WO2023005489A1 - 开关功率放大器及其控制方法、控制系统 - Google Patents

开关功率放大器及其控制方法、控制系统 Download PDF

Info

Publication number
WO2023005489A1
WO2023005489A1 PCT/CN2022/099316 CN2022099316W WO2023005489A1 WO 2023005489 A1 WO2023005489 A1 WO 2023005489A1 CN 2022099316 W CN2022099316 W CN 2022099316W WO 2023005489 A1 WO2023005489 A1 WO 2023005489A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
filter
switching power
filter capacitor
bridge circuit
Prior art date
Application number
PCT/CN2022/099316
Other languages
English (en)
French (fr)
Inventor
徐千鸣
胡家瑜
罗安
郭鹏
李加东
陈燕东
何志兴
李民英
Original Assignee
广东志成冠军集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东志成冠军集团有限公司 filed Critical 广东志成冠军集团有限公司
Publication of WO2023005489A1 publication Critical patent/WO2023005489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of power supply technology in electrical engineering, in particular to a switching power amplifier and its control method and control system.
  • FIG. 1 The structure of a traditional switching power amplifier is shown in Figure 1. It includes energy storage capacitor C dc , two half-bridge circuits S 1 , S 2 and S 3 , S 4 composed of four power devices, two filter inductors L f1 , L f2 and a filter capacitor C f .
  • the energy storage capacitor C dc is connected in parallel with the first half-bridge circuit formed by series connection of power devices S 1 and S 2 , and the first half-bridge circuit is connected in parallel with the second half-bridge circuit formed by series connection of S 3 and S 4 .
  • One end of the two filter inductors L f1 and L f2 are respectively connected to the midpoint of the first half-bridge circuit and the second half-bridge circuit (that is, the output end of the half-bridge circuit, that is, one end of the filter inductor is correspondingly connected to the two power devices of the half-bridge circuit between), and the other ends of the two filter inductors are respectively connected to both ends of the filter capacitor C f .
  • the switching power amplifier is essentially a single-phase inverter.
  • the input and output instantaneous power will be unbalanced due to the coupling of DC power and AC power, which will cause voltage ripple and current ripple on the DC bus, which will affect the front-end DC power supply.
  • the performance of the work such as increasing the current ripple of the front stage will reduce the working efficiency of the DC power supply.
  • the technical problem to be solved by the present invention is to provide a switching power amplifier and its control method and control system in view of the deficiencies in the prior art, without adding other power devices and passive devices, greatly reducing the number of capacitors on the DC side of the switching power amplifier, reducing the Device volume.
  • the technical solution adopted in the present invention is: a switching power amplifier, comprising m parallel half-bridge circuits; each of the half-bridge circuit output terminals is connected with a filter inductor; the m half-bridge circuits The circuits are all connected in parallel with the energy storage capacitor; each filter inductance is connected with a filter capacitor; m filter capacitors are connected in parallel.
  • the invention can effectively increase the output current of the switching power amplifier and increase the output power of the device through the parallel connection of multiple half bridges.
  • the filter capacitor can be used as an energy buffer to decouple the DC power and AC power of the switching power amplifier.
  • the m filter capacitors greatly increase the energy storage energy of the filter link, and enhance the power decoupling capability of the device.
  • the capacitance values of all filter capacitors are equal.
  • the capacitance C f1 of the first filter capacitor satisfies the following relationship: Among them, P dc represents the output average power of the switching power amplifier, and ⁇ out represents the output angular frequency of the switching power amplifier. v dc represents the DC side voltage value. When the capacitance of the filter capacitor is greater than this threshold, the energy stored on the capacitor is sufficient to balance the energy generated by the AC power, and complete decoupling of the DC power and the AC power can be achieved. The capacitance values of the remaining filter capacitors also satisfy the above relational expressions.
  • All filter inductors have the same inductance value. Since the output voltage is an AC voltage, in order to ensure the consistency of the output of the device, the inductance values of all filter inductors are set to be equal.
  • the inductance value of the first filter inductor satisfies the following relationship: C f1 is the capacity value of the first filter capacitor, and ⁇ out represents the output angular frequency of the switching power amplifier.
  • the cut-off corner frequency of the filter inductor and filter capacitor is more than 10 times the output corner frequency, which can prevent the phenomenon that the output waveform of the device is limited and distorted due to the low cut-off frequency of the filter.
  • the inductance values of the remaining filter inductors also satisfy the above relational expressions.
  • the present invention also provides a control method for the above-mentioned switching power amplifier, which includes the following steps:
  • the i-th branch includes the i-th half-bridge circuit; the i-th One end of the filter inductor is connected between the upper bridge arm and the lower bridge arm of the i-th half-bridge circuit, and the other end of the i-th filter inductor is connected to the i-th filter capacitor; the i-th filter capacitor is connected to the i-th half-bridge circuit The lower bridge arms of the bridge circuit are connected in parallel; the jth branch includes the jth half-bridge circuit; one end of the jth filter inductor is connected between the upper bridge arm and the lower bridge arm of the jth half-bridge circuit, and The other end of the j filter inductor is connected to the j th filter capacitor; the j th filter capacitor is connected in parallel with the lower bridge arm of the j th half bridge circuit
  • the number of half-bridge circuits and the number of filter capacitors that is, m is an even number.
  • the parallel connection of multiple half bridges can effectively increase the output current of the switching power amplifier and increase the output power of the device.
  • the filter capacitor in the traditional full-bridge converter is cracked into multiple capacitors.
  • the original filter function is retained.
  • the control method proposed by the present invention can be used to use the cracked filter capacitor as an energy buffer.
  • the DC power and AC power of the switching power amplifier are decoupled, which greatly reduces the voltage fluctuation of the DC side and improves the quality of the output waveform.
  • the m filter capacitors greatly increase the energy storage energy of the filter link and enhance the power decoupling capability of the device.
  • the power decoupling strategy at different power levels can be realized by changing the number of bridge arms and the number of filter capacitors, which improves the efficiency of the method. Versatility.
  • a control system for a switching power amplifier which includes a controller; the controller is configured to execute the steps of the method of the present invention; the controller controls the on-off of the half-bridge circuit power device.
  • the present invention can effectively increase the output current of the switching power amplifier and increase the output power of the device by connecting multiple half bridges in parallel.
  • the filter capacitor can be used as an energy buffer link to decouple the DC power and AC power of the switching power amplifier.
  • m filter capacitors greatly increase the energy storage energy of the filter link and enhance the power decoupling capability of the device;
  • the control method of the present invention uses the cracked filter capacitor as an energy buffer link to decouple the DC power and AC power of the switching power amplifier, which greatly reduces the voltage fluctuation on the DC side and improves the quality of the output waveform.
  • Fig. 1 is the circuit structure diagram of existing switching power amplifier
  • FIG. 2 is a topological diagram of a dual BUCK switching power amplifier with power decoupling capability provided by an embodiment of the present invention
  • FIG. 3 is a control block diagram of a dual BUCK switching power amplifier with power decoupling capability according to an embodiment of the present invention
  • Fig. 4 is a voltage comparison diagram of the output voltage of the switching power amplifier, the filter capacitor voltage vo1 and the filter capacitor voltage vo2 before and after power decoupling using the embodiment of the present invention in the simulation example;
  • Fig. 5 is a comparison diagram of DC side capacitor voltage v dc before and after power decoupling by using the embodiment of the present invention in the simulation example;
  • Fig. 6 is a comparison diagram of DC bus current i dc before and after power decoupling by using the embodiment of the present invention in the simulation example.
  • the dual BUCK switching power amplifier of the embodiment of the present invention includes a first capacitor C dc (DC side energy storage capacitor), two switching devices S 1 , S 2 , a filter inductor L f1 and a filter capacitor C
  • the first BUCK circuit ie, the first branch circuit
  • the switching devices S 1 and S 2 are connected in series to form a first half-bridge circuit.
  • the second BUCK circuit (that is, the second branch circuit) composed of two switching devices S 3 and S 4 , the filter inductor L f2 and the filter capacitor C f2 , the switching devices S 3 and S 4 are connected in series to form a second half-bridge circuit.
  • the connection point between the upper bridge arm and the lower bridge arm is the output end of the half-bridge circuit.
  • the first capacitor is connected to the input terminals of the first BUCK circuit and the second BUCK circuit, and the output terminals of the double BUCK switching power amplifier are the positive poles of the output capacitors of the first BUCK circuit and the positive poles of the output capacitors of the second BUCK circuit.
  • the switching devices S 1 -S 4 are wide bandgap devices.
  • the first filter inductor is connected to the first filter capacitor
  • the second filter inductor is connected to the second filter capacitor
  • the first filter capacitor and the second filter capacitor are connected in parallel
  • the first filter capacitor is connected in parallel to the lower bridge arm of the first half-bridge circuit
  • the second filter capacitor is connected in parallel with the lower bridge arm of the second half bridge circuit.
  • the two ends of the energy storage capacitor on the DC side are respectively connected to the positive pole and the negative pole of the DC power supply.
  • the DC side energy storage capacitor is connected in parallel with the first half-bridge circuit and the second half-bridge circuit.
  • the number of filter capacitors is consistent with the number of half-bridge circuits.
