CN113659860B - 开关功率放大器及其控制方法、控制系统 - Google Patents

开关功率放大器及其控制方法、控制系统 Download PDF

Info

Publication number
CN113659860B
CN113659860B CN202110850918.5A CN202110850918A CN113659860B CN 113659860 B CN113659860 B CN 113659860B CN 202110850918 A CN202110850918 A CN 202110850918A CN 113659860 B CN113659860 B CN 113659860B
Authority
CN
China
Prior art keywords
power amplifier
switching power
filter
output
filter capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110850918.5A
Other languages
English (en)
Other versions
CN113659860A (zh
Inventor
徐千鸣
胡家瑜
罗安
郭鹏
李加东
陈燕东
何志兴
李民英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhicheng Champion Group Co Ltd
Original Assignee
Guangdong Zhicheng Champion Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Zhicheng Champion Group Co Ltd filed Critical Guangdong Zhicheng Champion Group Co Ltd
Priority to CN202110850918.5A priority Critical patent/CN113659860B/zh
Publication of CN113659860A publication Critical patent/CN113659860A/zh
Priority to PCT/CN2022/099316 priority patent/WO2023005489A1/zh
Application granted granted Critical
Publication of CN113659860B publication Critical patent/CN113659860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种开关功率放大器及其控制方法、控制系统,以BUCK电路输出电容作为能量缓冲环节,平衡输入侧和输出侧不平衡能量,同时通过控制两个BUCK电路的输出电压差值实现对额定电压的跟踪保证输出电压波形质量。本发明中两个BUCK电路所需功率器件、无源器件数量均与常规单相逆变器相同,同时本发明有效的抑制了直流母线电压电流纹波,实现了功率解耦,适用范围宽泛。

