WO2023007548A1 - エネルギ処置システム - Google Patents

エネルギ処置システム Download PDF

Info

Publication number
WO2023007548A1
WO2023007548A1 PCT/JP2021/027548 JP2021027548W WO2023007548A1 WO 2023007548 A1 WO2023007548 A1 WO 2023007548A1 JP 2021027548 W JP2021027548 W JP 2021027548W WO 2023007548 A1 WO2023007548 A1 WO 2023007548A1
Authority
WO
WIPO (PCT)
Prior art keywords
processor
power supply
treatment system
ultrasonic
phase difference
Prior art date
Application number
PCT/JP2021/027548
Other languages
English (en)
French (fr)
Inventor
禎嘉 高見
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to DE112021007732.5T priority Critical patent/DE112021007732T5/de
Priority to PCT/JP2021/027548 priority patent/WO2023007548A1/ja
Priority to CN202180100939.3A priority patent/CN117715600A/zh
Publication of WO2023007548A1 publication Critical patent/WO2023007548A1/ja
Priority to US18/416,238 priority patent/US20240156485A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320093Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Definitions

  • the present invention relates to an energy treatment system.
  • Patent Literature 1 there is known an energy treatment system that applies treatment energy to a living tissue to coagulate and incise the living tissue (see, for example, Patent Document 1).
  • the energy treatment system described in Patent Literature 1 employs ultrasonic energy as treatment energy.
  • the energy treatment system includes a treatment instrument and a control device described below.
  • the treatment instrument includes an ultrasonic transducer that generates ultrasonic vibrations by electric power from the control device, and first and second gripping pieces described below.
  • the first grasping piece transmits the ultrasonic vibrations and applies the ultrasonic vibrations to the living tissue, in other words, treats the living tissue by applying ultrasonic energy to the living tissue.
  • the second gripping piece grips the living tissue with the first gripping piece.
  • the control device includes a power supply that outputs power for generating ultrasonic vibrations, a detection circuit that detects the ultrasonic impedance value of the ultrasonic transducer, and a processor that controls the operation of the power supply.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide an energy treatment system that can accurately detect completion of incision of living tissue.
  • an energy treatment system includes a first power supply that outputs power for generating ultrasonic vibrations, and a second power supply that outputs high-frequency voltage and high-frequency current.
  • a power supply an ultrasonic vibrator for generating ultrasonic vibrations by the power from the first power supply, transmitting the ultrasonic vibrations generated by the ultrasonic vibrator, and treating living tissue with the ultrasonic vibrations.
  • An energy treatment system comprises: a first power supply that outputs power for generating ultrasonic vibration; a second power supply that outputs high-frequency voltage and high-frequency current; an ultrasonic vibrator that generates sonic vibrations, transmits the ultrasonic vibrations generated by the ultrasonic vibrator, treats a biological tissue with the ultrasonic vibrations, and supplies the high-frequency voltage and the A first gripping piece having a first electrode to which a high-frequency current is supplied, and a second electrode to which the high-frequency voltage and the high-frequency current are supplied from the second power supply.
  • a second gripping piece that grips the biological tissue between the two; a first detection circuit that detects the electrical characteristic value of the ultrasonic transducer over time; A second detection circuit for detecting the high-frequency voltage and the high-frequency current supplied to the electrode and the second electrode over time, and for controlling the operation of the first power supply and the second power supply. and a processor, wherein the processor changes a method of determining whether or not the incision of the living tissue is completed based on the detection result of the second detection circuit.
  • FIG. 1 is a diagram showing an energy treatment system according to Embodiment 1.
  • FIG. 2 is a diagram showing a vibrator unit.
  • FIG. 3 is a block diagram showing the configuration of the control device.
  • FIG. 4 is a flow chart showing the control method executed by the processor.
  • FIG. 5 is a diagram showing the behavior of the HF phase difference and the HF impedance value in the HF signal when the control method shown in FIG. 4 is executed.
  • FIG. 6 is a diagram for explaining the first and second determination processes.
  • 7 is a flowchart illustrating a control method executed by a processor according to Embodiment 2.
  • FIG. 8 is a flowchart illustrating a control method executed by a processor according to Embodiment 3.
  • FIG. 9 is a diagram for explaining steps S12 and S13.
  • 10 is a flowchart illustrating a control method executed by a processor according to Embodiment 4.
  • FIG. 11 is a diagram for explaining steps S12A and S13A.
  • FIG. 1 is a diagram showing an energy treatment system 1 according to Embodiment 1.
  • the energy treatment system 1 treats a target site (hereinafter referred to as a target site) in a living tissue by applying treatment energy to the target site.
  • a target site a target site
  • ultrasonic energy and high-frequency energy are employed as the treatment energy.
  • the treatment means, for example, coagulation and incision of the target site.
  • This energy treatment system 1 includes a treatment instrument 2 and a control device 3, as shown in FIG.
  • the treatment instrument 2 is, for example, an ultrasonic treatment instrument using a BLT (bolt-tightened Langevin transducer) for treating a target site through the abdominal wall.
  • the treatment instrument 2 includes a handle 4, a sheath 5, jaws 6, a vibrator unit 7, and a vibration transmission member 8, as shown in FIG.
  • the handle 4 is a portion that is held by the operator's hand.
  • the handle 4 is provided with an operation knob 41 and an operation button 42 as shown in FIG.
  • the sheath 5 has a cylindrical shape.
  • the central axis of the sheath 5 is described as the central axis Ax (FIG. 1).
  • one side along the central axis Ax is referred to as a distal side A1 (FIG. 1), and the other side is referred to as a proximal side A2 (FIG. 1).
  • the sheath 5 is attached to the handle 4 by inserting a part of the proximal side A2 into the handle 4 from the distal side A1 of the handle 4 .
  • FIG. 2 is a cross-sectional view showing the vibrator unit 7. As shown in FIG. Specifically, FIG. 2 is a cross-sectional view of the vibrator unit 7 taken along a plane including the central axis Ax.
  • the transducer unit 7 includes a transducer case 71, an ultrasonic transducer 72, and a horn 73, as shown in FIG.
  • the transducer case 71 extends linearly along the central axis Ax, and is attached to the handle 4 by inserting a portion of the distal end side A1 into the inside of the handle 4 from the proximal end side A2 of the handle 4. mounted against.
  • the end on the distal side A ⁇ b>1 is connected to the end on the proximal side A ⁇ b>2 of the sheath 5 .
  • the ultrasonic transducer 72 is housed inside the transducer case 71 and generates ultrasonic vibration under the control of the control device 3 .
  • the ultrasonic vibration is a BLT having a plurality of piezoelectric elements 721 to 724 stacked along the central axis Ax.
  • the piezoelectric elements are composed of four piezoelectric elements 721 to 724, but the number is not limited to four, and other numbers may be used.
  • the horn 73 is housed inside the transducer case 71 and expands the amplitude of the ultrasonic vibration generated by the ultrasonic transducer 72 .
  • the horn 73 has an elongated shape extending linearly along the central axis Ax. As shown in FIG. 2, the horn 73 has a structure in which a first mounting portion 731, a cross-sectional area changing portion 732, and a second mounting portion 733 are arranged from the proximal side A2 to the distal side A1. have.
  • the first mounting portion 731 is a portion to which the ultrasonic transducer 72 is mounted.
  • the cross-sectional area changing portion 732 has a shape in which the cross-sectional area decreases toward the distal end side A1, and is a portion that expands the amplitude of ultrasonic vibration.
  • the second mounting portion 733 is a portion to which the vibration transmission member 8 is mounted.
  • the jaws 6 and the vibration transmission member 8 grip the target site and treat the target site by applying ultrasonic energy and high-frequency energy to the target site.
  • the jaw 6 is made of a conductive material such as metal, and is rotatably attached to the end of the sheath 5 on the distal side A1.
  • the jaw 6 corresponds to a second gripping piece according to the present invention, and grips the target site with the treatment portion 81 ( FIG. 1 ) forming the vibration transmitting member 8 .
  • an opening/closing mechanism for opening/closing the jaw 6 with respect to the treatment portion 81 is provided inside the handle 4 and the sheath 5 described above according to the operation of the operation knob 41 by the operator. It is A resin pad is attached to the surface of the jaw 6 facing the treatment portion 81 . Since this pad has electrical insulation properties, it has a function of preventing a short circuit between the jaw 6 and the vibration transmitting member 8 . Further, the pad has a function of preventing the ultrasonically vibrating vibration transmitting member 8 from colliding with the jaws 6 and being damaged when the target site is completely incised by the ultrasonic vibrations.
  • the vibration transmission member 8 is made of a conductive material such as metal, and has an elongated shape extending linearly along the central axis Ax. As shown in FIG. 1, the vibration transmitting member 8 is inserted into the sheath 5 with the distal end side A1 protruding outside. 2, the end portion of the vibration transmitting member 8 on the base end side A2 is connected to the second mounting portion 733. As shown in FIG. The vibration transmitting member 8 transmits ultrasonic vibration generated by the ultrasonic transducer 72 and transmitted through the horn 73 from the base end side A2 to the end of the tip side A1, and the end of the tip side A1 is transmitted. and the jaw 6, the target site is treated by applying the ultrasonic vibration to the target site. That is, the target site is treated by applying ultrasonic energy from the end on the distal side A1.
  • the end portion on the distal side A1 functions as a treatment portion 81 (FIG. 1) that treats the target portion while gripping the target portion with the jaws 6. As shown in FIG.
  • This vibration transmitting member 8 corresponds to the first gripping piece according to the present invention.
  • the control device 3 is electrically connected to the treatment instrument 2 by an electric cable C (FIG. 1), and controls the operation of the treatment instrument 2 in a centralized manner. A detailed configuration of the control device 3 will be described later in "Configuration of Control Device”.
  • FIG. 3 is a block diagram showing the configuration of the control device 3.
  • the control device 3 includes a first power supply 31, a first detection circuit 32, a first ADC (Analog-to-Digital Converter) 33, a second power supply 34, a second 2 detection circuit 35 , a second ADC 36 , a notification unit 37 and a processor 38 .
  • ADC Analog-to-Digital Converter
  • the first power supply 31 supplies a drive signal, which is electric power for generating ultrasonic vibration, to the ultrasonic transducer 72 via the pair of transducer lead wires C1 and C1'. Output for Thereby, the ultrasonic transducer 72 generates ultrasonic vibrations.
  • the drive signal output from the first power supply 31 to the ultrasonic transducer 72 is referred to as an input drive signal, and the input drive signal is changed according to the frequency response of the ultrasonic transducer 72.
  • the resulting signal is referred to as the output drive signal.
  • the first detection circuit 32 has a first voltage detection circuit 321, which is a voltage sensor that detects a voltage value, and a first current detection circuit 322, which is a current sensor that detects a current value.
  • a US signal (analog signal) corresponding to is detected over time.
  • the US signal corresponds to the "electrical characteristic value of the ultrasonic transducer" according to the present invention.
  • the US signal includes a voltage phase signal in the output drive signal (hereinafter referred to as a US voltage phase signal), a current phase signal in the output drive signal (hereinafter referred to as a US current phase signal), and the output Phase difference between voltage and current in the drive signal (hereinafter referred to as US phase difference), current value in the output drive signal (hereinafter referred to as US current), voltage value in the output drive signal (hereinafter referred to as US voltage) ), a power value in the output drive signal (hereinafter referred to as US power), an impedance value calculated from the US current and the US voltage (hereinafter referred to as ultrasonic impedance value), and the like.
  • a voltage phase signal in the output drive signal hereinafter referred to as a US voltage phase signal
  • a US current phase signal in the output drive signal hereinafter referred to as a US current phase signal
  • US phase difference the output Phase difference between voltage and current in the drive signal
  • US current current
  • US voltage voltage
  • the first ADC 33 converts the US signal (analog signal) output from the first detection circuit 32 into a digital signal.
  • the first ADC 33 then outputs the converted US signal (digital signal) to the processor 38 .
  • the vibrator case 71 is provided with a first conductive portion 711 extending from the end on the proximal side A2 to the end on the distal side A1.
  • the sheath 5 extends from the end on the proximal side A2 to the end on the distal side A1 to electrically connect the first conductive portion 711 and the jaw 6.
  • a second conductive portion is provided for conducting.
  • a high-frequency lead wire C2 constituting the electric cable C is joined to the end portion of the first conductive portion 711 on the base end side A2.
  • a high-frequency lead wire C2' that constitutes the electric cable C is joined to the first mounting portion 731.
  • the second power supply 34 is connected to the jaw by way of the pair of high-frequency lead wires C2, C2', the first conductive portion 711, the second conductive portion, and the horn 73.
  • a high frequency current and a high frequency voltage are output between 6 and the vibration transmitting member 8 .
  • a high-frequency current flows through the target site gripped between the jaw 6 and the treatment section 81 . That is, high-frequency energy is applied to the target site. Then, the target site is treated by generating Joule heat due to the flow of the high-frequency current.
  • the vibration transmitting member 8 corresponds to the first electrode according to the present invention.
  • the jaw 6 corresponds to the second electrode according to the present invention.
  • the second detection circuit 35 has a second voltage detection circuit 351 that is a voltage sensor that detects a voltage value, and a second current detection circuit 352 that is a current sensor that detects a current value.
  • An HF signal corresponding to the high-frequency current and high-frequency voltage output from the power supply 34 to the jaw 6 and the treatment section 81 is detected over time.
  • the HF signal includes a high-frequency current (hereinafter referred to as HF current) and a high-frequency voltage (hereinafter referred to as HF voltage) output from the second power supply 34 to the jaw 6 and the treatment portion 81,
  • HF current high-frequency current
  • HF voltage high-frequency voltage
  • HF power high-frequency power calculated from the HF current and the HF voltage
  • impedance value calculated from the HF current and the HF voltage hereinafter referred to as HF impedance value
  • the HF current and A phase difference with the HF voltage hereinafter referred to as HF phase difference
  • the second ADC 36 converts the HF signal (analog signal) output from the second detection circuit 35 into a digital signal.
  • the second ADC 36 then outputs the converted HF signal (digital signal) to the processor 38 .
  • the reporting unit 37 reports predetermined information under the control of the processor 38 .
  • the notification unit 37 includes, for example, an LED (Light Emitting Diode) that notifies predetermined information by lighting, blinking, or the color when lit, a display device that displays predetermined information, and outputs predetermined information by voice.
  • LED Light Emitting Diode
  • a speaker or the like to be used can be exemplified. Note that the notification unit 37 may be provided in the control device 3 as shown in FIG. 3 or may be provided in the treatment instrument 2 .
  • the processor 38 is composed of, for example, a CPU (Central Processing Unit), FPGA (Field-Programmable Gate Array), etc., and controls the operation of the entire energy treatment system 1 according to a program stored in a memory (not shown). Note that the detailed functions of the processor 38 will be described later in the "control method executed by the processor" section.
  • a CPU Central Processing Unit
  • FPGA Field-Programmable Gate Array
  • FIG. 4 is a flow chart showing the control method executed by processor 38 .
  • a method of determining completion of incision of a target portion gripped between the jaws 6 and the treatment section 81 will mainly be explained.
  • step S1 when the operator presses the operation button 42, the processor 38 starts treatment of the target site gripped between the jaws 6 and the treatment section 81 (step S1). That is, the processor 38 controls the operation of the first and second power sources 31 and 34 when the operator presses the operation button 42 to apply ultrasonic energy and high-frequency energy to the target site. Start.
  • FIG. 5 is a diagram showing the behavior of the HF phase difference and the HF impedance value in the HF signal when the control method shown in FIG. 4 is executed.
  • the behavior of the HF phase difference is indicated by a dashed line
  • the behavior of the HF impedance value is indicated by a solid line.
  • the behavior of the HF phase difference is represented by Cos ⁇ .
  • the HF phase difference described below also means Cos ⁇ .
  • time TC indicates the time when the incision of the target site is completed.
  • the HF impedance value exhibits the following behavior in the initial stage after treatment of the target site is started. Specifically, the HF impedance value gradually decreases and takes a minimum value when the water content of the target portion reaches a boiling state. Further, the HF impedance value turns to increase as the treatment of the target site continues, because the water in the target site evaporates. In addition, in FIG. 5, since the order of the vertical axis is large, the above-described behavior of the HF impedance value at the initial stage is not sufficiently shown.
  • the HF impedance value sharply increases as the target site begins to be incised, as shown in FIG. 5, and then converges.
  • the HF phase difference gradually decreases from 1 (0°) when treatment of the target site is started.
  • the HF phase difference abruptly decreases as the target site begins to be incised, and then converges near 0 (near 90°).
  • step S3 the processor 38 starts calculating the variation in the HF phase difference detected by the second detection circuit 35 (step S3).
  • step S3 is illustrated as being executed after step S2, but in reality, step S2 and step S3 are executed substantially simultaneously.
  • the processor 38 calculates the variance s2 of the HF phase difference as the variation of the HF phase difference.
  • processor 38 calculates the variance s 2 of the HF phase difference according to the following equation (1).
  • n means the number of difference data (HF phase difference) for obtaining the variance s2, and is 3 or more.
  • x i is the value of each data (HF phase difference).
  • n is not limited to 10, and may be 3 or more.
  • the sampling period of the HF phase difference used when calculating the variance s2 of the HF phase difference is not limited to 50 ms, and may be any other period.
  • FIG. 6 is a diagram for explaining the first and second determination processes. Specifically, FIG . 6 is a diagram showing the behavior of the ultrasonic impedance value and the dispersion s2 of the HF phase difference when the control method shown in FIG. 4 is executed. In FIG . 6, the behavior of the ultrasonic impedance value is indicated by a solid line, and the behavior of the variance s2 of the HF phase difference is indicated by a dashed line.
  • the ultrasonic impedance value which is the US signal
  • the ultrasonic impedance value changes according to the load on the vibration transmission member 8 , in other words, the load on the ultrasonic transducer 72 connected to the vibration transmission member 8 .
  • the pressing force from the jaws 6 to the treatment portion 81 gradually increases due to changes in the state of the target portion between the jaws 6 and the treatment portion 81 after treatment of the target portion is started. Therefore, the load on the vibration transmitting member 8 gradually increases, and as shown in FIG. 6, the ultrasonic impedance value also gradually increases with time.
  • the gradual increase over time means that the ultrasonic impedance value gradually increases as time progresses, and the ultrasonic impedance value may gradually increase while including minute increases and decreases of several tens of ⁇ or less. included.
  • the jaw 6 is positioned near the treatment section 81, so that ultrasonic vibration of the treatment section 81 generates Due to frictional heat, the surface of the pad provided on the jaw 6 is modified. Therefore, the load on the vibration transmitting member 8 gradually decreases, and as shown in FIG. 6, the ultrasonic impedance value gradually decreases over time from the time t1.
  • the gradual decrease over time means that the ultrasonic impedance value gradually decreases as time progresses, and the ultrasonic impedance value may gradually decrease while including minute increases and decreases of several tens of ⁇ or less. included. That is, the ultrasonic impedance value peaks at the time t1.
  • the processor 38 first detects the gradual decrease start time (time t1 in FIG. 6) at which the ultrasonic impedance value starts to gradually decrease (hereinafter referred to as temporary peak detection process). Also, the processor 38 stores the ultrasonic impedance value Z1 (FIG. 6) at the start of the gradual decrease in a memory (not shown) as a provisional peak value. Next, the processor 38 calculates the difference ⁇ 1real between the ultrasonic impedance value at time t1+ ⁇ T1, which is a preset reference time ⁇ T1 after the gradual decrease start time t1, and the temporary peak value (ultrasonic impedance value Z1) stored in the memory. Calculate Next, the processor 38 determines whether or not the difference ⁇ 1real is greater than or equal to a preset threshold ⁇ 1.
  • the processor 38 determines that the difference ⁇ 1real is equal to or greater than the threshold ⁇ 1
  • the processor 38 recognizes that the temporary peak value detected at the gradual decrease start time t1 is the peak resulting from the completion of the incision of the target site, and the first In the determination process, it is determined that the incision of the target site has been completed.
  • the processor 38 determines that the difference ⁇ 1real is less than the threshold ⁇ 1, it recognizes that the temporary peak value detected at the time t1 when the gradual decrease is started is not the peak resulting from the completion of the incision of the target site, and repeats the above-described return to the tentative peak detection process.
  • the "predetermined condition" according to the present invention is that the ultrasonic impedance value has decreased by a threshold value ⁇ 1 or more after a certain time ⁇ T1 from the time t1 when the gradual decrease was started. That is, the threshold ⁇ 1 corresponds to the first threshold according to the invention.
  • the processor 38 executes a second determination process as described below.
  • the variance s2 of the HF phase difference abruptly increases as the target region begins to be incised, decreases abruptly as the incision of the target region approaches, and then converges.
  • the processor 38 always monitors whether or not the HF impedance value, which is the HF signal, exceeds the threshold Th1 (FIG. 5).
  • the processor 38 compares the variance s2 of the HF phase difference with the threshold Th2 ( FIG . 6) to converge the variance of the HF phase difference. Whether or not the state is reached is constantly monitored (hereinafter referred to as convergence monitoring processing). In the first embodiment, the processor 38 determines that the convergence state is reached when the variance s2 of the HF phase difference is equal to or less than the threshold Th2.
  • the processor 38 determines that the variance s2 of the HF phase difference has converged, it determines in the second determination process that the target site has been incised. On the other hand, when the processor 38 determines that the variance s2 of the HF phase difference is not in a converged state, it continues the convergence monitoring process described above.
  • step S5 If it is determined in both the first and second determination processes that the target site has been incised (step S5: Yes), the processor 38 executes the following lowering operation and warning operation (step S6 ). After this, the processor 38 completes this control flow.
  • step S6 the processor 38 outputs electric power (driving signal) from the first power supply 31 to the ultrasonic transducer 72, and outputs high-frequency current and high-frequency voltage from the second power supply 34 to the jaws 6 and the vibration transmission member 8.
  • the processor 38 stops the operation of the first and second power sources 31 and 34, that is, the output from the first power source 31 to the ultrasonic transducer 72 and the second power source 34 to stop the output to the jaws 6 and the vibration transmitting member 8. Also, in step S6, the processor 38 executes a warning operation to notify the notification unit 37 of information indicating that the incision of the target site has been completed.
  • Embodiment 1 the following effects are obtained.
  • the first determination process for judging the completion of incision of a target portion using the ultrasonic impedance value when the target portion is thin (the size of the target portion is small), the judgment accuracy of the incision completion judgment is compared.
  • the determination accuracy of the incision completion determination is relatively low.
  • the second determination process for determining the completion of incision of the target site using the variation in the HF phase difference when the target site is thick (the size of the target site is large), the determination accuracy of the incision completion determination is is relatively high.
  • the processor 38 executes the lowering operation when it is determined in both the first and second determination processes that the target site has been incised. Therefore, it is possible to compensate for the accuracy of the incision completion determination in the second determination process for the target part for which the accuracy of the incision completion determination in the first determination process is relatively low. Completion of incision of the target site can be detected with high accuracy.
  • the processor 38 determines that the incision of the target site is completed in both the first and second determination processes, the warning operation is performed in addition to the lowering operation. do. Therefore, it is possible to make the operator or the like clearly recognize the completion of the incision of the target site.
  • FIG. 7 is a flowchart showing a control method executed by processor 38 according to the second embodiment.
  • the control method executed by the processor 38 is changed from the above-described first embodiment.
  • steps S7 to S11 are added to the control method (FIG. 4) described in the first embodiment. there is Therefore, only steps S7 to S11 will be described below.
  • Step S7 is executed before step S1.
  • the processor 38 executes the process of determining the target region gripped between the jaw 6 and the treatment section 81 as described below. Specifically, the processor 38 controls the operation of the second power supply 34 to output constant power to the jaws 6 and the vibration transmission member 8 for a constant time (for example, 100 [msec]).
  • the constant power is a level of power that does not cause thermal denaturation of the target site.
  • the processor 38 detects the HF signal detected by the second detection circuit 35 while the second power supply 34 is outputting the aforementioned constant power to the jaws 6 and the vibration transmission member 8.
  • the impedance values are sequentially stored in a memory (not shown).
  • the processor 38 sequentially averages a plurality of HF impedance values stored in a memory (not shown) for the last period (for example, 20 [msec]) of the above-mentioned constant time, thereby obtaining an initial impedance value. calculate.
  • the initial impedance value differs between the small size S tissue and the large size L size tissue in the target region.
  • the initial impedance value for S size tissue is less than the predetermined discrimination threshold.
  • the initial impedance value of the L size tissue indicates a value larger than the discrimination threshold. Then, the processor 38 compares the calculated initial impedance with the above-described discrimination threshold to determine whether the target site gripped between the jaw 6 and the treatment section 81 is an S size tissue or an L size tissue. A discrimination process for discriminating is executed.
  • Step S8 is executed after step S1. Specifically, the processor 38 determines whether or not the target site gripped between the jaw 6 and the treatment section 81 is determined to be S size tissue in the determination processing of step S7. Then, when the processor 38 determines that the tissue is the L size tissue (step S8: No), the processor 38 sequentially executes steps S2 to S6. That is, when the processor 38 determines that the tissue is L size tissue (step S8: No), the second determination method according to the present invention performs both the first and second determination processes (step S4). to select.
  • step S8: Yes the processor 38 controls the operation of the first detection circuit 32 to start detection of the US signal (step S9). 1 determination processing is executed (step S10). That is, when the processor 38 determines that the tissue is S size tissue (step S8: Yes), the processor 38 executes only the first determination process (step S10) and selects the first determination method according to the present invention. Then, when it is determined that the incision of the target site has been completed only in the first determination process (step S11: Yes), the processor 38 proceeds to step S6.
  • the processor 38 changes the determination method for executing the lowering operation based on the detection result by the second detection circuit 35 . Specifically, processor 38 determines whether the target region is L size tissue or S size tissue based on the initial impedance value. Then, the processor 38 executes both the first and second determination processes in the case of the L-size tissue, and executes only the first determination process in the case of the S-size tissue. That is, since only the first determination process can be executed for the S size tissue for which the determination accuracy of the incision completion determination in the first determination process is relatively high, the second determination process is performed for the S size tissue. no need to run either. Therefore, the processing load on the processor 38 can be reduced.
  • FIG. 8 is a flowchart showing a control method executed by processor 38 according to the third embodiment.
  • the control method executed by the processor 38 is changed from the above-described second embodiment.
  • steps S12 and S13 are added to the control method (FIG. 7) described in the second embodiment. there is Therefore, only steps S12 and S13 will be described below.
  • Steps S12 and S13 are executed when it is determined to be an L size tissue (step S8: No) and when it is determined to be an S size tissue (step S8: Yes). Then, in step S12, the processor 38 changes the first threshold according to the present invention used in the first determination process to a value corresponding to L size tissue. On the other hand, in step S13, the processor 38 changes the first threshold according to the present invention used in the first determination process to a value corresponding to S size tissue.
  • the first threshold according to the present invention is the threshold ⁇ 1 and the reference time ⁇ T1.
  • FIG. 9 is a diagram for explaining steps S12 and S13. Specifically, FIG. 9 is a diagram corresponding to FIG. In FIG. 9, the behavior of the ultrasonic impedance value when the target site is L size tissue is indicated by a solid line, and the behavior of the ultrasonic impedance value when the target site is S size tissue is indicated by a dashed line. ing. Specifically, when the processor 38 determines that the tissue is L size tissue (step S8: No), in step S12, the threshold value ⁇ 1 is set to the threshold value ⁇ 1L (FIG. 9) corresponding to the L size tissue, The reference time ⁇ T1 is set to the reference time ⁇ T1L (FIG. 9) corresponding to the L size tissue.
  • step S13 the threshold value ⁇ 1 is set to the threshold value ⁇ 1S (FIG. 9) corresponding to the S size tissue, and the reference time ⁇ T1 is set to a reference time ⁇ T1S (FIG. 9) corresponding to S size tissue.
  • the threshold ⁇ 1L is a value larger than the threshold ⁇ 1S, as shown in FIG.
  • the reference time ⁇ T1L is a value larger than the reference time ⁇ T1S.
  • the same effects as those of the second embodiment described above are obtained.
  • the processor 38 changes the first threshold according to the present invention used in the first determination process based on the detection result by the second detection circuit 35. .
  • the processor 38 determines that the tissue is S size tissue (step S8: Yes)
  • the processor 38 sets the threshold ⁇ 1 and the reference time ⁇ T1 to the threshold ⁇ 1S and the reference time ⁇ T1S, respectively.
  • the processor 38 determines that the tissue is L size tissue (step S8: No)
  • the processor 38 sets the threshold ⁇ 1 and the reference time ⁇ T1 to a threshold ⁇ 1L and a reference time ⁇ T1L that are larger than the threshold ⁇ 1S and the reference time ⁇ T1S, respectively. . Therefore, when the target site is an S size tissue, the incision determination can be performed after the reference time ⁇ T1S from the time t2 when the ultrasonic impedance value starts to gradually decrease.
  • incision determination can be performed after the reference time ⁇ T1L from the time t1 when the ultrasonic impedance value starts to gradually decrease, and it is determined that the incision of the target site has been reliably completed. It becomes possible to
  • FIG. 10 is a flow chart showing a control method executed by the processor 38 according to the fourth embodiment.
  • the control method executed by processor 38 is changed from Embodiment 3 described above.
  • steps S12, S13, S9 to S11 are performed in contrast to the control method (FIG. 8) described in the third embodiment.
  • steps S12A, S13A, S9A to S11A are adopted, and step S14 is added. Therefore, only steps S12A, S13A, S9A to S11A, and S14 will be described below.
  • FIG. 11 is a diagram for explaining steps S12A and S13A. Specifically, FIG. 11 is a diagram corresponding to FIG.
  • processor 38 changes the first threshold according to the present invention used in the first determination process to a value corresponding to L size tissue, as in the third embodiment described above. Furthermore, the processor 38 changes the second threshold according to the present invention used in the second determination process to a value corresponding to the L size tissue.
  • the second threshold according to the present invention is threshold Th2.
  • processor 38 determines that the tissue is L size tissue (step S8: No)
  • processor 38 sets threshold ⁇ 1 and reference time ⁇ T1 to threshold ⁇ 1L and A reference time ⁇ T1L is set for each. Further, the processor 38 sets the threshold Th2 to a threshold Th2L (FIG. 11) corresponding to L size tissue.
  • step S13A the threshold ⁇ 1 and the reference time ⁇ T1 are set to the threshold ⁇ 1S and the reference time ⁇ T1, as in the third embodiment described above. ⁇ T1S, respectively. Further, the processor 38 sets the threshold Th2 to a threshold Th2S (FIG. 11) corresponding to S size tissue.
  • the threshold Th2S is a value larger than the threshold Th2L, as shown in FIG.
  • step S9A the processor 38 controls the operations of the first and second detection circuits 32 and 35 to start detecting US and HF signals, as in step S2.
  • step S9A the processor 38 starts calculating the variation in the HF phase difference detected by the second detection circuit 35, as in step S3 (step S14).
  • step S14 processor 38 executes both the first and second determination processes in step S10A, as in step S4.
  • step S10A the processor 38 determines in step S11A whether or not it has been determined in both the first and second determination processes that the incision of the target site has been completed, as in step S5. Then, in the case of "No" in step S11A, step S10A is continued. On the other hand, if "Yes" in step S11A, the process proceeds to step S6.
  • the processor 38 changes the second threshold according to the present invention used in the second determination process based on the detection result by the second detection circuit 35. . Specifically, when the processor 38 determines that the tissue is the S size tissue (step S8: Yes), the processor 38 compares it to the case of determining the tissue is the L size tissue (step S8: No), and sets a larger threshold value Th2 ( threshold Th2S). Therefore, in the case where the target site is S-size tissue, even if a configuration that executes both the first and second determination processes is adopted, it is possible to wait unnecessarily long for the completion of the incision of the target site. never
  • the present invention should not be limited only to the first to fourth embodiments described above.
  • the processor 38 executes the warning operation in addition to the lowering operation in step S6, but the present invention is not limited to this, and may execute only the lowering operation. Alternatively, processor 38 may perform only a warning operation in step S6.
  • the ultrasonic impedance value is used as the electrical impedance value of the ultrasonic transducer 72.
  • the present invention is not limited to this, and US phase difference, US voltage, US current, or US power may be used. I don't mind if you hire me.
  • the dispersion s 2 of the HF phase difference was adopted as the variation in the HF phase difference, but not limited to this, the standard deviation of the HF phase difference, or the deviation of the HF phase difference may be adopted.
  • the standard deviation of the HF retardation is the positive square root of the variance s2 of the HF retardation.
  • the deviation of the HF phase difference is calculated by the following equation (2). Note that in equation (2), n means the number of data (HF phase difference) and is 2 or more. x i is the value of each data (HF phase difference).
  • Embodiments 1 to 4 described above ultrasonic energy and high-frequency energy were adopted as the treatment energy applied to the target site. Thermal energy may also be employed. Note that "applying thermal energy to the target site” means transferring heat generated by the heater to the target site.
  • both ultrasonic energy and high-frequency energy are applied to the target site in step S1, but the present invention is not limited to this.
  • a mode in which only ultrasonic energy is applied to the target site hereinafter referred to as an ultrasonic single mode
  • a mode in which ultrasonic energy and high frequency waves are applied to the target site It may be configured to be switchable to a mode in which both of the energies are applied (hereinafter referred to as a combine mode).
  • a mode in which both of the energies are applied hereinafter referred to as a combine mode.
  • the single ultrasound mode it is preferable to decrease the threshold ⁇ 1 and increase the reference time ⁇ T1.
  • the combine mode it is preferable to increase the threshold ⁇ 1 and decrease the reference time ⁇ T1.
  • step S7 the target part discrimination processing is executed based on the initial impedance value, but the present invention is not limited to this.
  • the target region determination process may be executed based on HF voltage, HF current, HF power, or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

エネルギ処置システム1を構成するプロセッサ38は、第1の検出回路32によって検出された超音波振動子72の電気的特性値が所定の条件を満たしたか否かを判定し、第2の検出回路35によって検出された第2の電源34から第1,第2の電極6,8への高周波電圧及び高周波電流の位相差のバラつきが収束した収束状態になったか否かを判定し、電気的特性値が当該所定の条件を満たしたと判定し、かつ、当該位相差のバラつきが当該収束状態になったと判定した場合に、第1,第2の電源31,34の少なくとも一方の出力を低下させる低下動作を実行する。

Description

エネルギ処置システム
 本発明は、エネルギ処置システムに関する。
 従来、生体組織に対して処置エネルギを付与することによって当該生体組織を凝固及び切開するエネルギ処置システムが知られている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ処置システムでは、処置エネルギとして、超音波エネルギを採用している。具体的に、当該エネルギ処置システムは、以下に示す処置具及び制御装置を備える。
 処置具は、制御装置からの電力によって超音波振動を発生させる超音波振動子と、以下に示す第1,第2の把持片とを備える。
 第1の把持片は、当該超音波振動を伝達し、当該超音波振動を生体組織に付与する、言い換えれば、超音波エネルギを生体組織に付与するによって生体組織を処置する。
 第2の把持片は、第1の把持片との間で生体組織を把持する。
 制御装置は、超音波振動を発生させる電力を出力する電源と、超音波振動子の超音波インピーダンス値を検出する検出回路と、電源の動作を制御するプロセッサとを備える。
 ところで、超音波エネルギを用いることによって生体組織を切開する際、当該超音波エネルギの出力の停止は、ユーザの操作に委ねられることが一般的である。このため、目視で確認し難い等によって生体組織の切開完了が不明瞭な場合には、超音波エネルギの出力が不必要に継続される場合がある。このような場合には、第1の把持片が第2の把持片に当接した状態で超音波エネルギの出力が継続されるため、当該第2の把持片の消耗が懸念される。
 そして、特許文献1に記載のエネルギ処置システムでは、超音波インピーダンス値の挙動をモニタすることによって、生体組織の切開完了を判定している。
国際公開第2015/122309号
 しかしながら、超音波インピーダンス値を用いた生体組織の切開完了の判定では、生体組織の種別(例えば、生体組織が厚い場合等)によっては、適切に切開完了を判定することができない場合がある。
 そこで、種々の生体組織の種別に対応し、当該生体組織の切開完了を精度良く検知することができる技術が要望されている。
 本発明は、上記に鑑みてなされたものであって、生体組織の切開完了を精度良く検知することができるエネルギ処置システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ処置システムは、超音波振動を発生させる電力を出力する第1の電源と、高周波電圧及び高周波電流を出力する第2の電源と、前記第1の電源からの前記電力によって超音波振動を発生させる超音波振動子と、前記超音波振動子が発生させた超音波振動を伝達し、前記超音波振動によって生体組織を処置するとともに、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第1の電極を有する第1の把持片と、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第2の電極を有し、前記第1の把持片との間で前記生体組織を把持する第2の把持片と、前記超音波振動子の電気的特性値を経時的に検出する第1の検出回路と、前記第2の電源から前記第1の電極及び前記第2の電極に対して供給されている前記高周波電圧及び前記高周波電流を経時的に検出する第2の検出回路と、前記第1の電源及び前記第2の電源の動作を制御するプロセッサと、を備え、前記プロセッサは、前記第1の検出回路によって検出された前記電気的特性値が所定の条件を満たしたか否かを判定し、前記第2の検出回路によって検出された前記高周波電圧及び前記高周波電流の位相差のバラつきが収束した収束状態になったか否かを判定し、前記電気的特性値が前記所定の条件を満たしたと判定し、かつ、前記位相差のバラつきが前記収束状態になったと判定した場合に、前記第1の電源及び前記第2の電源の少なくとも一方の出力を低下させる低下動作を実行する。
 本発明に係るエネルギ処置システムは、超音波振動を発生させる電力を出力する第1の電源と、高周波電圧及び高周波電流を出力する第2の電源と、前記第1の電源からの前記電力によって超音波振動を発生させる超音波振動子と、前記超音波振動子が発生させた超音波振動を伝達し、前記超音波振動によって生体組織を処置するとともに、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第1の電極を有する第1の把持片と、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第2の電極を有し、前記第1の把持片との間で前記生体組織を把持する第2の把持片と、前記超音波振動子の電気的特性値を経時的に検出する第1の検出回路と、前記第2の電源から前記第1の電極及び前記第2の電極に対して供給されている前記高周波電圧及び前記高周波電流を経時的に検出する第2の検出回路と、前記第1の電源及び前記第2の電源の動作を制御するプロセッサと、を備え、前記プロセッサは、前記第2の検出回路による検出結果に基づいて、前記生体組織の切開が完了したか否かの判定方法を変更する。
 本発明に係るエネルギ処置システムによれば、生体組織の切開完了を精度良く検知することができる。
図1は、実施の形態1に係るエネルギ処置システムを示す図である。 図2は、振動子ユニットを示す図である。 図3は、制御装置の構成を示すブロック図である。 図4は、プロセッサが実行する制御方法を示すフローチャートである。 図5は、図4に示した制御方法の実行時におけるHF信号におけるHF位相差及びHFインピーダンス値の挙動を示す図である。 図6は、第1,第2の判定処理を説明する図である。 図7は、実施の形態2に係るプロセッサが実行する制御方法を示すフローチャートである。 図8は、実施の形態3に係るプロセッサが実行する制御方法を示すフローチャートである。 図9は、ステップS12,S13を説明する図である。 図10は、実施の形態4に係るプロセッサが実行する制御方法を示すフローチャートである。 図11は、ステップS12A,S13Aを説明する図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。
(実施の形態1)
 〔エネルギ処置システムの概略構成〕
 図1は、実施の形態1に係るエネルギ処置システム1を示す図である。
 エネルギ処置システム1は、生体組織における処置の対象となる部位(以下、対象部位と記載)に対して処置エネルギを付与することによって、当該対象部位を処置する。本実施の形態1では、当該処置エネルギとして、超音波エネルギ及び高周波エネルギを採用している。ここで、当該処置とは、例えば、対象部位の凝固及び切開を意味する。このエネルギ処置システム1は、図1に示すように、処置具2と、制御装置3とを備える。
 処置具2は、例えば、腹壁を通した状態で対象部位を処置するためのBLT(ボルト締めランジュバン型振動子)を用いた超音波処置具である。この処置具2は、図1に示すように、ハンドル4と、シース5と、ジョー6と、振動子ユニット7と、振動伝達部材8とを備える。
 ハンドル4は、術者が手で持つ部分である。そして、このハンドル4には、図1に示すように、操作ノブ41と、操作ボタン42とが設けられている。
 シース5は、円筒形状を有する。なお、以下では、シース5の中心軸を中心軸Ax(図1)と記載する。また、以下では、中心軸Axに沿う一方側を先端側A1(図1)と記載し、他方側を基端側A2(図1)と記載する。そして、シース5は、基端側A2の一部がハンドル4の先端側A1から当該ハンドル4の内部に挿入されることによって、当該ハンドル4に対して取り付けられる。
 図2は、振動子ユニット7を示す断面図である。具体的に、図2は、中心軸Axを含む平面によって振動子ユニット7を切断した断面図である。
 振動子ユニット7は、図2に示すように、振動子ケース71と、超音波振動子72と、ホーン73とを備える。
 振動子ケース71は、中心軸Axに沿って直線状に延在し、先端側A1の一部がハンドル4の基端側A2から当該ハンドル4の内部に挿入されることによって、当該ハンドル4に対して取り付けられる。そして、振動子ケース71は、ハンドル4に対して取り付けられると、先端側A1の端部がシース5における基端側A2の端部に対して連結する。
 超音波振動子72は、振動子ケース71の内部に収納され、制御装置3による制御の下、超音波振動を発生させる。本実施の形態1では、当該超音波振動は、中心軸Axに沿って積層された複数の圧電素子721~724を備えたBLTである。なお、本実施の形態1では、圧電素子を圧電素子721~724の4つによって構成しているが、その数は、4つに限らず、その他の数としても構わない。
 ホーン73は、振動子ケース71の内部に収納され、超音波振動子72が発生させた超音波振動の振幅を拡大する。このホーン73は、中心軸Axに沿って直線状に延在する長尺形状を有する。そして、ホーン73は、図2に示すように、基端側A2から先端側A1にかけて、第1の装着部731と、断面積変化部732と、第2の装着部733とが配列した構成を有する。
 第1の装着部731は、超音波振動子72が装着される部分である。
 断面積変化部732は、先端側A1に向かうにしたがって断面積が減少する形状を有し、超音波振動の振幅を拡大する部分である。
 第2の装着部733は、振動伝達部材8が装着される部分である。
 ジョー6及び振動伝達部材8は、対象部位を把持するとともに、当該対象部位に対して超音波エネルギ及び高周波エネルギを付与することによって当該対象部位を処置する。
 具体的に、ジョー6は、金属等の導電性材料によって構成され、シース5における先端側A1の端部に対して回転可能に取り付けられている。そして、ジョー6は、本発明に係る第2の把持片に相当し、振動伝達部材8を構成する処置部81(図1)との間で対象部位を把持する。
 なお、具体的な図示は省略したが、上述したハンドル4及びシース5の内部には、術者による操作ノブ41の操作に応じて、処置部81に対してジョー6を開閉させる開閉機構が設けられている。また、ジョー6において、処置部81に対向する面には、樹脂製のパッドが取り付けられている。このパッドは、電気的絶縁性を有するため、ジョー6と振動伝達部材8とが短絡することを防止する機能を有する。また、当該パッドは、超音波振動による対象部位の切開が完了した時に、超音波振動している振動伝達部材8がジョー6に衝突することによって破損することを防止する機能を有する。
 振動伝達部材8は、金属等の導電性材料によって構成され、中心軸Axに沿って直線状に延在する長尺形状を有する。この振動伝達部材8は、図1に示すように、先端側A1の部分が外部に突出した状態でシース5の内部に挿通される。また、振動伝達部材8における基端側A2の端部は、図2に示すように、第2の装着部733に対して接続する。そして、振動伝達部材8は、超音波振動子72が発生させ、ホーン73を経由した後の超音波振動を基端側A2から先端側A1の端部まで伝達し、当該先端側A1の端部とジョー6との間に把持された対象部位に対して当該超音波振動を付与することによって当該対象部位を処置する。すなわち、当該対象部位は、当該先端側A1の端部から超音波エネルギが付与されることによって処置される。
 この振動伝達部材8において、先端側A1の端部は、ジョー6との間で対象部位を把持した状態で当該対象部位を処置する処置部81(図1)として機能する。この振動伝達部材8は、本発明に係る第1の把持片に相当する。
 制御装置3は、電気ケーブルC(図1)によって処置具2と電気的に接続され、当該処置具2の動作を統括的に制御する。
 なお、制御装置3の詳細な構成については、後述する「制御装置の構成」において説明する。
 〔制御装置の構成〕
 次に、制御装置3の構成について、説明する。
 図3は、制御装置3の構成を示すブロック図である。
 制御装置3は、図3に示すように、第1の電源31と、第1の検出回路32と、第1のADC(Analog-to-Digital Converter)33と、第2の電源34と、第2の検出回路35と、第2のADC36と、報知部37と、プロセッサ38とを備える。
 ここで、超音波振動子72には、図2に示すように、電気ケーブルCを構成する一対の振動子用リード線C1,C1´が接合されている。なお、図3では、説明の便宜上、一対の振動子用リード線C1,C1´を1本のみで図示している。
 そして、第1の電源31は、プロセッサ38による制御の下、一対の振動子用リード線C1,C1´を経由することによって、超音波振動を発生させる電力である駆動信号を超音波振動子72に対して出力する。これによって、超音波振動子72は、超音波振動を発生させる。
 なお、以下では、説明の便宜上、第1の電源31から超音波振動子72に対して出力された駆動信号を入力駆動信号と記載し、超音波振動子72の周波数応答によって入力駆動信号が変更された信号を出力駆動信号と記載する。
 第1の検出回路32は、電圧値を検出する電圧センサである第1の電圧検出回路321と、電流値を検出する電流センサである第1の電流検出回路322とを有し、出力駆動信号に応じたUS信号(アナログ信号)を経時的に検出する。当該US信号は、本発明に係る「超音波振動子の電気的特性値」に相当する。
 具体的に、US信号としては、出力駆動信号における電圧の位相信号(以下、US電圧位相信号と記載)、当該出力駆動信号における電流の位相信号(以下、US電流位相信号と記載)、当該出力駆動信号における電圧と電流との位相差(以下、US位相差と記載)、当該出力駆動信号における電流値(以下、US電流と記載)、当該出力駆動信号における電圧値(以下、US電圧と記載)、当該出力駆動信号における電力値(以下、US電力と記載)、当該US電流及び当該US電圧から算出されるインピーダンス値(以下、超音波インピーダンス値と記載)等を例示することができる。
 第1のADC33は、第1の検出回路32から出力されたUS信号(アナログ信号)をデジタル信号に変換する。そして、第1のADC33は、変換したUS信号(デジタル信号)をプロセッサ38に対して出力する。
 ここで、振動子ケース71には、図2に示すように、基端側A2の端部から先端側A1の端部にかけて延在する第1の導電部711が設けられている。また、シース5には、具体的な図示は省略したが、基端側A2の端部から先端側A1の端部にかけて延在し、第1の導電部711とジョー6とを電気的に接続する第2の導電部が設けられている。さらに、第1の導電部711における基端側A2の端部には、電気ケーブルCを構成する高周波用リード線C2が接合されている。また、第1の装着部731には、電気ケーブルCを構成する高周波用リード線C2´が接合されている。
 そして、第2の電源34は、プロセッサ38による制御の下、一対の高周波用リード線C2,C2´、第1の導電部711、第2の導電部、及びホーン73を経由することによって、ジョー6と振動伝達部材8との間に高周波電流及び高周波電圧を出力する。これによって、ジョー6と処置部81との間に把持された対象部位には、高周波電流が流れる。すなわち、当該対象部位には、高周波エネルギが付与される。そして、当該対象部位は、高周波電流が流れることによってジュール熱が発生し、処置される。
 以上のように、振動伝達部材8は、本発明に係る第1の電極に相当する。また、ジョー6は、本発明に係る第2の電極に相当する。
 第2の検出回路35は、電圧値を検出する電圧センサである第2の電圧検出回路351と、電流値を検出する電流センサである第2の電流検出回路352とを有し、第2の電源34からジョー6及び処置部81に対して出力されている高周波電流及び高周波電圧に応じたHF信号を経時的に検出する。
 具体的に、HF信号としては、第2の電源34からジョー6及び処置部81に対して出力されている高周波電流(以下、HF電流と記載)及び高周波電圧(以下、HF電圧と記載)、当該HF電流及び当該HF電圧から算出される高周波電力(以下、HF電力と記載)、当該HF電流と当該HF電圧とから算出されるインピーダンス値(以下、HFインピーダンス値と記載)、当該HF電流と当該HF電圧との位相差(以下、HF位相差と記載)等を例示することができる。
 第2のADC36は、第2の検出回路35から出力されたHF信号(アナログ信号)をデジタル信号に変換する。そして、第2のADC36は、変換したHF信号(デジタル信号)をプロセッサ38に対して出力する。
 報知部37は、プロセッサ38による制御の下、所定の情報を報知する。この報知部37としては、例えば、点灯や点滅、あるいは、点灯した際の色により所定の情報を報知するLED(Light Emitting Diode)、所定の情報を表示する表示装置、所定の情報を音声で出力するスピーカ等を例示することができる。なお、報知部37については、図3に示すように制御装置3に設けてもよく、あるいは、処置具2に設けても構わない。
 プロセッサ38は、例えば、CPU(Central Processing Unit)やFPGA(Field-Programmable Gate Array)等によって構成され、メモリ(図示略)に記憶されたプログラムにしたがって、エネルギ処置システム1全体の動作を制御する。なお、プロセッサ38の詳細な機能については、後述する「プロセッサが実行する制御方法」において説明する。
 〔プロセッサが実行する制御方法〕
 次に、プロセッサ38が実行する制御方法について説明する。
 図4は、プロセッサ38が実行する制御方法を示すフローチャートである。
 なお、以下では、説明の便宜上、ジョー6及び処置部81間に把持された対象部位の切開完了を判定する方法について主に説明する。
 先ず、プロセッサ38は、術者によって操作ボタン42が押下された場合に、ジョー6及び処置部81間に把持された対象部位の処置を開始する(ステップS1)。すなわち、プロセッサ38は、術者によって操作ボタン42が押下された場合に、第1,第2の電源31,34の動作を制御し、当該対象部位に対して超音波エネルギ及び高周波エネルギの付与を開始する。
 ステップS1の後、プロセッサ38は、第1,第2の検出回路32,35の動作を制御し、US信号及びHF信号の検出を開始させる(ステップS2)。
 図5は、図4に示した制御方法の実行時におけるHF信号におけるHF位相差及びHFインピーダンス値の挙動を示す図である。なお、図5では、HF位相差の挙動を一点鎖線で示し、HFインピーダンス値の挙動を実線で示している。また、図5では、HF位相差の挙動をCosθによって表現している。以下で記載するHF位相差もCosθを意味するものとする。さらに、図5において、時間TCは、対象部位の切開が完了した時間を示している。
 ここで、HFインピーダンス値は、対象部位の処置を開始してからの初期段階では、以下の挙動を示す。
 具体的に、HFインピーダンス値は、徐々に減少してき、当該対象部位の水分が沸騰状態に達した時に極小値をとる。また、HFインピーダンス値は、当該対象部位の処置をさらに続けると、当該対象部位の水分が蒸発するため、増加に転じる。なお、図5では、縦軸のオーダーが大きいため、当該初期段階でのHFインピーダンス値における上述した挙動が十分に示されていない。
 そして、HFインピーダンス値は、上述した初期段階の後、図5に示すように、対象部位が切開され始めるにつれて急激に増加し、その後、収束する。
 一方、HF位相差は、図5に示すように、対象部位の処置を開始すると、1(0°)から徐々に減少していく。そして、HF位相差は、対象部位が切開され始めるにつれて急激に減少し、その後、0近傍(90°近傍)に収束する。
 ステップS2の後、プロセッサ38は、第2の検出回路35によって検出されたHF位相差のバラつきの算出を開始する(ステップS3)。なお、図4では、説明の便宜上、ステップS3をステップS2の後に実行される形で図示しているが、実際には、ステップS2とステップS3とは略同時に実行されるものである。
 本実施の形態1では、プロセッサ38は、HF位相差の分散sを当該HF位相差のバラつきとして算出する。具体的には、プロセッサ38は、HF位相差の分散sを以下の式(1)によって算出する。なお、式(1)において、nは、分散sを求める差異のデータ(HF位相差)の数を意味し、3以上である。xは、各データ(HF位相差)の値である。
Figure JPOXMLDOC01-appb-M000001
 例えば、プロセッサ38は、50ms毎に検出されたHF位相差を500ms分、10個取得し、当該10個のHF位相差を用いて式(1)により当該HF位相差の分散sを算出する。すなわち、プロセッサ38は、現時点の時間が500msであった場合には、50ms(n=1)でのHF位相差、100ms(n=2)でのHF位相差、・・・500ms(n=10)でのHF位相差の10個のHF位相差を用いて式(1)により現時点(500ms)でのHF位相差の分散sを算出する。また、プロセッサ38は、現時点の時間が550msであった場合には、100ms(n=1)でのHF位相差、150ms(n=2)でのHF位相差、・・・550ms(n=10)でのHF位相差の10個のHF位相差を用いて式(1)により現時点(550ms)でのHF位相差の分散sを算出する。なお、nは、10に限らず、3以上であればよい。また、HF位相差の分散sを算出する際に用いるHF位相差のサンプリング周期は、50msに限らず、その他の周期でも構わない。
 ステップS3の後、プロセッサ38は、第1,第2の判定処理を実行する(ステップS4)。
 図6は、第1,第2の判定処理を説明する図である。具体的に、図6は、図4に示した制御方法の実行時における超音波インピーダンス値及びHF位相差の分散sの挙動を示す図である。なお、図6では、超音波インピーダンス値の挙動を実線で示し、HF位相差の分散sの挙動を一点鎖線で示している。
 具体的に、プロセッサ38は、以下に示すように第1の判定処理を実行する。
 ここで、US信号である超音波インピーダンス値は、振動伝達部材8に対する負荷、言い換えれば、振動伝達部材8に対して接続された超音波振動子72への負荷に応じて変化する。具体的に、ジョー6から処置部81への押圧力は、対象部位の処置を開始してから、当該ジョー6及び当該処置部81間の対象部位の状態変化等によって、徐々に大きくなる。このため、振動伝達部材8に対する負荷が徐々に大きくなり、図6に示すように、超音波インピーダンス値も経時的に漸増する。なお、当該経時的に漸増するとは、時間が進むにつれて超音波インピーダンス値が徐々に増加することを意味し、数十Ω以下の微小な増減を含みながら超音波インピーダンス値が徐々に増加することも含まれる。
 そして、対象部位の切開が完了した時間TCの近傍の時間(例えば、図6の時間t1)では、ジョー6が処置部81の近傍に位置するため、当該処置部81の超音波振動によって発生する摩擦熱に起因し、当該ジョー6に設けられたパッドの表面が変性する。このため、振動伝達部材8に対する負荷が徐々に小さくなり、図6に示すように、当該時間t1から超音波インピーダンス値も経時的に漸減する。なお、当該経時的に漸減するとは、時間が進みにつれて超音波インピーダンス値が徐々に減少することを意味し、数十Ω以下の微小な増減を含みながら超音波インピーダンス値が徐々に減少することも含まれる。
 すなわち、超音波インピーダンス値は、当該時間t1において、ピークとなる。
 そこで、プロセッサ38は、第1の判定処理において、先ず、超音波インピーダンス値が漸減を開始する漸減開始時(図6の時間t1)を検出する(以下、仮ピーク検出処理と記載)。また、プロセッサ38は、当該漸減開始時での超音波インピーダンス値Z1(図6)を仮ピーク値としてメモリ(図示略)に記憶させる。
 次に、プロセッサ38は、漸減開始時t1から予め設定された基準時間ΔT1だけ経過した時間t1+ΔT1での超音波インピーダンス値と、メモリに記憶した仮ピーク値(超音波インピーダンス値Z1)との差分ε1realを算出する。
 次に、プロセッサ38は、当該差分ε1realが予め設定された閾値ε1以上であるか否かを判定する。
 そして、プロセッサ38は、差分ε1realが閾値ε1以上であると判定した場合には、漸減開始時t1で検出した仮ピーク値が対象部位の切開完了に起因したピークであると認識し、第1の判定処理において、対象部位の切開が完了したと判定する。
 一方、プロセッサ38は、差分ε1realが閾値ε1未満であると判定した場合には、漸減開始時t1で検出した仮ピーク値が対象部位の切開完了に起因したピークではないと認識し、再度、上述した仮ピーク検出処理に戻る。
 なお、本発明に係る「所定の条件」は、超音波インピーダンス値が漸減を開始した時t1から一定の時間ΔT1後に、閾値ε1以上の低下があったことである。すなわち、閾値ε1は、本発明に係る第1の閾値に相当する。
 また、プロセッサ38は、以下に示すように第2の判定処理を実行する。
 ここで、HF位相差の分散sは、図6に示すように、対象部位が切開され始めるにつれて急激に増加するとともに、対象部位の切開完了が近付くにつれて急激に減少し、その後、収束する。
 そして、プロセッサ38は、第2の判定処理において、先ず、HF信号であるHFインピーダンス値が閾値Th1(図5)を超えたか否かを常時、監視する。
 次に、プロセッサ38は、HFインピーダンス値が閾値Th1を超えたと判定した場合に、HF位相差の分散sと閾値Th2(図6)とを比較することによってHF位相差の分散が収束した収束状態になったか否かを常時、監視する(以下、収束監視処理と記載)。本実施の形態1では、プロセッサ38は、HF位相差の分散sが閾値Th2以下となった場合に収束状態になったと判定する。
 そして、プロセッサ38は、HF位相差の分散sが収束状態になったと判定した場合には、第2の判定処理において、対象部位の切開が完了したと判定する。
 一方、プロセッサ38は、HF位相差の分散sが収束状態になっていないと判定した場合には、上述した収束監視処理を継続する。
 第1,第2の判定処理の双方において、対象部位の切開が完了したと判定した場合(ステップS5:Yes)には、プロセッサ38は、以下に示す低下動作及び警告動作を実行する(ステップS6)。この後、プロセッサ38は、本制御フローを完了する。
 プロセッサ38は、ステップS6において、第1の電源31から超音波振動子72への電力(駆動信号)の出力、及び第2の電源34からジョー6及び振動伝達部材8への高周波電流及び高周波電圧の出力を低下させる低下動作を実行する。本実施の形態1では、プロセッサ38は、第1,第2の電源31,34の動作を停止させる、すなわち、第1の電源31から超音波振動子72への出力、及び第2の電源34からジョー6及び振動伝達部材8への出力を停止させる低下動作を実行する。
 また、プロセッサ38は、ステップS6において、対象部位の切開を完了した旨の情報を報知部37に報知させる警告動作を実行する。
 以上説明した実施の形態1によれば、以下の効果を奏する。
 ところで、超音波インピーダンス値を用いた対象部位の切開完了判定である第1の判定処理では、当該対象部位が薄い(当該対象部位のサイズが小さい)場合については当該切開完了判定の判定精度が比較的に高いところ、当該対象部位が厚い(当該対象部位のサイズが大きい)場合については、当該切開完了判定の判定精度が比較的に低いものとなる。一方、HF位相差のバラつきを用いた対象部位の切開完了判定である第2の判定処理では、当該対象部位が厚い(当該対象部位のサイズが大きい)場合については、当該切開完了判定の判定精度が比較的に高いものとなる。
 そして、本実施の形態1に係るエネルギ処置システム1では、プロセッサ38は、第1,第2の判定処理の双方において対象部位の切開が完了したと判定した場合に、低下動作を実行する。
 したがって、第1の判定処理において切開完了判定の精度が比較的に低い対象部位について、第2の判定処理において当該切開完了判定の精度を補うことができ、種々の対象部位の種別に対応し、当該対象部位の切開完了を精度良く検知することができる。
 本実施の形態1に係るエネルギ処置システム1では、プロセッサ38は、第1,第2の判定処理の双方において対象部位の切開が完了したと判定した場合に、低下動作の他、警告動作を実行する。このため、術者等にも対象部位の切開完了を明確に認識させることができる。
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図7は、実施の形態2に係るプロセッサ38が実行する制御方法を示すフローチャートである。
 本実施の形態2では、図7に示すように、上述した実施の形態1に対して、プロセッサ38が実行する制御方法を変更している。
 本実施の形態2に係るプロセッサ38が実行する制御方法では、図7に示すように、上述した実施の形態1において説明した制御方法(図4)に対して、ステップS7~S11が追加されている。このため、以下では、ステップS7~S11のみを説明する。
 ステップS7は、ステップS1の前に実行される。
 プロセッサ38は、ステップS7において、術者によって操作ボタン42が押下された場合に、以下に示すように、ジョー6及び処置部81間に把持された対象部位の判別処理を実行する。
 具体的に、プロセッサ38は、第2の電源34の動作を制御することによって、ジョー6及び振動伝達部材8に対して一定の電力を一定の時間(例えば、100[msec])だけ出力する。当該一定の電力とは、対象部位が熱変性しない程度の電力である。
 次に、プロセッサ38は、第2の電源34からジョー6及び振動伝達部材8に対して上述した一定の電力を出力させている間、第2の検出回路35によって検出されたHF信号であるHFインピーダンス値を順次、メモリ(図示略)に記憶する。また、プロセッサ38は、上述した一定の時間中の最後の期間(例えば、20[msec])、順次、メモリ(図示略)に記憶した複数のHFインピーダンス値を平均することによって、初期インピーダンス値を算出する。
 ここで、対象部位のうちサイズの小さいSサイズ組織と、サイズの大きいLサイズ組織とでは、初期インピーダンス値が異なる。例えば、Sサイズ組織における初期インピーダンス値は、所定の判別閾値よりも小さい値となる。一方、Lサイズ組織における初期インピーダンス値は、当該判別閾値よりも大きい値を示す。
 そして、プロセッサ38は、算出した初期インピーダンスを上述した判別閾値と比較することによって、ジョー6及び処置部81間に把持された対象部位がSサイズ組織であるか、または、Lサイズ組織であるかを判別する判別処理を実行する。
 ステップS8は、ステップS1の後に実行される。
 具体的に、プロセッサ38は、ステップS7の判別処理において、ジョー6及び処置部81間に把持された対象部位がSサイズ組織であると判別したか否かを判定する。
 そして、プロセッサ38は、Lサイズ組織であると判別した場合(ステップS8:No)には、ステップS2~S6を順次、実行する。すなわち、プロセッサ38は、Lサイズ組織であると判別した場合(ステップS8:No)には、第1,第2の判定処理の双方を実行(ステップS4)する本発明に係る第2の判定方法を選択する。
 一方、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、第1の検出回路32の動作を制御し、US信号の検出を開始させる(ステップS9)とともに、第1の判定処理を実行する(ステップS10)。すなわち、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、第1の判定処理のみを実行(ステップS10)本発明に係る第1の判定方法を選択する。
 そして、第1の判定処理のみにおいて、対象部位の切開が完了したと判定した場合(ステップS11:Yes)には、プロセッサ38は、ステップS6に移行する。
 以上説明した本実施の形態2によれば、上述した実施の形態1と同様の効果を奏する。
 本実施の形態2に係るエネルギ処置システム1では、プロセッサ38は、第2の検出回路35による検出結果に基づいて、低下動作を実行するための判定方法を変更する。具体的に、プロセッサ38は、初期インピーダンス値に基づいて、対象部位がLサイズ組織でるかSサイズ組織であるかを判定する。そして、プロセッサ38は、Lサイズ組織である場合には第1,第2の判定処理の双方を実行し、Sサイズ組織である場合には第1の判定処理のみを実行する。
 すなわち、第1の判定処理において切開完了判定の判定精度が比較的に高いSサイズ組織については当該第1の判定処理のみを実行することができるため、当該Sサイズ組織について第2の判定処理をも実行する必要がない。したがって、プロセッサ38の処理負荷を軽減することができる。
(実施の形態3)
 次に、本実施の形態3について説明する。
 以下の説明では、上述した実施の形態2と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、実施の形態3に係るプロセッサ38が実行する制御方法を示すフローチャートである。
 本実施の形態3では、図8に示すように、上述した実施の形態2に対して、プロセッサ38が実行する制御方法を変更している。
 本実施の形態3に係るプロセッサ38が実行する制御方法では、図8に示すように、上述した実施の形態2において説明した制御方法(図7)に対して、ステップS12,S13が追加されている。このため、以下では、ステップS12,S13のみを説明する。
 ステップS12,S13は、Lサイズ組織であると判別された場合(ステップS8:No)、及びSサイズ組織であると判別された場合(ステップS8:Yes)のそれぞれにおいて実行される。
 そして、プロセッサ38は、ステップS12において、第1の判定処理において用いる本発明に係る第1の閾値をLサイズ組織に応じた値に変更する。一方、プロセッサ38は、ステップS13において、第1の判定処理において用いる本発明に係る第1の閾値をSサイズ組織に応じた値に変更する。
 ここで、本発明に係る第1の閾値は、閾値ε1及び基準時間ΔT1である。
 図9は、ステップS12,S13を説明する図である。具体的に、図9は、図6に対応した図である。なお、図9では、対象部位がLサイズ組織である場合での超音波インピーダンス値の挙動を実線で示し、対象部位がSサイズ組織である場合での超音波インピーダンス値の挙動を一点鎖線で示している。
 具体的に、プロセッサ38は、Lサイズ組織であると判別した場合(ステップS8:No)には、ステップS12において、閾値ε1をLサイズ組織に応じた閾値ε1L(図9)に設定するとともに、基準時間ΔT1をLサイズ組織に応じた基準時間ΔT1L(図9)に設定する。
 一方、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、ステップS13において、閾値ε1をSサイズ組織に応じた閾値ε1S(図9)に設定するとともに、基準時間ΔT1をSサイズ組織に応じた基準時間ΔT1S(図9)に設定する。
 ここで、閾値ε1Lは、図9に示すように、閾値ε1Sよりも大きい値である。また、基準時間ΔT1Lは、基準時間ΔT1Sよりも大きい値である。
 以上説明した本実施の形態3によれば、上述した実施の形態2と同様の効果を奏する。
 ところで、Sサイズ組織では、組織量が少ないため、超音波インピーダンス値のピーク(超音波インピーダンス値Z2(図9))が低くなるとともに、当該ピーク後に切れ分かれるまでが早いものとなる。一方、Lサイズ組織では、超音波インピーダンス値のピーク後にも薄皮が残っている可能性がある。
 そして、本実施の形態3に係るエネルギ処置システム1では、プロセッサ38は、第2の検出回路35による検出結果に基づいて、第1の判定処理において用いる本発明に係る第1の閾値を変更する。具体的に、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、閾値ε1及び基準時間ΔT1を閾値ε1S及び基準時間ΔT1Sにそれぞれ設定する。一方、プロセッサ38は、Lサイズ組織であると判別した場合(ステップS8:No)には閾値ε1及び基準時間ΔT1を閾値ε1S及び基準時間ΔT1Sよりもそれぞれ大きい閾値ε1L及び基準時間ΔT1Lにそれぞれ設定する。
 したがって、対象部位がSサイズ組織である場合には、超音波インピーダンス値が漸減開始した時間t2から基準時間ΔT1S後に切開判定を行うことができ、当該対象部位の切開が完了することを不要に長く待つことがない。一方、対象部位がLサイズ組織である場合には、超音波インピーダンス値が漸減開始した時間t1から基準時間ΔT1L後に切開判定を行うことができ、当該対象部位の切開が確実に完了したことを判定することが可能となる。
(実施の形態4)
 次に、本実施の形態4について説明する。
 以下の説明では、上述した実施の形態3と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図10は、実施の形態4に係るプロセッサ38が実行する制御方法を示すフローチャートである。
 本実施の形態4では、図10に示すように、上述した実施の形態3に対して、プロセッサ38が実行する制御方法を変更している。
 本実施の形態4に係るプロセッサ38が実行する制御方法では、図10に示すように、上述した実施の形態3において説明した制御方法(図8)に対して、ステップS12,S13,S9~S11の代わりに、ステップS12A,S13A,S9A~S11Aが採用され、ステップS14が追加されている。このため、以下では、ステップS12A,S13A,S9A~S11A,S14のみを説明する。
 図11は、ステップS12A,S13Aを説明する図である。具体的に、図11は、図6に対応した図である。
 ステップS12Aでは、プロセッサ38は、上述した実施の形態3と同様に第1の判定処理において用いる本発明に係る第1の閾値をLサイズ組織に応じた値に変更する。さらに、プロセッサ38は、第2の判定処理において用いる本発明に係る第2の閾値をLサイズ組織に応じた値に変更する。
 ここで、本発明に係る第2の閾値は、閾値Th2である。
 具体的に、プロセッサ38は、Lサイズ組織であると判別した場合(ステップS8:No)には、ステップS12Aにおいて、上述した実施の形態3と同様に、閾値ε1及び基準時間ΔT1を閾値ε1L及び基準時間ΔT1Lにそれぞれ設定する。さらに、プロセッサ38は、閾値Th2をLサイズ組織に応じた閾値Th2L(図11)に設定する。
 一方、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、ステップS13Aにおいて、上述した実施の形態3と同様に、閾値ε1及び基準時間ΔT1を閾値ε1S及び基準時間ΔT1Sにそれぞれ設定する。さらに、プロセッサ38は、閾値Th2をSサイズ組織に応じた閾値Th2S(図11)に設定する。
 ここで、閾値Th2Sは、図11に示すように、閾値Th2Lよりも大きい値である。
 ステップS9Aでは、プロセッサ38は、ステップS2と同様に、第1,第2の検出回路32,35の動作を制御し、US信号及びHF信号の検出を開始する。
 ステップS9Aの後、プロセッサ38は、ステップS3と同様に、第2の検出回路35によって検出されたHF位相差のバラつきの算出を開始する(ステップS14)。
 ステップS14の後、プロセッサ38は、ステップS10Aにおいて、ステップS4と同様に、第1,第2の判定処理の双方を実行する。
 ステップS10Aの後、プロセッサ38は、ステップS11Aにおいて、ステップS5と同様に、第1,第2の判定処理の双方で対象部位の切開が完了したと判定したか否かを判定する。そして、ステップS11Aにおいて、「No」の場合には、ステップS10Aを継続する。一方、ステップS11Aにおいて、「Yes」の場合には、ステップS6に移行する。
 以上説明した本実施の形態4によれば、上述した実施の形態3と同様の効果を奏する。
 ところで、Sサイズ組織では、組織量が少ないため、HF位相差のバラつきのピークが低くなるとともに、当該ピーク後に切れ分かれるまでが早いものとなる。
 そして、本実施の形態4に係るエネルギ処置システム1では、プロセッサ38は、第2の検出回路35による検出結果に基づいて、第2の判定処理において用いる本発明に係る第2の閾値を変更する。具体的に、プロセッサ38は、Sサイズ組織であると判別した場合(ステップS8:Yes)には、Lサイズ組織であると判別した場合(ステップS8:No)と比較して、大きい閾値Th2(閾値Th2S)に変更する。
 したがって、対象部位がSサイズ組織である場合において、第1,第2の判定処理の双方を実行する構成を採用した場合であっても、当該対象部位の切開が完了することを不要に長く待つことがない。
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~4によってのみ限定されるべきものではない。
 上述した実施の形態1~4では、プロセッサ38は、ステップS6において、低下動作の他、警告動作を実行していたが、これに限らず、低下動作のみを実行しても構わない。また、プロセッサ38は、ステップS6において、警告動作のみを実行しても構わない。
 上述した実施の形態1~4では、超音波振動子72の電気インピーダンス値として、超音波インピーダンス値を採用したが、これに限らず、US位相差、US電圧、US電流、または、US電力を採用しても構わない。
 上述した実施の形態1~4では、HF位相差のバラつきとして、HF位相差の分散sを採用していたが、これに限らず、HF位相差の標準偏差、または、HF位相差の偏差を採用しても構わない。ここで、HF位相差の標準偏差は、HF位相差の分散sの正の平方根である。また、HF位相差の偏差は、以下の式(2)によって算出される。なお、式(2)において、nは、データ(HF位相差)の数を意味し、2以上である。xは、各データ(HF位相差)の値である。
Figure JPOXMLDOC01-appb-M000002
 上述した実施の形態1~4では、対象部位に対して付与する処置エネルギとして、超音波エネルギ及び高周波エネルギを採用していたが、これに限らず、当該超音波エネルギ及び当該高周波エネルギに加えて熱エネルギを採用しても構わない。なお、「対象部位に対して熱エネルギを付与する」とは、対象部位に対してヒータに発生した熱を伝達することを意味する。
 上述した実施の形態1~4では、ステップS1において、対象部位に対して超音波エネルギ及び高周波エネルギの双方を付与していたが、これに限らない。例えば、術者による操作に応じて、ステップS1において、対象部位に対して超音波エネルギのみを付与するモード(以下、超音波単独モードと記載)、または、対象部位に対して超音波エネルギ及び高周波エネルギの双方を付与するモード(以下、コンバインモードと記載)に切り替え可能に構成しても構わない。この際、超音波単独モードでは、閾値ε1を小さくし、基準時間ΔT1を大きくすることが好ましい。一方、コンバインモードでは、閾値ε1を大きくし、基準時間ΔT1を小さくすることが好ましい。
 上述した実施の形態2~4では、ステップS7において、初期インピーダンス値に基づいて、対象部位の判別処理を実行していたが、これに限らない。例えば、HF電圧、HF電流、またはHF電力等に基づいて、対象部位の判別処理を実行しても構わない。
 1 エネルギ処置システム
 2 処置具
 3 制御装置
 4 ハンドル
 5 シース
 6 ジョー
 7 振動子ユニット
 8 振動伝達部材
 31 第1の電源
 32 第1の検出回路
 33 第1のADC
 34 第2の電源
 35 第2の検出回路
 36 第2のADC
 37 報知部
 38 プロセッサ
 41 操作ノブ
 42 操作ボタン
 71 振動子ケース
 72 超音波振動子
 73 ホーン
 81 処置部
 321 第1の電圧検出回路
 322 第1の電流検出回路
 351 第2の電圧検出回路
 352 第2の電流検出回路
 711 第1の導電部
 721~724 圧電素子
 731 第1の装着部
 732 断面積変化部
 733 第2の装着部
 A1 先端側
 A2 基端側
 Ax 中心軸
 C 電気ケーブル
 C1,C1´ 振動子用リード線
 C2,C2´ 高周波用リード線

Claims (18)

  1.  超音波振動を発生させる電力を出力する第1の電源と、
     高周波電圧及び高周波電流を出力する第2の電源と、
     前記第1の電源からの前記電力によって超音波振動を発生させる超音波振動子と、
     前記超音波振動子が発生させた超音波振動を伝達し、前記超音波振動によって生体組織を処置するとともに、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第1の電極を有する第1の把持片と、
     前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第2の電極を有し、前記第1の把持片との間で前記生体組織を把持する第2の把持片と、
     前記超音波振動子の電気的特性値を経時的に検出する第1の検出回路と、
     前記第2の電源から前記第1の電極及び前記第2の電極に対して供給されている前記高周波電圧及び前記高周波電流を経時的に検出する第2の検出回路と、
     前記第1の電源及び前記第2の電源の動作を制御するプロセッサと、を備え、
     前記プロセッサは、
     前記第1の検出回路によって検出された前記電気的特性値が所定の条件を満たしたか否かを判定し、
     前記第2の検出回路によって検出された前記高周波電圧及び前記高周波電流の位相差のバラつきが収束した収束状態になったか否かを判定し、
     前記電気的特性値が前記所定の条件を満たしたと判定し、かつ、前記位相差のバラつきが前記収束状態になったと判定した場合に、前記第1の電源及び前記第2の電源の少なくとも一方の出力を低下させる低下動作を実行するエネルギ処置システム。
  2.  前記電気的特性値は、
     前記超音波振動子の電気インピーダンス値である超音波インピーダンス値である請求項1に記載のエネルギ処置システム。
  3.  前記プロセッサは、
     前記超音波インピーダンス値が漸減を開始した時から一定の時間後に、第1の閾値以上の低下があった場合に前記所定の条件を満たしたと判定する請求項2に記載のエネルギ処置システム。
  4.  前記プロセッサは、
     前記位相差の偏差、標準偏差、または分散を前記位相差のバラつきとして算出する請求項1に記載のエネルギ処置システム。
  5.  前記プロセッサは、
     前記第2の検出回路による検出結果に基づいて、前記低下動作を実行するための判定方法を変更する請求項1に記載のエネルギ処置システム。
  6.  前記判定方法は、
     第1の判定方法及び第2の判定方法によって構成され、
     前記第1の判定方法は、
     前記電気的特性値が前記所定の条件を満たしたか否かのみを判定する方法であり、
     前記第2の判定方法は、
     前記電気的特性値が前記所定の条件を満たしたか否かと、前記位相差のバラつきが前記収束状態になったか否かとの双方を判定する方法である請求項5に記載のエネルギ処置システム。
  7.  前記プロセッサは、
     前記第2の検出回路による検出結果に基づいて、前記電気的特性値が前記所定の条件を満たしたか否かの判定において用いる第1の閾値を変更する請求項5に記載のエネルギ処置システム。
  8.  前記プロセッサは、
     前記第2の検出回路による検出結果に基づいて、前記位相差のバラつきが前記収束状態になったか否かの判定において用いる第2の閾値を変更する請求項5に記載のエネルギ処置システム。
  9.  所定の情報を報知する報知部をさらに備え、
     前記プロセッサは、
     前記電気的特性値が前記所定の条件を満たしたと判定し、かつ、前記位相差のバラつきが前記収束状態になったと判定した場合に、前記報知部に前記所定の情報を報知させる警告動作を実行する請求項1に記載のエネルギ処置システム。
  10.  超音波振動を発生させる電力を出力する第1の電源と、
     高周波電圧及び高周波電流を出力する第2の電源と、
     前記第1の電源からの前記電力によって超音波振動を発生させる超音波振動子と、
     前記超音波振動子が発生させた超音波振動を伝達し、前記超音波振動によって生体組織を処置するとともに、前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第1の電極を有する第1の把持片と、
     前記第2の電源から前記高周波電圧及び前記高周波電流が供給される第2の電極を有し、前記第1の把持片との間で前記生体組織を把持する第2の把持片と、
     前記超音波振動子の電気的特性値を経時的に検出する第1の検出回路と、
     前記第2の電源から前記第1の電極及び前記第2の電極に対して供給されている前記高周波電圧及び前記高周波電流を経時的に検出する第2の検出回路と、
     前記第1の電源及び前記第2の電源の動作を制御するプロセッサと、を備え、
     前記プロセッサは、
     前記第2の検出回路による検出結果に基づいて、前記生体組織の切開が完了したか否かの判定方法を変更するエネルギ処置システム。
  11.  前記判定方法は、
     第1の判定方法及び第2の判定方法によって構成され、
     前記第1の判定方法は、
     前記第1の検出回路によって検出された前記電気的特性値が所定の条件を満たしたか否かのみを判定する方法であって、前記電気的特性値が前記所定の条件を満たした場合に、前記生体組織の切開が完了したと判定し、
     前記第2の判定方法は、
     前記第1の検出回路によって検出された前記電気的特性値が所定の条件を満たしたか否かと、前記第2の検出回路によって検出された前記高周波電圧及び前記高周波電流の位相差のバラつきが収束した収束状態になったか否かとの双方を判定する方法であって、前記電気的特性値が前記所定の条件を満たし、かつ、前記位相差のバラつきが前記収束状態になったと判定した場合に、前記生体組織の切開が完了したと判定する請求項10に記載のエネルギ処置システム。
  12.  前記電気的特性値は、
     前記超音波振動子の電気インピーダンス値である超音波インピーダンス値である請求項11に記載のエネルギ処置システム。
  13.  前記プロセッサは、
     前記超音波インピーダンス値が漸減を開始した時から一定の時間後に、第1の閾値以上の低下があった場合に前記所定の条件を満たしたと判定する請求項12に記載のエネルギ処置システム。
  14.  前記プロセッサは、
     前記位相差の偏差、標準偏差、または分散を前記位相差のバラつきとして算出する請求項11に記載のエネルギ処置システム。
  15.  前記プロセッサは、
     前記生体組織の切開が完了したと判定した場合に、前記第1の電源及び前記第2の電源の少なくとも一方の出力を低下させる低下動作を実行する請求項11に記載のエネルギ処置システム。
  16.  所定の情報を報知する報知部をさらに備え、
     前記プロセッサは、
     前記生体組織の切開が完了したと判定した場合に、前記報知部に前記所定の情報を報知させる警告動作を実行する請求項11に記載のエネルギ処置システム。
  17.  前記プロセッサは、
     前記判定方法に応じて、前記電気的特性値が前記所定の条件を満たしたか否かの判定において用いる第1の閾値を変更する請求項11に記載のエネルギ処置システム。
  18.  前記プロセッサは、
     前記判定方法に応じて、前記位相差のバラつきが前記収束状態になったか否かの判定において用いる第2の閾値を変更する請求項11に記載のエネルギ処置システム。
PCT/JP2021/027548 2021-07-26 2021-07-26 エネルギ処置システム WO2023007548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021007732.5T DE112021007732T5 (de) 2021-07-26 2021-07-26 Energiebehandlungssystem
PCT/JP2021/027548 WO2023007548A1 (ja) 2021-07-26 2021-07-26 エネルギ処置システム
CN202180100939.3A CN117715600A (zh) 2021-07-26 2021-07-26 能量处置系统
US18/416,238 US20240156485A1 (en) 2021-07-26 2024-01-18 Energy treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027548 WO2023007548A1 (ja) 2021-07-26 2021-07-26 エネルギ処置システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/416,238 Continuation US20240156485A1 (en) 2021-07-26 2024-01-18 Energy treatment apparatus

Publications (1)

Publication Number Publication Date
WO2023007548A1 true WO2023007548A1 (ja) 2023-02-02

Family

ID=85086367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027548 WO2023007548A1 (ja) 2021-07-26 2021-07-26 エネルギ処置システム

Country Status (4)

Country Link
US (1) US20240156485A1 (ja)
CN (1) CN117715600A (ja)
DE (1) DE112021007732T5 (ja)
WO (1) WO2023007548A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020578A1 (ja) * 2016-07-26 2018-02-01 オリンパス株式会社 エネルギー制御装置及び処置システム
WO2018073915A1 (ja) * 2016-10-19 2018-04-26 オリンパス株式会社 エネルギー処置システム
JP2020520721A (ja) * 2017-05-22 2020-07-16 エシコン エルエルシーEthicon LLC 超音波及び電気外科用器具と、調節可能なエネルギーモダリティとの組み合わせ、及び組織を封止しかつ組織の切除を阻止するための方法
WO2020148837A1 (ja) * 2019-01-16 2020-07-23 オリンパス株式会社 制御装置、処置システム、及び制御方法
WO2020240799A1 (ja) * 2019-05-30 2020-12-03 オリンパス株式会社 医療装置及び制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108837A4 (en) 2014-02-17 2018-01-17 Olympus Corporation Ultrasonic treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020578A1 (ja) * 2016-07-26 2018-02-01 オリンパス株式会社 エネルギー制御装置及び処置システム
WO2018073915A1 (ja) * 2016-10-19 2018-04-26 オリンパス株式会社 エネルギー処置システム
JP2020520721A (ja) * 2017-05-22 2020-07-16 エシコン エルエルシーEthicon LLC 超音波及び電気外科用器具と、調節可能なエネルギーモダリティとの組み合わせ、及び組織を封止しかつ組織の切除を阻止するための方法
JP2020520726A (ja) * 2017-05-22 2020-07-16 エシコン エルエルシーEthicon LLC 超音波外科用器具と電気外科用器具との組み合わせ、及び様々な終了パラメータによる組織の封止方法
WO2020148837A1 (ja) * 2019-01-16 2020-07-23 オリンパス株式会社 制御装置、処置システム、及び制御方法
WO2020240799A1 (ja) * 2019-05-30 2020-12-03 オリンパス株式会社 医療装置及び制御方法

Also Published As

Publication number Publication date
CN117715600A (zh) 2024-03-15
DE112021007732T5 (de) 2024-04-11
US20240156485A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP4898980B2 (ja) 外科処置装置
JP6665299B2 (ja) エネルギー制御装置、処置システム及びエネルギー制御装置の作動方法
US10194972B2 (en) Managing tissue treatment
US10321950B2 (en) Managing tissue treatment
US10342602B2 (en) Managing tissue treatment
JP6109458B1 (ja) エネルギー処置システム、エネルギー制御装置及びエネルギー処置具
JP5911650B2 (ja) 把持処置装置
JP2008212679A (ja) 手術用処置装置
JP2011530330A (ja) 階段状の出力で切断及び凝固するための超音波装置
WO2014092109A1 (ja) 処置具
CN107106230B (zh) 电源装置、具备电源装置的手术系统以及电源装置的工作方法
WO2023007548A1 (ja) エネルギ処置システム
JP6773798B2 (ja) エネルギー処置システム、処置具制御装置、及び、処置具の動作制御方法
JP6665300B2 (ja) エネルギー制御装置、処置システム及びエネルギー制御装置の作動方法
JP2014226152A (ja) 処置具、処置システム、及び処置システムの制御方法
US20170325875A1 (en) An electrosurgical generator as well as a control device and a method
US20210322090A1 (en) Control device, treatment system, and control method
US11547430B2 (en) Energy treatment system, controller of power supply to treatment device, and controlling method of power supply to treatment device
CN112438780A (zh) 具有组织阻力感测的超声系统和方法
WO2021152752A1 (ja) 処置システム及び制御パラメータ算出方法
US20210000530A1 (en) Cordless surgical device and control method
US20230017988A1 (en) Treatment instrument, treatment system and treatment method
US20220409232A1 (en) Energy based surgical instruments and systems
JPH11267130A (ja) 超音波処置装置
WO2018173151A1 (ja) 処置システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100939.3

Country of ref document: CN

Ref document number: 112021007732

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951760

Country of ref document: EP

Kind code of ref document: A1