  • a control method of a dual BUCK switching power amplifier with power decoupling capability includes:
  • the output voltage amplitude of the switching power amplifier is v out
  • the output current amplitude is i out
  • the output angular frequency is ⁇ out
  • the output power is P out
  • the DC side input voltage of the device is v dc
  • the load impedance is R load
  • P dc represents the DC power output by the switching power amplifier
  • P ac represents the AC power output by the switching power amplifier.
  • the output power of the switching power amplifier contains constant DC power and changing AC power, and the changing frequency of the AC power is twice the output frequency of the switching power amplifier.
  • the input power P in should satisfy:
  • the DC power supply of the front stage must contain AC ripples in the input current of the DC bus, and this part of the AC component will cause voltage fluctuations on the first capacitor, without loss of generality.
  • Express the DC bus input voltage and input current of the switching power amplifier as:
  • i dc (t) is the input current of the converter
  • v dc (t) is the input voltage of the converter
  • v 0 is the DC component contained in v dc (t)
  • i 0 is i dc (t )
  • v 2f is the magnitude of the double frequency component contained in v dc (t)
  • i 2f is the magnitude of the double frequency component contained in i dc (t)
  • is the phase angle of the double frequency voltage v 2f It is the phase angle of double frequency current i 2f .
  • the instantaneous power of the capacitor can be expressed as:
  • the filter capacitor values of the first BUCK circuit and the second BUCK circuit should be the same:
  • the energy change of the filter capacitor is equal to the energy value of the AC power consumption, satisfying:
  • the positive output voltages of the first BUCK circuit and the second BUCK circuit should meet the following conditions:
  • v 1ref represents the theoretical modulation degree of the first BUCK circuit
  • v 2ref represents the theoretical modulation degree of the second BUCK circuit
  • the output voltage outer loop is added as a correction in the control loop.
  • the specific method is to convert the theoretical output voltage Make a difference with the actual output voltage, and then obtain the corresponding correction error amount ⁇ m ac through proportional control, where k represents the proportional coefficient.
  • the specific mathematical expression is as follows:
  • the duty cycle of the first BUCK circuit and the second BUCK circuit can be obtained as:
  • a method for calculating filter parameters of a double BUCK switching power amplifier with power decoupling capability includes: a method for calculating the capacitance of a filter capacitor and a method for calculating the inductance of a filter inductor.
  • P dc represents the DC power of the switching power amplifier, that is, the average output power
  • ⁇ out represents the output angular frequency of the switching power amplifier.
  • LC low-pass filter is a commonly used circuit in the filter circuit, and its cut-off frequency is set at least 10 times the output frequency. According to the calculation formula of LC filter cut-off frequency:
  • the filter circuits are all connected to the negative terminal of the DC bus, so the filter circuits are independent of each other, the calculation of the filter inductance can be expressed as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种开关功率放大器及其控制方法、控制系统,以BUCK电路输出电容作为能量缓冲环节,平衡输入侧和输出侧不平衡能量,同时通过控制两个BUCK电路的输出电压差值实现对额定电压的跟踪保证输出电压波形质量。本发明中两个BUCK电路所需功率器件、无源器件数量均与常规单相逆变器相同,同时本发明有效的抑制了直流母线电压电流纹波,实现了功率解耦,适用范围宽泛。

Description

开关功率放大器及其控制方法、控制系统
交叉引用
本申请要求2021年7月27日提交的中国专利申请号202110850918.5的权益,所述申请以引用的方式整体并入本申请。
技术领域
本发明涉及电气工程中的电源技术领域,特别是一种开关功率放大器及其控制方法、控制系统。
背景技术
传统的开关功率放大器结构如图1所示。其包括储能电容C dc,四个功率器件组成的两个半桥电路S 1、S 2和S 3、S 4,两个滤波电感L f1、L f2和一个滤波电容C f。储能电容C dc与由功率器件S 1、S 2串联而成的第一半桥电路并联,第一半桥电路与由S 3、S 4串联而成的第二半桥电路并联。两个滤波电感一端L f1、L f2分别连接第一半桥电路、第二半桥电路的中点(即半桥电路的输出端,也即滤波电感一端对应接入半桥电路两个功率器件之间),两个滤波电感另一端分别接滤波电容C f两端。
开关功率放大器作为常用的DC/AC变换器之一,其本质为单相逆变器。但是受自身结构和输出波形的影响,开关功率放大器工作时会因为直流功率与交流功率耦合导致输入输出瞬时功率不均衡,使得直流母线存在电压纹波和电流纹波,进而影响前级直流供电电源的工作性能,如增加前级电流纹波会降低直流电源的工作效率。
面对这一开关功率放大器的共性问题,工程上目前往往通过增加直流侧电容作为缓冲环节,以此抑制直流母线上的低频波动。但是这种方法会导致开关功率放大器的体积和造价大幅上升。对近年来,在开关功率放大器功率解耦方面的发明专利申请回顾对比如下:“具有主动功率解耦功能的单相并网逆变器及功率解耦方法”(公开号:CN104104256A,公开日:2014年10月15日),其通过在直流电容旁并联半桥变换器的方法可以实现直流功率与交流功率的解耦,但是其需要额外配置一个半桥变换器和一个缓冲电容器,增加了装置的体积和价格。“电流补偿方法、功率解耦电路及功率变换器系统”(公开号:CN110690812A,公开日:2020年01月14日),其通过在直流电容上串联一个全桥变换器,对电容上的电压波动进行补偿,但是该方法需要多增加一个全桥变换器,而且控制环节的复杂程度大大提高。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种开关功率放大器及其控制方法、控制系统,无需增加其他功率器件和无源器件,大幅减少开关功率放大器直流侧电容数量,缩小装置体积。
为解决上述技术问题,本发明所采用的技术方案是:一种开关功率放大器,包括m个并联的半桥电路;每个所述半桥电路输出端接一个滤波电感;所述m个半桥电路均与储能电容并联;每一个所述滤波电感与一个滤波电容连接;m个滤波电容并联。
本发明通过多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。滤波电容可以作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置的功率解耦的能力。
由于输出电压为交流电压,为了保证装置在输出时保持一致性,所有滤波电容的容值相等。
第一个滤波电容的容值C f1满足以下关系式:
Figure PCTCN2022099316-appb-000001
其中,P dc表示开关功率放大器的输出平均功率,ω out表示开关功率放大器的输出角频率。v dc表示直流侧电压值。当滤波电容容值大于此阈值时,电容上所储存的能量足够平衡交流功率所产生的能量,可以实现直流功率和交流功率的完全解耦。其余滤波电容的容值也均满足上述关系式。
所有滤波电感的感值相等。由于输出电压为交流电压,为了保证装置在输出时保持一致性,因此设置所有滤波电感的感值相等。
第一个滤波电感的感值满足以下关系式:
Figure PCTCN2022099316-appb-000002
C f1为第一个滤波电容的容值,ω out表示开关功率放大器的输出角频率。据此设计,滤波电感与滤波电容的截止角频率为输出角频率的10倍以上,可以防止由于滤波器的截止频率过低而导致装置输出波形被限幅失真的现象发生。其余滤波电感的感值也均满足上述关系式。