Description

开关功率放大器及其控制方法、控制系统
技术领域
本发明涉及电气工程中的电源技术领域,特别是一种开关功率放大器及其控制方法、控制系统。
背景技术
传统的开关功率放大器结构如图1所示。其包括储能电容Cdc,四个功率器件组成的两个半桥电路S1、S2和S3、S4,两个滤波电感Lf1、Lf2和一个滤波电容Cf。储能电容Cdc与由功率器件S1、S2串联而成的第一半桥电路并联,第一半桥电路与由S3、S4串联而成的第二半桥电路并联。两个滤波电感一端Lf1、Lf2分别连接第一半桥电路、第二半桥电路的中点(即半桥电路的输出端,也即滤波电感一端对应接入半桥电路两个功率器件之间),两个滤波电感另一端分别接滤波电容Cf两端。
开关功率放大器作为常用的DC/AC变换器之一,其本质为单相逆变器。但是受自身结构和输出波形的影响,开关功率放大器工作时会因为直流功率与交流功率耦合导致输入输出瞬时功率不均衡,使得直流母线存在电压纹波和电流纹波,进而影响前级直流供电电源的工作性能,如增加前级电流纹波会降低直流电源的工作效率。
面对这一开关功率放大器的共性问题,工程上目前往往通过增加直流侧电容作为缓冲环节,以此抑制直流母线上的低频波动。但是这种方法会导致开关功率放大器的体积和造价大幅上升。对近年来,在开关功率放大器功率解耦方面的发明专利申请回顾对比如下:“具有主动功率解耦功能的单相并网逆变器及功率解耦方法”(公开号:CN104104256A,公开日:2014年10月15日),其通过在直流电容旁并联半桥变换器的方法可以实现直流功率与交流功率的解耦,但是其需要额外配置一个半桥变换器和一个缓冲电容器,增加了装置的体积和价格。“电流补偿方法、功率解耦电路及功率变换器系统”(公开号:CN110690812A,公开日:2020年01月14日),其通过在直流电容上串联一个全桥变换器,对电容上的电压波动进行补偿,但是该方法需要多增加一个全桥变换器,而且控制环节的复杂程度大大提高。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种开关功率放大器及其控制方法、控制系统,无需增加其他功率器件和无源器件,大幅减少开关功率放大器直流侧电容数量,缩小装置体积。
为解决上述技术问题,本发明所采用的技术方案是:一种开关功率放大器,包括m个半桥电路;每个所述半桥电路输出端接一个滤波电感;每一个所述滤波电感与一个滤波电容连接;m个滤波电容并联。
本发明通过多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。同时滤波电容可以作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置功率解耦的能力。
由于输出电压为交流电压,为了保证装置在输出时保持一致性,所有滤波电容的容值相等。
第一个滤波电容的容值Cf1满足以下关系式:
Figure BDA0003182290410000021
其中,Pdc表示开关功率放大器的输出平均功率,ωout表示开关功率放大器的输出角频率。vdc表示直流侧电压值。当滤波电容容值大于此阈值时,电容上所储存的能量足够平衡交流功率所产生的能量,可以实现直流功率和交流功率的完全解耦。
所有滤波电感的感值相等。由于输出电压为交流电压,为了保证装置在输出时保持一致性,因此设置所有滤波电感的感值相等。
第一个滤波电感的感值满足以下关系式:
Figure BDA0003182290410000022
Cf1为第一个滤波电容的容值,ωout表示开关功率放大器的输出角频率。据此设计,滤波电感与滤波电容的截止角频率为输出角频率的10倍以上,可以防止由于滤波器的截止频率过低而导致装置输出波形被限幅失真的现象发生。
本发明还提供了一种上述开关功率放大器的控制方法,其包括以下步骤:
1)利用下式计算数字功率放大器输出的交流能量△W:ΔW=Wdc-Wcf1-…-Wcfm;其中,Wcf1、Wcfm分别表示第一个滤波电容、第m个滤波电容的容值;Wdc表示开关功率放大器储能电容的能量变化量;
Figure BDA0003182290410000023
Figure BDA0003182290410000024
vdc(0),v01(0),v0m(0)分别代表储能电容Cdc,第一个滤波电容,第m个滤波电容的初始电压;vdc(t),v01(t),v0m(t)分别代表储能电容Cdc,第一个滤波电容,第m个滤波电容的实时电压;其中各滤波电容的容值相同,即
Cf=Cf1=Cf2=…=Cfm
2)利用下式计算解耦调制度t时刻的解耦调制度mdc(t):
Figure BDA0003182290410000031
其中,vout(t)为开关功率放大器输出电压实际值;Cf表示滤波电容容值;
将输出电压理想值vout*与输出电压实际值vout(t)相减,并通过比例控制得到t时刻的交流调制度Δmac(t);
利用下式计算第i个支路的理论调制度
Figure BDA0003182290410000032
和第m-i个支路的理论调制度/>
Figure BDA0003182290410000033
Figure BDA0003182290410000034
其中,i=1,2,…,m/2;
3)利用下式计算第i个支路的占空比:
Figure BDA0003182290410000035
/>
4)将第i个支路的占空比与三角载波进行比较,当占空比比载波大时,第i个支路中半桥电路的上桥臂导通,否则,第i个支路中半桥电路的下桥臂导通。
本发明中,半桥电路数量、滤波电容数量,即m为偶数。
通过多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。同时将传统全桥变换器中的滤波电容裂解为多个电容,一方面保留了原有滤波的功能;另一方面可以配合本发明提出的控制方法,以裂解后的滤波电容作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦,大幅降低直流侧电压波动,提高了输出波形质量。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置功率解耦的能力,可通过更改桥臂数量和滤波电容个数以实现不同功率等级下的功率解耦策略,增加了方法的通用性。
一种开关功率放大器的控制系统,其包括控制器;所述控制器被配置为用于执行本发明上述方法的步骤;所述控制器控制半桥电路功率器件的通断。
与现有技术相比,本发明所具有的有益效果为:
1、本发明通过将多路半桥进行并联,可以有效增加开关功率放大器的输出电流,增加装置的输出功率。同时滤波电容可以作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦。m个滤波电容大幅增加了滤波环节的储能能量,增强了装置功率解耦的能力。
2、本发明的控制方法以裂解后的滤波电容作为能量缓冲环节对开关功率放大器的直流功率和交流功率进行解耦,大幅降低直流侧电压波动,提高了输出波形质量。
附图说明
图1为现有开关功率放大器的电路结构图;
图2为本发明提供的具有功率解耦能力的双BUCK型开关功率放大器拓扑图;
图3为本发明具有功率解耦能力的双BUCK型开关功率放大器的控制框图;
图4为仿真例中利用本发明进行功率解耦前后,开关功率放大器输出电压,滤波电容电压vo1和滤波电容电压vo2的电压对比图;
图5为仿真例中利用本发明进行功率解耦前后直流侧电容电压vdc对比图;
图6为仿真例中利用本发明进行功率解耦前后直流母线电流idc对比图。
具体实施方式
如图2所示,本发明实施例的双BUCK型开关功率放大器包括第一电容Cdc、由2个开关器件S1、S2,滤波电感Lf1和滤波电容Cf1构成的第一BUCK电路(即第一支路),由2个开关器件S3、S4,滤波电感Lf2和滤波电容Cf2构成的第二BUCK电路(即第二支路);第一电容与第一BUCK电路和第二BUCK电路的输入端连接,输出端由第一BUCK电路的输出电容的正极和第二BUCK电路的输出电容的正极组成。本实施例中,开关器件S1~S4采用宽禁带器件。第一滤波电感与第一滤波电容连接,第二滤波电感与第二滤波电容连接;第一滤波电容、第二滤波电容并联,且第一滤波电容、第二滤波电容分别与两个半桥电路的下桥臂并联。
本发明中,滤波电容的数量与半桥电路数量一致。
如图3,本发明所提供的一种具有功率解耦能力的双BUCK型开关功率放大器的控制方法包括:
假定开关功率放大器的输出电压幅值为vout,输出电流幅值为iout,输出角频率为ωout,输出功率为Pout,装置的直流侧输入电压为vdc,负载的阻抗为Rload,Pdc表示开关功率放大器输出的直流功率,Pac表示开关功率放大器输出的交流功率。计算可知开关功率放大器的输出功率应满足:
Figure BDA0003182290410000051
由式(1)可以看出,开关功率放大器输出功率中含有恒定的直流功率和变化的交流功率,且交流功率的变化频率是开关功率放大器输出频率的2倍。在没有功率解耦的情况下,根据输入输出瞬时功率相等的原则,输入功率Pin应满足:
Figure BDA0003182290410000052
而前级直流电源为了提供输出功率中的交流功率Pac,直流母线的输入电流中就一定含有交流纹波,而这部分交流分量又会引起第一电容上出现电压波动,不失一般性的可将开关功率放大器的直流母线输入电压和输入电流表示为
Figure BDA0003182290410000053
式(3)中,idc(t)为变换器的输入电流,vdc(t)为变换器的输入电压,v0为vdc(t)中所含有的直流分量,i0为idc(t)中所含有的直流分量,v2f为vdc(t)中所含有的二倍频分量的幅值,i2f为idc(t)中所含有的二倍频分量的幅值,
Figure BDA0003182290410000054
为二倍频电压v2f的相位角,/>
Figure BDA0003182290410000055
为二倍频电流i2f的相位角。
根据式(2)式(3)可以看出,想消除式(3)中的电压电流二倍频功率,需要式(2)中的交流功率等于0。考虑到输出功率不能改变,需要输入功率中存在直流电源之外的其他环节提供交流功率。由于电容的功率密度远远大于电感,所以采用输出滤波电容提供交流功率。式(2)可以改写为
Figure BDA0003182290410000056
根据电容电流和电容电压的关系,电容的瞬时功率可以表示为
Figure BDA0003182290410000061
考虑到开关功率放大器的输出正负波形对称,为了保持滤波参数的一致性,第一BUCK电路和第二BUCK电路的滤波电容取值应相同
Cf1=Cf2=Cf (6)
在不计能量损失的前提下,滤波电容Cf1和Cf2上的能量变化量可以由式(5)积分得到:
Figure BDA0003182290410000062
同理可以计算直流侧第一电容Cdc的能量变化量:
Figure BDA0003182290410000063
在理想情况下,滤波电容的能量变化量与交流功率消耗的能量数值相等,满足:
Wac+∫Pac(t)dt=0 (9)
实际装置中,滤波电容的能量变化量总会与实际交流功率消耗的能量存在一定差值,无法实现理想的跟踪效果,而两者能量的差值则由直流侧第一电容提供:
Wdc=Wac+∫Pac(t)dt (10)
为了不影响输出电压的波形质量,第一BUCK电路与第二BUCK电路的正极输出电压应满足条件:
vout=vo1-vo2 (11)
由于vout存在周期性,不失一般性的可以假定vo1和vo2满足:
Figure BDA0003182290410000064
其中f(t)代表vo1和vo2中的共模分量。为了使滤波电容提供交流功率,可将(5)(10)(12)联立:
Figure BDA0003182290410000065
由于BUCK电路的性质决定了输出侧电压无法大于输入电压,同时由于BUCK电路是斩波电路,其输出电压也一定大于零。所以vo1和vo2应满足
Figure BDA0003182290410000071
为了使vout的输出幅值最大,f(t)的初始值应满足
Figure BDA0003182290410000072
对式(13)进行计算可得
Figure BDA0003182290410000073
所以式(12)可以改写为
Figure BDA0003182290410000074
其中u1ref表示第一BUCK电路的理论调制度,u2ref表示第二BUCK电路的理论调制度。
为了在实现功率解耦的同时不降低输出电压波形质量,在控制环中增加了输出电压外环作为校正,具体方法为将理论输出电压与实际输出电压做差,而后再通过比例控制得到对应的校正误差量△mac,其中k表示比例系数。具体数学表达如下:
Figure BDA0003182290410000075
根据式(17)和式(18)可以得到第一BUCK电路和第二BUCK电路的占空比为
Figure BDA0003182290410000076
式中
Figure BDA0003182290410000077
式(19)中的占空比分别与阈值为0-1的三角载波进行比较,当占空比比载波大时,S1、S3导通,反之S2、S4导通即可。
本发明所提供的一种具有功率解耦能力的双BUCK型开关功率放大器的滤波参数计算包括:滤波电容的容值计算方法和滤波电感的感值计算方法。
当输出滤波电容电压波动到极限时,由式(14)可知,vo1应与直流侧电压相等,而vo2等于零,同时电路恰好不具备功率解耦能力。再将式(1),式(7),式(9)和式(17)联立可得:
Figure BDA0003182290410000081
所以滤波电容容值应满足
Figure BDA0003182290410000082
式中Pdc表示开关功率放大器的直流功率,也即输出平均功率,ωout表示开关功率放大器的输出角频率。
LC低通滤波器作为滤波电路中的常用电路,其截止频率至少设置为输出频率的10倍。根据LC滤波器截止频率计算公式有
(10ωout)2LC=1 (23)
由于本开关功率放大器中,滤波电路均连接至直流母线的负端,所以彼此独立,滤波电感的计算可表示为
Figure BDA0003182290410000083
如图5所示,基于本发明设计的开关功率放大器结构,t=0.20s时,用本发明设计的控制方法替代传统的开关功率放大器控制方法,可以看出,由于本发明变换器的作用,开关功率放大器的输入电压二倍频的波动情况明显降低。传统的开关功率放大器会产生峰峰值为22.6V二倍频电压纹波;替代后,电压纹波的峰峰值降为6.3V,降低了72.1%,电压纹波抑制效果明显。如图6所示,与图5类似,直流母线的电流纹波同时得到了大量的抑制,其二倍频电流分量峰峰值由5.4A降至1.4A。根据图4的输出波形的对比,可以看出,输出波形质量良好,除切换瞬间的暂态过程中存在短时振荡,没有因为变换器器输入电压的纹波而降低输出波形的质量。

Claims (7)

1.一种开关功率放大器的控制方法,开关功率放大器包括m个半桥电路;每个所述半桥电路输出端接一个滤波电感;每一个所述滤波电感与一个滤波电容连接;m个滤波电容并联;其特征在于,包括以下步骤:
1)利用下式计算数字功率放大器输出的交流能量△W:ΔW=Wdc-Wcf1--Wcfm;其中,Wcf1、Wcfm分别表示第一个滤波电容、第m个滤波电容的容值;Wdc表示开关功率放大器储能电容的能量变化量;
Figure FDA0004140955040000011
Figure FDA0004140955040000012
v01(0),v0m(0)分别代表储能电容Cdc、第一个滤波电容、第m个滤波电容的初始电压;vdc(t),v01(t),v0m(t)分别代表储能电容Cdc、第一个滤波电容、第m个滤波电容的实时电压,即t时刻的电压;其中各滤波电容的容值相同,即Cf=Cf1=Cf2==Cfm
2)利用下式计算解耦调制度t时刻的解耦调制度mdc(t):
Figure FDA0004140955040000013
其中,vout(t)为开关功率放大器输出电压实际值;Cf表示滤波电容容值;
将输出电压理想值vout*与输出电压实际值vout(t)相减,并通过比例控制得到t时刻的交流调制度Δmac(t);
利用下式计算第i个支路的理论调制度
Figure FDA0004140955040000014
和第m-i个支路的理论调制度/>
Figure FDA0004140955040000015
Figure FDA0004140955040000016
其中,i=1,2,…,m/2;
3)利用下式计算第i个支路的占空比doi
Figure FDA0004140955040000021
4)将第i个支路的占空比与三角载波进行比较,当占空比比载波大时,第i个支路中半桥电路的上桥臂导通,否则,第i个支路中半桥电路的下桥臂导通。
2.根据权利要求1所述的开关功率放大器的控制方法,其特征在于,
所有滤波电容的容值相等。
3.根据权利要求2所述的开关功率放大器的控制方法,其特征在于,
第一个滤波电容的容值Cf1满足以下关系式:
Figure FDA0004140955040000022
其中,Pdc表示开关功率放大器的输出平均功率,ωout表示开关功率放大器的输出角频率,vdc表示开关功率放大器直流侧电压值。
4.根据权利要求1所述的开关功率放大器的控制方法,其特征在于,
所有滤波电感的感值相等。
5.根据权利要求4所述的开关功率放大器的控制方法,其特征在于,
第一个滤波电感的感值Lf1满足以下关系式:
Figure FDA0004140955040000023
Cf1为第一个滤波电容的容值,ωout表示开关功率放大器的输出角频率。
6.根据权利要求1~5之一所述的开关功率放大器的控制方法,其特征在于,m=2。
7.一种开关功率放大器的控制系统,其特征在于,其包括控制器;
所述控制器被配置为用于执行权利要求1~6之一所述方法的步骤;
所述控制器控制半桥电路功率器件的通断。
CN202110850918.5A 2021-07-27 2021-07-27 开关功率放大器及其控制方法、控制系统 Active CN113659860B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110850918.5A CN113659860B (zh) 2021-07-27 2021-07-27 开关功率放大器及其控制方法、控制系统
PCT/CN2022/099316 WO2023005489A1 (zh) 2021-07-27 2022-06-17 开关功率放大器及其控制方法、控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110850918.5A CN113659860B (zh) 2021-07-27 2021-07-27 开关功率放大器及其控制方法、控制系统

Publications (2)

Publication Number Publication Date
CN113659860A CN113659860A (zh) 2021-11-16
CN113659860B true CN113659860B (zh) 2023-05-30

Family

ID=78478800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110850918.5A Active CN113659860B (zh) 2021-07-27 2021-07-27 开关功率放大器及其控制方法、控制系统

Country Status (2)

