WO2023001231A1 - 基于直流充电座温度补偿的方法及装置 - Google Patents

基于直流充电座温度补偿的方法及装置 Download PDF

Info

Publication number
WO2023001231A1
WO2023001231A1 PCT/CN2022/107009 CN2022107009W WO2023001231A1 WO 2023001231 A1 WO2023001231 A1 WO 2023001231A1 CN 2022107009 W CN2022107009 W CN 2022107009W WO 2023001231 A1 WO2023001231 A1 WO 2023001231A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
charging stand
temperature compensation
voltage
current values
Prior art date
Application number
PCT/CN2022/107009
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
吉林省中赢高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省中赢高科技有限公司 filed Critical 吉林省中赢高科技有限公司
Priority to CA3224164A priority Critical patent/CA3224164A1/en
Priority to EP22845395.7A priority patent/EP4375122A1/en
Priority to KR1020247000216A priority patent/KR20240017065A/ko
Publication of WO2023001231A1 publication Critical patent/WO2023001231A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of DC charging for electric vehicles, in particular to a method and device for temperature compensation based on a DC charging stand.
  • An embodiment of the present invention provides a method for temperature compensation based on a DC charging stand to compensate for temperature errors caused by temperature transmission delays.
  • the method includes:
  • the temperature compensation function coefficients corresponding to different current values, and the pre-established temperature compensation function a corrected temperature is obtained; the corrected temperature is sent to the charging controller of the electric vehicle.
  • the embodiment of the present invention also provides a temperature compensation device based on a DC charging stand, which is used to compensate the temperature error caused by the temperature transmission delay.
  • the device includes:
  • a temperature acquisition unit used to acquire the temperature of the terminals of the DC charging stand
  • a coefficient calculation unit configured to calculate temperature compensation function coefficients corresponding to different current values
  • the compensation unit is used to obtain a corrected temperature according to the collected temperature of the terminal of the DC charging stand, the temperature compensation function coefficients corresponding to different current values, and the pre-established temperature compensation function; the corrected temperature is sent to the electric vehicle charge controller.
  • the embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • a computer device including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned temperature compensation based on the DC charging stand is realized.
  • An embodiment of the present invention also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program for executing the above-mentioned method based on temperature compensation of a DC charging stand.
  • the solution based on the temperature compensation of the DC charging stand is different from that in the prior art during the charging process, because the temperature transmission delay will cause a temperature error, that is, the collected temperature of the DC charging stand terminal is inaccurate, so that it cannot
  • the following methods are adopted: collecting the temperature of the DC charging stand terminal; calculating the temperature compensation function coefficient corresponding to different current values; according to the collected temperature of the DC charging stand terminal, different current values correspond
  • the temperature compensation function coefficient and the pre-established temperature compensation function are used to obtain the corrected temperature; the corrected temperature is sent to the charge controller of the electric vehicle, which can be realized in the process of charging the electric vehicle.
  • the temperature error caused by the transmission delay is compensated, and the safe, accurate and fast charging of the car is realized.
  • 1 is a schematic diagram of the phase and amplitude delay and deviation between the temperature measured by the temperature sensor and the actual temperature of the terminal in an embodiment of the present invention
  • Fig. 2 is a schematic flowchart of a method based on temperature compensation of a DC charging stand in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the principle of temperature compensation based on the DC charging stand in the embodiment of the present invention.
  • Fig. 4 is a schematic flowchart of a method based on temperature compensation of a DC charging stand in another embodiment of the present invention.
  • Fig. 5 is the schematic diagram of using MATLAB fitting determination coefficient value when charging current 200A in the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a device based on temperature compensation of a DC charging stand in an embodiment of the present invention
  • Fig. 7 is a schematic structural diagram of a temperature acquisition unit in an embodiment of the present invention.
  • the temperature sensor needs to measure the temperature of the white terminal, and the temperature sensor is very close to the terminal, but it is not directly attached to the surface of the terminal, so that the temperature of the terminal is transmitted to the temperature There is delay and loss on the sensor. As shown in Figure 1, the temperature measured by the temperature sensor and the measured temperature on the surface of the terminal have delays and deviations in phase and amplitude.
  • the inventor proposed a temperature compensation scheme based on the DC charging stand.
  • This scheme is a scheme to compensate the temperature error caused by the temperature transmission delay during the charging process, which ensures safety, accuracy and Charge your electric car quickly.
  • the scheme based on the temperature compensation of the DC charging stand is described in detail below.
  • Fig. 2 is a schematic flowchart of a method for temperature compensation based on a DC charging stand in an embodiment of the present invention. As shown in Fig. 2, the method includes the following steps:
  • Step 101 collecting the temperature of the terminals of the DC charging stand
  • Step 102 Calculating temperature compensation function coefficients corresponding to different current values
  • Step 103 According to the collected terminal temperature of the DC charging stand, the temperature compensation function coefficients corresponding to different current values, and the pre-established temperature compensation function, a corrected temperature is obtained; the corrected temperature is sent to the charging station of the electric vehicle controller.
  • the temperature compensation method based on the DC charging stand provided by the embodiment of the present invention adjusts the error caused by temperature transmission and loss to the temperature through software differentiation and hysteresis correction, so as to ensure that the corrected temperature is accurate and reliable, and realizes safe, accurate and fast charging of the car.
  • Each step involved in the method will be described in detail below with reference to FIG. 3 to FIG. 7 .
  • the temperature processing process mainly includes the following three parts: (1) temperature acquisition; (2) calculating the temperature compensation function coefficient ATs through the current value; (3) determining the delay (temperature) compensation function; the specific introduction is as follows:
  • Temperature collection that is, the detailed implementation of the above step 101: the temperature of the terminal of the DC charging stand collected in the embodiment of the present invention is divided by the temperature sensor and the voltage dividing resistor, and then becomes a different voltage after isolation and amplification, and enters
  • the single-chip microcomputer temperature correction unit, that is, the compensation unit mentioned below
  • the single-chip microcomputer can obtain the temperature value S corresponding to the voltage of the temperature sensor by looking up the table (the relationship between voltage and temperature).
  • the block diagram of the hardware circuit (temperature acquisition circuit) can be shown in the figure 7.
  • temperature sensor and resistor voltage divider which become different voltages after isolation and amplification are: to isolate the front-end signal interference, and turn the resistance signal into a voltage signal that is easy to be collected by the single-chip microcomputer, further improving the safety and accuracy of charging.
  • collecting the temperature of the terminal of the DC charging stand may include using the following temperature acquisition unit to collect the temperature of the terminal of the DC charging stand:
  • the voltage dividing resistor, the first end is connected to the 5V voltage end after the conversion of the 12V voltage of the vehicle end;
  • a temperature sensor the first end of which is connected to the second end of the voltage dividing resistor, and the second end is grounded, for collecting the voltage signal of the terminal of the DC charging stand;
  • a temperature acquisition circuit the input end of which is connected to the first end of the temperature sensor, is used to isolate the voltage signal collected by the temperature sensor, and obtain an isolated voltage
  • a voltage divider circuit the input end of which is connected to the output end of the temperature acquisition circuit, is used to convert the isolated voltage into an effective voltage signal that is easy to collect; the effective voltage signal that is easy to collect is used according to the pre-established relationship between voltage and temperature, Determine the temperature value corresponding to the voltage collected by the temperature sensor as the temperature of the terminal of the DC charging stand.
  • the temperature obtained by using the above-mentioned temperature acquisition unit is more accurate, which can further improve the accuracy and safety of the temperature compensation of the DC charging stand.
  • the range of current flowing through the terminals of the charging stand is 100A-500A.
  • the square value of the current is proportional to the increase in temperature.
  • the differential method is used to make the current The value is proportional to the differential value of the temperature, and ATs finally has a corresponding relationship with the temperature rise rate.
  • the temperature rise rate corresponding to the current of different segments in the calibration process is not linear, the current obtained by different temperature rise rates after subsequent subsections has different KK , bb, and then the K and b corresponding to the ATs obtained according to different currents are also different.
  • the corresponding ATs is ATs-500.
  • the constant current is 100A
  • the corresponding ATs is ATs-100
  • the over-limit current 500A-700A and the part below the working current 50A-100A are obtained through the same formula to obtain different K and b coefficients, and then perform separate corrections to obtain different ATs.
  • calculating the temperature compensation function coefficients corresponding to different current values may include:
  • temperature compensation function coefficients corresponding to different current values are determined.
  • calculating the temperature compensation function coefficients corresponding to different current values may include calculating the temperature compensation function coefficients corresponding to different current values according to the following formula:
  • K ((ATs-500)-(ATs-100))/(500-100)
  • ATs is the temperature compensation function coefficient
  • ya is the current value
  • K and b are constants.
  • K and b can be obtained according to the over-limit current range of 500A-700A and the range of 50A-100A lower than the operating current.
  • Delay (temperature) compensation function determination During the test process, the temperature is compensated due to the transmission delay and loss of temperature.
  • S is the current sampling temperature value (the temperature of the terminal of the DC charging stand), where Ts and ATs are determined by testing the coefficients obtained by fitting the temperature curve corresponding to the actual fixed charging current to the standard temperature through MATLAB, and fixing the parameter Ts to obtain Different ATs values corresponding to different currents correspond to different temperature change rates in the delay compensation calculation, and different ATs values are called.
  • Fig. 5 is a schematic diagram of fitting the determination coefficient value with MATLAB when the charging current is 200A.
  • the flow chart of the entire temperature correction is shown in Figure 4.
  • the temperature-corrected value (corrected temperature) is sent to the vehicle's charge controller CCU through the CAN line, and the vehicle's charge controller CCU can use the corrected temperature to safely, accurately and quickly charge the electric vehicle.
  • the temperature correction formula can be used to determine the final corrected temperature; the corrected temperature is sent to the charging controller of the electric vehicle.
  • the embodiment of the present invention realizes: the car can be charged stably and quickly; the error is corrected by software, which is simple and fast, that is, the sampling temperature value under different currents is corrected by software differential and hysteresis correction, which is simple, fast and fast. practical.
  • the beneficial technical effect of the embodiment of the present invention is: the method for temperature compensation based on the DC charging stand provided by the embodiment of the present invention realizes compensation for the temperature error caused by the temperature transmission delay in the process of charging the electric vehicle, and realizes safety. Accurately and quickly charge the car.
  • Embodiments of the present invention also provide a device for temperature compensation based on a DC charging stand, as described in the following embodiments. Since the principle of the device to solve the problem is similar to the method based on the temperature compensation of the DC charging stand, the implementation of the device can refer to the implementation of the method based on the temperature compensation of the DC charging stand, and the repetition will not be repeated.
  • Fig. 6 is a schematic structural diagram of a device based on DC charging stand temperature compensation in an embodiment of the present invention, the device includes:
  • the temperature acquisition unit 01 is used to acquire the temperature of the terminals of the DC charging stand
  • the coefficient calculation unit 02 is used to calculate the temperature compensation function coefficients corresponding to different current values
  • the compensation unit 03 is used to obtain the corrected temperature according to the collected temperature of the terminal of the DC charging stand, the temperature compensation function coefficients corresponding to different current values, and the pre-established temperature compensation function; the corrected temperature is sent to the electric motor The vehicle's charge controller.
  • the temperature acquisition unit may include:
  • the voltage dividing resistor, the first end is connected to the 5V voltage end after the conversion of the 12V voltage of the vehicle end;
  • a temperature sensor the first end of which is connected to the second end of the voltage dividing resistor, and the second end is grounded, for collecting the voltage signal of the terminal of the DC charging stand;
  • a temperature acquisition circuit the input end of which is connected to the first end of the temperature sensor, is used to isolate the voltage signal collected by the temperature sensor, and obtain an isolated voltage
  • a voltage divider circuit the input end of which is connected to the output end of the temperature acquisition circuit, is used to convert the isolated voltage into an effective voltage signal that is easy to collect; the effective voltage signal that is easy to collect is used according to the pre-established relationship between voltage and temperature, Determine the temperature value corresponding to the voltage collected by the temperature sensor as the temperature of the terminal of the DC charging stand.
  • the coefficient calculation unit can be specifically used for:
  • temperature compensation function coefficients corresponding to different current values are determined.
  • the coefficient calculation unit can be specifically used to calculate temperature compensation function coefficients corresponding to different current values according to the following formula:
  • ATs is the temperature compensation function coefficient
  • ya is the current value
  • K is constants.
  • different K and b can be obtained according to the over-limit current range of 500A-700A and the range of 50A-100A lower than the working current.
  • the embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • a computer device including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned temperature compensation based on the DC charging stand is realized.
  • the embodiment of the present invention also provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program for executing the above method based on the temperature compensation of the DC charging stand.
  • the solution based on the temperature compensation of the DC charging stand is different from that in the prior art during the charging process, because the temperature transmission delay will cause a temperature error, that is, the collected temperature of the DC charging stand terminal is inaccurate, so that it cannot
  • the following methods are adopted: collecting the temperature of the DC charging stand terminal; calculating the temperature compensation function coefficient corresponding to different current values; according to the collected temperature of the DC charging stand terminal, different current values correspond
  • the temperature compensation function coefficient and the pre-established temperature compensation function are used to obtain the corrected temperature; the corrected temperature is sent to the charge controller of the electric vehicle, which can be realized in the process of charging the electric vehicle.
  • the temperature error caused by the transmission delay is compensated, and the safe, accurate and fast charging of the car is realized.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于直流充电座温度补偿的方法及装置,其中该方法包括:采集直流充电座端子的温度;计算不同电流值对应的温度补偿函数系数;根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。本发明可以实现在给电动车辆充电的过程中,对由于温度传输延迟造成的温度误差进行补偿,实现了安全准确快速地给汽车充电。

Description

基于直流充电座温度补偿的方法及装置
本申请要求2021年07月23日递交的申请号为202110839832.2、发明名称为“基于直流充电座温度补偿的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车直流充电技术领域,尤其涉及一种基于直流充电座温度补偿的方法及装置。
背景技术
本部分旨在为权利要求书中陈述的本发明实施例提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
随着新能源汽车的发展,如何安全准确快速地给车辆端充电成为新的市场需求。然而,目前在充电过程中,由于温度传输延迟会造成温度的误差,即导致采集的直流充电座端子的温度不准确,从而不能保证安全准确快速地给电动车辆充电。
发明内容
本发明实施例提供一种基于直流充电座温度补偿的方法,用以对由于温度传输延迟造成的温度误差进行补偿,该方法包括:
采集直流充电座端子的温度;
计算不同电流值对应的温度补偿函数系数;
根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
本发明实施例还提供一种基于直流充电座温度补偿的装置,用以对由于温度传输延迟造成的温度误差进行补偿,该装置包括:
温度采集单元,用于采集直流充电座端子的温度;
系数计算单元,用于计算不同电流值对应的温度补偿函数系数;
补偿单元,用于根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述基于直流充电座温度补偿的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述基于直流充电座温度补偿的方法的计算机程序。
本发明实施例中,基于直流充电座温度补偿的方案,与现有技术中在充电过程中,由于温度传输延迟会造成温度的误差,即导致采集的直流充电座端子的温度不准确,从而不能保证安全准确快速地给电动车辆充电的技术方案相比,通过:采集直流充电座端子的温度;计算不同电流值对应的温度补偿函数系数;根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器,可以实现在给电动车辆充电的过程中,对由于温度传输延迟造成的温度误差进行补偿,实现了安全准确快速地给汽车充电。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明实施例中温度传感器测量得到的温度与端子实际温度在相位和幅值的延迟及偏差示意图;
图2为本发明实施例中基于直流充电座温度补偿的方法的流程示意图;
图3为本发明实施例中基于直流充电座温度补偿的原理示意图;
图4为本发明另一实施例中基于直流充电座温度补偿的方法的流程示意图;
图5为本发明实施例中充电电流200A时用MATLAB拟合确定系数值的示意图;
图6为本发明实施例中基于直流充电座温度补偿的装置的结构示意图;
图7为本发明实施例中温度采集单元的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
发明人发现了一个技术问题:在直流充电座中,温度传感器需要测量白色端子的温度,温度传感器与该端子位置很近,但没有直接贴在该端子表面上,这样该端子的温度传输到温度传感器上就有了延迟和损耗。如图1所示,温度传感器测量得到的温度与该端子表面的实测温度在相位和幅值都有延迟及偏差。
考虑到上述技术问题,发明人提出了一种基于直流充电座温度补偿的方案,该方案为一种在充电过程中调整由于温度传输延迟造成温度的误差进行补偿的方案,保证了安全、准确和快速地给电动汽车充电。下面对该基于直流充电座温度补偿的方案进行详细介绍如下。
图2为本发明实施例中基于直流充电座温度补偿的方法的流程示意图,如图2所示,该方法包括如下步骤:
步骤101:采集直流充电座端子的温度;
步骤102:计算不同电流值对应的温度补偿函数系数;
步骤103:根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
本发明实施例提供的基于直流充电座温度补偿的方法通过软件的微分及滞后校正调整由于温度传输及损耗对温度造成的误差,保证修正后温度准确可靠,实现了安全准确快速地给汽车充电。下面结合图3至图7对该方法涉及的各个步骤进行详细介绍。
如图3所示,温度处理过程主要包括以下三个部分:(1)温度采集;(2)通过电流值计算温度补偿函数系数ATs;(3)延迟(温度)补偿函数确定;具体介绍如下:
(1)温度采集,即上述步骤101的详细实施方式:本发明实施例采集的直流充电座端子的温度是通过温度传感器与分压电阻分压后,经过隔离放大后变成不同的电压,进入单片机(温度修正单元,即下文提到的补偿单元),可以通过查表(电压与温度的关系)的方式,取得温度传感器对应电压的温度值S,硬件电路(温度采集电路)框图可以如图7所示。温度传感器与电阻分压,经过隔离放大后变成不同的电压的优点是:隔离前段信号干扰,把电阻信号变成单片机易于采集的电压信号,进一步提高充电的安全性和准确性。
通过上述可知,在一个实施例中,采集直流充电座端子的温度,可以包括利用如下温度采集单元采集直流充电座端子的温度:
分压电阻,第一端与车辆端12V电压经转换后的5V电压端连接;
温度传感器,第一端与分压电阻的第二端连接,第二端接地,用于采集直流充电座端子的电压信号;
温度采集电路,输入端与温度传感器的第一端连接,用于将温度传感器采集的电压信号隔离,得到隔离处理后的电压;
分压电路,输入端与温度采集电路的输出端连接,用于将隔离处理后的电压转换为便于采集的有效电压信号;便于采集的有效电压信号用于根据预先建立的电压与温度的关系,确定温度传感器采集电压对应的温度值作为直流充电座端子的温度。
具体实施时,采用上述温度采集单元得到的温度,更加精确,进而进一步可以提高直流充电座温度补偿的精度及安全性。
(2)通过电流值计算补偿函数系数ATs:流经充电座端子的电流范围为100A-500A,对于不同电流,电流的平方值与温度的升高成正比,用求取微分的方式,使电流值与温度的微分值成正比,ATs最终与温升率有对应关系,但由于标定过程中不同段电流对应的温升率不线性,后续分段后不同温升率求取电流有不同的KK,bb,进而后续根据不同的电流求取的ATs对应的K,b也不同,电流值与温度的微分值成正比的优点是:在外界条件不变情况下,确定电流值与温升率是线性关系,温度的微分值=温度差值/时间的差值,温度的微分值对应于一段时间内温升的斜率(温升率,温度变化率),通过实际测量100A升温的斜率K1及500A的斜率K2,通过直线方程式y=KKx+bb求取不同温升的斜率x对应的不同电流值ya;其中KK=(500-100)/(k2-k1);bb为常数,y为不同温升的斜率对应的电流值ya,ATs的确定是通过测试实际固定充电电流对应的温度曲线通过MATLAB拟合到标准温度后取得的系数,设定电流为500A时对应的ATs为ATs-500,设定电流为100A时对应的ATs为ATs-100,这样在不同电流ya下面延迟补偿的ATs为对应关系公式:ATs=ya×K+b,其中:K=((ATs-500)–(ATs-100))/(500-100),ATs为温度补偿函数系数,ya为电流值,其中K和b为常数,通过实际测量确定。为了精确地测量,将超限电流500A-700A和低于工作电流的部分50A-100A通过同样的公式求取不同的K和b系数,进行单独修正求取不同的ATs。
通过上述可知,在一个实施例中,计算不同电流值对应的温度补偿函数系数,可以包括:
使电流值与温度的微分值成正比,求取不同温升率对应的不同电流值;
根据不同温升率对应的不同电流值,确定不同电流值对应的温度补偿函数系数。
通过上述可知,在一个实施例中,计算不同电流值对应的温度补偿函数系数,可以包括按照如下公式计算不同电流值对应的温度补偿函数系数:
ATs=ya×K+b;
其中:K=((ATs-500)-(ATs-100))/(500-100),ATs为温度补偿函数系数,ya为电流值,K和b为常数。
通过上述可知,在一个实施例中,可以根据超限电流范围500A-700A和低于工作电流的范围50A-100A,求取不同的K和b。
(3)延迟(温度)补偿函数确定:在测试过程中,由于温度的传输延时及损耗对温度进行补偿。补偿的方程式为一阶延迟函数公式如下:y2=(1+Ts×S)/(1+ATs×S);在这个公式中Ts为常数,ATs在温升过程中是变量与电流成正比,S为当前采样温度值(直流充电座端子的温度),其中Ts、ATs的确定是通过测试实际固定充电电流对应的温度曲线通过MATLAB拟合到标准温度后取得的系数,将参数Ts固定,取得不同电流对应的不同ATs值,在延迟补偿计算中对应不同的温度变化率,调取不同的ATs值。图5为充电电流200A时用MATLAB拟合确定系数值的示意图。
(4)整个温度修正的流程图如图4所示。温度修正后的值(修正后的温度)通过CAN线发送到车辆的充电控制器CCU,车辆的充电控制器CCU可以利用该修正后的温度进行安全准确快速地给电动车辆充电。
具体实施时,在确定了采样温度、温度补偿函数及温度补偿函数系数的基础上,可以利用温度修正公式确定最终修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
综上,本发明实施例实现了:能够稳定快速地给汽车充电;通过软件修正误差,简单,快速,即通过软件的微分及滞后校正对不同电流下的采样温度值进行修正,简单、快速且实用。
本发明实施例的有益技术效果是:本发明实施例提供的基于直流充电座温度补偿的方法实现了在给电动车辆充电的过程中,对由于温度传输延迟造成的温度误差进行补偿,实现了安全准确快速地给汽车充电。
本发明实施例中还提供了一种基于直流充电座温度补偿的装置,如下面的实施例所述。由于该装置解决问题的原理与基于直流充电座温度补偿的方法相似,因此该装置的 实施可以参见基于直流充电座温度补偿的方法的实施,重复之处不再赘述。
图6为本发明实施例中基于直流充电座温度补偿的装置的结构示意图,该装置包括:
温度采集单元01,用于采集直流充电座端子的温度;
系数计算单元02,用于计算不同电流值对应的温度补偿函数系数;
补偿单元03,用于根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
在一个实施例中,如图7所示,所述温度采集单元可以包括:
分压电阻,第一端与车辆端12V电压经转换后的5V电压端连接;
温度传感器,第一端与分压电阻的第二端连接,第二端接地,用于采集直流充电座端子的电压信号;
温度采集电路,输入端与温度传感器的第一端连接,用于将温度传感器采集的电压信号隔离,得到隔离处理后的电压;
分压电路,输入端与温度采集电路的输出端连接,用于将隔离处理后的电压转换为便于采集的有效电压信号;便于采集的有效电压信号用于根据预先建立的电压与温度的关系,确定温度传感器采集电压对应的温度值作为直流充电座端子的温度。
在一个实施例中,所述系数计算单元具体可以用于:
使电流值与温度的微分值成正比,求取不同温升率对应的不同电流值;
根据不同温升率对应的不同电流值,确定不同电流值对应的温度补偿函数系数。
在一个实施例中,所述系数计算单元具体可以用于按照如下公式计算不同电流值对应的温度补偿函数系数:
ATs=ya×K+b;
其中:ATs为温度补偿函数系数,ya为电流值,K和b为常数。
在一个实施例中,可以根据超限电流范围500A-700A和低于工作电流的范围50A-100A,求取不同的K和b。
本发明实施例还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述基于直流充电座温度补偿的方法。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有执 行上述基于直流充电座温度补偿的方法的计算机程序。
本发明实施例中,基于直流充电座温度补偿的方案,与现有技术中在充电过程中,由于温度传输延迟会造成温度的误差,即导致采集的直流充电座端子的温度不准确,从而不能保证安全准确快速地给电动车辆充电的技术方案相比,通过:采集直流充电座端子的温度;计算不同电流值对应的温度补偿函数系数;根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器,可以实现在给电动车辆充电的过程中,对由于温度传输延迟造成的温度误差进行补偿,实现了安全准确快速地给汽车充电。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种基于直流充电座温度补偿的方法,其特征在于,包括:
    采集直流充电座端子的温度;
    计算不同电流值对应的温度补偿函数系数;
    根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
  2. 如权利要求1所述的基于直流充电座温度补偿的方法,其特征在于,采集直流充电座端子的温度,包括利用如下温度采集单元采集直流充电座端子的温度:
    分压电阻,第一端与车辆电压端连接;
    温度传感器,第一端与分压电阻的第二端连接,第二端接地,用于采集直流充电座端子的电压信号;
    温度采集电路,输入端与温度传感器的第一端连接,用于将温度传感器采集的电压信号隔离,得到隔离处理后的电压;
    分压电路,输入端与温度采集电路的输出端连接,用于将隔离处理后的电压转换为便于采集的有效电压信号;便于采集的有效电压信号用于根据预先建立的电压与温度的关系,确定温度传感器采集电压对应的温度值作为直流充电座端子的温度。
  3. 如权利要求1所述的基于直流充电座温度补偿的方法,其特征在于,计算不同电流值对应的温度补偿函数系数,包括:
    使电流值与温度的微分值成正比,求取不同温升率对应的不同电流值;
    根据不同温升率对应的不同电流值,确定不同电流值对应的温度补偿函数系数。
  4. 如权利要求3所述的基于直流充电座温度补偿的方法,其特征在于,计算不同电流值对应的温度补偿函数系数,包括按照如下公式计算不同电流值对应的温度补偿函数系数:
    ATs=ya×K+b;
    其中:ATs为温度补偿函数系数,ya为电流值,K和b为常数。
  5. 如权利要求4所述的基于直流充电座温度补偿的方法,其特征在于,根据超限电流范围500A-700A和低于工作电流的范围50A-100A,求取不同的K和b。
  6. 一种基于直流充电座温度补偿的装置,其特征在于,包括:
    温度采集单元,用于采集直流充电座端子的温度;
    系数计算单元,用于计算不同电流值对应的温度补偿函数系数;
    补偿单元,用于根据采集的直流充电座端子的温度,不同电流值对应的温度补偿函数系数,以及预先建立的温度补偿函数,得到修正后的温度;所述修正后的温度被发送至电动车辆的充电控制器。
  7. 如权利要求6所述的基于直流充电座温度补偿的装置,其特征在于,所述温度采集单元包括:
    分压电阻,第一端与车辆电压端连接;
    温度传感器,第一端与分压电阻的第二端连接,第二端接地,用于采集直流充电座端子的电压信号;
    温度采集电路,输入端与温度传感器的第一端连接,用于将温度传感器采集的电压信号隔离,得到隔离处理后的电压;
    分压电路,输入端与温度采集电路的输出端连接,用于将隔离处理后的电压转换为便于采集的有效电压信号;便于采集的有效电压信号用于根据预先建立的电压与温度的关系,确定温度传感器采集电压对应的温度值作为直流充电座端子的温度。
  8. 如权利要求6所述的基于直流充电座温度补偿的装置,其特征在于,所述系数计算单元具体用于:
    使电流值与温度的微分值成正比,求取不同温升率对应的不同电流值;
    根据不同温升率对应的不同电流值,确定不同电流值对应的温度补偿函数系数。
  9. 如权利要求8所述的基于直流充电座温度补偿的装置,其特征在于,所述系数计算单元具体用于按照如下公式计算不同电流值对应的温度补偿函数系数:
    ATs=ya×K+b;
    其中:ATs为温度补偿函数系数,ya为电流值,K和b为常数。
  10. 如权利要求9所述的基于直流充电座温度补偿的装置,其特征在于,根据超限电流范围500A-700A和低于工作电流的范围50A-100A,求取不同的K和b。
  11. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5任一所述方法。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有执行权利要求1至5任一所述方法的计算机程序。
PCT/CN2022/107009 2021-07-23 2022-07-21 基于直流充电座温度补偿的方法及装置 WO2023001231A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3224164A CA3224164A1 (en) 2021-07-23 2022-07-21 Temperature compensation method and apparatus based on direct current charging base
EP22845395.7A EP4375122A1 (en) 2021-07-23 2022-07-21 Temperature compensation method and apparatus based on direct current charging base
KR1020247000216A KR20240017065A (ko) 2021-07-23 2022-07-21 직류 충전 도크의 온도에 기반한 보상 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839832.2A CN113459839B (zh) 2021-07-23 2021-07-23 基于直流充电座温度补偿的方法及装置
CN202110839832.2 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023001231A1 true WO2023001231A1 (zh) 2023-01-26

Family

ID=77882228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107009 WO2023001231A1 (zh) 2021-07-23 2022-07-21 基于直流充电座温度补偿的方法及装置

Country Status (5)

Country Link
EP (1) EP4375122A1 (zh)
KR (1) KR20240017065A (zh)
CN (1) CN113459839B (zh)
CA (1) CA3224164A1 (zh)
WO (1) WO2023001231A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113459839B (zh) * 2021-07-23 2023-04-25 吉林省中赢高科技有限公司 基于直流充电座温度补偿的方法及装置
CN114088217A (zh) * 2021-11-30 2022-02-25 长春捷翼汽车零部件有限公司 新能源车、车载充电装置、温度检测电路及温度检测方法
CN115264757B (zh) * 2022-07-21 2024-05-28 珠海格力电器股份有限公司 一种感温包校正方法、系统和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578054A (zh) * 2003-07-18 2005-02-09 日立工机株式会社 用于确定完全充电的能够准确检测电池温度的电池充电器
EP2502778A2 (de) * 2011-03-25 2012-09-26 Heinrich Kopp GmbH Kommunikationsmodul für Ladegeräte von Elektrofahrzeugen
JP2017049229A (ja) * 2015-08-31 2017-03-09 住友電気工業株式会社 バッテリ状態検知装置及びコンピュータプログラム
JP2020053271A (ja) * 2018-09-27 2020-04-02 ダイハツ工業株式会社 バッテリの周囲温度推定装置
CN113459839A (zh) * 2021-07-23 2021-10-01 吉林省中赢高科技有限公司 基于直流充电座温度补偿的方法及装置
CN114088217A (zh) * 2021-11-30 2022-02-25 长春捷翼汽车零部件有限公司 新能源车、车载充电装置、温度检测电路及温度检测方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2382107A1 (fr) * 1977-02-23 1978-09-22 Mors Electricite Dispositif de surveillance de l'echauffement des batteries d'accumulateurs
US4349775A (en) * 1981-01-02 1982-09-14 Exxon Research & Engineering Co. Temperature compensated voltage regulator for photovoltaic charging systems
DE3573321D1 (en) * 1984-06-30 1989-11-02 Udo Kopmann Device for controlling the charge state of rechargeable batteries
US4667143A (en) * 1985-12-23 1987-05-19 Phillips Petroleum Company Battery charger having temperature compensated charge rate
US4847547A (en) * 1988-07-21 1989-07-11 John Fluke Mfg., Co. Inc. Battery charger with Vbe temperature compensation circuit
CN1169797A (zh) * 1994-11-10 1998-01-07 杜拉塞奥公司 灵巧电池装置
GB9500065D0 (en) * 1995-01-04 1995-03-01 Harmer & Simmons Ltd Float temperature compensation system
JP3818780B2 (ja) * 1998-08-24 2006-09-06 株式会社デンソー 電池の充電装置
JP2004239623A (ja) * 2003-02-03 2004-08-26 Kansai Electric Power Co Inc:The 地中管路内電力ケーブルの導体温度推定方法
JP5442718B2 (ja) * 2008-05-07 2014-03-12 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ 電池の残存容量の推定方法
DE102009034886A1 (de) * 2009-07-27 2011-02-03 Rwe Ag Ladekabelstecker zur Verbindung eines Elektrofahrzeuges mit einer Ladestation
US8543347B2 (en) * 2010-06-29 2013-09-24 Maxim Integrated Products, Inc. Self-correcting electronic sensor
EP2568268A1 (en) * 2011-09-07 2013-03-13 kk-electronic a/s Method for estimating the temperature of a semiconductor chip
FR2980307B1 (fr) * 2011-09-15 2014-11-07 Renault Sa Methode pour estimer la temperature au coeur d'une cellule de batterie
WO2013132874A1 (ja) * 2012-03-08 2013-09-12 パナソニック株式会社 充電ケーブル
CN103292931A (zh) * 2013-05-31 2013-09-11 国家电网公司 一种电力电缆光纤测温基准数据测量装置
CN104568187B (zh) * 2014-12-31 2017-07-25 中冶长天国际工程有限责任公司 一种回转窑温度检测方法及装置
CN105571739B (zh) * 2016-01-28 2018-11-13 山东鲁能智能技术有限公司 一种电动汽车充电枪头温度检测系统和检测方法
CN106404207B (zh) * 2016-11-08 2020-04-03 辽宁师范大学 一种基于铂电阻的宽量程高精度温度测量仪及其测量方法
JP2018159613A (ja) * 2017-03-22 2018-10-11 パナソニックIpマネジメント株式会社 温度検出装置
JP7157766B2 (ja) * 2017-12-27 2022-10-20 古河電気工業株式会社 充電可能電池温度推定装置および充電可能電池温度推定方法
JP7035571B2 (ja) * 2018-01-31 2022-03-15 トヨタ自動車株式会社 電動車両
DE102018204271A1 (de) * 2018-03-20 2019-09-26 Te Connectivity Germany Gmbh Anordnung zur Erfassung der Temperatur und Kontaktanordnung mit einer solchen Anordnung
JP7104618B2 (ja) * 2018-12-26 2022-07-21 株式会社Subaru 充電システム
CN111725573B (zh) * 2019-03-22 2022-01-11 东莞新能安科技有限公司 温度补偿方法、具有充电电池的设备及存储介质
DE102019125736A1 (de) * 2019-09-25 2021-03-25 Audi Ag Kalibrieren einer Ladeeinrichtung eines Elektrofahrzeugs
CN112793456B (zh) * 2021-02-04 2022-04-26 中国重汽集团济南动力有限公司 一种车用结合外部环境温度及端子温升温度充电控制结构和策略

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578054A (zh) * 2003-07-18 2005-02-09 日立工机株式会社 用于确定完全充电的能够准确检测电池温度的电池充电器
EP2502778A2 (de) * 2011-03-25 2012-09-26 Heinrich Kopp GmbH Kommunikationsmodul für Ladegeräte von Elektrofahrzeugen
JP2017049229A (ja) * 2015-08-31 2017-03-09 住友電気工業株式会社 バッテリ状態検知装置及びコンピュータプログラム
JP2020053271A (ja) * 2018-09-27 2020-04-02 ダイハツ工業株式会社 バッテリの周囲温度推定装置
CN113459839A (zh) * 2021-07-23 2021-10-01 吉林省中赢高科技有限公司 基于直流充电座温度补偿的方法及装置
CN114088217A (zh) * 2021-11-30 2022-02-25 长春捷翼汽车零部件有限公司 新能源车、车载充电装置、温度检测电路及温度检测方法

Also Published As

Publication number Publication date
CN113459839A (zh) 2021-10-01
CA3224164A1 (en) 2023-01-26
EP4375122A1 (en) 2024-05-29
CN113459839B (zh) 2023-04-25
KR20240017065A (ko) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2023001231A1 (zh) 基于直流充电座温度补偿的方法及装置
US10422836B2 (en) Device and method for estimating state-of-health of battery
CN104808070B (zh) 一种换流阀晶闸管级阻尼回路参数测试装置和方法
CN106053899B (zh) 一种基准信号发生系统及方法
CN102654771B (zh) 一种模拟通道的自动校准方法及系统
JP2015055632A (ja) 電気量測定方法及び装置
CN103969614B (zh) 一种数字万用表的校准方法
CN108445292A (zh) 基于误差修正的电阻测量方法和装置
CN109425833A (zh) 温度推定装置
CN102928109A (zh) 一种信号采集电路
CN114035142A (zh) 基于分段拉格朗日插值的电能表误差补偿方法及系统
CN108196217B (zh) 一种用于非车载充电机现校仪的直流计量方法及系统
JP5504657B2 (ja) 二次電池の総容量推定装置
CN114200381B (zh) 一种智能电表可靠性检测系统和方法
CN103575976B (zh) 一种纯90度移相式无功功率测量方法
CN104457792B (zh) 一种在无机械转动条件下测量光纤陀螺标度因数的方法
KR20200069415A (ko) 전류 센서의 영점 보정 방법
CN107104699B (zh) 一种分数域中低运算复杂度的最优阶数搜索的装置和方法
CN103575975A (zh) 一种纯90度移相式无功功率测量电路
CN112816758B (zh) 一种全光纤电流互感器及其半波电压修正方法
CN113075571A (zh) 一种锂离子电池ocv确定方法、装置及系统
TWI609191B (zh) Battery health status estimating device and method
US20140320142A1 (en) Method and system for measuring electric current
WO2018129884A1 (zh) 电池均衡采样方法
JP7251737B2 (ja) 推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18571925

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3224164

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247000216

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000216

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023027769

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2401000364

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001021

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2024504169

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022845395

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845395

Country of ref document: EP

Effective date: 20240223

ENP Entry into the national phase

Ref document number: 112023027769

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231228