、例えば、第1の無機繊維52を第2の無機繊維53よりも太径にすることにより、上記効果を得ることができる。断熱シートには、外部からの衝撃が作用することがあるため、断熱材に第1の無機繊維52が含まれることにより、耐衝撃性が高まる。外部からの衝撃としては、例えば電池セルの膨張による押圧力や、電池セルの発火による風圧などである。
また、断熱シートの機械的強度や形状保持性を向上させるためには、第1の無機繊維52が線状又は針状であることが特に好ましい。なお、線状又は針状の繊維とは、後述の捲縮度が例えば10%未満、好ましくは5%以下である繊維をいう。
なお、第1の無機繊維52は長すぎても成形性や加工性が低下するおそれがあるため、繊維長を100mm以下とすることが好ましい。さらに、第1の無機繊維52は短すぎても形状保持性や機械的強度が低下するため、繊維長を0.1mm以上とすることが好ましい。
なお、第2の無機繊維53は、長くなりすぎると成形性や形状保持性が低下するため、第2の無機繊維53の繊維長は0.1mm以下であることが好ましい。
第2の無機繊維53が樹枝状である場合に、その平均繊維径は、SEMによって幹部及び枝部の径を数点測定し、これらの平均値を算出することにより得ることができる。
捲縮度(%)=(繊維長さ-繊維末端間距離)/(繊維長さ)×100
ここで、繊維長さ、繊維末端間距離ともに電子顕微鏡写真上での測定値である。すなわち、2次元平面上へ投影された繊維長、繊維末端間距離であり、現実の値よりも短くなっている。この式に基づき、第2の無機繊維53の捲縮度は10%以上が好ましく、30%以上がより好ましい。捲縮度が小さいと、他の無機繊維や無機粒子等の保持能力や、第2の無機繊維53同士、第1の無機繊維52と第2の無機繊維53との絡み合い(ネットワーク)が形成されにくくなる。
断熱材が、2種の無機繊維を含有する場合に、第1の無機繊維52は非晶質の繊維であり、第2の無機繊維53は、第1の無機繊維52よりガラス転移点が高い非晶質の繊維、及び結晶質の繊維から選択される少なくとも1種の繊維であることが好ましい。また、上記2種の無機繊維とともに、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種を含む第1の無機粒子51を使用することにより、さらに一層断熱性能を向上させることができる。
第1の無機繊維52としては、具体的には、融点が700℃未満である無機繊維が好ましく、多くの非晶質の無機繊維を用いることができる。中でも、SiO2を含む繊維であることが好ましく、安価で、入手も容易で、取扱い性等に優れることから、ガラス繊維であることがより好ましい。
第2の無機繊維53が結晶質の繊維からなるものであるか、又は第1の無機繊維52よりもガラス転移点が高いものであると、高温にさらされたときに、第1の無機繊維52が軟化しても、第2の無機繊維53は溶融又は軟化しない。したがって、電池セルの熱暴走時においても形状を維持し、電池セル間に存在し続けることができる。
また、第2の無機繊維53が溶融又は軟化しないと、断熱材に含まれる各粒子間、粒子と繊維との間、及び各繊維間における微小な空間が維持されるため、空気による断熱効果が発揮され、優れた熱伝達抑制性能を保持することができる。
第2の無機繊維53として挙げられた繊維のうち、融点が1000℃を超えるものであると、電池セルの熱暴走が発生しても、第2の無機繊維53は溶融又は軟化せず、その形状を維持することができるため、好適に使用することができる。
なお、上記第2の無機繊維53として挙げられた繊維のうち、例えば、シリカ繊維、アルミナ繊維及びアルミナシリケート繊維等のセラミックス系繊維、並びに鉱物系繊維を使用することがより好ましく、この中でも融点が1000℃を超えるものを使用することが更に好ましい。
なお、第2の無機繊維53としては、例示した種々の無機繊維を単独で使用してもよいし、2種以上を混合使用してもよい。
したがって、第2の無機繊維53が非晶質の繊維である場合に、第2の無機繊維53のガラス転移点は、第1の無機繊維52のガラス転移点よりも100℃以上高いことが好ましく、300℃以上高いことがより好ましい。
断熱材が、2種の無機繊維を含有する場合に、第1の無機繊維52は非晶質の繊維であり、第2の無機繊維53は、第1の無機繊維52よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、第1の無機繊維52の平均繊維径が、第2の無機繊維53の平均繊維径よりも大きいことが好ましい。
断熱材が、2種の無機繊維を含有する場合に、第1の無機繊維52の含有量は、断熱材の全質量に対して3質量%以上30質量%以下であることが好ましく、第2の無機繊維53の含有量は、断熱材の全質量に対して3質量%以上30質量%以下であることが好ましい。
本発明に用いる断熱材は、上記第1の無機粒子51及び第2の無機粒子54、第1の無機繊維52及び第2の無機繊維53の他に、断熱材の強度を向上させる効果を有する有機繊維や、結合材、着色剤等のように、断熱材に成形するために必要な成分を含んでいてもよい。以下、その他の成分についても詳細に説明する。
本発明に断熱材は、結合材を含まないものであっても、焼結等により形成されることができるが、特に断熱材がシリカナノ粒子を含む場合には、断熱材としての形状を保持するために、適切な含有量で結合材を添加することが好ましい。本発明において結合材とは、無機粒子を保持するために繋ぎ止めておくものであればよく、接着を伴うバインダ、粒子を物理的に絡める繊維、粘着力で付着する耐熱樹脂などその形態は問わない。上記第1の無機繊維52及び第2の無機繊維53も結合剤として機能する。
続いて、本発明に係る断熱シートの製造方法について説明する。
断熱材は、無機粒子を含む断熱材用材料を、湿式抄造法、乾式成形法、または湿式成形法により型成形して製造しても、押出成形法により製造してもよい。以下に、断熱材をそれぞれの成形法により得る場合の製造方法について説明する。
湿式抄造法では、まず、無機粒子、ならびに必要に応じて結合材である無機繊維、有機繊維、または有機バインダを水中で混合し、撹拌機で撹拌することにより、混合液を調製する。その後、濾過用のメッシュを介して、得られた混合液を脱水することにより、湿潤シートを作製する。その後、得られた湿潤シートを加熱するとともに加圧することにより、断熱材を得ることができる。なお、加熱および加圧工程の前に、湿潤シートに熱風を通気させて、シートを乾燥する通気乾燥処理を実施してもよいが、この通気乾燥処理を実施せず、湿潤した状態で加熱および加圧してもよい。
乾式成形法では、まず、無機粒子、ならびに必要に応じて結合材である無機繊維、有機繊維、または有機バインダを所定の割合でV型混合機などの混合機に投入する。そして、混合機に投入された材料を充分に混合した後、所定の型内に混合物を投入し、プレスすることにより断熱材を得ることができる。プレス時には、必要に応じて加熱してもよい。
押出成形法では、まず、無機粒子、ならびに必要に応じて結合材である無機繊維、有機繊維、または有機バインダに水を加え、混練機で混練することにより、ペーストを調製する。その後、得られたペーストを、押出成形機を用いてスリット状のノズルから押出しさらに乾燥させることにより、断熱材を得ることができる。有機バインダとしては、メチルセルロース及び水溶性セルロースエーテル等を使用することが好ましいが、押出成形法を用いる場合に一般的に使用される有機バインダであれば、特に限定されずに使用することができる。
樹脂皮膜の形成方法は、特に制限されるものではないが、例えば、樹脂皮膜形成用組成物を断熱材に塗布、乾燥することにより形成することができる。
樹脂皮膜形成用組成物の塗布方法は特に限定されないが、所望の厚みや形状を有する樹脂皮膜を形成しやすい点から、スクリーン印刷法又はスプレーコート印刷法を用いることが好ましく、スクリーン印刷法を用いることがより好ましい。
本発明の実施形態に係る断熱シートは、複数の電池セルが直列又は並列に接続される組電池に使用される。例えば、前記電池セル間に介在される組電池用として好適に用いられる。
本発明の実施形態に係る断熱シートを組電池用として用いる場合には、断熱シートが電池セルに接する面のいずれにも樹脂皮膜が形成されていることが好ましい。
本発明の実施形態に係る組電池は、複数の電池セルと、本実施形態に係る断熱シートとを有し、該複数の電池セルが直列又は並列に接続されたものである。
図6は、本発明の実施形態に係る断熱シートを適用した組電池の例を模式的に示す断面図である。例えば、図6に示すように、本発明の実施形態に係る組電池100は、複数個の電池セル20a、20b、20cが並設され、直列又は並列に接続されて電池ケース30に格納されたものであり、電池セル20a、20b、20c間に、断熱シート10が介在されている。
また、各電池セル20a、20b、20cの間に、断熱シート10が介在されている場合に、通常使用時において、各電池セル20a、20b、20c間の熱の伝播を抑制することができる。
さらに、複数の電池セル20a、20b、20cのうち、一つの電池セルが熱暴走して高温になり、膨張したり発火したりする場合でも、本実施形態に係る断熱シート10が存在することにより、電池セル20a、20b、20c間の熱の伝播を抑制することができる。したがって、熱暴走の連鎖を阻止することができ、他の電池セルへの悪影響を最小限に抑えることができる。
例えば、本実施形態に係る組電池100は、電気自動車(EV:Electric Vehicle)等に使用され、搭乗者の床下に配置されることがある。この場合に、仮に電池セルが発火しても、搭乗者の安全を確保することができる。
また、断熱シート10を、各電池セル間に介在させるだけでなく、電池セル20a、20b、20cと電池ケース30との間に配置することができるため、新たに防炎材等を作製する必要がなく、容易に低コストで安全な組電池100を構成することができる。
下記無機粒子および結合材を準備し、これらの材料を十分に撹拌混合して、スラリーを調製した。得られたスラリーを用いて、抄造法により断熱材を形成した。
なお、乾燥は110℃で実施し、得られた断熱材のサイズは、幅が80mm、長さが80mm、厚さが1mmであった。
樹脂層形成用組成物として、樹脂濃度50質量%のアクリル樹脂水溶液を用い、バーコーターによる塗布方法により、上記断熱材上に膜厚60μm、300μmの樹脂層をそれぞれ形成し、140℃にて加熱乾燥することにより、比較例2、比較例3の断熱シートを得た。
比較例2、3の断熱シートにおける樹脂層を設けた面の目視観察の結果、いずれの断熱シートにおいても、樹脂層に亀裂が認められた。
樹脂皮膜形成用組成物として、樹脂濃度10質量%のポリビニルアルコール(PVA)樹脂水溶液を用い、スクリーン印刷機により、上記断熱材上に樹脂皮膜形成用組成物を塗布し、130℃にて加熱乾燥することにより、樹脂皮膜を成膜し、実施例1の断熱シートを得た。
図7は、実施例1の断熱シートの表面をデジタルマイクロスコープにより撮影した図面代用写真である。図7において、白い部分は孔を表し、黒い部分は樹脂皮膜を表す。
図7に示すように、デジタルマイクロスコープによる画像においても、複数の孔が視野全体に分散して配置されていることが確認できた。さらに、デジタルマイクロスコープ画像観察により算出した樹脂皮膜部分の総面積Aと孔部分の総面積Bとの比(A/B)は17.5であった。
後述の条件にて、断熱シートの断面のSEM画像より、樹脂皮膜の厚みを45点測定したところ、厚みは0超40.3μmの範囲となり、平均厚みは13.8μmとなった。なお、孔の箇所は厚みを測定していない。
実施例1及び比較例1の断熱シートについて、以下の測定及び評価を行った。
樹脂皮膜部分の総面積Aと孔部分の総面積Bとの比(A/B)を樹脂皮膜側の面のデジタルマイクロスコープ画像観察により算出した。
A/Bの算出は、デジタルマイクロスコープ(KEYENCE VHX-5000)により、断熱シートの樹脂皮膜が設けられた面を20倍の倍率にて観察し、輝度設定96-255の範囲を孔部分の総面積B、輝度設定0-96の範囲を樹脂皮膜部分の総面積Aとして算出した。
樹脂皮膜の厚みは、例えば、図3に示すように、断熱シート5箇所の断面SEM画像における樹脂皮膜の厚みを35.8μm間隔で9箇所の45点測定した平均値である。
図8に示すように、支柱24の頂点に稼働するように、アーム25を取り付け、そのアーム25の先端に試験材23が取り付けられる装置において、任意の角度までアーム25を引き上げ固定し、その後固定を解除し落下させることよって支柱24とアーム25を衝突させ衝撃を与えた。なお試験材23のサイズを100mm×100mmとし、アームの長さは915mm、衝撃を与える回数を3回、支柱とアームの角度を90°とした。そして衝撃前の重量をF0(g)、衝撃後の重量をFw(g)として以下の式により粉落ちE(無機粒子の脱落量)(g/m2)を評価した。
E=(F0-Fw)/試験材面積
上記評価方法において、粉落ちが0.5g/m2未満であれば、粉落ち抑制性能が良好といえる。
UL試験規格におけるUL94(高分子材料の難燃性試験)に準拠して難燃性試験を行った。
UL94の試験規格における94V-0の判定基準に合格するものが、難燃性が良好といえる。
室温(25℃)において、熱伝導率(W/m・K)を測定した。なお、熱伝導率は、JIS A 1412-2に記載の「熱絶縁材の熱抵抗及び熱伝導率の測定方法 第2部熱流計法(HFM法)」に準拠して、測定した。
図9に示すように、万能試験機を使用し、上板21と下板22との間に試験材23を配置し、上板21を下方に移動させることにより、試験材23を押圧した。なお、試験材23のサイズを25mm×25mmとし、圧縮速度を0.5(mm/分)とし、圧縮応力を0.5、3.5MPaとした。
そして、試験材23の初期厚さをD0(mm)、圧縮量(減少した厚さ)をDd(mm)として、以下の式により圧縮率C(%)を算出した。
C=(Dd/D0)×100
なお、圧縮率の測定は、実施例1及び比較例1の断熱シート(試験材23)について、実施した。
さらに、樹脂皮膜を設けていない比較例1の断熱シートよりも圧縮率が低く、例えば組電池の電池セル間などに介在させて好適に使用し得ることが確認された。
2 断熱材
10 断熱シート
20a,20b,20c 電池セル
21 上板
22 下板
23 試験材
24 支柱
25 アーム
30 電池ケース
31 孔
41 無機粒子
42 無機繊維
100 組電池
Claims (15)
- 無機粒子を含有する断熱材と、
前記断熱材の表面の少なくとも一部を被覆する樹脂皮膜と、を有する断熱シート。 - 前記樹脂皮膜の平均厚みは1~95μmである、請求項1に記載の断熱シート。
- 前記樹脂皮膜の厚みは、0を超え100μm未満である、請求項1又は2に記載の断熱シート。
- 前記樹脂皮膜は、前記断熱材の表面形状に沿って不規則に湾曲している、請求項1~3のいずれか一項に記載の断熱シート。
- 前記樹脂皮膜は複数の孔を有する、請求項1~4のいずれか一項に記載の断熱シート。
- 前記孔が、前記樹脂皮膜の全面に分散して配置された、請求項5に記載の断熱シート。
- 前記樹脂皮膜側の面のデジタルマイクロスコープ画像観察により算出した、樹脂皮膜部分の総面積Aと孔部分の総面積Bとの比(A/B)が、7/3~99/1である、請求項5又は6に記載の断熱シート。
- 前記無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子であることを特徴とする、請求項1~7のいずれか一項に記載の断熱シート。
- 前記断熱材は、さらに、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維及び第2の無機繊維を有することを特徴とする、請求項1~8のいずれか一項に記載の断熱シート。
- 前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きく、
前記第1の無機繊維が線状又は針状であり、前記第2の無機繊維が樹枝状又は縮れ状であることを特徴とする、請求項9に記載の断熱シート。 - 前記第1の無機繊維は非晶質の繊維であり、
前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、
前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きいことを特徴とする、請求項9に記載の断熱シート。 - 前記無機粒子が、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種を含み、
前記第1の無機繊維は非晶質の繊維であり、
前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の無機繊維である、請求項9に記載の断熱シート。 - 複数の電池セルが直列又は並列に接続される組電池に使用される、請求項1~12のいずれか一項に記載の断熱シート。
- 請求項1~13のいずれか1項に記載の断熱シートの製造方法であって、
前記無機粒子を含む断熱材用材料をシート状に成形する工程と、
スクリーン印刷法又はスプレーコート印刷法により、前記シート状の断熱材の表面に樹脂皮膜形成用組成物を塗布し、前記樹脂皮膜を形成する工程と、を有する、断熱シートの製造方法。 - 複数の電池セルと、請求項13に記載の断熱シートと、を有し、該複数の電池セルが直列または並列に接続された組電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/293,275 US20240339698A1 (en) | 2021-07-30 | 2022-02-25 | Thermal insulation sheet, method for producing thermal insulation sheet, and battery pack |
KR1020247002654A KR20240041322A (ko) | 2021-07-30 | 2022-02-25 | 단열시트, 단열시트의 제조방법 및 조전지 |
CN202280051498.7A CN117693646A (zh) | 2021-07-30 | 2022-02-25 | 绝热片、绝热片的制造方法和电池组 |
EP22848874.8A EP4378679A1 (en) | 2021-07-30 | 2022-02-25 | Thermal insulation sheet, method for producing thermal insulation sheet, and battery pack |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021126038 | 2021-07-30 | ||
JP2021-126038 | 2021-07-30 | ||
JP2021209895A JP2023020832A (ja) | 2021-07-30 | 2021-12-23 | 断熱シート、断熱シートの製造方法及び組電池 |
JP2021-209895 | 2021-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007790A1 true WO2023007790A1 (ja) | 2023-02-02 |
Family
ID=85086609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007902 WO2023007790A1 (ja) | 2021-07-30 | 2022-02-25 | 断熱シート、断熱シートの製造方法及び組電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240339698A1 (ja) |
EP (1) | EP4378679A1 (ja) |
KR (1) | KR20240041322A (ja) |
WO (1) | WO2023007790A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03247577A (ja) * | 1990-02-23 | 1991-11-05 | Matsushita Electric Works Ltd | 断熱材 |
WO2016140346A1 (ja) * | 2015-03-05 | 2016-09-09 | 日本電気株式会社 | 二次電池用セパレータおよびそれを備えた二次電池 |
JP2017204368A (ja) * | 2016-05-11 | 2017-11-16 | 日立マクセル株式会社 | 電気化学素子用セパレータ、電気化学素子、樹脂粒子層形成用組成物および電気化学素子用セパレータの製造方法 |
JP2017215014A (ja) * | 2016-06-02 | 2017-12-07 | パナソニックIpマネジメント株式会社 | 断熱材とその断熱材を使用した機器 |
WO2018211906A1 (ja) * | 2017-05-15 | 2018-11-22 | パナソニックIpマネジメント株式会社 | 断熱材とそれを用いた断熱構造体 |
JP2019508632A (ja) | 2015-12-15 | 2019-03-28 | アップル インコーポレイテッドApple Inc. | 微多孔質絶縁体 |
JP2019204637A (ja) * | 2018-05-22 | 2019-11-28 | イビデン株式会社 | 組電池用熱伝達抑制シートおよび組電池 |
JP2020002979A (ja) | 2018-06-27 | 2020-01-09 | 岩谷産業株式会社 | 断熱シート又は断熱層 |
JP2021034278A (ja) * | 2019-08-27 | 2021-03-01 | イビデン株式会社 | 組電池用断熱シート及び組電池 |
JP2021064510A (ja) * | 2019-10-11 | 2021-04-22 | イビデン株式会社 | 組電池用断熱シート及び組電池 |
JP2021126038A (ja) | 2020-02-03 | 2021-08-30 | 三菱電機株式会社 | 電力変換装置 |
-
2022
- 2022-02-25 KR KR1020247002654A patent/KR20240041322A/ko active Search and Examination
- 2022-02-25 WO PCT/JP2022/007902 patent/WO2023007790A1/ja active Application Filing
- 2022-02-25 EP EP22848874.8A patent/EP4378679A1/en active Pending
- 2022-02-25 US US18/293,275 patent/US20240339698A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03247577A (ja) * | 1990-02-23 | 1991-11-05 | Matsushita Electric Works Ltd | 断熱材 |
WO2016140346A1 (ja) * | 2015-03-05 | 2016-09-09 | 日本電気株式会社 | 二次電池用セパレータおよびそれを備えた二次電池 |
JP2019508632A (ja) | 2015-12-15 | 2019-03-28 | アップル インコーポレイテッドApple Inc. | 微多孔質絶縁体 |
JP2017204368A (ja) * | 2016-05-11 | 2017-11-16 | 日立マクセル株式会社 | 電気化学素子用セパレータ、電気化学素子、樹脂粒子層形成用組成物および電気化学素子用セパレータの製造方法 |
JP2017215014A (ja) * | 2016-06-02 | 2017-12-07 | パナソニックIpマネジメント株式会社 | 断熱材とその断熱材を使用した機器 |
WO2018211906A1 (ja) * | 2017-05-15 | 2018-11-22 | パナソニックIpマネジメント株式会社 | 断熱材とそれを用いた断熱構造体 |
JP2019204637A (ja) * | 2018-05-22 | 2019-11-28 | イビデン株式会社 | 組電池用熱伝達抑制シートおよび組電池 |
JP2020002979A (ja) | 2018-06-27 | 2020-01-09 | 岩谷産業株式会社 | 断熱シート又は断熱層 |
JP2021034278A (ja) * | 2019-08-27 | 2021-03-01 | イビデン株式会社 | 組電池用断熱シート及び組電池 |
JP2021064510A (ja) * | 2019-10-11 | 2021-04-22 | イビデン株式会社 | 組電池用断熱シート及び組電池 |
JP2021126038A (ja) | 2020-02-03 | 2021-08-30 | 三菱電機株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4378679A1 (en) | 2024-06-05 |
US20240339698A1 (en) | 2024-10-10 |
KR20240041322A (ko) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022009852A1 (ja) | 熱伝達抑制シート及び組電池 | |
US20230118928A1 (en) | Heat transfer suppression sheet and battery pack | |
WO2023127904A1 (ja) | 熱伝達抑制シート及び組電池 | |
WO2023112972A1 (ja) | 熱伝達抑制シート及びその製造方法、並びに組電池 | |
JP2023020832A (ja) | 断熱シート、断熱シートの製造方法及び組電池 | |
WO2023145883A1 (ja) | 防炎構造体及びその製造方法、並びに電池モジュール | |
WO2023007790A1 (ja) | 断熱シート、断熱シートの製造方法及び組電池 | |
JP7052139B1 (ja) | 熱伝達抑制シート及び組電池 | |
CN117693646A (zh) | 绝热片、绝热片的制造方法和电池组 | |
WO2023127905A1 (ja) | 熱伝達抑制シート及び組電池 | |
CN219513215U (zh) | 热传递抑制片以及电池组 | |
JP7364739B2 (ja) | 熱伝達抑制シート及び組電池 | |
WO2023120545A1 (ja) | 断熱シート及び組電池 | |
WO2023120544A1 (ja) | 熱伝達抑制シート及び組電池 | |
CN220341305U (zh) | 防火构造体以及电池模块 | |
JP2023092423A (ja) | 断熱シート及び組電池 | |
JP2024144134A (ja) | カバープロテクタ及びその製造方法、並びに電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22848874 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051498.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022848874 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022848874 Country of ref document: EP Effective date: 20240229 |