Country Link
CN (1) CN113659860B (zh)
WO (1) WO2023005489A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659860B (zh) * 2021-07-27 2023-05-30 广东志成冠军集团有限公司 开关功率放大器及其控制方法、控制系统
CN117691887B (zh) * 2024-01-31 2024-04-19 湖南大学 一种超级电容储能型高过载单相逆变器电路及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234808A (zh) * 2020-09-09 2021-01-15 西安交通大学 单相逆变器的二倍频纹波抑制电路及抑制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135583A (ja) * 1995-11-07 1997-05-20 Japan Storage Battery Co Ltd 太陽光発電用インバ−タ
CH710734B1 (de) * 2015-02-04 2019-07-15 Eth Zuerich Regelverfahren und -vorrichtung zur aktiven Kompensation von netz- oder lastbedingten Schwankungen des Leistungsflusses eines leistungselektronischen Konvertersystems.
CN105827109B (zh) * 2016-05-31 2018-04-03 江苏林洋能源股份有限公司 一种冗余直流变换电路及其控制方法
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN110380626B (zh) * 2019-06-21 2020-06-12 山东大学 高功率密度单相级联h桥整流器、控制方法及控制系统
CN110323959B (zh) * 2019-08-06 2021-04-06 合肥工业大学 可抑制二次纹波和共模漏电流的单相逆变器及其控制方法
CN111697803B (zh) * 2020-07-14 2021-08-31 华东交通大学 一种中点共模注入单相逆变器功率解耦控制系统及控制方法
CN113659860B (zh) * 2021-07-27 2023-05-30 广东志成冠军集团有限公司 开关功率放大器及其控制方法、控制系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234808A (zh) * 2020-09-09 2021-01-15 西安交通大学 单相逆变器的二倍频纹波抑制电路及抑制方法

Also Published As

Publication number Publication date
WO2023005489A1 (zh) 2023-02-02
CN113659860A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN113659860B (zh) 开关功率放大器及其控制方法、控制系统
TWI589736B (zh) 高低頻並聯電力轉換裝置及其方法
CN112234808B (zh) 单相逆变器的二倍频纹波抑制电路及抑制方法
CN109713724B (zh) 适用于光伏并网应用中并联三电平变换器的零共模电压空间矢量调制方法
CN115242115A (zh) 一种四桥臂开关功率放大器及其宽频带保真控制方法
CN104935175B (zh) 隔离型模块化多电平直流变换器的改进两电平调制方法
CN115051565A (zh) 双向半桥直流变换器并网逆变器及纹波控制方法
CN110165921B (zh) 一种具有高输出电压增益开关电感型准z源逆变器
Facchinello et al. Closed-loop operation and control strategy for the dual active half bridge ac-ac converter
CN112994450B (zh) 一种五电平Buck/Boost变换器的电容电压平衡控制方法及系统
CN112117924B (zh) 一种dcm单桥臂集成分裂源升压逆变器的控制方法
CN111969878B (zh) 变换器、变换器的控制方法及装置
JP2013106519A (ja) 並列に接続された複数の制御電流源を備える電力変換器
CN111181420B (zh) 一种单相Vienna整流器及其控制方法
CN108304644B (zh) 一种基于打洞函数算法的upqc参数优化方法
CN116191546A (zh) 一种储能变换器、储能系统及电流波动抑制方法
CN112117925B (zh) 光伏并网场合用dcm单桥臂集成分裂源逆变器控制方法
CN107134934A (zh) 一种无源补偿低谐波十二脉波自耦变压整流电路
AU2008357911B2 (en) Control method for a structure converting direct current into alternating current
CN109687477B (zh) 应用于链式statcom的基本单元、链式statcom及方法
CN111049404A (zh) 一种超级电容储能单元集成化多电平变换器的soc均衡方法
CN206865367U (zh) 一种无源补偿低谐波十二脉波自耦变压整流电路
Huang et al. Analysis and comparison of power quality and inter-phase circulation for one-stage and two-stage modular battery energy storage system
CN105356756B (zh) 一种模块化隔离型电池储能变换器的准方波调制方法
Bahraini et al. A Single-Phase Grid-Connected PV Microinverter With Very Low DC Bus Capacitance, Low THD, and Improved Transient Response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant