WO2023145883A1 - 防炎構造体及びその製造方法、並びに電池モジュール - Google Patents

防炎構造体及びその製造方法、並びに電池モジュール Download PDF

Info

Publication number
WO2023145883A1
WO2023145883A1 PCT/JP2023/002666 JP2023002666W WO2023145883A1 WO 2023145883 A1 WO2023145883 A1 WO 2023145883A1 JP 2023002666 W JP2023002666 W JP 2023002666W WO 2023145883 A1 WO2023145883 A1 WO 2023145883A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
fibers
particles
resin
heat insulating
Prior art date
Application number
PCT/JP2023/002666
Other languages
English (en)
French (fr)
Inventor
祥啓 古賀
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2023145883A1 publication Critical patent/WO2023145883A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a flameproof structure, a method for manufacturing the same, and a battery package including the flameproof structure.
  • lithium-ion secondary batteries have been used in electric vehicles for environmental conservation.
  • the lithium-ion secondary battery uses an organic electrolyte, if it ignites during thermal runaway, it may generate a flame and damage the battery pack.
  • Patent Document 1 proposes joining a multi-layer heat insulating element for thermal insulation to the canopy of the housing that accommodates the battery.
  • Patent Document 1 an adhesive is used to join the multilayer heat insulating element to the canopy of the housing or the like. Adhesives deteriorate over time due to repeated exposure to vibrations during driving and changes in temperature inside the housing due to charging and discharging of batteries. When the adhesive strength is lowered, partial peeling occurs, and there is a risk that gas or flame may enter the peeled portion during thermal runaway.
  • the present invention provides an excellent heat insulating effect and a flameproof effect, in addition to increasing the bonding strength between the battery case and the heat insulating material, and also improving the reliability with less deterioration of the bonding strength over time. It is an object of the present invention to provide a flameproof structure excellent in shape followability, a method for manufacturing the same, and a battery module.
  • preferred embodiments of the present invention relating to the flameproof structure relate to the following [2] to [19].
  • the base material of the resin substrate includes AS resin, ABS resin, polyethylene resin, polypropylene resin, polystyrene resin, polyamide resin, acrylic resin, epoxy resin, polyurethane resin, polyether ether ketone resin, polyethylene terephthalate resin, poly
  • the inorganic fibers of [1] to [3] have a first inorganic fiber and a second inorganic fiber having at least one different property selected from average fiber diameter, shape and glass transition point.
  • a fire barrier structure according to any one of the preceding claims.
  • the average fiber diameter of the first inorganic fibers is larger than the average fiber diameter of the second inorganic fibers,
  • the first inorganic fibers are amorphous fibers
  • the second inorganic fibers are at least one fiber selected from amorphous fibers having a glass transition point higher than that of the first inorganic fibers and crystalline fibers
  • the flameproof structure according to [4] or [5] wherein the average fiber diameter of the first inorganic fibers is larger than the average fiber diameter of the second inorganic fibers.
  • the organic fiber has a glass transition point lower than that of the base material of the resin base material.
  • the heat insulating material contains inorganic particles.
  • the inorganic particles include first inorganic particles and second inorganic particles having different average particle sizes.
  • the flameproof structure according to any one of [1] to [17], wherein the thickness of the bonding layer is 10 to 90% of the thickness of the flameproof structure. .
  • the bonding layer has an inclined structure in which the mass ratio of the material forming the resin base material to the material forming the heat insulating material gradually decreases as the thickness of the heat insulating material increases. ] to [18].
  • a storage battery and a battery case that houses the storage battery and in which at least one of the canopy, side wall and bottom wall is the flameproof structure according to any one of [1] to [19]. , battery module.
  • the flameproof structure of the present invention is made by bonding a resin base material and a heat insulating material, and since the heat insulating material contains inorganic fibers or infusible fibers, it has excellent heat insulating performance and flameproof performance.
  • the forming material of the resin base material penetrates between the fibers of the heat insulating material and is integrated, so that the bonding strength is stronger than when an adhesive is used. Low deterioration over time and high reliability.
  • the manufacturing process is simple and the internal shape of the battery case can be easily followed.
  • the battery case that houses the storage battery is the fireproof structure of the present invention, so even if a flame occurs during thermal runaway, it can more reliably prevent the fire from spreading to the outside.
  • FIG. 1 is a schematic diagram showing a cross section of Embodiment 1 of the flameproof structure of the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of the battery module of the present invention.
  • Embodiment 1 of Flameproof Structure is formed by bonding a resin base material and a heat insulating material, and in Embodiment 1, the heat insulating material contains inorganic fibers.
  • the resin base material is, for example, a member that conventionally forms the housing of the battery case of the battery module.
  • Base material resins include AS resins, ABS resins, polyethylene resins, polypropylene resins, polystyrene resins, polyamide resins, acrylic resins, epoxy resins, polyurethane resins, polyether ether ketone resins, polyethylene terephthalate resins, polyphenyl sulfide resins, At least one of polycarbonate resins, aramid resins, polybutylene terephthalate resins, polyphenylene ether resins and polyacetal resins is preferred. These preforms may also contain reinforcing fibers such as glass fibers and carbon fibers.
  • Inorganic fibers that are commonly used for heat insulating materials can be used as the inorganic fibers that serve as the heat insulating material. It is preferred to have a fiber and a second inorganic fiber. By containing two types of inorganic fibers having different properties, the mechanical strength of the heat insulating material and, as described later, the retention of inorganic particles when inorganic particles are contained can be improved.
  • the average fiber diameter of the first inorganic fiber is larger than the average fiber diameter of the second inorganic fiber
  • the first inorganic fiber is linear or needle-shaped
  • 2 inorganic fibers are preferably dendritic or crimped.
  • the first inorganic fibers having a large average fiber diameter (thick diameter) have the effect of improving the mechanical strength and shape retention of the heat insulating material.
  • the above effects can be obtained by making one of the two types of inorganic fibers, for example, the first inorganic fiber, larger in diameter than the second inorganic fiber.
  • the fireproof structure may be subjected to external impact, impact resistance is enhanced by including the first inorganic fibers in the heat insulating material.
  • the impact from the outside includes, for example, pressing force due to expansion of the battery cell, wind pressure due to ignition of the battery cell, and the like.
  • the first inorganic fibers are linear or needle-like.
  • the linear or needle-like fibers refer to fibers having a degree of crimp of less than 10%, preferably 5% or less, which will be described later.
  • the average fiber diameter of the first inorganic fibers is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. If the first inorganic fibers are too thick, the moldability and workability may deteriorate. Therefore, the average fiber diameter of the first inorganic fibers is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the fiber length is preferably 0.1 mm or more.
  • the second inorganic fibers with a small average fiber diameter have the effect of improving the retention of these and also increasing the flexibility of the heat insulating material. Therefore, it is preferable to make the diameter of the second inorganic fibers smaller than that of the first inorganic fibers.
  • the second inorganic fibers are easily deformable and have flexibility. Therefore, the fine second inorganic fibers preferably have an average fiber diameter of less than 1 ⁇ m, more preferably 0.1 ⁇ m or less. However, if it is too thin, it is likely to break and the ability to retain organic fibers and inorganic particles is reduced. In addition, the proportion of entangled fibers in the heat insulating material that do not retain organic fibers and inorganic particles increases, and in addition to a decrease in the ability to retain organic fibers and inorganic particles, moldability and shape retention are impaired. become inferior. Therefore, the average fiber diameter of the second inorganic fibers is preferably 1 nm or more, more preferably 10 nm or more.
  • the fiber length of the second inorganic fiber is preferably 0.1 mm or less.
  • the second inorganic fibers are preferably dendritic or crimped.
  • the second inorganic fibers have such a shape, they are well entangled with the organic fibers and the inorganic particles, and the ability to retain the organic fibers and the inorganic particles is improved.
  • the flameproof structure is subjected to pressing force or wind pressure, the second inorganic fibers are prevented from slipping and moving. improves.
  • the dendritic structure is a two-dimensionally or three-dimensionally branched structure, and includes, for example, a feather shape, a tetrapod shape, a radial shape, and a three-dimensional network shape.
  • the second inorganic fiber When the second inorganic fiber is dendritic, its average fiber diameter can be obtained by measuring the diameters of several trunks and branches by SEM and calculating the average value thereof.
  • the crimped shape is a structure in which the fibers are bent in various directions.
  • the degree of crimp from an electron micrograph. For example, it can be calculated from the following formula.
  • Degree of crimp (%) (fiber length - distance between fiber ends) / (fiber length) x 100
  • both the fiber length and the distance between fiber ends are measured values on an electron micrograph. That is, the fiber length and the distance between fiber ends projected onto a two-dimensional plane are shorter than the actual values.
  • the crimp degree of the second inorganic fibers is preferably 10% or more, more preferably 30% or more.
  • the first inorganic fiber is an amorphous fiber
  • the second inorganic fiber is an amorphous fiber having a glass transition point higher than that of the first inorganic fiber
  • At least one fiber selected from crystalline fibers is preferred.
  • the melting point of crystalline inorganic fibers is usually higher than the glass transition point of amorphous inorganic fibers. Therefore, when the first inorganic fibers are exposed to a high temperature, the surfaces of the first inorganic fibers soften earlier than the second inorganic fibers, and bind the organic fibers and inorganic particles. Therefore, by including the first inorganic fibers, the mechanical strength of the heat insulating material can be improved.
  • an inorganic fiber having a melting point of less than 700° C. is preferable, and many amorphous inorganic fibers can be used.
  • fibers containing SiO 2 are preferable, and glass fibers are more preferable because they are inexpensive, easily available, and excellent in handleability.
  • the second inorganic fibers are fibers made of at least one selected from amorphous fibers having a higher glass transition point than the first inorganic fibers and crystalline fibers. Many crystalline inorganic fibers can be used as the second inorganic fibers.
  • the second inorganic fibers are crystalline fibers or have a higher glass transition point than the first inorganic fibers, the first inorganic fibers soften when exposed to high temperatures. However, the second inorganic fibers do not melt or soften. Therefore, when applied to, for example, a battery module, it maintains its shape even when thermal runaway occurs.
  • the second inorganic fiber is crystalline, specifically, silica fiber, alumina fiber, alumina silicate fiber, zirconia fiber, carbon fiber, soluble fiber, refractory ceramic fiber, airgel composite material, magnesium silicate fiber , alkaline earth silicate fiber, potassium titanate fiber and other ceramic fibers, glass fiber, glass wool and other glass fibers, rock wool, basalt fiber, wollastonite and other mineral fibers, and the like can be used.
  • the second inorganic fiber does not melt or soften and can maintain its shape, so it is preferably used. be able to.
  • the fibers mentioned as the second inorganic fibers it is more preferable to use, for example, silica fibers, ceramic fibers such as alumina fibers and alumina silicate fibers, and mineral fibers, and among these, the melting point is 1000 ° C. It is even more preferable to use those exceeding.
  • the second inorganic fiber is amorphous, it can be used as long as it has a glass transition point higher than that of the first inorganic fiber.
  • a glass fiber having a glass transition point higher than that of the first inorganic fiber may be used as the second inorganic fiber.
  • the various inorganic fibers exemplified may be used alone, or two or more of them may be used in combination.
  • the first inorganic fiber has a lower glass transition point than the second inorganic fiber, and when exposed to high temperatures, the first inorganic fiber softens first. Fibers and inorganic particles can be bound. However, for example, when the second inorganic fiber is amorphous and its fiber diameter is smaller than the fiber diameter of the first inorganic fiber, the glass transition between the first inorganic fiber and the second inorganic fiber If the points are close together, the second inorganic fiber may soften first. Therefore, when the second inorganic fibers are amorphous fibers, the glass transition point of the second inorganic fibers is preferably 100° C. or more higher than the glass transition point of the first inorganic fibers, and preferably 300° C. more preferably higher than
  • the fiber length of the first inorganic fibers is preferably 100 mm or less, and preferably 0.1 mm or more.
  • the fiber length of the second inorganic fibers is preferably 0.1 mm or less.
  • the first inorganic fiber is an amorphous fiber
  • the second inorganic fiber is an amorphous fiber having a glass transition point higher than that of the first inorganic fiber
  • crystalline fibers and the average fiber diameter of the first inorganic fibers is preferably larger than the average fiber diameter of the second inorganic fibers.
  • the average fiber diameter of the first inorganic fibers is preferably larger than that of the second inorganic fibers.
  • the first inorganic fiber having a large diameter is an amorphous fiber
  • the second inorganic fiber having a small diameter is an amorphous fiber having a glass transition point higher than that of the first inorganic fiber, and a crystalline fiber. It is preferably a fiber made of at least one selected from fibers.
  • the second inorganic fibers having a small diameter are fibers made of at least one selected from amorphous fibers having a higher glass transition point than the first inorganic fibers and crystalline fibers, the temperature Since the fine-diameter second inorganic fibers remain in the form of fibers even when the temperature rises, the structure of the heat insulating material can be maintained, and falling off of powder can be prevented.
  • the fiber length of the first inorganic fibers is preferably 100 mm or less, preferably 0.1 mm or more.
  • the fiber length of the second inorganic fibers is preferably 0.1 mm or less.
  • the content of the first inorganic fiber is preferably 3% by mass or more and 30% by mass or less with respect to the total mass of the heat insulating material, and the content of the second inorganic fiber The amount is preferably 3% by mass or more and 30% by mass or less with respect to the total mass of the heat insulating material.
  • the content of the first inorganic fibers is more preferably 5% by mass or more and 15% by mass or less with respect to the total mass of the heat insulating material
  • the content of the second inorganic fibers is the total mass of the heat insulating material. It is more preferably 5% by mass or more and 15% by mass or less with respect to the mass.
  • the heat insulating material may contain different inorganic fibers in addition to the first inorganic fibers and the second inorganic fibers. Moreover, an organic binder, organic fibers, and inorganic particles may be included.
  • the inorganic fibers can also be bound with a resin binder.
  • the resin binder is not particularly limited as long as it has a glass transition point lower than the glass transition point of the organic fibers described later.
  • a resin binder 9 containing at least one selected from styrene-butadiene resin, acrylic resin, silicone-acrylic resin and styrene resin can be used.
  • the glass transition point of the resin binder is not particularly specified, it is preferably -10°C or higher. If the glass transition point of the resin binder 9 is higher than room temperature, the strength of the heat insulating material can be further improved when the heat insulating material having the resin binder is used at room temperature. Therefore, the glass transition point of the resin binder is, for example, more preferably 20° C. or higher, more preferably 30° C. or higher, even more preferably 50° C. or higher, and particularly preferably 60° C. or higher. preferable.
  • the content of the resin binder is preferably 0.5% by mass or more, more preferably 1% by mass or more, relative to the total mass of the heat insulating material. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less.
  • Organic fibers may be contained in addition to the above inorganic fibers.
  • the organic fiber for example, at least one selected from polyvinyl alcohol (PVA) fiber, polyethylene fiber, nylon fiber, polyurethane fiber and ethylene-vinyl alcohol copolymer fiber can be used.
  • PVA polyvinyl alcohol
  • the heat insulating material can be produced by a papermaking method, it is difficult to raise the heating temperature above 250°C, so the glass transition point of the organic fiber should be 250°C or lower. is preferable, and 200° C. or less is more preferable.
  • the lower limit of the glass transition point of the organic fiber is also not particularly limited, but if the difference from the glass transition point of the resin binder is 10° C. or more, the semi-molten organic fiber is completely melted in the cooling process during manufacturing. Since the resin binder is solidified after being solidified, the effect of reinforcing the skeleton by the resin binder can be sufficiently obtained. Therefore, the difference between the glass transition point of the resin binder and the glass transition point of the organic fiber is preferably 10° C. or more, more preferably 30° C. or more.
  • the difference between the glass transition points of the two is 130° C. or less, the time from the complete solidification of the organic fibers to the start of solidification of the resin binder can be appropriately adjusted, and the resin binder is excellent. Since it is solidified in a dispersed state, it is possible to obtain a further reinforcing effect on the skeleton. Therefore, the difference between the glass transition point of the resin binder and the glass transition point of the organic fiber is preferably 130° C. or less, more preferably 120° C. or less, and even more preferably 100° C. or less. It is even more preferably 80° C. or lower, and particularly preferably 70° C. or lower.
  • Two or more types of organic fibers may also be included, in which case at least one type of organic fiber acts as a framework, i.e., an organic fiber having a glass transition point higher than that of the resin binder. Any fiber may be used.
  • the difference between the glass transition point of the resin binder and the glass transition point of the at least one organic fiber is preferably 10° C. or higher, more preferably 30° C. or higher, as described above, and is preferably 130° C. or higher. C. or less, more preferably 120.degree. C. or less, even more preferably 100.degree. C. or less, even more preferably 80.degree.
  • the organic fibers can sufficiently function as a skeleton, and the resin binder can sufficiently obtain the reinforcing effect of the skeleton.
  • the content of organic fibers is preferably 0.5% by mass or more, more preferably 1% by mass or more, relative to the total mass of the heat insulating material. Moreover, it is preferably 12% by mass or less, more preferably 8% by mass or less.
  • the total amount of the plurality of organic fibers is preferably within the range of the content of the organic fibers.
  • At least one type of organic fiber should have a glass transition point higher than that of the resin binder. It is more preferable to contain crystalline organic fibers having no glass transition point.
  • the crystalline organic fibers do not have a softening point, so when exposed to a high temperature that softens the organic fibers forming the skeleton. Even so, the strength of the entire heat insulating material can be maintained.
  • the organic fibers also act as a skeleton of the heat insulating material at room temperature. Therefore, the flexibility and handleability of the heat insulating material can be improved.
  • the crystalline organic fibers include polyester (PET) fibers.
  • the dispersion liquid when performing the papermaking method in the production of the heat insulating material, but it is preferable that the organic fibers have low solubility in water.
  • the "dissolution temperature in water” can be used as an indicator of solubility in water, and the dissolution temperature in water of organic fibers is preferably 60°C or higher, more preferably 70°C or higher, and 80°C or higher. is more preferred.
  • the fiber length of the organic fibers is also not particularly limited, but from the viewpoint of ensuring moldability and workability, the average fiber length is preferably 10 mm or less. On the other hand, the average fiber length is preferably 0.5 mm or more from the viewpoint of allowing the organic fibers to function as a skeleton and ensuring the compressive strength of the heat insulating material.
  • the average secondary particle size of the inorganic particles is 0.01 ⁇ m or more, it is easy to obtain, and it is possible to suppress an increase in manufacturing cost. Moreover, a desired heat insulation effect can be obtained as it is 200 micrometers or less. Therefore, the average secondary particle size of the inorganic particles is preferably 0.01 ⁇ m or more and 200 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less.
  • the inorganic particles a single inorganic particle may be used, or two or more inorganic particles (first inorganic particles and second inorganic particles) may be used in combination.
  • the first inorganic particles and the second inorganic particles are made of at least one inorganic material selected from oxide particles, carbide particles, nitride particles and inorganic hydrate particles from the viewpoint of heat transfer suppression effect. Preference is given to using particles, more preferably oxide particles.
  • the shape of the first inorganic particles and the second inorganic particles is not particularly limited, but they preferably contain at least one selected from nanoparticles, hollow particles and porous particles. Particles, metal oxide particles, inorganic balloons such as microporous particles and hollow silica particles, particles of thermally expandable inorganic materials, particles of hydrous porous bodies, and the like can also be used.
  • the cooling can be performed in multiple stages, and the endothermic action can be exhibited over a wider temperature range.
  • the other inorganic particles contain inorganic particles made of a metal oxide.
  • the inorganic particles will be described in more detail, with the small-diameter inorganic particles being referred to as the first inorganic particles and the large-diameter inorganic particles being referred to as the second inorganic particles.
  • Oxide particles are preferred as the first inorganic particles. Since oxide particles have a high refractive index and a strong effect of diffusely reflecting light, it is possible to suppress radiant heat transfer particularly in a high temperature range such as abnormal heat generation.
  • oxide particles at least one kind of particles selected from silica, titania, zirconia, zircon, barium titanate, zinc oxide and alumina can be used.
  • silica is a component with high heat insulation
  • titania is a component with a higher refractive index than other metal oxides, and is highly effective in blocking radiant heat by diffusely reflecting light in a high temperature range of 500 ° C. or higher. Therefore, it is most preferable to use silica and titania as oxide particles.
  • the particle size of the oxide particles can affect the effect of reflecting radiant heat, so limiting the average primary particle size to a predetermined range can provide even higher heat insulation. That is, when the average primary particle diameter of the oxide particles is 0.001 ⁇ m or more, it is sufficiently larger than the wavelength of light that contributes to heating, and light is diffusely reflected efficiently. Radiation heat transfer of heat in the suppression sheet is suppressed, and heat insulation can be further improved. On the other hand, when the average primary particle diameter of the oxide particles is 50 ⁇ m or less, the number of contact points between particles does not increase even when compressed, and it is difficult to form paths for conductive heat transfer, so conductive heat transfer is particularly dominant. It is possible to reduce the influence on heat insulation in the normal temperature range.
  • the average primary particle size can be obtained by observing particles with a microscope, comparing with a standard scale, and averaging 10 arbitrary particles.
  • Nanoparticles are preferable as the first inorganic particles. Since the nanoparticles have a low density, conductive heat transfer is suppressed, and the pores are finely dispersed, so that excellent heat insulation properties that suppress convective heat transfer can be obtained. For this reason, it is preferable to use nanoparticles because heat conduction between adjacent nanoparticles can be suppressed when the battery is normally used in the normal temperature range.
  • nanoparticles refers to nanometer-order particles with an average primary particle diameter of less than 1 ⁇ m, which is spherical or nearly spherical.
  • nanoparticles with a small average primary particle size are used as oxide particles, even if the internal density of the insulating material increases due to expansion due to thermal runaway of the battery cell, the conductive heat transfer of the insulating material increases. can be suppressed. This is probably because fine voids are likely to form between the nanoparticles due to the repulsive force of static electricity, and the particles are packed so as to have cushioning properties due to their low bulk density.
  • the material is not particularly limited as long as it conforms to the definition of nanoparticles.
  • silica nanoparticles in addition to being a material with high heat insulating properties, silica nanoparticles have small contact points between particles, so the amount of heat conducted by silica nanoparticles is smaller than when silica particles with a large particle size are used. Become.
  • generally available silica nanoparticles have a bulk density of about 0.1 (g/cm 3 ). The size (area) and number of contact points between them do not increase remarkably, and heat insulating properties can be maintained. Therefore, it is preferable to use silica nanoparticles as the nanoparticles.
  • silica nanoparticles wet silica, dry silica, aerogel, and the like can be used.
  • the average primary particle size of the nanoparticles By limiting the average primary particle size of the nanoparticles to a predetermined range, even higher heat insulation can be obtained. That is, when the average primary particle diameter of the nanoparticles is 1 nm or more and 100 nm or less, it is possible to suppress the convective heat transfer and conductive heat transfer of heat in the heat insulating material, especially in the temperature range of less than 500 ° C., and the heat insulating property is further improved. It can be improved further. In addition, even when compressive stress is applied, the gaps remaining between the nanoparticles and contact points between many particles suppress conductive heat transfer, and the heat transfer suppressing sheet can maintain the heat insulation properties. .
  • the average primary particle size of the nanoparticles is more preferably 2 nm or more, and even more preferably 3 nm or more.
  • the average primary particle size of the nanoparticles is more preferably 50 nm or less, even more preferably 10 nm or less.
  • inorganic hydrate particles When the inorganic hydrate particles receive heat from the heating element and reach a thermal decomposition initiation temperature or higher, they thermally decompose, releasing their own water of crystallization to lower the temperature of the heating element and its surroundings, a so-called “endothermic effect”. express. In addition, after the water of crystallization is released, it becomes a porous body and exhibits heat insulating properties due to its numerous air holes.
  • inorganic hydrates include aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), calcium hydroxide (Ca(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), iron hydroxide (Fe(OH) 2 ), manganese hydroxide (Mn(OH) 2 ), zirconium hydroxide (Zr(OH) 2 ), gallium hydroxide (Ga(OH) 3 ), and the like. .
  • aluminum hydroxide has about 35% water of crystallization, and as shown in the following formula, it is thermally decomposed to release water of crystallization to exhibit endothermic action. After releasing the water of crystallization, it becomes porous alumina (Al 2 O 3 ) and functions as a heat insulating material. 2Al (OH) 3 ⁇ Al2O3 + 3H2O
  • the inorganic particles are preferably composed of inorganic hydrates having a thermal decomposition initiation temperature of 200° C. or higher.
  • the thermal decomposition initiation temperature of the inorganic hydrates listed above is about 200 ° C. for aluminum hydroxide, about 330 ° C. for magnesium hydroxide, about 580 ° C. for calcium hydroxide, about 200 ° C. for zinc hydroxide, and about 200 ° C. for iron hydroxide. is about 350°C, manganese hydroxide is about 300°C, zirconium hydroxide is about 300°C, and gallium hydroxide is about 300°C. It can be said that it is a preferable inorganic hydrate because it overlaps and can efficiently suppress the temperature rise.
  • the average secondary particle size of the inorganic hydrate particles is preferably 0.01 ⁇ m or more and 200 ⁇ m or less, more preferably 0.05 ⁇ m or more and 100 ⁇ m or less.
  • Vermiculite particles made of thermally expandable inorganic material
  • bentonite mica, perlite, etc.
  • mica particles made of thermally expandable inorganic material
  • water-containing porous material particles made of hydrous porous material
  • water-containing porous material include zeolite, kaolinite, montmorillonite, acid clay, diatomaceous earth, wet silica, dry silica, aerogel, mica, vermiculite, and the like.
  • inorganic balloon When inorganic balloons are included, convective heat transfer or conductive heat transfer in the heat insulating material can be suppressed in a temperature range of less than 500° C., and the heat insulating properties of the heat insulating material can be further improved.
  • At least one selected from shirasu balloons, silica balloons, fly ash balloons, barlite balloons, and glass balloons can be used as the inorganic balloon.
  • the content of inorganic balloons is preferably 60% by mass or less with respect to the total mass of the heat insulating material.
  • the average particle size of the inorganic balloons is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the second inorganic particles are not particularly limited as long as they are different from the first inorganic particles in material, particle size, and the like.
  • the second inorganic particles include oxide particles, carbide particles, nitride particles, inorganic hydrate particles, silica nanoparticles, metal oxide particles, inorganic balloons such as microporous particles and hollow silica particles, and thermally expandable inorganic materials. and particles made of a water-containing porous material, etc., the details of which are as described above.
  • nanoparticles have extremely low conductive heat transfer, and can maintain excellent heat insulation even when compressive stress is applied to the heat transfer suppression sheet.
  • metal oxide particles such as titania are highly effective in blocking radiant heat.
  • the small-diameter inorganic particles enter the gaps between the large-diameter inorganic particles, resulting in a more dense structure and improving the heat transfer suppression effect. can. Therefore, when nanoparticles are used as the first inorganic particles, particles made of a metal oxide having a larger diameter than the first inorganic particles are further included in the heat insulating material as the second inorganic particles. It is preferable to let
  • metal oxides examples include silicon oxide, titanium oxide, aluminum oxide, barium titanate, zinc oxide, zircon, and zirconium oxide.
  • titanium oxide (titania) is a component with a higher refractive index than other metal oxides, and has a high effect of diffusely reflecting light and blocking radiant heat in a high temperature range of 500 ° C. or higher, so titania can be used. Most preferred.
  • the average primary particle size of the second inorganic particles is 1 ⁇ m or more and 50 ⁇ m or less, radiant heat transfer can be efficiently suppressed in a high temperature range of 500°C or higher.
  • the average primary particle size of the second inorganic particles is more preferably 5 ⁇ m or more and 30 ⁇ m or less, and most preferably 10 ⁇ m or less.
  • the materials for forming the heat insulating material are as described above, but it is preferable to use a papermaking method to manufacture the heat insulating material. That is, inorganic fibers and other compounding materials, which are materials for forming the heat insulating material, are dispersed in water, and the dispersion is dehydrated, molded, and dried to produce the heat insulating material.
  • the flameproof structure is manufactured by using a heat insulating material as an insert member and insert-molding the forming material of the resin base material into the insert member.
  • FIG. 1 schematically shows a cross section of the resulting flameproof structure 1.
  • inorganic fibers here, first inorganic fibers 11a and second inorganic fibers 11b
  • organic fibers 12 inorganic particles (here, first inorganic particles 13a,
  • a molten material made of the material for forming the resin base material 20 penetrates into the gaps of the second inorganic particles 13b) and the like, and is cured (integrated).
  • the bonding layer 30 is a portion where the forming material of the resin base material 20 penetrates and is cured (integrated).
  • the bonding layer 30 has a mass ratio (wt%) of the material forming the resin base material to the material forming the heat insulating material (material forming the resin base material/material forming the heat insulating material), and the thickness of the heat insulating material 10 is It has an inclined structure that gradually decreases as it increases. Further, when the thickness of the bonding layer 30 is 10 to 90% of the thickness of the flameproof structure 1, sufficient bonding strength can be obtained.
  • Embodiment 2 of Flameproof Structure >> In Embodiment 2, the heat insulating material contains infusible fibers. Note that the resin base material is the same as that of the first embodiment, and the description thereof is omitted.
  • infusible fibers include fibers obtained by infusibilizing thermoplastic resins such as polyacrylonitrile, cellulose, and pitch.
  • the infusible fiber is, for example, a fiber that has been infusible, and the infusible treatment includes a method of cross-linking by irradiation with radiation, electron beam, etc., exposure to high temperature in oxygen or water vapor, and infusibility by the action of oxygen. There are other methods of melting.
  • the infusible fiber preferably has a carbon content of 55 to 95% by mass.
  • the carbon content is 55% by mass or more, the weight reduction due to thermal decomposition has already progressed, so the shrinkage due to thermal decomposition is small, and even if it is directly exposed to flames during thermal runaway, it retains its original shape and has heat insulating properties. can be maintained.
  • the carbon content is 95% by mass or less, components other than carbon are desorbed and the structure changes to a carbon-only structure, causing an endothermic reaction. can be done.
  • the desirable lower limit of the carbon content is 60% by mass or more.
  • the upper limit of the carbon content is preferably 90% by mass or less, and the more desirable upper limit of the carbon content is 85% by mass or less.
  • the carbon content can be adjusted by heat treatment.
  • heat treatment in the air or in oxygen within the range of 150 to 300° C. can further promote the infusibilization and remove components other than carbon to increase the carbon content.
  • heat treatment within the range of 300 to 1000° C. promotes the formation of a condensed polycyclic aromatic structure and generates cracked gas to increase the carbon content.
  • infusible fibers are not limited to fibers obtained by infusible thermoplastic fibers.
  • Inorganic fibers may be used as long as the carbon content is within the above range.
  • the infusible fibers are composed of short fibers, and it is preferable that these fibers are assembled to form a mat, a paper product, or a blanket as a whole.
  • Short fibers indicates that they are not continuous fibers. With continuous fibers, the orientation direction of the fibers is aligned to form a fiber bundle, such as cloth and filament winding. body). Since the heat insulating material using short fibers has a short conductive path, the conductivity can be lowered even if carbonization progresses due to carbonization of fibers or thermal runaway. In addition, the fibers are randomly oriented, and the fibers tend to come into point contact with each other, so that heat conduction can be reduced.
  • the paper product can be obtained by dispersing insoluble milled fibers or chopped fibers (fiber length of about 0.01 to 10 mm) in water and making paper.
  • Paper making is the process of dispersing short inorganic fibers in a solvent (water), adding organic binders, inorganic binders, pH adjusters, etc. It refers to pouring a mixed liquid into a molding machine in which a mesh is formed and removing the solvent in the mixed liquid (dehydration treatment).
  • a mat or blanket can be obtained by laminating and compressing infusible fibers having a fiber length of about 10 to 1000 mm.
  • a binder may be added to maintain the overall strength and shape.
  • an organic binder such as a resin, an inorganic binder such as a ceramic precursor, or the like can be used.
  • the infusible fibers preferably have an average fiber diameter of 1 to 30 ⁇ m.
  • the average fiber diameter of the infusible fibers is 1 ⁇ m or more, the speed of aerial oxidation and sublimation can be suppressed even when exposed to high temperatures, and the flameproof effect can be maintained for a long time.
  • the infusible fiber has an average fiber diameter of 30 ⁇ m or less, it can retain a certain degree of flexibility even when exposed to high temperatures and carbonized, and can be less likely to break even when deformed or impacted.
  • the average fiber diameter of the infusible fibers is obtained by the following method. First, 10 infusible fibers are arbitrarily extracted from the molded flameproof sheet using tweezers. For each infusible fiber extracted, the fiber diameter at an arbitrary point is measured by SEM, and the average value of the fiber diameters of ten infusible fibers is taken as the average fiber diameter.
  • the heat insulating material can contain organic fibers and inorganic particles similar to those in the first embodiment, in addition to the infusible fibers.
  • the heat insulating material is configured as described above, but since the heat insulating material is an aggregate of fibers, preferably short fibers, it easily absorbs moisture and leaked electrolyte. Therefore, it is preferable to cover the surface of the heat insulating material 10 opposite to the resin base material 20, for example, the surface facing the storage battery in a battery module, with a coating layer.
  • the coating layer preferably has one or more layers selected from resin, metal foil, and mica, and has excellent strength and permeation prevention performance.
  • an adhesive may be used, heat fusion may be used in the case of resin, and vapor deposition may be used in the case of metal foil.
  • the coating layer can also be used to cover the heat insulating material in the first embodiment.
  • the flameproof structure is manufactured by insert molding in the same manner as in the first embodiment, so that the material forming the resin base material penetrates into the gaps between the forming materials of the heat insulating material to form a bonding layer. Also, the inclined structure and thickness are the same as in the first embodiment.
  • the battery module 100 has a plurality of storage batteries 110 housed in a battery package 120 . Electrode terminals 111 of each storage battery 110 are connected in series by a bus bar 130 .
  • the battery package 120 is formed of the flameproof structure 1 described above.
  • the resin base material 20 forms the housing body of the battery package 120
  • the heat insulating material 10 forms the surface facing the storage battery 110, and is formed on the entire surface of the canopy, side walls, and bottom wall. Note that the heat insulating material 10 may be formed on at least one of the canopy, the side walls, and the bottom wall.
  • the heat insulating material 10 is joined to the resin base material 20 without gaps even at the bent portion A. there is Therefore, even if the internal shape of the battery package 120 becomes more complicated, it can be dealt with satisfactorily. That is, the flameproof structure of the present invention is also excellent in shape followability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

断熱効果や防炎効果により優れることに加えて、電池ケースと断熱材との接合強度を高めるとともに、接合強度の経時劣化が少なく信頼性にも優れ、更には電池ケースの内部形状への追随性にも優れる防炎構造体を提供する。防炎構造体(1)は、樹脂基材(20)と、無機繊維または不融化繊維を含む断熱材(10)とからなり、樹脂基材(20)と断熱材(10)とが接合してなる接合層(30)において、断熱材(10)の形成材料の隙間に、樹脂基材(20)の形成材料が侵入して一体化している。この防炎構造体(1)は、断熱材(10)をインサート部材とし、樹脂基材(20)の形成材料をインサート成形して得られる。また、電池モジュール(100)は、蓄電池(110)と、蓄電池(110)を収容し、かつ、天蓋、側壁及び底壁の少なくとも1つが上記防炎構造体(1)である電池ケースとを備える。

Description

防炎構造体及びその製造方法、並びに電池モジュール
 本発明は、防炎構造体及びその製造方法、並びに防炎構造体を備える電池パッケージに関する。
 近年、環境保全のために、電気自動車などにリチウムイオン2次電池が用いられている。しかし、リチウムイオン2次電池は、有機電解液を使用しているために、熱暴走時に着火すると火炎が発生してバッテリーパックを損傷するおそれがある。
 その対策として、例えば特許文献1では、電池を収容するハウジングの天蓋などに、熱絶縁をするための多層断熱要素を接合することを提案している。
日本国特表2021-507483号公報
 しかしながら、特許文献1では、接着剤を用いて、多層断熱要素をハウジングの天蓋などに接合している。自動車の走行時の振動や、電池の充放電に伴うハウジング内での温度変化を繰り返し受けるなどして、接着剤が経年劣化する。接着強度が低下すると、部分的な剥離が起こり、熱暴走時にはこの剥離部分にガスや火炎が入り込んでしまうおそれがある。
 また、接着剤を用いるため、接着剤の塗布工程や硬化工程が必要になることに加えて、ハウジングの内部形状に追随して多層断熱要素を貼り付ける必要があり、作業効率が悪くなる。特に、ハウジングの屈曲部では、多層断熱要素を屈曲部の隅々にわたって貼り付けるには相当の困難を伴う。
 一方で、電池の容量増加に伴い、スタック数も大きくなっており、有機電解液の量も増えているため、電池が熱暴走を起こしたときの安全対策が強く求められている。
 そこで本発明は、断熱効果や防炎効果により優れることに加えて、電池ケースと断熱材との接合強度を高めるとともに、接合強度の経時劣化が少なく信頼性にも優れ、更には電池ケースの内部形状への追随性にも優れる防炎構造体及びその製造方法、並びに電池モジュールを提供することを目的とする。
 本発明の上記目的は、防炎構造体に係る下記[1]の構成により達成される。
[1] 樹脂基材と、無機繊維または不融化繊維を含む断熱材とからなり、
 前記樹脂基材と前記断熱材とが接合してなる接合層において、前記断熱材の形成材料の隙間に、前記樹脂基材の形成材料が侵入して一体化している、防炎構造体。
 また、防炎構造体に係る本発明の好ましい実施形態は、以下の[2]~[19]に関する。
[2] 前記樹脂基材は、電池ケースの天蓋、側壁及び底壁の少なくとも1つであることを特徴とする[1]に記載の防炎構造体。
[3] 前記樹脂基材の母材は、AS樹脂、ABS樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンテレフタレート樹脂、ポリフェニルスルフィド樹脂、ポリカーボネート樹脂、アラミド樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂及びポリアセタール樹脂のうち少なくとも1つであることを特徴とする[1]または[2]に記載の防炎構造体。
[4] 前記無機繊維は、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維及び第2の無機繊維を有する[1]~[3]のいずれか1つに記載の防炎構造体。
[5] 前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きく、
 前記第1の無機繊維が線状又は針状であり、前記第2の無機繊維が樹枝状又は縮れ状であることを特徴とする[4]に記載の防炎構造体。
[6] 前記第1の無機繊維は非晶質の繊維であり、
 前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、
 前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きいことを特徴とする[4]または[5]に記載の防炎構造体。
[7] 前記不融化繊維は、炭素含有量が55~95質量%であることを特徴とする[1]~[6]のいずれか1つに記載の防炎構造体。
[8] 前記不融化繊維は、短繊維からなることを特徴とする[1]~[7]のいずれか1つに記載の防炎構造体。
[9] 前記不融化繊維は、平均繊維径が1~30μmであることを特徴とする[1]~[8]のいずれか1つに記載の防炎構造体。
[10] 前記断熱材は、有機繊維を含むことを特徴とする[1]~[9]のいずれか1つに記載の防炎構造体。
[11] 前記有機繊維は、前記樹脂基材の母材よりもガラス転移点が低いことを特徴とする[10]記載の防炎構造体。
[12] 前記断熱材は、無機粒子を含むことを特徴とする[1]~[11]のいずれか1つに記載の防炎構造体。
[13] 前記無機粒子は、互いに平均粒子径が異なる第1の無機粒子及び第2の無機粒子を含むことを特徴とする[12]記載の防炎構造体。
[14] 前記第1の無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種からなることを特徴とする[13]記載の防炎構造体。
[15] 前記第1の無機粒子は、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種からなることを特徴とする[13]または[14]に記載の防炎構造体。
[16] 前記第1の無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種からなる[13]~[15]のいずれか1つに記載の防炎構造体。
[17] 前記第2の無機粒子は、金属酸化物粒子であることを特徴とする[13]~[16]のいずれか1つに記載の防炎構造体。
[18] 前記接合層の厚さは、該防炎構造体の厚さの10~90%であることを特徴とする[1]~[17]のいずれか1つに記載の防炎構造体。
[19] 前記接合層は、前記樹脂基材の形成材料の、前記断熱材の形成材料に対する質量比が、前記断熱材の厚さが増すと共に漸減する傾斜構造であることを特徴とする[1]~[18]のいずれか1つに記載の防炎構造体。
 また、本発明の上記目的は、防炎構造体の製造方法に係る下記[20]の構成により達成される。
[20] [1]~[19]のいずれか1つに記載の防炎構造体の製造方法であって、前記断熱材をインサート部材とし、前記樹脂基材の形成材料をインサート成形する、防炎構造体の製造方法。
 更に、本発明の上記目的は、電池モジュールに係る下記[21]の構成により達成される。
[21] 蓄電池と、前記蓄電池を収容し、かつ、天蓋、側壁及び底壁の少なくとも1つが[1]~[19]のいずれか1つに記載の防炎構造体である電池ケースとを備える、電池モジュール。
 本発明の防炎構造体は、樹脂基材と断熱材とが接合したものであるが、断熱材が無機繊維または不融化繊維を含むため断熱性能や防炎性能に優れる。それともに、樹脂基材と断熱材との接合層において、断熱材の繊維間に樹脂基材の形成材料が侵入して一体化しているため、接着剤を用いた場合よりも接合強度が強く、経時劣化も少なく信頼性が高い。また、インサート成形により製造できるため、製造工程が簡便で、電池ケースの内部形状への追随性も高い。
 本発明の電池モジュールは、蓄電池を収容する電池ケースが本発明の防炎構造体であるため、熱暴走時に火炎が発生しても、外部への延焼をより確実に防ぐことができる。
図1は、本発明の防炎構造体の実施の形態1の断面を示す模式図である。 図2は、本発明の電池モジュールの実施の形態を示す断面図である。
 以下、本発明の実施形態に関して図面を参照して詳細に説明する。なお、本発明は、以下で説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
[防炎構造体]
<<1.防炎構造体の実施の形態1>>
 本発明の防炎構造体は、樹脂基材と、断熱材とが接合したものであるが、実施の形態1においては、断熱材が無機繊維を含んでいる。
<樹脂基材>
 樹脂基材は、例えば従来から電池モジュールの電池ケースのハウジングを形成する部材である。
 母材となる樹脂としては、AS樹脂、ABS樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンテレフタレート樹脂、ポリフェニルスルフィド樹脂、ポリカーボネート樹脂、アラミド樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂及びポリアセタール樹脂のうち少なくとも1つが好適である。また、これら母材は、ガラスファイバやカーボンファイバなどの補強繊維を含んでいてもよい。
<断熱材>
(無機繊維)
 断熱材となる無機繊維には、断熱材に通常使用される無機繊維を用いることができるが、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維及び第2の無機繊維を有することが好ましい。性状が互いに異なる2種の無機繊維を含有することにより、断熱材の機械的強度、並びに後述されるように無機粒子を含有する場合の無機粒子の保持性を向上させることができる。
(平均繊維径及び繊維形状が異なる2種の無機繊維)
 2種の無機繊維を含有する場合に、第1の無機繊維の平均繊維径が、第2の無機繊維の平均繊維径よりも大きく、第1の無機繊維が線状又は針状であり、第2の無機繊維が樹枝状又は縮れ状であることが好ましい。平均繊維径が大きい(太径の)第1の無機繊維は、断熱材の機械的強度や形状保持性を向上させる効果を有する。2種の無機繊維のうち一方、例えば、第1の無機繊維を第2の無機繊維よりも太径にすることにより、上記効果を得ることができる。防炎構造体には、外部からの衝撃が作用することがあるため、断熱材に第1の無機繊維が含まれることにより、耐衝撃性が高まる。外部からの衝撃としては、例えば電池セルの膨張による押圧力や、電池セルの発火による風圧などである。
 また、断熱材の機械的強度や形状保持性を向上させるためには、第1の無機繊維が線状又は針状であることが特に好ましい。なお、線状又は針状の繊維とは、後述の捲縮度が例えば10%未満、好ましくは5%以下である繊維をいう。
 より具体的には、断熱材の機械的強度や形状保持性を向上させるためには、第1の無機繊維の平均繊維径は1μm以上であることが好ましく、3μm以上であることがより好ましい。第1の無機繊維が太すぎると、成形性や加工性が低下するおそれがあるため、第1の無機繊維の平均繊維径は20μm以下であることが好ましく、15μm以下であることがより好ましい。
 なお、第1の無機繊維は長すぎても成形性や加工性が低下するおそれがあるため、繊維長を100mm以下とすることが好ましい。さらに、第1の無機繊維は短すぎても形状保持性や機械的強度が低下するため、繊維長を0.1mm以上とすることが好ましい。
 一方、平均繊維径が細い(細径の)第2の無機繊維は、有機繊維や無機粒子を配合する場合、これらの保持性を向上させるとともに、断熱材の柔軟性を高める効果を有する。したがって、第2の無機繊維を第1の無機繊維よりも細径にすることが好ましい。
 より具体的に、有機繊維や無機粒子の保持性を向上させるためには、第2の無機繊維は変形が容易で、柔軟性を有することが好ましい。したがって、細径である第2の無機繊維は、平均繊維径が1μm未満であることが好ましく、0.1μm以下であることがより好ましい。ただし、細すぎると破断しやすく、有機繊維や無機粒子の保持能力が低下する。また、有機繊維や無機粒子を保持せずに、繊維が絡み合ったままで断熱材中に存在する割合が多くなり、有機繊維や無機粒子の保持能力の低下に加えて、成形性や形状保持性にも劣るようになる。そのため、第2の無機繊維の平均繊維径は1nm以上が好ましく、10nm以上がより好ましい。
 なお、第2の無機繊維は、長くなりすぎると成形性や形状保持性が低下するため、第2の無機繊維の繊維長は0.1mm以下であることが好ましい。
 また、第2の無機繊維は、樹枝状又は縮れ状であることが好ましい。第2の無機繊維がこのような形状であると、有機繊維や無機粒子と良好に絡み合い、有機繊維や無機粒子の保持能力が向上する。また、防炎構造体が押圧力や風圧を受けた際に、第2の無機繊維が滑って移動することが抑制され、このことにより、特に外部からの押圧力や衝撃に抗する機械的強度が向上する。
 なお、樹枝状とは、2次元的又は3次元的に枝分かれした構造であり、例えば羽毛状、テトラポット形状、放射線状、立体網目状である。
 第2の無機繊維が樹枝状である場合に、その平均繊維径は、SEMによって幹部及び枝部の径を数点測定し、これらの平均値を算出することにより得ることができる。
 また、縮れ状とは、繊維が様々な方向に屈曲した構造である。縮れ形態を定量化する方法の一つとして、電子顕微鏡写真からその捲縮度を算出することが知られており、例えば下記式から算出することができる。
 捲縮度(%)=(繊維長さ-繊維末端間距離)/(繊維長さ)×100
 ここで、繊維長さ、繊維末端間距離ともに電子顕微鏡写真上での測定値である。すなわち、2次元平面上へ投影された繊維長、繊維末端間距離であり、現実の値よりも短くなっている。この式に基づき、第2の無機繊維の捲縮度は10%以上が好ましく、30%以上がより好ましい。捲縮度が小さいと、有機繊維や無機粒子の保持能力が低下し、第2の無機繊維同士、第1の無機繊維と第2の無機繊維との絡み合い(ネットワーク)が形成されにくくなる。
(ガラス転移点が互いに異なる2種の無機繊維)
 2種の無機繊維を含有する場合に、第1の無機繊維は非晶質の繊維であり、第2の無機繊維は、第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び結晶質の繊維から選択される少なくとも1種の繊維であることが好ましい。
 結晶質の無機繊維の融点は、通常非晶質の無機繊維のガラス転移点より高い。そのため、第1の無機繊維は、高温に晒されると、その表面が第2の無機繊維より先に軟化して、有機繊維や無機粒子を結着する。したがって、第1の無機繊維を含有させることにより、断熱材の機械的強度を向上させることができる。
 第1の無機繊維としては、具体的には、融点が700℃未満である無機繊維が好ましく、多くの非晶質の無機繊維を用いることができる。中でも、SiOを含む繊維であることが好ましく、安価で、入手も容易で、取扱い性等に優れることから、ガラス繊維であることがより好ましい。
 第2の無機繊維は、上述のとおり、第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び結晶質の繊維から選択される少なくとも1種からなる繊維である。第2の無機繊維としては、多くの結晶性の無機繊維を用いることができる。
 第2の無機繊維が結晶質の繊維からなるものであるか、又は第1の無機繊維よりもガラス転移点が高いものであると、高温にさらされたときに、第1の無機繊維が軟化しても、第2の無機繊維は溶融又は軟化しない。したがって、例えば電池モジュールに適用した場合、熱暴走が起こっても形状を維持する。
 また、第2の無機繊維が溶融又は軟化しないと、粒子間、粒子と繊維との間、及び各繊維間における微小な空間が維持されるため、空気による断熱効果が発揮される。
 第2の無機繊維が結晶質である場合に、具体的には、シリカ繊維、アルミナ繊維、アルミナシリケート繊維、ジルコニア繊維、カーボンファイバ、ソルブルファイバ、リフラクトリーセラミックファイバ、エアロゲル複合材、マグネシウムシリケート繊維、アルカリアースシリケート繊維、チタン酸カリウム繊維等のセラミックス系繊維、ガラス繊維、グラスウール等のガラス系繊維、ロックウール、バサルトファイバ、ウォラストナイト等の鉱物系繊維等を使用することができる。
 また、融点が1000℃を超えるものであると、電池セルの熱暴走が発生しても、第2の無機繊維は溶融又は軟化せず、その形状を維持することができるため、好適に使用することができる。上記第2の無機繊維として挙げられた繊維のうち、例えば、シリカ繊維、アルミナ繊維及びアルミナシリケート繊維等のセラミックス系繊維、並びに鉱物系繊維を使用することがより好ましく、この中でも融点が1000℃を超えるものを使用することが更に好ましい。
 また、第2の無機繊維が非晶質である場合であっても、第1の無機繊維よりもガラス転移点が高い繊維であれば、使用することができる。例えば、第1の無機繊維よりガラス転移点が高いガラス繊維を第2の無機繊維として用いてもよい。
 なお、第2の無機繊維としては、例示した種々の無機繊維を単独で使用してもよいし、2種以上を混合使用してもよい。
 上記のとおり、第1の無機繊維は第2の無機繊維よりもガラス転移点が低く、高温にさらされたときに、第1の無機繊維が先に軟化するため、第1の無機繊維で有機繊維や無機粒子を結着することができる。しかし、例えば、第2の無機繊維が非晶質であって、その繊維径が第1の無機繊維の繊維径よりも細い場合に、第1の無機繊維と第2の無機繊維とのガラス転移点が接近していると、第2の無機繊維が先に軟化するおそれがある。したがって、第2の無機繊維が非晶質の繊維である場合に、第2の無機繊維のガラス転移点は、第1の無機繊維のガラス転移点よりも100℃以上高いことが好ましく、300℃以上高いことがより好ましい。
 なお、第1の無機繊維の繊維長は、100mm以下であることが好ましく、0.1mm以上とすることが好ましい。第2の無機繊維の繊維長は、0.1mm以下であることが好ましい。これらの理由については、上記したとおりである。
(ガラス転移点及び平均繊維径が互いに異なる2種の無機繊維)
 2種の無機繊維を含有する場合に、第1の無機繊維は非晶質の繊維であり、第2の無機繊維は、第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、第1の無機繊維の平均繊維径が、第2の無機繊維の平均繊維径よりも大きいことが好ましい。
 上述のとおり、第1の無機繊維の平均繊維径が、第2の無機繊維よりも大きいことが好ましい。また、太径の第1の無機繊維が非晶質の繊維であり、細径の第2の無機繊維が、第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び結晶質の繊維から選択される少なくとも1種からなる繊維であることが好ましい。これにより、第1の無機繊維のガラス転移点が低く、早く軟化するため、温度の上昇に伴って膜状となって硬くなる。一方、細径である第2の無機繊維が、第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び結晶質の繊維から選択される少なくとも1種からなる繊維であると、温度が上昇しても細径の第2の無機繊維が繊維の形状で残存するため、断熱材の構造を保持し、粉落ちを防止することができる。
 なお、この場合であっても、第1の無機繊維の繊維長は、100mm以下であることが好ましく、0.1mm以上とすることが好ましい。第2の無機繊維の繊維長は、0.1mm以下であることが好ましい。これらの理由については、上記したとおりである。
(第1の無機繊維及び第2の無機繊維の各含有量)
 2種の無機繊維を含有する場合に、第1の無機繊維の含有量は、断熱材の全質量に対して3質量%以上30質量%以下であることが好ましく、第2の無機繊維の含有量は、断熱材の全質量に対して3質量%以上30質量%以下であることが好ましい。
 また、第1の無機繊維の含有量は、断熱材の全質量に対して、5質量%以上15質量%以下であることがより好ましく、第2の無機繊維の含有量は、断熱材の全質量に対して、5質量%以上15質量%以下であることがより好ましい。このような含有量にすることにより、第1の無機繊維による形状保持性や押圧力耐性、抗風圧性、及び第2の無機繊維による無機粒子の保持能力がバランスよく発現される。
(その他の配合材料)
 断熱材には、上記第1の無機繊維及び第2の無機繊維の他に、異なる無機繊維が含まれていてもよい。また、有機バインダや有機繊維、無機粒子を含んでもよい。
(樹脂バインダ)
 上記無機繊維は、樹脂バインダにより結着することもできる。樹脂バインダとしては、後述する有機繊維のガラス転移点よりも低いガラス転移点を有するものであれば、特に限定されない。例えば、スチレン-ブタジエン樹脂、アクリル樹脂、シリコン-アクリル樹脂及びスチレン樹脂から選択された少なくとも1種を含む樹脂バインダ9を使用することができる。
 樹脂バインダのガラス転移点は特に規定しないが、-10℃以上であることが好ましい。なお、樹脂バインダ9のガラス転移点が室温以上であると、樹脂バインダを有する断熱材が室温で使用された場合に、断熱材の強度をより一層向上させることができる。したがって、樹脂バインダのガラス転移点は、例えば20℃以上であることがより好ましく、30℃以上であることがさらに好ましく、50℃以上であることがさらにより好ましく、60℃以上であることが特に好ましい。
 樹脂バインダの含有量は、断熱材の全質量に対して0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
(有機繊維)
 上記無機繊維の他に、有機繊維を含有してもよい。有機繊維としては、例えば、ポリビニルアルコール(PVA)繊維、ポリエチレン繊維、ナイロン繊維、ポリウレタン繊維及びエチレン-ビニルアルコール共重合体繊維から選択された少なくとも1種を使用することができる。
 なお、断熱材の製造は抄造法にて行うことができるが、その際に加熱温度を250℃よりも高くすることは困難であるため、有機繊維のガラス転移点は、250℃以下とすることが好ましく、200℃以下とすることがより好ましい。
 有機繊維のガラス転移点の下限値も特に限定されないが、上記樹脂バインダのガラス転移点との差が10℃以上であれば、製造時の冷却工程において、半溶融状態であった有機繊維が完全に固化した後に、樹脂バインダが固化するため、樹脂バインダによる骨格の補強効果を十分に得ることができる。したがって、樹脂バインダのガラス転移点と、有機繊維のガラス転移点との差は、10℃以上であることが好ましく、30℃以上であることがより好ましい。
 一方、両者のガラス転移点の差が130℃以下であると、有機繊維が完全に固化してから、樹脂バインダが固化し始めるまでの時間を適切に調整することができ、樹脂バインダが良好な分散状態のまま固化するため、より一層骨格の補強効果を得ることができる。したがって、樹脂バインダのガラス転移点と、有機繊維のガラス転移点との差は、130℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがさらに好ましく、80℃以下であることがさらにより好ましく、70℃以下であることが特に好ましい。
 また、2種類以上の有機繊維を含むこともできるが、その場合に、少なくとも1種の有機繊維が骨格として作用する有機繊維、すなわち、樹脂バインダのガラス転移点よりも高いガラス転移点を有する有機繊維であればよい。なお、樹脂バインダのガラス転移点と、少なくとも1種の有機繊維のガラス転移点との差は、上記と同様に、10℃以上であることが好ましく、30℃以上であることがより好ましく、130℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがさらに好ましく、80℃以下であることがさらにより好ましく、70℃以下であることが特に好ましい。
 有機繊維及び樹脂バインダの含有量が適切に制御されていると、有機繊維による骨格としての機能を十分に得ることができるとともに、樹脂バインダによる骨格の補強効果を十分に得ることができる。有機繊維の含有量は、断熱材の全質量に対して0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、12質量%以下であることが好ましく、8質量%以下であることがより好ましい。なお、樹脂バインダのガラス転移点よりも高いガラス転移点を有する複数の有機繊維を含む場合に、これら複数の有機繊維の合計量が、上記有機繊維の含有量の範囲内であることが好ましい。
 上述のとおり、2種類以上の有機繊維を含む場合に、少なくとも1種の有機繊維が、樹脂バインダのガラス転移点よりも高いガラス転移点を有するものであればよいが、その他の有機繊維として、ガラス転移点を有さない結晶状態の有機繊維を含有することがより好ましい。
 ガラス転移点を有さない結晶状態の有機繊維を含有することもできるが、この結晶状態の有機繊維は軟化点を持たないため、骨格となる有機繊維が軟化するような高温に晒された場合であっても、断熱材全体の強度を維持することができる。また、結晶状態の有機繊維を含有することにより、常温において、この有機繊維も断熱材の骨格として作用する。
したがって、断熱材の柔軟性や取り扱い性を向上させることができる。
 なお、結晶状態の有機繊維としては、ポリエステル(PET)繊維が挙げられる。
 また、断熱材の製造において抄造法を行う際に、分散液として水を使用することが好ましいが、有機繊維は水への溶解度が低いことが好ましい。水への溶解度を示す指標として「水中溶解温度」を使用できるが、有機繊維の水中溶解温度は60℃以上であることが好ましく、70℃以上であることがより好ましく、80℃以上であることがさらに好ましい。
 有機繊維の繊維長についても特に限定されないが、成形性や加工性を確保する観点から、平均繊維長は10mm以下とすることが好ましい。一方、有機繊維を骨格として機能させ、断熱材の圧縮強度を確保する観点から、平均繊維長は0.5mm以上とすることが好ましい。
(無機粒子)
 さらに、無機粒子を含有することもできる。無機粒子の平均二次粒子径が0.01μm以上であると、入手しやすく、製造コストの上昇を抑制することができる。また、200μm以下であると、所望の断熱効果を得ることができる。したがって、無機粒子の平均二次粒子径は、0.01μm以上200μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましい。
 無機粒子として、単一の無機粒子を使用してもよいし、2種以上の無機粒子(第1の無機粒子及び第2の無機粒子)を組み合わせて使用してもよい。第1の無機粒子及び第2の無機粒子としては、熱伝達抑制効果の観点から、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種の無機材料からなる粒子を使用することが好ましく、酸化物粒子を使用することがより好ましい。また、第1の無機粒子及び第2の無機粒子の形状についても特に限定されないが、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種を含むことが好ましく、具体的には、シリカナノ粒子、金属酸化物粒子、マイクロポーラス粒子や中空シリカ粒子等の無機バルーン、熱膨張性無機材料からなる粒子、含水多孔質体からなる粒子等を使用することもできる。
 なお、2種以上の熱伝達抑制効果が互いに異なる無機粒子を併用すると、多段に冷却することができ、吸熱作用をより広い温度範囲で発現できる。具体的には、大径粒子と小径粒子とを混合使用することが好ましい。例えば、一方の無機粒子として、ナノ粒子を使用する場合に、他方の無機粒子として、金属酸化物からなる無機粒子を含むことが好ましい。以下、小径の無機粒子を第1の無機粒子、大径の無機粒子を第2の無機粒子として、無機粒子についてさらに詳細に説明する。
(第1の無機粒子)
(酸化物粒子)
 第1の無機粒子として、酸化物粒子が好ましい。酸化物粒子は屈折率が高く、光を乱反射させる効果が強いため、特に異常発熱などの高温度領域において輻射伝熱を抑制することができる。酸化物粒子としては、シリカ、チタニア、ジルコニア、ジルコン、チタン酸バリウム、酸化亜鉛及びアルミナから選択された少なくとも1種の粒子を使用することができる。特に、シリカは断熱性が高い成分であり、チタニアは他の金属酸化物と比較して屈折率が高い成分であって、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、酸化物粒子としてシリカ及びチタニアを用いることが最も好ましい。
 酸化物粒子の粒子径は、輻射熱を反射する効果に影響を与えることがあるため、平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。すなわち、酸化物粒子の平均一次粒子径が0.001μm以上であると、加熱に寄与する光の波長よりも十分に大きく、光を効率よく乱反射させるため、500℃以上の高温度領域において熱伝達抑制シート内における熱の輻射伝熱が抑制され、より一層断熱性を向上させることができる。一方、酸化物粒子の平均一次粒子径が50μm以下であると、圧縮されても粒子間の接点や数が増えず、伝導伝熱のパスを形成しにくいため、特に伝導伝熱が支配的な通常温度域の断熱性への影響を小さくすることができる。
 なお、本発明において平均一次粒子径は、顕微鏡で粒子を観察し、標準スケールと比較し、任意の粒子10個の平均をとることにより求めることができる。
(ナノ粒子)
 第1の無機粒子としてナノ粒子が好ましく、ナノ粒子は低密度であるため伝導伝熱を抑制し、更に空隙が細かく分散するため、対流伝熱を抑制する優れた断熱性を得ることができる。このため、通常の常温域の電池使用時において、隣接するナノ粒子間の熱の伝導を抑制することができる点で、ナノ粒子を使用することが好ましい。
 なお、ナノ粒子とは、球形又は球形に近い平均一次粒子径が1μm未満のナノメートルオーダーの粒子を表す。
 また、酸化物粒子として、平均一次粒子径が小さいナノ粒子を使用すると、電池セルの熱暴走に伴う膨張によって断熱材の内部密度が上がった場合であっても、断熱材の伝導伝熱の上昇を抑制することができる。これは、ナノ粒子が静電気による反発力で粒子間に細かな空隙ができやすく、かさ密度が低いため、クッション性があるように粒子が充填されるからであると考えられる。
 なお、第1の無機粒子としてナノ粒子を使用する場合に、上記ナノ粒子の定義に沿ったものであれば、材質について特に限定されない。例えば、シリカナノ粒子は、断熱性が高い材料であることに加えて、粒子同士の接点が小さいため、シリカナノ粒子により伝導される熱量は、粒子径が大きいシリカ粒子を使用した場合と比較して小さくなる。また、一般的に入手されるシリカナノ粒子は、かさ密度が0.1(g/cm)程度であるため、例えば、断熱材に対して大きな圧縮応力が加わった場合であっても、シリカナノ粒子同士の接点の大きさ(面積)や数が著しく大きくなることはなく、断熱性を維持することができる。したがって、ナノ粒子としてはシリカナノ粒子を使用することが好ましい。シリカナノ粒子としては、湿式シリカ、乾式シリカ及びエアロゲル等を使用することができる。
 ナノ粒子の平均一次粒子径を所定の範囲に限定すると、より一層高い断熱性を得ることができる。すなわち、ナノ粒子の平均一次粒子径を1nm以上100nm以下とすると、特に500℃未満の温度領域において、断熱材内における熱の対流伝熱及び伝導伝熱を抑制することができ、断熱性をより一層向上させることができる。また、圧縮応力が印加された場合であっても、ナノ粒子間に残った空隙と、多くの粒子間の接点が伝導伝熱を抑制し、熱伝達抑制シートの断熱性を維持することができる。また、ナノ粒子の平均一次粒子径は、2nm以上であることがより好ましく、3nm以上であることが更に好ましい。一方、ナノ粒子の平均一次粒子径は、50nm以下であることがより好ましく、10nm以下であることが更に好ましい。
(無機水和物粒子)
 無機水和物粒子は、発熱体からの熱を受けて熱分解開始温度以上になると熱分解し、自身が持つ結晶水を放出して発熱体及びその周囲の温度を下げる、所謂「吸熱作用」を発現する。また、結晶水を放出した後は多孔質体となり、無数の空気孔により断熱作用を発現する。
 無機水和物の具体例として、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、水酸化カルシウム(Ca(OH))、水酸化亜鉛(Zn(OH))、水酸化鉄(Fe(OH))、水酸化マンガン(Mn(OH))、水酸化ジルコニウム(Zr(OH))、水酸化ガリウム(Ga(OH))等が挙げられる。
 例えば、水酸化アルミニウムは約35%の結晶水を有しており、下記式に示すように、熱分解して結晶水を放出して吸熱作用を発現する。そして、結晶水を放出した後は多孔質体であるアルミナ(Al)となり、断熱材として機能する。
 2Al(OH)→Al+3H
 なお、熱暴走を起こした電池セルでは、200℃を超える温度に急上昇し、700℃付近まで温度上昇を続ける。したがって、無機粒子としては熱分解開始温度が200℃以上である無機水和物からなることが好ましい。
 上記に挙げた無機水和物の熱分解開始温度は、水酸化アルミニウムは約200℃、水酸化マグネシウムは約330℃、水酸化カルシウムは約580℃、水酸化亜鉛は約200℃、水酸化鉄は約350℃、水酸化マンガンは約300℃、水酸化ジルコニウムは約300℃、水酸化ガリウムは約300℃であり、いずれも熱暴走を起こした電池セルの急激な昇温の温度範囲とほぼ重なり、温度上昇を効率よく抑えることができることから、好ましい無機水和物であるといえる。
 また、無機水和物粒子の平均粒子径が大きすぎると、断熱材の中心付近にある無機水和物粒子が、その熱分解温度に達するまでにある程度の時間を要するため、断熱材の中心付近の無機水和物粒子が熱分解しきれない場合がある。このため、無機水和物粒子の平均二次粒子径は、0.01μm以上200μm以下であることが好ましく、0.05μm以上100μm以下であることがより好ましい。
(熱膨張性無機材料からなる粒子)
 熱膨張性無機材料としては、バーミキュライト、ベントナイト、雲母、パーライト等を挙げることができる。
(含水多孔質体からなる粒子)
 含水多孔質体の具体例としては、ゼオライト、カオリナイト、モンモリロナイト、酸性白土、珪藻土、湿式シリカ、乾式シリカ、エアロゲル、マイカ、バーミキュライト等が挙げられる。
(無機バルーン)
 無機バルーンが含まれると、500℃未満の温度領域において、断熱材内における熱の対流伝熱または伝導伝熱を抑制することができ、断熱材の断熱性をより一層向上させることができる。
 無機バルーンとしては、シラスバルーン、シリカバルーン、フライアッシュバルーン、バーライトバルーン、及びガラスバルーンから選択された少なくとも1種を用いることができる。
 無機バルーンの含有量としては、断熱材全質量に対し、60質量%以下が好ましい。
 また、無機バルーンの平均粒子径としては、1μm以上100μm以下が好ましい。
(第2の無機粒子)
 第2の無機粒子は、第1の無機粒子と材質や粒子径等が異なっていれば特に限定されない。第2の無機粒子としては、酸化物粒子、炭化物粒子、窒化物粒子、無機水和物粒子、シリカナノ粒子、金属酸化物粒子、マイクロポーラス粒子や中空シリカ粒子等の無機バルーン、熱膨張性無機材料からなる粒子、含水多孔質体からなる粒子等を使用することができ、これらの詳細については、上述のとおりである。
 なお、ナノ粒子は伝導伝熱が極めて小さいとともに、熱伝達抑制シートに圧縮応力が加わった場合であっても、優れた断熱性を維持することができる。また、チタニア等の金属酸化物粒子は、輻射熱を遮る効果が高い。さらに、大径の無機粒子と小径の無機粒子とを使用すると、大径の無機粒子同士の隙間に小径の無機粒子が入り込むことにより、より緻密な構造となり、熱伝達抑制効果を向上させることができる。したがって、上記第1の無機粒子として、ナノ粒子を使用した場合に、さらに、第2の無機粒子として、第1の無機粒子よりも大径である金属酸化物からなる粒子を、断熱材に含有させることが好ましい。
 金属酸化物としては、酸化ケイ素、酸化チタン、酸化アルミニウム、チタン酸バリウム、酸化亜鉛、ジルコン、酸化ジルコニウム等を挙げることがでる。特に、酸化チタン(チタニア)は他の金属酸化物と比較して屈折率が高い成分であり、500℃以上の高温度領域において光を乱反射させ輻射熱を遮る効果が高いため、チタニアを用いることが最も好ましい。
 第2の無機粒子の平均一次粒子径は、1μm以上50μm以下であると、500℃以上の高温度領域で効率よく輻射伝熱を抑制することができる。第2の無機粒子の平均一次粒子径は、5μm以上30μm以下であることが更に好ましく、10μm以下であることが最も好ましい。
(断熱材の製造方法)
 断熱材の形成材料は上記の通りであるが、断熱材を製造するには、抄造法を行うことが好ましい。すなわち、断熱材の形成材料である無機繊維や他の配合材料を水に分散させ、その分散液を脱水、成形、乾燥して製造する。
<防炎構造体の製造方法及び接合層>
 防炎構造体の製造は、断熱材をインサート部材とし、そこへ樹脂基材の形成材料をインサート成形する。図1に、得られる防炎構造体1の断面を模式的に示す。図示されるように、断熱材10の表層部において、無機繊維(ここでは第1の無機繊維11a、第2の無機繊維11b)や有機繊維12、無機粒子(ここでは第1の無機粒子13a、第2の無機粒子13b)などの隙間に、樹脂基材20の形成材料からなる溶融物が侵入し、硬化(一体化)している。この樹脂基材20の形成材料が侵入し、硬化(一体化)している部分が、接合層30である。
(接合層)
 接合層30は、前記樹脂基材の形成材料の、前記断熱材の形成材料に対する質量比(wt%)(樹脂基材の形成材料/断熱材の形成材料)が、断熱材10の厚さが増すと共に漸減する傾斜構造となっている。また、接合層30の厚さは、防炎構造体1の厚さの10~90%であれば、十分な接合強度が得られる。
<<2.防炎構造体の実施の形態2>>
 本実施の形態2では、断熱材が不融化繊維を含む。なお、樹脂基材は実施の形態1と同様であり、説明を省略する。
<断熱材>
(不融化繊維)
 不融化繊維としては、ポリアクリロニトリル、セルロース、ピッチなどの熱可塑性樹脂を不融化処理した繊維などが挙げられる。なお、不融化繊維とは、例えば不融化処理された繊維であり、不融化処理としては、放射線、電子線などを照射し架橋させる方法、酸素や水蒸気中で高温に曝し、酸素の作用により不融化させる方法などがある。
(炭素含有量)
 不融化繊維は、炭素含有量が55~95質量%であることが好ましい。炭素含有量が55質量%以上であると、熱分解による重量減少が既に進行しているので、熱分解による収縮は少なく、熱暴走時、火炎に直接さらされても、原形をとどめ、断熱性を維持することができる。炭素含有量が95質量%以下であると、炭素以外の成分を脱離させ炭素だけの構造に変化するために吸熱反応が起こるので、防炎構造体の裏面に熱が到達する時間を遅らせることができる。
 望ましい炭素含有量の下限は、60質量%以上である。また、望ましい炭素含有量の上限は90質量%以下、さらに望ましい炭素含有量の上限は85質量%以下である。
 炭素含有量は、熱処理することにより調整することができる。例えば150~300℃の範囲内の大気中あるいは酸素中での熱処理は、不融化をさらに促進するとともに炭素以外の成分を除去し炭素含有量を高めることができる。例えば300~1000℃の範囲内の熱処理は、縮合多環芳香族構造の形成を進行させるとともに分解ガスを発生し炭素含有量を高めることができる。
 なお、不融化繊維は、熱可塑性繊維を不融化した繊維に限定されない。上記炭素含有量の範囲であれば、無機繊維であってもよい。
(繊維形状)
 不融化繊維は短繊維からなり、これらが集成して全体の形態としてマット、抄造体、ブランケットを構成することが好ましい。
 短繊維であるとは、連続繊維ではないことを示している。連続繊維では、クロス、フィラメントワインディングのように繊維の配向方向が揃って繊維束を形成するのに対し、短繊維を用いることにより、繊維がランダムな方向を向いた集合体(マットやブランケット、抄造体)となる。そして、短繊維を用いた断熱材は、導電パスが短いので、炭素化の進んだ繊維や、熱暴走に伴って炭素化が進行しても、導電性を低くすることができる。また、繊維がランダムに配向し、繊維同士が点接触となりやすく、熱伝導を低くすることができる。
 抄造体は、不融化繊維のミルド繊維やチョップド繊維(繊維長0.01~10mm程度)を水に分散させ、抄造することによって得ることができる。「抄造」とは、「短繊維化した無機繊維を溶媒中(水)に分散させて混合液に必要に応じて、有機バインダ、無機バインダ及びpH調整剤等を添加し、底面にろ過用のメッシュが形成された成形器に混合液を流し込み、混合液中の溶媒を脱溶媒処理(脱水処理)すること」を指す。マットやブランケットは、繊維長10~1000mm程度の不融化繊維を積層し、圧縮することによって得ることができる。その際、全体の強度や形状を保持するために、バインダを添加してもよい。なお、バインダとしては、樹脂などの有機バインダ、セラミックス前駆体などの無機バインダなどが利用できる。
 また、不融化繊維は、平均繊維径が1~30μmであることが好ましい。不融化繊維の平均繊維径が1μm以上であると、高温に曝されても空気酸化、昇華の速度を抑制し、防炎の効果を長時間維持することができる。一方、不融化繊維の平均繊維径が30μm以下であると、高温に曝され炭素化しても一定のしなやかさを保持し、変形、衝撃が生じても破損しにくくすることができる。
 不融化繊維の平均繊維径は、以下の方法により求める。まず、成形後の防炎シートからピンセットを用いて、10本の不融化繊維を任意に抜き取る。抜き取った不融化繊維1本につき、任意の1点の繊維径をSEMで測定し、不融化繊維10本の繊維径の平均値を平均繊維径とする。
 本実施の形態においても、断熱材は、不融化繊維の他にも、実施の形態1と同様の有機繊維や無機粒子を含むことができる。
 断熱材は上記のように構成されるが、断熱材は繊維、好ましくは短繊維の集合体であるので、湿気や液漏れした電解液などを吸収しやすい。そこで、断熱材10の樹脂基材20とは反対側の面、例えば電池モジュールでは蓄電池と対向する面を、被覆層で覆うことが好ましい。
 被覆層は、樹脂、金属箔、マイカから選択される1以上の層を有することが好ましく、強度や浸透防止性能などに優れるようになる。被覆層との接合方法としては、接着剤を用いたり、樹脂の場合には熱融着することができ、金属箔の場合には蒸着することができる。
 なお、被覆層は、実施の形態1においても断熱材の被覆に用いることができる。
<接合層>
 防炎構造体の製造は、実施の形態1と同様にインサート成形を行うことで、断熱材の形成材料の隙間に樹脂基材の形成材料が侵入して接合層を形成している。また、傾斜構造や厚さも実施の形態1と同様である。
[電池モジュール]
 図2に示すように、電池モジュール100は、複数の蓄電池110を、電池パッケージ120に収容したものである。各蓄電池110の電極ターミナル111は、バスバー130により直列に接続されている。
 本発明では、電池パッケージ120として上記防炎構造体1で形成している。樹脂基材20が電池パッケージ120のハウジング本体となり、断熱材10が蓄電池110と対向する面となり、天蓋や側壁、底壁の全面に形成されている。なお、断熱材10は、天蓋、側壁及び底壁の少なくとも1つに形成されていてもよい。
 断熱材10と樹脂基材20とを接着剤で接合して作成した電池パッケージ120では、屈曲部Aにおいて断熱材10を、樹脂基材20の隅々に、隙間なく接着するのは困難である。これに対して、本発明のように断熱材10と樹脂基材20とをインサート成形して得た電池パッケージ120では、屈曲部Aでも、断熱材10が樹脂基材20に隙間なく接合している。そのため、電池パッケージ120の内部形状がより複雑になっても、良好に対応することができる。すなわち、本発明の防炎構造体は、形状追随性にも優れる。
以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年1月31日出願の日本特許出願(特願2022-013721)に基づくものであり、その内容は本出願の中に参照として援用される。
1 防炎構造体
10 断熱材
11a 第1の無機繊維
11b 第2の無機繊維
12 有機繊維
13a 第1の無機粒子
13b 第2の無機粒子
20 樹脂基材
30 接合層
100 電池モジュール
110 蓄電池
111 電極ターミナル
120 電池パッケージ
130 バスバー

Claims (21)

  1.  樹脂基材と、無機繊維または不融化繊維を含む断熱材とからなり、
     前記樹脂基材と前記断熱材とが接合してなる接合層において、前記断熱材の形成材料の隙間に、前記樹脂基材の形成材料が侵入して一体化している、防炎構造体。
  2.  前記樹脂基材は、電池ケースの天蓋、側壁及び底壁のうち少なくとも1つであることを特徴とする請求項1に記載の防炎構造体。
  3.  前記樹脂基材の母材は、AS樹脂、ABS樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリエチレンテレフタレート樹脂、ポリフェニルスルフィド樹脂、ポリカーボネート樹脂、アラミド樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂及びポリアセタール樹脂のうち少なくとも1つであることを特徴とする請求項1または2に記載の防炎構造体。
  4.  前記無機繊維は、平均繊維径、形状及びガラス転移点から選択された少なくとも1種の性状が互いに異なる第1の無機繊維及び第2の無機繊維を有する請求項1~3のいずれか1項に記載の防炎構造体。
  5.  前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きく、
     前記第1の無機繊維が線状又は針状であり、前記第2の無機繊維が樹枝状又は縮れ状であることを特徴とする請求項4に記載の防炎構造体。
  6.  前記第1の無機繊維は非晶質の繊維であり、
     前記第2の無機繊維は、前記第1の無機繊維よりガラス転移点が高い非晶質の繊維、及び、結晶質の繊維から選択される少なくとも1種の繊維であり、
     前記第1の無機繊維の平均繊維径が、前記第2の無機繊維の平均繊維径よりも大きいことを特徴とする請求項4または5に記載の防炎構造体。
  7.  前記不融化繊維は、炭素含有量が55~95質量%であることを特徴とする請求項1~6のいずれか1項に記載の防炎構造体。
  8.  前記不融化繊維は、短繊維からなることを特徴とする請求項1~7のいずれか1項に記載の防炎構造体。
  9.  前記不融化繊維は、平均繊維径が1~30μmであることを特徴とする請求項1~8のいずれか1項に記載の防炎構造体。
  10.  前記断熱材は、有機繊維を含むことを特徴とする請求項1~9のいずれか1項に記載の防炎構造体。
  11.  前記有機繊維は、前記樹脂基材の母材よりもガラス転移点が低いことを特徴とする請求項10記載の防炎構造体。
  12.  前記断熱材は、無機粒子を含むことを特徴とする請求項1~11のいずれか1項に記載の防炎構造体。
  13.  前記無機粒子は、互いに平均粒子径が異なる第1の無機粒子及び第2の無機粒子を含むことを特徴とする請求項12記載の防炎構造体。
  14.  前記第1の無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種からなることを特徴とする請求項13記載の防炎構造体。
  15.  前記第1の無機粒子は、ナノ粒子、中空粒子及び多孔質粒子から選択される少なくとも1種からなることを特徴とする請求項13または14に記載の防炎構造体。
  16.  前記第1の無機粒子は、酸化物粒子、炭化物粒子、窒化物粒子及び無機水和物粒子から選択される少なくとも1種からなる請求項13~15のいずれか1項に記載の防炎構造体。
  17.  前記第2の無機粒子は、金属酸化物粒子であることを特徴とする請求項13~16のいずれか1項に記載の防炎構造体。
  18.  前記接合層の厚さは、該防炎構造体の厚さの10~90%であることを特徴とする請求項1~17のいずれか1項に記載の防炎構造体。
  19.  前記接合層は、前記樹脂基材の形成材料の、前記断熱材の形成材料に対する質量比が、前記断熱材の厚さが増すと共に漸減する傾斜構造であることを特徴とする請求項1~18のいずれか1項に記載の防炎構造体。
  20.  請求項1~19のいずれか1項に記載の防炎構造体の製造方法であって、
     前記断熱材をインサート部材とし、前記樹脂基材の形成材料をインサート成形する、防炎構造体の製造方法。
  21.  蓄電池と、前記蓄電池を収容し、かつ、天蓋、側壁及び底壁の少なくとも1つが請求項1~19のいずれか1項に記載の防炎構造体である電池ケースとを備える、電池モジュール。
PCT/JP2023/002666 2022-01-31 2023-01-27 防炎構造体及びその製造方法、並びに電池モジュール WO2023145883A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013721 2022-01-31
JP2022-013721 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145883A1 true WO2023145883A1 (ja) 2023-08-03

Family

ID=87407048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002666 WO2023145883A1 (ja) 2022-01-31 2023-01-27 防炎構造体及びその製造方法、並びに電池モジュール

Country Status (2)

Country Link
CN (2) CN220349253U (ja)
WO (1) WO2023145883A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885363A (zh) * 2023-09-07 2023-10-13 合肥开关厂有限公司 隔爆智能可调节多功能锂电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208423A1 (ja) * 2013-06-26 2014-12-31 三菱瓦斯化学株式会社 難燃性シートまたはフィルム、及びそれを用いた製品及びその製造方法
WO2018061894A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 電池、電池モジュール及びセパレータの製造方法
JP2021034278A (ja) * 2019-08-27 2021-03-01 イビデン株式会社 組電池用断熱シート及び組電池
JP2021048069A (ja) * 2019-09-19 2021-03-25 イビデン株式会社 組電池用断熱シート及び組電池
JP2021195548A (ja) * 2020-06-11 2021-12-27 東レ株式会社 シート材料、それを用いたバッテリーケース、およびバッテリーケースの製造方法
WO2022009852A1 (ja) * 2020-07-10 2022-01-13 イビデン株式会社 熱伝達抑制シート及び組電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208423A1 (ja) * 2013-06-26 2014-12-31 三菱瓦斯化学株式会社 難燃性シートまたはフィルム、及びそれを用いた製品及びその製造方法
WO2018061894A1 (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 電池、電池モジュール及びセパレータの製造方法
JP2021034278A (ja) * 2019-08-27 2021-03-01 イビデン株式会社 組電池用断熱シート及び組電池
JP2021048069A (ja) * 2019-09-19 2021-03-25 イビデン株式会社 組電池用断熱シート及び組電池
JP2021195548A (ja) * 2020-06-11 2021-12-27 東レ株式会社 シート材料、それを用いたバッテリーケース、およびバッテリーケースの製造方法
WO2022009852A1 (ja) * 2020-07-10 2022-01-13 イビデン株式会社 熱伝達抑制シート及び組電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885363A (zh) * 2023-09-07 2023-10-13 合肥开关厂有限公司 隔爆智能可调节多功能锂电池
CN116885363B (zh) * 2023-09-07 2023-11-14 合肥开关厂有限公司 隔爆智能可调节多功能锂电池

Also Published As

Publication number Publication date
CN116512701A (zh) 2023-08-01
CN220349253U (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2022009852A1 (ja) 熱伝達抑制シート及び組電池
KR102434959B1 (ko) 열전달 억제 시트 및 조전지
WO2023145883A1 (ja) 防炎構造体及びその製造方法、並びに電池モジュール
WO2023127904A1 (ja) 熱伝達抑制シート及び組電池
JP7052139B1 (ja) 熱伝達抑制シート及び組電池
WO2023182384A1 (ja) 防炎構造体及びその製造方法、並びに電池モジュール
WO2023182385A1 (ja) 防炎材及びその製造方法、並びに電池モジュール
WO2023127905A1 (ja) 熱伝達抑制シート及び組電池
WO2023224125A1 (ja) バスバー及びその製造方法、並びに蓄電装置
CN219066951U (zh) 热传递抑制片以及电池组
CN219513215U (zh) 热传递抑制片以及电池组
JP7364739B2 (ja) 熱伝達抑制シート及び組電池
WO2023112972A1 (ja) 熱伝達抑制シート及びその製造方法、並びに組電池
JP2023170065A (ja) 防炎シート及びその製造方法、並びに電池モジュール
WO2023007790A1 (ja) 断熱シート、断熱シートの製造方法及び組電池
WO2023120545A1 (ja) 断熱シート及び組電池
JP2023170683A (ja) バスバー及び蓄電装置
JP2023170684A (ja) バスバー及び蓄電装置
JP2023170682A (ja) バスバー及び蓄電装置
JP2023171187A (ja) バスバー及びその製造方法、並びに蓄電装置
JP2023020832A (ja) 断熱シート、断熱シートの製造方法及び組電池
JP2023092423A (ja) 断熱シート及び組電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747093

Country of ref document: EP

Kind code of ref document: A1