本发明还提供了一种上述开关功率放大器的控制方法,其包括以下步骤:
1)利用下式计算数字功率放大器输出的交流能量△W:ΔW=W dc-W cf1-…-W cfm;其中,W cf1、W cfm分别表示第一个滤波电容、第m个滤波电容的能量变化量;W dc表示开关功率放大器储能电容的能量变化量;
Figure PCTCN2022099316-appb-000003
Figure PCTCN2022099316-appb-000004
v dc(0),v 01(0),v 0m(0)分别代表储能电容C dc,第一个滤波电容,第m个滤波电容的初始电压;v dc(t), v 01(t),v 0m(t)分别代表储能电容C dc,第一个滤波电容,第m个滤波电容的实时电压;其中各滤波电容的容值相同,即
C f=C f1=C f2=…=C fm
利用下式计算第i个支路的理论调制度
Figure PCTCN2022099316-appb-000005
和第j个支路的理论调制度
Figure PCTCN2022099316-appb-000006
Figure PCTCN2022099316-appb-000007
其中,i=1,2,…,m/2;j=m/2+1,m/2+2,…,m;所述第i个支路包括第i个半桥电路;第i个滤波电感一端接入该第i个半桥电路的上桥臂与下桥臂之间,第i个滤波电感另一端与第i个滤波电容连接;第i个滤波电容与所述第i个半桥电路的下桥臂并联;所述第j个支路包括第j个半桥电路;第j个滤波电感一端接入该第j个半桥电路的上桥臂与下桥臂之间,第j个滤波电感另一端与第j个滤波电容连接;第j个滤波电容与所述第j个半桥电路的下桥臂并联
2)利用下式计算第i个支路的占空比:
Figure PCTCN2022099316-appb-000008
3)将第i个支路的占空比与三角载波进行比较,当占空比比载波大时,第i个支路中半桥电路的上桥臂导通,否则,第i个支路中半桥电路的下桥臂导通。
本发明中,半桥电路数量、滤波电容数量,即m为偶数。
通过多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。同时将传统全桥变换器中的滤波电容裂解为多个电容,一方面保留了原有滤波的功能,另一方面可以配合本发明提出的控制方法,以裂解后的滤波电容作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦,大幅降低直流侧电压波动,提高了输出波形质量。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置功率解耦的能力,可通过更改桥臂数量和滤波电容个数以实现不同功率等级下的功率解耦策略,提高了方法的通用性。
一种开关功率放大器的控制系统,其包括控制器;所述控制器被配置为用于执行本发明上述方法的步骤;所述控制器控制半桥电路功率器件的通断。
与现有技术相比,本发明所具有的有益效果为:
1、本发明通过将多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。同时滤波电容可以作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置功率解耦的能力;
2、本发明的控制方法以裂解后的滤波电容作为能量缓冲环节,对开关功率放大器的直流功率和交流功率进行解耦,大幅降低了直流侧电压波动,提高了输出波形质量。
附图说明
图1为现有开关功率放大器的电路结构图;
图2为本发明实施例提供的具有功率解耦能力的双BUCK型开关功率放大器拓扑图;
图3为本发明实施例具有功率解耦能力的双BUCK型开关功率放大器的控制框图;
图4为仿真例中利用本发明实施例进行功率解耦前后,开关功率放大器输出电压,滤波电容电压vo1和滤波电容电压vo2的电压对比图;
图5为仿真例中利用本发明实施例进行功率解耦前后直流侧电容电压v dc对比图;
图6为仿真例中利用本发明实施例进行功率解耦前后直流母线电流i dc对比图。
具体实施方式
如图2所示,本发明实施例的双BUCK型开关功率放大器包括第一电容C dc(直流侧储能电容)、由2个开关器件S 1、S 2,滤波电感L f1和滤波电容C f1构成的第一BUCK电路(即第一支路),开关器件S 1、S 2串联形成第一半桥电路。由2个开关器件S 3、S 4,滤波电感L f2和滤波电容C f2构成的第二BUCK电路(即第二支路),开关器件S 3、S 4串联形成第二半桥电路。第一半桥电路、第二半桥电路中,上桥臂与下桥臂的连接点即为半桥电路输出端。第一电容与第一BUCK电路、第二BUCK电路的输入端连接,双BUCK型开关功率放大器的输出端即第一BUCK电路的输出电容的正极和第二BUCK电路的输出电容的正极。本实施例中,开关器件S 1~S 4采用宽禁带器件。第一滤波电感与第一滤波电容连接,第二滤波电感与第二滤波电容连接;第一滤波电容、第二滤波电容并联,且第一滤波电容与第一半桥电路的下桥臂并联,第二滤波电容与第二半桥电路的下桥臂并联。直流侧储能电容两端分别与直流电源正极、负极连接。直流侧储能电容与第一半桥电路、第二半桥电路并联。
本发明中,滤波电容的数量与半桥电路数量一致。
如图3,本发明所提供的一种具有功率解耦能力的双BUCK型开关功率放大器的控制方法包括:
假定开关功率放大器的输出电压幅值为v out,输出电流幅值为i out,输出角频率为ω out,输出功率为P out,装置的直流侧输入电压为v dc,负载的阻抗为R load,P dc表示开关功率放大器输出的直流功率,P ac表示开关功率放大器输出的交流功率。计算可知开关功率放大器的输出功率应满足:
Figure PCTCN2022099316-appb-000009
由式(1)可以看出,开关功率放大器输出功率中含有恒定的直流功率和变化的交流功率,且交流功率的变化频率是开关功率放大器输出频率的2倍。在没有功率解耦的情况下,根据输入输出瞬时功率相等的原则,输入功率P in应满足:
Figure PCTCN2022099316-appb-000010
前级直流电源为了提供输出功率中的交流功率P ac,直流母线的输入电流中就一定含有交流纹波,而这部分交流分量又会引起第一电容上出现电压波动,不失一般性的可将开关功率放大器的直流母线输入电压和输入电流表示为:
Figure PCTCN2022099316-appb-000011
式(3)中,i dc(t)为变换器的输入电流,v dc(t)为变换器的输入电压,v 0为v dc(t)含有的直流分量,i 0为i dc(t)中所含有的直流分量,v 2f为v dc(t)中所含有的二倍频分量的幅值,i 2f为i dc(t)中所含有的二倍频分量的幅值,
Figure PCTCN2022099316-appb-000012
为二倍频电压v 2f的相位角,
Figure PCTCN2022099316-appb-000013
为二倍频电流i 2f的相位角。
根据式(2)式(3)可以看出,想消除式(3)中的电压电流二倍频功率,需要式(2)中的交流功率等于0。考虑到输出功率不能改变,需要输入功率中存在直流电源之外的其他环节提供交流功率。由于电容的功率密度远远大于电感,所以采用输出滤波电容提供交流功率。式(2)可以改写为:
Figure PCTCN2022099316-appb-000014
根据电容电流和电容电压的关系,电容的瞬时功率可以表示为:
Figure PCTCN2022099316-appb-000015
考虑到开关功率放大器的输出正负波形对称,为了保持滤波参数的一致性,第一BUCK电路和第二BUCK电路的滤波电容取值应相同:
C f1=C f2=C f(6)
在不计能量损失的前提下,滤波电容C f1和C f2上的能量变化量可以由式(5)积分得到:
Figure PCTCN2022099316-appb-000016
同理可以计算直流侧第一电容C dc的能量变化量:
Figure PCTCN2022099316-appb-000017
在理想情况下,滤波电容的能量变化量与交流功率消耗的能量数值相等,满足:
W ac+∫P ac(t)dt=0(9)
实际装置中,滤波电容的能量变化量总会与实际交流功率消耗的能量存在一定差值,无法实现理想的跟踪效果,而两者能量的差值则由直流侧第一电容提供:
W dc=W ac+∫P ac(t)dt(10)
为了不影响输出电压的波形质量,第一BUCK电路与第二BUCK电路的正极输出电压应满足条件:
v out=v o1-v o2(11)
由于v out存在周期性,不失一般性的可以假定第一个滤波电容的实时电压v o1和第二个滤波电容的实时电压v o2满足:
Figure PCTCN2022099316-appb-000018
其中f(t)代表v o1和v o2中的共模分量。为了使滤波电容提供交流功率,可将(5)、(10)、(12)联立:
Figure PCTCN2022099316-appb-000019
由于BUCK电路的性质决定了输出侧电压无法大于输入电压,同时由于BUCK电路是斩波电路,其输出电压也一定大于零。所以v o1和v o2应满足:
Figure PCTCN2022099316-appb-000020
为了使v out的输出幅值最大,f(t)的初始值应满足:
Figure PCTCN2022099316-appb-000021
对式(13)进行计算可得:
Figure PCTCN2022099316-appb-000022
所以式(12)可以改写为:
Figure PCTCN2022099316-appb-000023
其中v 1ref表示第一BUCK电路的理论调制度,v 2ref表示第二BUCK电路的理论调制度。
为了在实现功率解耦的同时不降低输出电压波形质量,在控制环中增加了输出电压外环作为校正,具体方法为将理论输出电压
Figure PCTCN2022099316-appb-000024
与实际输出电压做差,而后再通过比例控制得到对应的校正误差量△m ac,其中k表示比例系数。具体数学表达如下:
Figure PCTCN2022099316-appb-000025
根据式(17)和式(18)可以得到第一BUCK电路和第二BUCK电路的占空比为:
Figure PCTCN2022099316-appb-000026
式中
Figure PCTCN2022099316-appb-000027
将式(19)中的占空比分别与阈值为0~1的三角载波进行比较,当占空比比载波大时, S 1、S 3导通,反之S 2、S 4导通即可。
本发明所提供的一种具有功率解耦能力的双BUCK型开关功率放大器的滤波参数计算方法包括:滤波电容的容值计算方法和滤波电感的感值计算方法。
当输出滤波电容电压波动到极限时,由式(14)可知,v o1应与直流侧电压相等,而v o2等于零,同时电路恰好不具备功率解耦能力。再将式(1),式(7),式(9)和式(17)联立可得:
Figure PCTCN2022099316-appb-000028
所以滤波电容容值应满足:
Figure PCTCN2022099316-appb-000029
式中P dc表示开关功率放大器的直流功率,也即输出平均功率,ω out表示开关功率放大器的输出角频率。
LC低通滤波器作为滤波电路中的常用电路,其截止频率至少设置为输出频率的10倍。根据LC滤波器截止频率计算公式有:
(10ω out) 2LC=1(23)
由于本发明开关功率放大器中,滤波电路均连接至直流母线的负端,所以滤波电路彼此独立,滤波电感的计算可表示为:
Figure PCTCN2022099316-appb-000030
如图5所示,基于本发明设计的开关功率放大器结构,t=0.20s时,用本发明设计的控制方法替代传统的开关功率放大器控制方法,可以看出,由于本发明变换器的作用,开关功率放大器的输入电压二倍频的波动情况明显降低。传统的开关功率放大器会产生峰峰值为22.6V二倍频电压纹波;替代后,电压纹波的峰峰值降为6.3V,降低了72.1%,电压纹波抑制效果明显。如图6所示,与图5类似,直流母线的电流纹波同时得到了大量的抑制,其二倍频电流分量峰峰值由5.4A降至1.4A。根据图4的输出波形的对比,可以看出,输出波形质量良好,除切换瞬间的暂态过程中存在短时振荡,没有因为变换器输入电压的纹波而降低输出波形的质量。

Claims (8)

  1. 一种开关功率放大器,包括m个并联的半桥电路;所述m个半桥电路均与储能电容并联;所述储能电容两端分别接直流电源正极和负极;每个所述半桥电路均包括上桥臂和下桥臂;其特征在于,对于任意一个半桥电路,该半桥电路的上桥臂和下桥臂之间的连接点接滤波电感一端,该滤波电感另一端接一滤波电容,且该滤波电感、滤波电容的串联支路与该半桥电路的下桥臂并联。
  2. 根据权利要求1所述的开关功率放大器,其特征在于,所有滤波电容的容值相等。
  3. 根据权利要求1或2所述的开关功率放大器,其特征在于,各滤波电容的容值C f均满足以下关系式:
    Figure PCTCN2022099316-appb-100001
    其中,P dc表示开关功率放大器的输出平均功率,ω out表示开关功率放大器的输出角频率,v dc表示开关功率放大器直流侧电压值。
  4. 根据权利要求1~3之一所述的开关功率放大器,其特征在于,所有滤波电感的感值相等。
  5. 根据权利要求1~4之一所述的开关功率放大器,其特征在于,各滤波电感的感值L f均满足以下关系式:
    Figure PCTCN2022099316-appb-100002
    C f1为第一个滤波电容的容值,ω out表示开关功率放大器的输出角频率。
  6. 根据权利要求1~5之一所述的开关功率放大器,其特征在于,m=2。
  7. 一种权利要求1~6之一所述开关功率放大器的控制方法,其特征在于,包括以下步骤:
    1)利用下式计算开关功率放大器输出的交流能量△W:ΔW=W dc-W cf1-…-W cfm;其中,W cf1、W cfm分别表示第一个滤波电容、第m个滤波电容的能量变化量;W dc表示开关功率放大器直流侧储能电容的能量变化量;
    Figure PCTCN2022099316-appb-100003
    v dc(0),v 01(0),v 0m(0)分别代表储能电容C dc、第一个滤波电容、第m个滤波电容的初始电压;v dc(t),v 01(t),v 0m(t)分别代表储能电容C dc、第一个滤波电容、第m个滤波电容的实时电压,即t时刻的电压;其中各滤波电容的容值相同, 即C f=C f1=C f2=…=C fm
    2)利用下式计算t时刻的解耦调制度m dc(t):
    Figure PCTCN2022099316-appb-100004
    其中,v out(t)为开关功率放大器输出电压实际值;C f表示滤波电容容值;将输出电压理想值v out*与输出电压实际值v out(t)相减,并通过比例控制得到t时刻的交流调制度Δm ac(t);
    利用下式计算第i个支路的理论调制度
    Figure PCTCN2022099316-appb-100005
    和第j个支路的理论调制度
    Figure PCTCN2022099316-appb-100006
    Figure PCTCN2022099316-appb-100007
    其中,i=1,2,…,m/2;j=m/2+1,m/2+2,…,m;所述第i个支路包括第i个半桥电路;第i个滤波电感一端接入该第i个半桥电路的上桥臂与下桥臂之间,第i个滤波电感另一端与第i个滤波电容连接;第i个滤波电容与所述第i个半桥电路的下桥臂并联;所述第j个支路包括第j个半桥电路;第j个滤波电感一端接入该第j个半桥电路的上桥臂与下桥臂之间,第j个滤波电感另一端与第j个滤波电容连接;第j个滤波电容与所述第j个半桥电路的下桥臂并联;
    3)利用下式计算第i个支路的占空比d oi和第j个支路的占空比d oj
    Figure PCTCN2022099316-appb-100008
    Figure PCTCN2022099316-appb-100009
    4)将第i个支路的占空比与三角载波进行比较,当占空比比载波大时,第i个支路中半桥电路的上桥臂导通,否则,第i个支路中半桥电路的下桥臂导通;将第j个支路的占空比与三角载波进行比较,当占空比比载波大时,第j个支路中半桥电路的上桥臂导通,否则,第j个支路中半桥电路的下桥臂导通;
  8. 一种开关功率放大器的控制系统,其特征在于,其包括处理器和存储器; 所述处理器用于执行所述存储器中存储的计算机程序,以控制半桥电路功率器件的通断;所述计算机程序被配置为用于执行权利要求7所述方法的步骤。
PCT/CN2022/099316 2021-07-27 2022-06-17 开关功率放大器及其控制方法、控制系统 WO2023005489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110850918.5A CN113659860B (zh) 2021-07-27 2021-07-27 开关功率放大器及其控制方法、控制系统
CN202110850918.5 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005489A1 true WO2023005489A1 (zh) 2023-02-02

Family

ID=78478800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099316 WO2023005489A1 (zh) 2021-07-27 2022-06-17 开关功率放大器及其控制方法、控制系统

Country Status (2)

Country Link
CN (1) CN113659860B (zh)
WO (1) WO2023005489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691887A (zh) * 2024-01-31 2024-03-12 湖南大学 一种超级电容储能型高过载单相逆变器电路及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659860B (zh) * 2021-07-27 2023-05-30 广东志成冠军集团有限公司 开关功率放大器及其控制方法、控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135583A (ja) * 1995-11-07 1997-05-20 Japan Storage Battery Co Ltd 太陽光発電用インバ−タ
WO2016124681A1 (de) * 2015-02-04 2016-08-11 Eth Zurich Regelverfahren und -vorrichtung zur aktiven kompensation von netz- oder lastbedingten schwankungen des leistungsflusses eines leistungselektronischen konvertsystems
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN113659860A (zh) * 2021-07-27 2021-11-16 广东志成冠军集团有限公司 开关功率放大器及其控制方法、控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827109B (zh) * 2016-05-31 2018-04-03 江苏林洋能源股份有限公司 一种冗余直流变换电路及其控制方法
CN110380626B (zh) * 2019-06-21 2020-06-12 山东大学 高功率密度单相级联h桥整流器、控制方法及控制系统
CN110323959B (zh) * 2019-08-06 2021-04-06 合肥工业大学 可抑制二次纹波和共模漏电流的单相逆变器及其控制方法
CN111697803B (zh) * 2020-07-14 2021-08-31 华东交通大学 一种中点共模注入单相逆变器功率解耦控制系统及控制方法
CN112234808B (zh) * 2020-09-09 2021-09-03 西安交通大学 单相逆变器的二倍频纹波抑制电路及抑制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135583A (ja) * 1995-11-07 1997-05-20 Japan Storage Battery Co Ltd 太陽光発電用インバ−タ
WO2016124681A1 (de) * 2015-02-04 2016-08-11 Eth Zurich Regelverfahren und -vorrichtung zur aktiven kompensation von netz- oder lastbedingten schwankungen des leistungsflusses eines leistungselektronischen konvertsystems
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN113659860A (zh) * 2021-07-27 2021-11-16 广东志成冠军集团有限公司 开关功率放大器及其控制方法、控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117691887A (zh) * 2024-01-31 2024-03-12 湖南大学 一种超级电容储能型高过载单相逆变器电路及其控制方法
CN117691887B (zh) * 2024-01-31 2024-04-19 湖南大学 一种超级电容储能型高过载单相逆变器电路及其控制方法

Also Published As

Publication number Publication date
CN113659860A (zh) 2021-11-16
CN113659860B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2023005489A1 (zh) 开关功率放大器及其控制方法、控制系统
CN109194113B (zh) 具备有源功率解耦功能的功率因数校正器及其控制方法
CN112234808B (zh) 单相逆变器的二倍频纹波抑制电路及抑制方法
CN115051565A (zh) 双向半桥直流变换器并网逆变器及纹波控制方法
CN115242115A (zh) 一种四桥臂开关功率放大器及其宽频带保真控制方法
Wang et al. An AC side-active power decoupling modular for single phase power converter
CN110165921B (zh) 一种具有高输出电压增益开关电感型准z源逆变器
CN113489308B (zh) 无输入电流死区的降压功率因数校正变换器及控制方法
CN112202322B (zh) 基于有源负电容的等效零阻抗抑制二次纹波电流的方法
CN112350590A (zh) 一种不控整流器谐波补偿电路及控制方法
CN111181420B (zh) 一种单相Vienna整流器及其控制方法
WO2023226317A1 (zh) 维也纳整流器的控制方法及系统
Brooks et al. A digital implementation of pll-based control for the series-stacked buffer in front-end pfc rectifiers
CN219068075U (zh) 一种主功率电路及交流镀膜电源
CN117039976A (zh) 一种cllc双向谐振变换器级联并网逆变器及其抑制方法
CN114204596B (zh) 一种有源功率解耦电路及控制方法
CN116317499A (zh) 基于飞跨电容型三电平boost的单相逆变器及控制方法
CN113726210B (zh) 两级双有源桥并网逆变器直流母线低频纹波抑制电路及方法
CN213027802U (zh) 一种解耦电路
CN209313447U (zh) 改进的统一电能质量管理器电路拓扑
US11695322B2 (en) AC-side symmetrically-split single-phase inverter for decoupling
CN109713884A (zh) 一种z源-apf的拓扑结构
CN113037109B (zh) 一种九电平逆变器及九电平有源滤波器
CN113612262B (zh) 一种抑制直流侧低频振荡的方法及系统
CN216751561U (zh) 变频谐振式三相功率因数校正变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE