WO2023000757A1 - 车辆跟停控制方法、装置及计算机可读存储介质 - Google Patents

车辆跟停控制方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2023000757A1
WO2023000757A1 PCT/CN2022/091198 CN2022091198W WO2023000757A1 WO 2023000757 A1 WO2023000757 A1 WO 2023000757A1 CN 2022091198 W CN2022091198 W CN 2022091198W WO 2023000757 A1 WO2023000757 A1 WO 2023000757A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
follow
current
speed
ideal
Prior art date
Application number
PCT/CN2022/091198
Other languages
English (en)
French (fr)
Inventor
廖尉华
林智桂
罗覃月
冉毅德
张韬
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2023000757A1 publication Critical patent/WO2023000757A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go

Definitions

  • the present application relates to the technical field of automotive electronics, and in particular to a vehicle follow-stop control method, device and computer-readable storage medium.
  • the ACC Adaptive Cruise Control, adaptive cruise control system
  • the follow-stop function includes: the vehicle with the ACC function turned on automatically follows a gradually stopping vehicle, and keeps a certain safe distance to stop slowly; or the vehicle with the ACC function turned on automatically stops gradually after a stationary vehicle , such as stopping slowly behind a stopped vehicle at a traffic light intersection.
  • the main purpose of the present application is to provide a vehicle follow-stop control method, device and computer-readable storage medium, aiming at solving the problem that the follow-stop control in the current conventional follow-stop strategy is not intelligent enough.
  • the present application provides a vehicle follow-stop control method, the vehicle follow-stop control method comprising:
  • determining that the target probability value is greater than a preset threshold determining that the target vehicle is parked or will be parked, and calculating the parking position of the target vehicle
  • the current state information includes the current speed of the vehicle and the current position of the vehicle
  • the step of performing vehicle follow-up control according to the parking position and the current state information includes:
  • the step of determining that the current vehicle speed is greater than the ideal vehicle speed, and performing vehicle follow-up control according to the current vehicle speed includes:
  • the step of performing vehicle follow-stop control according to the first transition process and the ideal follow-stop process includes:
  • the speed of the host vehicle is controlled according to the acceleration to perform vehicle follow-up control.
  • the step of judging whether the current distance is greater than a preset safety distance it further includes:
  • the first coordinate point and the ideal parking coordinate point are connected to obtain a second transition process, and vehicle following and stopping control is performed according to the second transition process.
  • the step of comparing the current vehicle speed with the ideal vehicle speed corresponding to the host vehicle it further includes:
  • a third transition process is determined according to the first coordinate point and the third coordinate point, and vehicle follow-stop control is performed according to the third transition process and the ideal follow-stop process.
  • the step of judging whether the current vehicle speed is greater than the reference speed it further includes:
  • determining a fifth transition process according to the first coordinate point and the fourth coordinate point In response to the vehicle speed of the host vehicle corresponding to the fourth coordinate point being less than or equal to the vehicle speed of the host vehicle corresponding to the third coordinate point, determining a fifth transition process according to the first coordinate point and the fourth coordinate point, Perform vehicle follow-stop control according to the fifth transition process and the ideal follow-stop process.
  • the step of calculating the target probability value of the target vehicle in front of the host vehicle stopping or about to stop according to the preset probability calculation model, the motion information and the surrounding environment information includes:
  • the probability value is input into the probability calculation model, and the target probability value of the target vehicle stopping or about to stop is obtained through calculation.
  • the present application also provides a vehicle follow-stop control device
  • the vehicle follow-stop control device includes a memory, a processor, and a follow-up program stored in the memory and operable on the processor.
  • a stop control program when the follow-stop control program is executed by the processor, the steps of the above-mentioned vehicle follow-stop control method are realized.
  • the present application also provides a computer-readable storage medium, on which a follow-stop control program is stored, and when the follow-stop control program is executed by a processor, the above-mentioned vehicle Follow the steps of the stop control method.
  • the application provides a vehicle follow-stop control method, device, and computer-readable storage medium, which acquire the movement information of the vehicles around the own vehicle, obtain the surrounding environment information of the own vehicle, and calculate the model and motion according to the preset probability.
  • Information and surrounding environment information to calculate the target probability value of the target vehicle in front of the vehicle to stop or will stop; determine that the target probability value is greater than the preset threshold, determine the target vehicle to stop or to stop, and calculate the parking position of the target vehicle; determine the target vehicle
  • the current status information of the vehicle, and the vehicle follow-up control is performed according to the parking position and current status information.
  • Fig. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of the first embodiment of the vehicle following and stopping control method of the present application
  • FIG. 3 is a schematic diagram of a refinement process of step S300 in FIG. 2;
  • FIG. 4 is a schematic diagram of a refinement process of step S100 in FIG. 2;
  • Fig. 5 is a schematic diagram of the transition process when the current vehicle speed of the vehicle involved in the embodiment of the present application is greater than the ideal vehicle speed;
  • FIG. 6 is a schematic diagram of the transition process when the current speed of the vehicle involved in the embodiment of the present application is greater than the ideal speed and the distance to the target vehicle is too short;
  • Figure 7 is a schematic diagram of the transition process when the current speed of the vehicle involved in the embodiment of the application is less than the ideal speed and greater than the reference speed;
  • Fig. 8 is a schematic diagram of the transition process when the current vehicle speed of the vehicle involved in the embodiment of the present application is lower than the reference speed;
  • FIG. 9 is a schematic structural diagram of a probability calculation model involved in the solution of the embodiment of the present application.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the apparatus in this embodiment of the application may be a PC (personal computer, personal computer), a portable computer, a server, and other equipment.
  • the device may include: a processor 1001, such as a CPU (Central Processing Unit, central processing unit), a communication bus 1002, a network interface 1003, and a memory 1004.
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the network interface 1003 may include a standard wired interface (such as a USB interface) and a wireless interface (such as a WI-FI interface).
  • the memory 1004 can be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1004 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 does not constitute a limitation to the device, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the memory 1004 as a computer storage medium may include an operating system, a network communication module, and a follow-up control program.
  • the network interface 1003 is mainly used to connect the background server, and carry out data communication with the background server; and the processor 1001 can be used to call the follow-up control program stored in the memory 1004, and perform the following operations:
  • the target probability value is greater than a preset threshold, it is determined that the target vehicle is parked or will be parked, and the parking position of the target vehicle is calculated;
  • the present application provides a vehicle follow-stop control method.
  • FIG. 2 is a schematic flow chart of the first embodiment of the vehicle follow-stop control method of the present application.
  • the vehicle follow-up control method includes:
  • Step S100 acquiring the motion information of the vehicles located around the own vehicle, and obtaining the surrounding environment information of the own vehicle, and calculating the The target probability value that the target vehicle in front of the vehicle stops or will stop;
  • the own vehicle is the own vehicle with the adaptive cruise control function turned on; the vehicles located around the own vehicle can be the vehicles located in the left and right lanes of the own vehicle and/or the vehicles in front of the same lane; the target vehicle is the vehicle followed by the own vehicle.
  • the front target in the same lane follows and stops the vehicle; the movement information of the surrounding vehicles includes the speed and acceleration of the surrounding vehicles, and the distance between the vehicle and the surrounding vehicles, etc.
  • the surrounding environment information of the vehicle includes lane lines, stop lines, zebra crossings, traffic lights, etc.
  • Environmental information, the above-mentioned motion information and surrounding environment information can be obtained through environmental detection sensors such as vehicle-mounted millimeter-wave radar, vehicle-mounted camera, or laser radar.
  • the movement conditions and surrounding traffic environment information of all vehicles in front of the vehicle are obtained through the environment detection sensor, and the probability that the target follow-up vehicle will stop is predicted and estimated, and the follow-up vehicle follow-up control is performed according to the probability estimation result.
  • This solution predicts and estimates the probability that the target vehicle will stop based on a variety of different scenarios. It not only considers the movement state of the surrounding vehicles, but also increases the surrounding environment information parameters, which can make the probability calculation results more accurate.
  • Step S200 determining that the target probability value is greater than a preset threshold, determining that the target vehicle is parked or will be parked, and calculating the parking position of the target vehicle;
  • the target probability value that the target vehicle is parked or will be parked is greater than a preset threshold, it is determined that the target vehicle has parked or will be parked, and the parking position of the target vehicle is calculated.
  • the preset threshold is a preset probability threshold.
  • the target probability value is greater than the preset threshold, it indicates that the target vehicle has a high probability of parking or will stop. At this time, it can be determined that the target vehicle is parking or will stop , and calculate the parking position of the target vehicle to facilitate the subsequent steps of vehicle follow-up control.
  • V0 is the speed of the target vehicle at the current moment
  • a is the acceleration of the target vehicle
  • S is the deceleration of the target vehicle from the current moment The distance traveled until the vehicle speed reaches zero.
  • the acquired vehicle speed of the target vehicle at the current moment is zero, and it is determined that the position of the target vehicle at the current moment is the parking position of the target vehicle.
  • Step S300 determining the current state information of the host vehicle, and performing vehicle follow-up control according to the parking position and the current state information.
  • the current state information includes the current speed of the host vehicle and the current position of the host vehicle.
  • step S300 the step of performing vehicle follow-up control according to the parking position and the current state information includes:
  • Step S310 constructing a coordinate system with the parking position as the origin, determining the current distance between the current position and the parking position, and determining the first position in the coordinate system according to the current distance and the current vehicle speed. Coordinate points;
  • Step S320 comparing the current vehicle speed with the ideal vehicle speed corresponding to the host vehicle
  • Fig. 5 and Fig. 7 take the parking position as the origin O, the distance D between the vehicle and the target vehicle is the abscissa, and the vehicle speed V of the vehicle is the ordinate to construct a coordinate system to determine the current position and the parking position of the vehicle.
  • the current distance between the positions, the first coordinate point in the coordinate system is determined according to the current distance and the current vehicle speed, and the current vehicle speed is compared with the ideal vehicle speed corresponding to the vehicle.
  • the corresponding first coordinate point when the current vehicle speed is greater than the ideal vehicle speed, the corresponding first coordinate point is coordinate point C as shown in Figure 5, and when the current vehicle speed is lower than the ideal vehicle speed, the corresponding first coordinate point is as shown in Figure 7 Coordinate point E, when the current vehicle speed is equal to the ideal vehicle speed, the corresponding first coordinate point is the coordinate point A on the ideal following-stop curve, and the vehicle speed corresponding to the coordinate point A is the ideal vehicle speed, and the current vehicle speed is the current vehicle speed of the vehicle The vehicle speed of the own vehicle corresponding to the moment, and the current distance is the current distance between the current position of the own vehicle and the parking position.
  • step S320 in response to the current vehicle speed being greater than the ideal vehicle speed, the step of performing vehicle follow-up control according to the current vehicle speed includes:
  • Step S330 determining that the current vehicle speed is greater than the ideal vehicle speed, and judging whether the current distance is greater than a preset safety distance
  • Step S331 in response to the current distance being greater than a preset safety distance, determine a first straight line corresponding to the current vehicle speed in the coordinate system, and determine a preset ideal following-stop curve and the first straight line in the coordinate system
  • the second coordinate point corresponding to the intersection point of the straight line, the first transition process is determined according to the first coordinate point and the second coordinate point, and the follow-up control of the vehicle is performed according to the first transition process and the ideal follow-up process .
  • Fig. 5 when the current vehicle speed is greater than the ideal vehicle speed, reference can be made to Fig. 5.
  • the parking position of the target vehicle is used as the origin O
  • the distance D between the vehicle and the target vehicle is the abscissa
  • the vehicle speed V of the vehicle is Construct a coordinate system for the ordinate
  • the curve AB in the coordinate system is the preset ideal follow-stop curve of the vehicle
  • point A on the ideal follow-stop curve is the ideal speed corresponding to the current distance of the vehicle
  • determine the current speed of the vehicle The current distance d between the position and the parking position. Determine the first coordinate point C in the coordinate system according to the current distance d and the current vehicle speed V1.
  • the first coordinate point C corresponding to the current vehicle speed in the coordinate system.
  • a straight line, the first straight line is the straight line CN shown in Figure 5, and the second coordinate point M corresponding to the intersection of the preset ideal follow-up curve and the first straight line is determined in the coordinate system, and the first coordinate point is connected C and the second coordinate point M determine the first transition process, that is, the first transition process is a straight line CM, and the following and stopping control of the vehicle is performed according to the first transition process and the ideal following and stopping process. Therefore, when the current vehicle speed is greater than the ideal vehicle speed and the current distance is greater than the preset safety distance, the follow-stop control process of the host vehicle is C ⁇ M ⁇ B as shown in FIG. 5 .
  • the preset safety distance is the safety distance between the pre-set own vehicle and the target follow-up vehicle.
  • the ideal follow-stop curve can be obtained through real vehicle calibration, according to The ideal follow-stop curve and the current state of the vehicle are used for follow-up vehicle follow-stop control.
  • the ideal follow-stop two-dimensional table can also be obtained through real vehicle calibration, and subsequent follow-up control can be performed according to the ideal follow-stop two-dimensional table and the current state of the vehicle. Vehicle follow-stop control.
  • the slope of the first straight line is calibrated through the actual vehicle experience, the first straight line is determined according to the current state of the vehicle, and the transition process from the first straight line to the ideal follow-stop curve is determined for the purpose of the vehicle
  • the follow-stop control of the vehicle avoids that the slope of the follow-stop line determined by the relationship between the distance and the speed difference between the vehicle and the vehicle in front is too small in the process of follow-stop control, and the follow-stop process is easy to slow down in the front section.
  • the problem of rapid deceleration in the rear section is prone to accidents.
  • it avoids the problem of large deceleration when the slope is too large, and the problem of poor experience caused by too fast deceleration. Therefore, the safety and comfort of the vehicle follow-up process are increased in this way.
  • the step of performing vehicle follow-up control according to the first transition process and the ideal follow-up process includes:
  • step S330 it also includes:
  • Step S332 in response to the fact that the current distance is not greater than the preset safety distance, determine the ideal parking coordinate point corresponding to the intersection point of the preset ideal following-stop curve and the abscissa in the coordinate system; connect the first coordinate point and the The ideal parking coordinate point is used to obtain a second transition process, and vehicle follow-up control is performed according to the second transition process.
  • the current vehicle speed is greater than the ideal vehicle speed, and the current distance is less than or equal to the preset safety distance, then reference can be made to FIG. 6 .
  • the distance D is the abscissa
  • the vehicle speed V of the vehicle is the ordinate to construct a coordinate system.
  • the curve AB in the coordinate system is the preset ideal following-stop curve of the vehicle, and the vehicle speed corresponding to point A is corresponding to the current distance d of the vehicle.
  • the ideal vehicle speed on the ideal follow-stop curve, point B is the ideal parking coordinate point on the ideal follow-stop curve corresponding to the vehicle, determine the current distance d between the current position of the vehicle and the parking position, according to the current distance d
  • if the current distance d is less than or equal to the preset safety distance then determine the first straight line corresponding to the current vehicle speed in the coordinate system, the first straight line is as shown in Figure 6
  • the straight line CN shown, the coordinate point corresponding to the intersection point of the first straight line CN and the abscissa is N, and the coordinate point N corresponds to the distance between the parking position of the vehicle and the parking position of the target vehicle when the vehicle is parked.
  • the distance between the parking position of the vehicle corresponding to the coordinate point N and the parking position of the target vehicle is smaller than the ideal parking distance corresponding to the ideal parking coordinate point B, so the preset The ideal parking coordinate point B corresponding to the intersection point of the ideal following-stop curve and the abscissa; connect the first coordinate point C and the ideal parking coordinate point B to obtain the second transition process, that is, the second transition process is a straight line CB, according to the second transition Carry out vehicle follow-up control during the process. Therefore, when the current vehicle speed is greater than the ideal vehicle speed and the current distance is less than or equal to the preset safety distance, the follow-stop control process of the host vehicle is C ⁇ B as shown in FIG. 6 .
  • the distance between the parking position of the vehicle and the target vehicle may be too close, exceeding the ideal parking distance between the vehicle and the target vehicle.
  • the following parking position of the own vehicle is too close to the target vehicle’s parking position, resulting in collisions.
  • the following control process is set as follows: C ⁇ B shown in Figure 6 improves the safety of the follow-up process.
  • the follow-stop control of the vehicle can be performed according to the ideal follow-stop process corresponding to the ideal follow-stop curve.
  • step S320 it also includes:
  • Step S340 in response to the current vehicle speed being lower than the ideal vehicle speed, calculating a reference speed corresponding to the ideal vehicle speed, and judging whether the current vehicle speed is greater than the reference speed;
  • Step S341 in response to the current vehicle speed being greater than the reference speed, determine the reference speed straight line of the reference speed in the coordinate system, and determine the reference speed straight line and the ideal follow-up preset in the coordinate system The third coordinate point corresponding to the intersection point of the curve;
  • Step S342 determining a third transition process according to the first coordinate point and the third coordinate point, and performing vehicle follow-and-stop control according to the third transition process and the ideal follow-and-stop process.
  • Fig. 7 As shown in Fig. 7, the parking position of the target vehicle is taken as the origin O, the distance D between the vehicle and the target vehicle is the abscissa, and the vehicle speed of the vehicle is V is the ordinate to construct a coordinate system, and the curve AB in the coordinate system is the preset ideal follow-stop curve of the vehicle, and the vehicle speed corresponding to point A on the ideal follow-stop curve is the ideal vehicle speed corresponding to the current distance d of the vehicle, ideal Point B on the follow-stop curve is the ideal parking coordinate point corresponding to the vehicle, determine the current distance d between the current position of the vehicle and the parking position, and determine the first point in the coordinate system according to the current distance d and the current vehicle speed V1 Coordinate points, the first coordinate point at this time corresponds to point E in Figure 7, when the current vehicle speed is lower than the ideal vehicle speed, calculate the reference speed Vh corresponding to the ideal vehicle speed, coordinate point H in
  • the third transition process is a straight line EI
  • the vehicle follow-stop control is performed according to the third transition process and the ideal follow-stop process. Therefore, when the current vehicle speed is less than the ideal vehicle speed, and the current vehicle speed is greater than the reference speed, the follow-stop control process of the vehicle is E ⁇ I ⁇ B as shown in FIG. 7 .
  • a transition process E ⁇ I is set to appropriately increase the vehicle speed, so as to avoid the comfort caused by the sudden acceleration and deceleration of the own vehicle in order to track the ideal vehicle speed low-level problem.
  • step S340 it also includes:
  • Step A in response to the current vehicle speed being less than the reference speed, determine a second straight line corresponding to the current vehicle speed in the coordinate system, and determine a preset ideal follow-and-stop curve in the coordinate system and the second straight line The fourth coordinate point corresponding to the intersection point of the straight line;
  • Fig. 8 when the current vehicle speed is lower than the reference speed, reference can be made to Fig. 8.
  • the parking position of the target vehicle is taken as the origin O
  • the distance D between the vehicle and the target vehicle is the abscissa
  • the vehicle speed V of the vehicle is Construct a coordinate system for the ordinate
  • the curve AB in the coordinate system is the preset ideal follow-stop curve of the vehicle
  • point A on the ideal follow-stop curve is the ideal speed corresponding to the current distance of the vehicle
  • determine the current speed of the vehicle The current distance d between the position and the parking position
  • the first coordinate point in the coordinate system is determined according to the current distance d and the current vehicle speed V1
  • the first coordinate point at this time corresponds to point E in Figure 8
  • the current distance in the coordinate system is determined
  • the second straight line is straight line EJ or straight line EJ' as shown in Figure 8
  • the second straight line is a straight line determined when the current speed of the vehicle is lower than the ideal speed, and its slope is determined through pre-calibration.
  • the specific acquisition process of the second straight line is the same as the above-mentioned first straight line of the vehicle speed
  • the specific acquisition process is the same, and reference may be made to the above-mentioned acquisition process of the first straight line, which will not be repeated here.
  • Step B if the vehicle speed of the vehicle corresponding to the fourth coordinate point is greater than the vehicle speed of the vehicle corresponding to the third coordinate point, obtain the fifth coordinate corresponding to the intersection point of the second straight line and the reference speed straight line point, determine a fourth transition process according to the first coordinate point, the fifth coordinate point and the third coordinate point, and perform vehicle following and stopping control according to the fourth transition process and the ideal following and stopping process; or ;
  • the straight line EJ is the corresponding second straight line when the vehicle speed corresponding to the fourth coordinate point is greater than the speed corresponding to the third coordinate point I
  • the fifth coordinate point J corresponding to the intersection point of the second straight line and the reference speed straight line is obtained , connect the first coordinate point E, the fifth coordinate point J and the third coordinate point I to determine the fourth transition process, and carry out vehicle follow-stop control according to the fourth transition process and the ideal follow-stop process. Therefore, when the current vehicle speed is lower than the reference speed, and the vehicle speed of the vehicle corresponding to the fourth coordinate point is greater than the vehicle speed corresponding to the third coordinate point I, the follow-up control process of the vehicle is E ⁇ J ⁇ I as shown in Figure 8 ⁇ B.
  • the current vehicle speed is lower than the reference speed, it means that the current vehicle speed of the vehicle at this time is too low and may affect the efficiency of traffic commuting.
  • the slope of the second straight line is relatively large, the second straight line The intersection point with the ideal following-stop curve, that is, the vehicle speed of the vehicle corresponding to the fourth coordinate point is greater than the vehicle speed of the vehicle corresponding to the third coordinate point I, so the transition process E ⁇ J ⁇ I is set to appropriately increase the vehicle speed to the reference speed, and improve The comfort of the vehicle following the parking process.
  • Step C in response to the vehicle speed of the host vehicle corresponding to the fourth coordinate point being less than or equal to the vehicle speed of the host vehicle corresponding to the third coordinate point, determine the fifth coordinate point according to the first coordinate point and the fourth coordinate point In a transition process, vehicle follow-stop control is performed according to the fifth transition process and the ideal follow-stop process.
  • the straight line EJ' is the second straight line corresponding to when the speed of the vehicle corresponding to the fourth coordinate point is less than or equal to the speed corresponding to the third coordinate point I, if the speed of the vehicle corresponding to the fourth coordinate point is less than or equal to The vehicle speed of the vehicle corresponding to the third coordinate point, then the fourth coordinate point corresponds to the coordinate point J' in Fig. 8 at this time, especially, when the vehicle speed of the vehicle corresponding to the fourth coordinate point is equal to When the speed of the vehicle is high, the fourth coordinate point J' coincides with the third coordinate point I, connect the first coordinate point E and coordinate point J' to determine the fifth transition process, and carry out the vehicle according to the fifth transition process and the ideal follow-up process Bear up control.
  • the specific control process of the vehicle follow-stop control based on the transition process and the ideal follow-stop process can refer to the above-mentioned process of vehicle follow-stop control based on the first transition process and the ideal follow-stop process, which will not be repeated here.
  • the application provides a vehicle follow-stop control method, device, and computer-readable storage medium, which acquire the movement information of the vehicles around the own vehicle, obtain the surrounding environment information of the own vehicle, and calculate the model and motion according to the preset probability.
  • Information and surrounding environment information to calculate the target probability value of the target vehicle in front of the vehicle to stop or will stop; determine that the target probability value is greater than the preset threshold, determine the target vehicle to stop or to stop, and calculate the parking position of the target vehicle; determine the target vehicle
  • the current status information of the vehicle, and the vehicle follow-up control is performed according to the parking position and current status information.
  • step S100 may include:
  • Step S110 determining preset events in different scenarios according to the surrounding environment information and the motion information
  • each preset event under different scenarios may include a first event, a second event, and a third event;
  • the first event is that the vehicle speed of the vehicle with the smallest speed on the left and right lanes of the vehicle is low;
  • the second event The event is that one or more of the target vehicle, the vehicle with the lowest speed on the left and right lanes, and the vehicle in front of the target vehicle is in the parking area;
  • the third event is that the vehicle in front of the target vehicle in the same lane has a low speed.
  • the situation considered in the first event is that the lower the speed of the vehicle with the smallest speed on the left and right lanes of the vehicle, the higher the probability that the target vehicle will stop or will stop;
  • the situation considered in the second event is the vehicle in front of the vehicle Whether it will be in the parking area corresponding to traffic lights, crossroads, or zebra crossings, when the vehicle in front of the vehicle is about to be in the parking area, the probability of the target vehicle parking is higher;
  • the third event considers the situation in the same lane.
  • the speed of the vehicle in front of the vehicle is low, but the target vehicle may accelerate first and then decelerate. Therefore, when the speed of the vehicle in front of the target vehicle in the same lane is lower, the probability of the actual target vehicle stopping or about to stop is higher, which can avoid The vehicle following the target vehicle suddenly accelerates and then decelerates, resulting in poor safety.
  • Step S120 obtaining a preset event probability comparison table and/or a preset function formula, and determining a probability value corresponding to each preset event according to the event probability comparison table and/or preset function formula.
  • the first probability value corresponding to the first event, the second probability value corresponding to the second event, and the third probability value corresponding to the third event can all be obtained through the method of calibration table lookup, and can also be obtained through pre-
  • the function formula is calculated and obtained, wherein, for example, the first probability value can be obtained by detecting the speed of the vehicle with the minimum speed in the left and right lanes, and querying the corresponding probability value in the preset probability comparison table according to the detected vehicle speed; it can also be obtained by calculating the function formula,
  • the first probability value can be obtained through the function formula: K1 ⁇ x>k2 is calculated, where P(A1) is the first probability value, a, b, c, d, e, f are coefficients obtained through calibration, x is the speed of the vehicle with the minimum speed in the left and right lanes, k1, k2 is the preset vehicle speed threshold, where k1 is greater than k2.
  • the event probability comparison table corresponding to the second event can be constructed by detecting whether the lane lines of the left and right lanes are solid lines, whether stop lines and zebra crossings are detected, whether traffic lights are detected, and whether the red lights are all on.
  • the calculation process of the second probability value; the third probability value is the same as that of the first probability value, and reference can be made to the specific calculation process of the first probability value, which will not be repeated here.
  • Step S130 input the probability value into the probability calculation model, and calculate and obtain the target probability value that the target vehicle stops or will stop.
  • the preset probability calculation model is a Bayesian network model, of course, the preset probability calculation model may also be other probability calculation models that can calculate the target probability.
  • A1 is the first probability value corresponding to the first event
  • A2 is the second probability value corresponding to the second event
  • A3 is the third probability value corresponding to the third event
  • A4 is the corresponding probability value of the fourth event.
  • A5 is the fifth probability value corresponding to the fifth event
  • B1 is the target probability value for the target vehicle to stop or will stop.
  • the step of inputting the first probability value, the second probability value and the third probability value into the probability calculation model further comprising:
  • the fourth event is that the vehicle with the smallest speed on the left and right lanes of the own vehicle stops or is about to stop;
  • the fifth event is that the vehicle in front of the target vehicle located in the same lane of the own vehicle stops or is about to stop;
  • the first probability value, the second probability value and the third probability value are input into the probability calculation model, and the steps of calculating and obtaining the target probability value that the target vehicle in front of the vehicle stops or will stop include:
  • step a the first probability value and the second probability value are input into the probability calculation model, and the fourth probability value corresponding to the fourth event can be calculated and obtained according to the total probability calculation formula;
  • Step b input the second probability value and the third probability value into the probability calculation model, and calculate and obtain the fifth probability value corresponding to the fifth event according to the total probability calculation formula;
  • Step c input the fourth probability value, the fifth probability value and the second probability value into the probability calculation model, and calculate and obtain the target probability value that the target vehicle stops or will stop according to the total probability calculation formula.
  • the Bayesian network probability calculation model is constructed to calculate the probability that the target vehicle stops or will stop by obtaining the movement information of the surrounding vehicles of the own vehicle, and surrounding environment information such as lane lines and traffic lights, according to Probability calculation results are used for subsequent follow-up control steps.
  • step S300 further include:
  • Step d after a preset time interval, detect whether there is the target vehicle, whether the speed of the target vehicle is lower than a preset speed, whether the speed of the target vehicle is not zero, and whether the vehicle of the host vehicle is pre-motor state;
  • Step e in response to the existence of the target vehicle, the vehicle speed of the target vehicle is lower than a preset vehicle speed, the vehicle speed of the target vehicle is not zero, and the vehicle is moving forward, judging that the target vehicle is stopped or Whether the prior probability corresponding to the parking will meet the preset statistical update conditions;
  • the real-time situation of the traffic environment around the vehicle will be reacquired after each time interval, and subsequent corresponding calculation and judgment operations will be made.
  • a relatively long time interval is set for the preset time interval.
  • the time is such as 0.5s, for example, every 0.5s to detect whether the target vehicle exists, whether the speed of the target vehicle is lower than the preset speed (such as 10kph), whether the speed of the target vehicle is not zero, and whether the vehicle is moving forward state, when the four conditions are met, it means that the speed of the target vehicle is low and the probability of the target vehicle stopping or about to stop is high.
  • the prior probability corresponding to the target vehicle parking or about to stop is the fourth probability value, the fifth probability value and the second probability value, and the preset statistical update condition is the fourth probability value is 0 or 1, the fifth probability value is 0 or 1, and the second probability value is 0 or 1.
  • step f it is determined that the preset statistical update condition is met, and the statistical update is performed on the probability storage table corresponding to the target vehicle parking or about to stop.
  • the probability storage table corresponding to the target vehicle parking or about to stop includes the fourth When the probability value is 0 or 1, the fifth probability value is 0 or 1, and the second probability value is 0 or 1, the corresponding event "the target vehicle stops or will stop" is the total number of times of all event results that actually occurred.
  • the speed of the target vehicle is lower than the preset speed, the speed of the target vehicle is not zero, and the vehicle is in a state of moving forward, it is judged that the corresponding events of the fourth event and the fifth event Whether the prior probability satisfies the corresponding preset statistical update conditions is determined, and the probability storage tables corresponding to the fourth event and the fifth event are statistically updated.
  • the prior probability of the fourth event is the first probability value and the second probability value
  • the prior probability of the fifth event is the second probability value and the third probability value.
  • the Bayesian network model is adaptively updated, that is, according to the matching of the predicted input and the actual result during driving, the probability values of each event in the Bayesian network model are continuously updated, and the longer the vehicle is used , the more accurate the prediction result of the motion state of the target vehicle is, the higher the accuracy of the predicted target probability value is.
  • the present application also provides a computer-readable storage medium, on which a follow-stop control program is stored, and when the follow-stop control program is executed by a processor, the vehicle as described in any one of the above embodiments is realized.
  • a follow-stop control program is stored, and when the follow-stop control program is executed by a processor, the vehicle as described in any one of the above embodiments is realized.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium as described above (such as ROM/RAM , magnetic disk, optical disk), including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present application.

Abstract

一种车辆跟停控制方法,包括:获取本车周围的车辆的运动信息,并获取本车周围的环境信息,根据预设的概率计算模型、运动信息和周围环境信息计算本车前方的目标车辆停车或将要停车的目标概率值;当目标概率值大于预设阈值时,判定目标车辆停车或将要停车,并计算目标车辆的停车位置;确定本车的当前状态信息,根据停车位置和当前状态信息进行车辆跟停控制。一种车辆跟停控制装置及计算机可读存储介质也被公开。

Description

车辆跟停控制方法、装置及计算机可读存储介质
相关申请
本申请要求于2021年7月22号申请的、申请号为202110834017.7的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及汽车电子技术领域,尤其涉及一种车辆跟停控制方法、装置及计算机可读存储介质。
背景技术
ACC(Adaptive Cruise Control,自适应巡航控制系统),能实现0~150kph速度范围的车速自适应自动控制,包括零起步功能和跟停功能。其中,跟停功能包括:开启ACC功能的车辆自动跟随在一辆逐渐停下的车辆后,保持一定的安全距离缓慢停车;或者是开启ACC功能的车辆在一辆静止的车辆后自动逐渐停下,例如在红绿灯十字路口停下的车辆后缓慢停车。
目前,车辆在静止或快停下的前车后的跟停减速过程中,通常会出现跟停前段减速过程较慢,后段减速过程较快的情况,导致前段跟停过程给驾驶员的不安全感强烈,后段将要停下的减速度过急,导致车上的乘员身体“前冲点头”,不舒适感强烈,不符合人类驾驶操作习惯。因此,在目前常规的跟停策略中存在跟停控制不够智能化的问题。
申请内容
本申请的主要目的在于提供一种车辆跟停控制方法、装置及计算机可读存储介质,旨在解决目前常规的跟停策略中存在跟停控制不够智能化的问题。
为实现上述目的,本申请提供一种车辆跟停控制方法,所述车辆跟停控制方法包括:
获取位于本车车辆周围的车辆的运动信息,并获取所述本车车辆的周围环境信息,根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标车辆停车或将要停车的目标概率值;
确定所述目标概率值大于预设阈值,判定所述目标车辆停车或将要停车,并计算所述目标车辆的停车位置;
确定所述本车车辆的当前状态信息,根据所述停车位置和所述当前状态信息进行车辆跟停控制。
在一实施方式中,所述当前状态信息包括本车车辆的当前车速和本车车辆的当前位置,所述根据所述停车位置和所述当前状态信息进行车辆跟停控制的步骤包括:
以所述停车位置作为原点构建坐标系,并确定所述当前位置与所述停车位置之间的当前距离,根据所述当前距离和所述当前车速确定所述坐标系中的第一坐标点;
将所述当前车速与所述本车车辆对应的理想车速比较;
确定所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制。
在一实施方式中,所述确定所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制的步骤包括:
确定所述当前车速大于所述理想车速,判断所述当前距离是否大于预设安全距离;
响应于所述当前距离大于预设安全距离,确定所述坐标系中所述当前车速对应的第一直线,并确定所述坐标系中预设理想跟停曲线和所述第一直线的交点对应的第二坐标点,根据所述第一坐标点和所述第二坐标点确定第一过渡过程,根据所述第一过渡过程与所述理想跟停过程进行车辆跟停控制。
在一实施方式中,所述根据所述第一过渡过程与所述理想跟停过程进行车辆跟停控制的步骤包括:
获取所述第一过渡过程对应的过渡曲线和所述理想跟停过程对应的理想跟停曲线融合的融合曲线公式,根据所述融合曲线公式构建加速度计算公式;
将所述当前车速输入至所述加速度计算公式进行计算,以得到所述本车车辆所需的加速度;
根据所述加速度控制本车车辆的速度以进行车辆跟停控制。
在一实施方式中,所述判断所述当前距离是否大于预设安全距离的步骤之后,还包括:
响应于所述当前距离不大于预设安全距离,确定所述坐标系中预设理想跟停曲线与横坐标的交点对应的理想停车坐标点;
连接所述第一坐标点和所述理想停车坐标点,以获得第二过渡过程,根据所述第二过渡过程进行车辆跟停控制。
在一实施方式中,所述将所述当前车速与所述本车车辆对应的理想车速比较的步骤之后,还包括:
确定所述当前车速小于所述理想车速,计算所述理想车速对应的参照速度,判断所述当前车速是否大于所述参照速度;
响应于所述当前车速大于所述参照速度,确定所述参照速度在所述坐标系中的参照速度直线,并确定所述参照速度直线和所述坐标系中预设的理想跟停曲线的交点对应的第三坐标点;
根据所述第一坐标点和所述第三坐标点确定第三过渡过程,根据所述第三过渡过程与所述理想跟停过程进行车辆跟停控制。
在一实施方式中,所述判断所述当前车速是否大于所述参照速度的步骤之后,还包括:
响应于所述当前车速小于所述参照速度,确定所述坐标系中所述当前车速对应的第二直线,并确定所述坐标系中的预设理想跟停曲线和所述第二直线的交点对应的第四坐标点;
响应于所述第四坐标点对应的本车车辆车速大于所述第三坐标点对应的本车车辆车速,获取所述第二直线和所述参照速度直线之间的交点对应的第五坐标点,根据所述第一坐标点、所述第五坐标点及所述第三坐标点确定第四过渡过程,根据所述第四过渡过程与所述理想跟停过程进行车辆跟停控制;或,
响应于所述第四坐标点对应的本车车辆车速小于或等于所述第三坐标点对应的本车 车辆车速,根据所述第一坐标点和所述第四坐标点确定第五过渡过程,根据所述第五过渡过程与所述理想跟停过程进行车辆跟停控制。
在一实施方式中,所述根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标车辆停车或将要停车的目标概率值的步骤包括:
根据所述周围环境信息和所述运动信息确定不同场景下的各预设事件;
获取预设的事件概率对照表和/或预设函数公式,根据所述事件概率对照表和/或预设函数公式确定所述各预设事件对应的概率值;
将所述概率值输入所述概率计算模型中,计算获得所述目标车辆停车或将要停车的目标概率值。
此外,为实现上述目的,本申请还提供一种车辆跟停控制装置,所述车辆跟停控制装置包括存储器、处理器、以及存储在所述存储器上并可在所述处理器上运行的跟停控制程序,所述跟停控制程序被处理器执行时实现如上述的车辆跟停控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有跟停控制程序,所述跟停控制程序被处理器执行时实现如上述的车辆跟停控制方法的步骤。
本申请提供一种车辆跟停控制方法、装置及计算机可读存储介质,获取位于本车车辆周围的车辆的运动信息,并获取本车车辆的周围环境信息,根据预设的概率计算模型、运动信息和周围环境信息计算本车车辆前方的目标车辆停车或将要停车的目标概率值;确定目标概率值大于预设阈值,判定目标车辆停车或将要停车,并计算目标车辆的停车位置;确定本车车辆的当前状态信息,根据停车位置和当前状态信息进行车辆跟停控制。通过上述方式,根据本车车辆的周围车辆的运动情况和本车车辆的周围环境信息,考虑到各种场景,估算本车车辆跟随的前方目标车辆将要停车的概率,当概率达到预设阈值时则认为目标车辆将要停车,并估计出前车将要停车的位置,结合当前本车车辆的运动状态信息与预设的理想跟停过程进行合理跟停规划使得车辆跟停更智能化。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请车辆跟停控制方法第一实施例的流程示意图;
图3为图2中步骤S300的细化流程示意图;
图4为图2中步骤S100的细化流程示意图;
图5为本申请实施例方案涉及的本车车辆的当前车速大于理想车速时的过渡过程示意图;
图6为本申请实施例方案涉及的本车车辆的当前车速大于理想车速且与目标车辆的距离过近时的过渡过程示意图;
图7为本申请实施例方案涉及的本车车辆的当前车速小于理想车速并大于参照速度时 的过渡过程示意图;
图8为本申请实施例方案涉及的本车车辆的当前车速小于参照速度时的过渡过程示意图;
图9为本申请实施例方案涉及的概率计算模型结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的装置结构示意图。
本申请实施例装置可以为PC(personal computer,个人计算机)、便携计算机、服务器等设备。
如图1所示,该装置可以包括:处理器1001,例如CPU(Central Processing Unit,中央处理器),通信总线1002,网络接口1003,存储器1004。其中,通信总线1002用于实现这些组件之间的连接通信。网络接口1003可选的可以包括标准的有线接口(如USB接口)、无线接口(如WI-FI接口)。存储器1004可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1004可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的装置结构并不构成对装置的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1004中可以包括操作系统、网络通信模块以及跟停控制程序。
在图1所示的装置中,网络接口1003主要用于连接后台服务器,与后台服务器进行数据通信;而处理器1001可以用于调用存储器1004中存储的跟停控制程序,并执行以下操作:
获取位于本车车辆周围的车辆的运动信息,并获取所述本车车辆的周围环境信息,根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标 车辆停车或将要停车的目标概率值;
当所述目标概率值大于预设阈值时,判定所述目标车辆停车或将要停车,并计算所述目标车辆的停车位置;
确定所述本车车辆的当前状态信息,根据所述停车位置和所述当前状态信息进行车辆跟停控制。
基于上述硬件结构,提出本申请车辆跟停控制方法各个实施例。
本申请提供一种车辆跟停控制方法。
参照图2,图2为本申请车辆跟停控制方法第一实施例的流程示意图。
在本实施例中,所述车辆跟停控制方法包括:
步骤S100,获取位于本车车辆周围的车辆的运动信息,并获取所述本车车辆的周围环境信息,根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标车辆停车或将要停车的目标概率值;
获取位于本车车辆周围的车辆的运动信息,并获取本车车辆的周围环境信息,然后根据预设的概率计算模型、周围车辆的运动信息和周围环境信息计算本车车辆跟随的前方目标车辆停车或将要停车的目标概率值。其中,本车车辆为开启自适应巡航控制功能的本车车辆;位于本车车辆周围的车辆可以为位于本车车辆左右车道和/或同一车道的前方的车辆;目标车辆为本车车辆跟随的同一车道的前方目标跟停车辆;周围车辆的运动信息包括周围车辆的速度、加速度以及本车车辆与周围车辆的距离等,本车车辆的周围环境信息包括车道线、停止线、斑马线、红绿灯等环境信息,上述运动信息和周围环境信息可通过车载毫米波雷达或车载摄像头或激光雷达等环境探测传感器获取。
在本实施例中,通过环境探测传感器获取得到本车车辆前方所有车辆的运动情况和周围交通环境信息,预测估算出目标跟停车辆将要停车的概率,根据概率估算结果进行后续车辆跟停控制,本方案基于多种不同场景预测估算目标车辆将要停车的概率,不仅考虑到周围车辆的运动状态,还增加了周围环境信息参数,可使概率计算结果更加准确。
步骤S200,确定所述目标概率值大于预设阈值,判定所述目标车辆停车或将要停车,并计算所述目标车辆的停车位置;
确定目标车辆停车或将要停车的目标概率值大于预设阈值,判定该目标车辆已经停车或将要停车,并计算目标车辆的停车位置。
在本实施例中,预设阈值为预先设定的概率阈值,当目标概率值大于预设阈值时,则说明目标车辆停车或将要停车的概率较高,此时可以判定目标车辆停车或将要停车,并计算目标车辆的停车位置以方便后续进行车辆跟停控制的步骤。其中,计算目标车辆的停车位置的具体计算过程可以为:获取目标车辆的运动状态即目标车辆的速度、加速度,根据牛顿运动定律,将目标车辆的速度、加速度代入公式V t ^2-V 0 ^2=2*a*S中,计算获得目标车辆从当前时刻到车速为零之间的移动距离,根据移动距离获得目标车辆的停车位置。其中,Vt为目标车辆停车时的速度,此时目标车辆的车速为零,即Vt=0,V 0为目标车辆当前时刻的车速,a为目标车辆的加速度,S为目标车辆从当前时刻减速到车速为零之间的移动距离。
进一步地,确定获取到的目标车辆当前时刻的车速为零,确定目标车辆当前时刻所处的位置为目标车辆的停车位置。
步骤S300,确定所述本车车辆的当前状态信息,根据所述停车位置和所述当前状态信息进行车辆跟停控制。
在本实施例中,当前状态信息包括本车车辆的当前车速和本车车辆的当前位置。
具体地,参照图3,步骤S300,根据所述停车位置和所述当前状态信息进行车辆跟停控制的步骤包括:
步骤S310,以所述停车位置作为原点构建坐标系,并确定所述当前位置与所述停车位置之间的当前距离,根据所述当前距离和所述当前车速确定所述坐标系中的第一坐标点;
步骤S320,将所述当前车速与所述本车车辆对应的理想车速比较;
可参照图5和图7,以停车位置作为原点O,本车车辆与目标车辆的距离D为横坐标,本车车辆的车速V为纵坐标构建坐标系,确定本车车辆的当前位置与停车位置之间的当前距离,根据当前距离和当前车速确定坐标系中的第一坐标点,将当前车速与本车车辆对应的理想车速比较。在本实施例中,当当前车速大于理想车速时对应的第一坐标点为如图5所示的坐标点C,当当前车速小于理想车速时对应的第一坐标点为如图7所示的坐标点E,当当前车速等于理想车速时对应的第一坐标点为理想跟停曲线上的坐标点A,坐标点A对应的本车车辆的车速为理想车速,其中当前车速为本车车辆当前时刻对应的本车车辆的车速,当前距离为本车车辆的当前位置与停车位置之间的当前距离。
响应于所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制;
进一步地,在步骤S320之后,所述响应于所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制的步骤包括:
步骤S330,确定所述当前车速大于所述理想车速,判断所述当前距离是否大于预设安全距离;
步骤S331,响应于所述当前距离大于预设安全距离,确定所述坐标系中所述当前车速对应的第一直线,并确定所述坐标系中预设理想跟停曲线和所述第一直线的交点对应的第二坐标点,根据所述第一坐标点和所述第二坐标点确定第一过渡过程,根据所述第一过渡过程与所述理想跟停过程进行车辆跟停控制。
在本实施例中,在当前车速大于理想车速时可参照图5,如图5以目标车辆的停车位置作为原点O,本车车辆与目标车辆的距离D为横坐标,本车车辆的车速V为纵坐标构建坐标系,坐标系中曲线AB为预设的本车车辆的理想跟停曲线,理想跟停曲线上的点A为本车车辆当前距离对应的理想车速,确定本车车辆的当前位置与停车位置之间的当前距离d,根据当前距离d和当前车速V1确定坐标系中的第一坐标点C,若当前距离d大于预设安全距离,则确定坐标系中当前车速对应的第一直线,该第一直线为如图5所示的直线CN,并确定坐标系中预设理想跟停曲线和第一直线的交点对应的第二坐标点M,连接第一坐标点C与第二坐标点M确定第一过渡过程,即第一过渡过程为直线CM,根据第一过渡过程与理想跟停过程进行车辆跟停控制。所以,在当前车速大于理想车速,且当前距离大于预设安全距离时,本车车辆的跟停控制过程为如图5所示的C→M→B。其中预设安全距离为 预先设置好的本车车辆与目标跟停车辆之间的安全距离。
其中,第一直线的具体获取过程为将坐标点C对应的坐标值d、v1代入公式V=k*D+(v 1-k*d)中,得到第一直线方程V=k*D+(v 1-k*d),其中k为根据实车体验标定得出的直线斜率k,v1为坐标点C对应的当前车速,d为坐标点C对应的当前距离,V为本车车辆的车速,D为本车车辆与目标车辆的距离;理想跟停曲线为预先设置好的满足舒适性和安全性要求的曲线,在本实施例中,可通过实车标定获取理想跟停曲线,根据理想跟停曲线与本车车辆的当前状态进行后续的车辆跟停控制,也可以通过实车标定获取理想跟停二维表,根据理想跟停二维表与本车车辆的当前状态进行后续的车辆跟停控制。
在本实施例中,通过实车体验标定第一直线的斜率,根据本车车辆的当前状态确定第一直线,确定出第一直线过渡到理想跟停曲线的过渡过程以进行本车车辆的跟停控制,避免了在跟停控制过程中由于只关注本车车辆与前车的距离和速度差关系确定的跟停直线的斜率过小跟停过程平缓,易出现前段减速较慢,后段减速较快而容易发生事故的问题,同时避免了斜率过大时减速度较大,减速过急导致体验较差的问题。因此通过该方式增加了车辆跟停过程的安全性和舒适度。
具体地,所述根据第一过渡过程与理想跟停过程进行车辆跟停控制的步骤包括:
获取第一过渡过程对应的过渡曲线与理想跟停过程对应的理想跟停曲线融合的融合曲线公式,该融合曲线公式为V=f_fusion(d),其中V为本车车辆的车速,f_fusion(d)为融合曲线的表达式;根据融合曲线公式构建加速度计算公式a=V 0*f_fusion(d)',将当前车速输入至加速度计算公式中进行计算,以得到本车车辆所需的加速度,根据加速度控制本车车辆的速度以进行车辆跟停控制。其中a为本车车辆所需的加速度,V0为本车车辆的当前车速。
进一步地,步骤S330之后,还包括:
步骤S332,响应于所述当前距离不大于预设安全距离,确定所述坐标系中预设理想跟停曲线与横坐标的交点对应的理想停车坐标点;连接所述第一坐标点和所述理想停车坐标点,以获得第二过渡过程,根据所述第二过渡过程进行车辆跟停控制。
在本实施例中,若当前车速大于理想车速,且当前距离小于或等于预设安全距离时则可参照图6,如图6以目标车辆的停车位置作为原点O,本车车辆与目标车辆的距离D为横坐标,本车车辆的车速V为纵坐标构建坐标系,坐标系中曲线AB为预设的本车车辆的理想跟停曲线,点A对应的车速为本车车辆当前距离d对应的理想跟停曲线上的理想车速,点B为本车车辆对应的理想跟停曲线上的理想停车坐标点,确定本车车辆的当前位置与停车位置之间的当前距离d,根据当前距离d和当前车速V1确定坐标系中的第一坐标点C,若当前距离d小于或等于预设安全距离,则确定坐标系中当前车速对应的第一直线,该第一直线为如图6所示的直线CN,第一直线CN与横坐标的交点对应的坐标点为N,坐标点N对应为本车车辆停车时,本车车辆的停车位置与目标车辆的停车位置的距离,当当前距离小于或等于预设安全距离时,坐标点N对应的本车车辆的停车位置与目标车辆的停车位置的距离小于理想停车坐标点B对应的理想停车距离,因此则确定坐标系中预设理想跟 停曲线与横坐标的交点对应的理想停车坐标点B;连接第一坐标点C和理想停车坐标点B,以获得第二过渡过程,即第二过渡过程为直线CB,根据第二过渡过程进行车辆跟停控制。所以,在当前车速大于理想车速,且当前距离小于或等于预设安全距离时,本车车辆的跟停控制过程为如图6所示的C→B。
在本实施例中,由于当前距离小于或等于预设安全距离,可能导致本车车辆的停车位置与目标车辆的停车位置的距离过近,超出本车车辆与目标车辆的理想停车距离,为避免本车车辆的跟停停车位置与目标车辆的停车位置距离太近导致容易出现碰撞的情况,响应于当前车速大于理想车速,且当前距离小于或等于预设安全距离,设置跟停控制过程为如图6所示的C→B,提高了跟停过程的安全性。
进一步地,响应于当前车速等于理想车速,可根据理想跟停曲线对应的理想跟停过程进行车辆跟停控制。
进一步地,在步骤S320之后,还包括:
步骤S340,响应于所述当前车速小于所述理想车速,计算所述理想车速对应的参照速度,判断所述当前车速是否大于所述参照速度;
步骤S341,响应于所述当前车速大于所述参照速度,确定所述参照速度在所述坐标系中的参照速度直线,并确定所述参照速度直线和所述坐标系中预设的理想跟停曲线的交点对应的第三坐标点;
步骤S342,根据所述第一坐标点和所述第三坐标点确定第三过渡过程,根据所述第三过渡过程与所述理想跟停过程进行车辆跟停控制。
响应于当前车速小于理想车速,判断所述当前车速是否大于参照速度。
在本实施例中,若当前车速小于理想车速时则可参照图7,如图7以目标车辆的停车位置作为原点O,本车车辆与目标车辆的距离D为横坐标,本车车辆的车速V为纵坐标构建坐标系,坐标系中曲线AB为预设的本车车辆的理想跟停曲线,理想跟停曲线上的点A对应的车速为本车车辆当前距离d对应的理想车速,理想跟停曲线上的点B为本车车辆对应的理想停车坐标点,确定本车车辆的当前位置与停车位置之间的当前距离d,根据当前距离d和当前车速V1确定坐标系中的第一坐标点,此时的第一坐标点对应为图7中的点E,在当前车速小于理想车速时,计算理想车速对应的参照速度Vh,图7中坐标点H为根据当前距离和参照速度确定的参考坐标点,若当前车速大于参照速度,则确定参照速度在坐标系中的参照速度直线,即V=V h,并确定参照速度直线和坐标系中预设理想跟停曲线的交点对应的第三坐标点I。
连接第一坐标点E与第三坐标点I,以获得第三过渡过程,即第三过渡过程为直线EI,根据第三过渡过程与理想跟停过程进行车辆跟停控制。所以,在当前车速小于理想车速,且当前车速大于参照速度时,本车的跟停控制过程为如图7所示的E→I→B。
其中参照速度的计算过程可以为:获取本车车辆的当前距离对应的理想车速v,并代入预设参照速度计算公式V h=h*v,计算得到参照速度,式中,Vh为参照速度,h为标定参数,v为本车车辆的当前距离对应的理想车速,其中参照速度小于理想车速。
在本实施例中,响应于当前车速小于理想车速,但当前车速大于参照速度,设置过渡过程E→I以适当提高车速,避免本车车辆为追踪理想车速而突然过急加速后减速造成的舒 适度较低的问题。
进一步地,步骤S340之后,还包括:
步骤A,响应于所述当前车速小于所述参照速度,确定所述坐标系中所述当前车速对应的第二直线,并确定所述坐标系中的预设理想跟停曲线和所述第二直线的交点对应的第四坐标点;
在本实施例中,在当前车速小于参照速度时可参照图8,如图8以目标车辆的停车位置作为原点O,本车车辆与目标车辆的距离D为横坐标,本车车辆的车速V为纵坐标构建坐标系,坐标系中曲线AB为预设的本车车辆的理想跟停曲线,理想跟停曲线上的点A为本车车辆当前距离对应的理想车速,确定本车车辆的当前位置与停车位置之间的当前距离d,根据当前距离d和当前车速V1确定坐标系中的第一坐标点,此时的第一坐标点对应为图8中的点E,确定坐标系中当前车速对应的第二直线,该第二直线为如图8所示的直线EJ或直线EJ’,并确定坐标系中预设理想跟停曲线和第二直线的交点对应的第四坐标点,判断第四坐标点对应的本车车辆车速是否大于第三坐标点I对应的本车车辆车速。
其中第二直线为在本车车辆的当前车速小于理想车速的情况下确定的直线,其斜率是通过预先标定确定好的,第二直线的具体获取过程与上述本车车速的第一直线的具体获取过程相同,可参照上述第一直线的获取过程,此处不作赘述。
步骤B,若所述第四坐标点对应的本车车辆车速大于所述第三坐标点对应的本车车辆车速,则获取所述第二直线和所述参照速度直线的交点对应的第五坐标点,根据所述第一坐标点、所述第五坐标点及所述第三坐标点确定第四过渡过程,根据所述第四过渡过程与所述理想跟停过程进行车辆跟停控制;或;
如图8中直线EJ为第四坐标点对应的本车车辆车速大于第三坐标点I对应的车速时对应的第二直线,获取第二直线和参照速度直线的交点对应的第五坐标点J,连接第一坐标点E、第五坐标点J及第三坐标点I以确定第四过渡过程,根据第四过渡过程与理想跟停过程进行车辆跟停控制。所以,在当前车速小于参照速度,且第四坐标点对应的本车车辆车速大于第三坐标点I对应的车速时,本车车辆的跟停控制过程为如图8中的E→J→I→B。
在本实施例中,若当前车速小于参照速度,则说明此时本车车辆的当前车速过低而可能会影响交通通勤效率,在此情况下当第二直线的斜率较大时,第二直线与理想跟停曲线的交点即第四坐标点所对应的本车车辆车速大于第三坐标点I对应的本车车辆车速,因此设置过渡过程E→J→I以适当提高车速至参照速度,提高车辆跟停过程的舒适度。
步骤C,响应于所述第四坐标点对应的本车车辆车速小于或等于所述第三坐标点对应的本车车辆车速,根据所述第一坐标点和所述第四坐标点确定第五过渡过程,根据所述第五过渡过程与所述理想跟停过程进行车辆跟停控制。
如图8中直线EJ’为第四坐标点对应的本车车辆车速小于或等于第三坐标点I对应的车速时对应的第二直线,若第四坐标点对应的本车车辆车速小于或等于第三坐标点对应的本车车辆车速,则此时第四坐标点对应为图8中的坐标点J’,特别地,当第四坐标点对应的本车车辆车速等于第三坐标点对应的本车车辆车速时,第四坐标点J’与第三坐标点I重合,连接第一坐标点E和坐标点J’以确定第五过渡过程,根据第五过渡过程与理想跟停过 程进行车辆跟停控制。所以,在当前车速小于参照速度,且第四坐标点对应的本车车辆车速小于或等于第三坐标点I对应的车速时,本车车辆的跟停控制过程为如图8中的E→J’→B。
在本实施例中,根据过渡过程与理想跟停过程进行车辆跟停控制的具体控制过程可参考上述根据第一过渡过程与理想跟停过程进行车辆跟停控制的过程,此处概不作赘述。
本申请提供一种车辆跟停控制方法、装置及计算机可读存储介质,获取位于本车车辆周围的车辆的运动信息,并获取本车车辆的周围环境信息,根据预设的概率计算模型、运动信息和周围环境信息计算本车车辆前方的目标车辆停车或将要停车的目标概率值;确定目标概率值大于预设阈值,判定目标车辆停车或将要停车,并计算目标车辆的停车位置;确定本车车辆的当前状态信息,根据停车位置和当前状态信息进行车辆跟停控制。通过上述方式,根据本车车辆的周围车辆的运动情况和本车车辆的周围环境信息,考虑到各种场景,估算本车车辆跟随的前方目标车辆将要停车的概率,当概率达到预设阈值时则认为目标车辆将要停车,并估计出前车将要停车的位置,结合当前本车车辆的运动状态信息与预设的理想跟停过程进行合理跟停规划使得车辆跟停更智能化。
进一步地,参照图4,在本实施例中,上述步骤S100可以包括:
步骤S110,根据所述周围环境信息和所述运动信息确定不同场景下的各预设事件;
在本实施例中,不同场景下的各预设事件可以包括第一事件、第二事件和第三事件;第一事件为位于本车车辆的左右车道上车速最小的车辆的车速低;第二事件为目标车辆、左右车道上车速最小的车辆和目标车辆前方的车辆中的一种或多种处于停车区域;第三事件为位于同一车道的目标车辆前方的车辆的车速低。
其中第一事件考虑的情况是位于本车车辆的左右车道上车速最小的车辆的车速越低,目标车辆停车或将要停车的概率越高;第二事件考虑的情况是位于本车车辆前方的车辆是否将要处于对应红绿灯、十字路口、或斑马线等设置的停车区域,当本车车辆前方的车辆将要处于停车区域时,目标车辆停车的概率越高;第三事件考虑的情况是位于同一车道的目标车辆的前方车辆的车速较低,但目标车辆可以可能会先加速再减速,因此当位于同一车道的目标车辆的前方车辆的车速越低,实际目标车辆停车或将要停车的概率越高,可避免本车车辆跟随目标车辆突然加速后减速导致安全性较差的问题。
步骤S120,获取预设的事件概率对照表和/或预设函数公式,根据所述事件概率对照表和/或预设函数公式确定所述各预设事件对应的概率值。
在本实施例中,第一事件对应的第一概率值、第二事件对应的第二概率值和第三事件对应的第三概率值均可通过标定查表的方法获得,还均可以通过预设的函数公式计算获得,其中例如,第一概率值可通过检测左右车道车速最小车辆的车速,根据检测到的车速查询预设概率对照表中对应的概率值;也可以通过函数公式计算获得,例如第一概率值可通过函数公式:
Figure PCTCN2022091198-appb-000001
k1≥x>k2计算获得,其中P(A1)为第一 概率值,a、b、c、d、e、f为通过标定得到的系数,x为左右车道车速最小车辆的车速,k1、k2为预设车速阈值,其中k1大于k2。可通过检测左右车道的车道线是否为实线、是否检测到停止线与斑马线、是否探测到红绿灯、检测红灯是否全亮等情况构建对应第二事件的事件概率对照表,通过该对照表得到第二概率值;第三概率值与第一概率值的计算过程相同,可参照第一概率值的具体计算过程,此处不作赘述。
步骤S130,将所述概率值输入所述概率计算模型中,计算获得所述目标车辆停车或将要停车的目标概率值。
获取预设的事件概率对照表和/或预设函数公式,根据事件概率对照表和/或预设函数公式确定第一事件对应的第一概率值、第二事件对应的第二概率值和第三事件对应的第三概率值,将第一概率值、第二概率值和第三概率值输入概率计算模型中,计算获得目标车辆停车或将要停车的目标概率值。在本实施例中预设的概率计算模型为贝叶斯网络模型,当然预设的概率计算模型也可以为其他可计算目标概率的概率计算模型。
参照图9,图9中A1为第一事件对应的第一概率值,A2为第二事件对应的第二概率值,A3为第三事件对应的第三概率值,A4为第四事件对应的第四概率值,A5为第五事件对应的第五概率值,B1为目标车辆停车或将要停车的目标概率值。
将第一概率值、第二概率值和第三概率值输入概率计算模型中的步骤之前,还包括:
根据周围环境信息和运动信息确定第四事件和第五事件;
在本实施例中,第四事件为位于本车车辆的左右车道上车速最小的车辆停车或将要停车;第五事件为位于本车车辆同一车道的目标车辆的前方车辆停车或将要停车;
将第一概率值、第二概率值和第三概率值输入概率计算模型中,计算获得本车车辆前方的目标车辆停车或将要停车的目标概率值的步骤包括:
步骤a,将第一概率值和第二概率值输入概率计算模型中,可根据全概率计算公式计算获得第四事件对应的第四概率值;
步骤b,将第二概率值和第三概率值输入概率计算模型中,根据全概率计算公式计算获得第五事件对应的第五概率值;
步骤c,将第四概率值、第五概率值和第二概率值输入概率计算模型中,根据全概率计算公式计算获得目标车辆停车或将要停车的目标概率值。
在本实施例中,通过获取本车车辆的周围车辆的运动信息,和车道线、交通灯等周围环境信息,构建贝叶斯网络概率计算模型以计算得到目标车辆停车或将要停车的概率,根据概率计算结果进行后续的跟停控制的步骤。
进一步地,基于上述第一实施例,提出本申请车辆跟停控制方法的第二实施例。
在本实施例中,在步骤S300之后,还包括:
步骤d,在预设时间间隔后,检测是否存在所述目标车辆、所述目标车辆的车速是否低于预设车速、所述目标车辆的车速是否不为零以及所述本车车辆是否为向前运动的状态;
步骤e,响应于存在所述目标车辆、所述目标车辆的车速低于预设车速、所述目标车辆的车速不为零以及所述本车车辆为向前运动的状态,判断目标车辆停车或将要停车对应 的先验概率是否满足预设统计更新条件;
在本实施例中,在每个时间间隔后会重新获取本车车辆周围交通环境的实时情况,并做出后续相应的计算判断操作,本实施例中,预设时间间隔设置一个相对较长的时间如0.5s,例如,每隔0.5s检测目标车辆是否存在、目标车辆的车速是否低于预设车速(如10kph)、目标车辆的车速是否不为零以及本车车辆是否为向前运动的状态,当满足该四个条件时,说明目标车辆车速较低且尚未停车即目标车辆停车或将要停车的概率较高,此时可能需要进行跟停操作,则判断目标车辆停车或将要停车对应的先验概率是否满足预设统计更新条件,其中,目标车辆停车或将要停车对应的先验概率为第四概率值、第五概率值和第二概率值,预设统计更新条件为第四概率值为0或1、第五概率值为0或1、且第二概率值为0或1。
在本实施例中,由于在短时间内的周围交通环境的变化不太大,实际不需要太频繁的检测计算,因此设置相对较长的时间间隔,节省了算力同时也避免了过多存储无效的数据。
步骤f,确定满足预设统计更新条件,对目标车辆停车或将要停车对应的概率存储表进行统计更新。
确定目标车辆停车或将要停车对应的先验概率满足预设统计更新条件,对目标车辆停车或将要停车对应的概率存储表进行统计更新,其中目标车辆停车或将要停车对应的概率存储表包括第四概率值为0或1、第五概率值为0或1、且第二概率值为0或1时对应的事件“目标车辆停车或将要停车”真实发生的所有事件结果的总次数。
同样的,当检测到存在目标车辆、目标车辆的车速低于预设车速、目标车辆的车速不为零以及本车车辆为向前运动的状态时,判断第四事件和第五事件对应的各先验概率是否满足对应的预设统计更新条件,确定满足各对应的预设统计更新条件,对第四事件、第五事件对应的概率存储表进行统计更新。其中第四事件的先验概率为第一概率值和第二概率值,第五事件的先验概率为第二概率值和第三概率值。
在本实施例中,对贝叶斯网络模型进行了自适应更新,即根据行驶过程中的预测输入和实际结果匹配,不断地更新贝叶斯网络模型中各事件的概率值,使用车辆时间越久,对目标车辆运动状态的预测结果越准确,提升了预测的目标概率值的准确性。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有跟停控制程序,所述跟停控制程序被处理器执行时实现如以上任一项实施例所述的车辆跟停控制方法的步骤。
本申请计算机可读存储介质的具体实施例与上述跟停控制方法各实施例基本相同,在此不作赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种车辆跟停控制方法,包括步骤:
    获取位于本车车辆周围的车辆的运动信息,并获取所述本车车辆的周围环境信息,根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标车辆停车或将要停车的目标概率值;
    确定所述目标概率值大于预设阈值,判定所述目标车辆停车或将要停车,并计算所述目标车辆的停车位置;
    确定所述本车车辆的当前状态信息,根据所述停车位置和所述当前状态信息进行车辆跟停控制。
  2. 如权利要求1所述的车辆跟停控制方法,其中,所述当前状态信息包括本车车辆的当前车速和本车车辆的当前位置,所述根据所述停车位置和所述当前状态信息进行车辆跟停控制的步骤包括:
    以所述停车位置作为原点构建坐标系,并确定所述当前位置与所述停车位置之间的当前距离,根据所述当前距离和所述当前车速确定所述坐标系中的第一坐标点;
    将所述当前车速与所述本车车辆对应的理想车速比较;
    确定所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制。
  3. 如权利要求2所述的车辆跟停控制方法,其中,所述确定所述当前车速大于所述理想车速,根据所述当前车速进行车辆跟停控制的步骤包括:
    确定所述当前车速大于所述理想车速,判断所述当前距离是否大于预设安全距离;
    响应于所述当前距离大于预设安全距离,确定所述坐标系中所述当前车速对应的第一直线,并确定所述坐标系中预设理想跟停曲线和所述第一直线的交点对应的第二坐标点,根据所述第一坐标点和所述第二坐标点确定第一过渡过程,根据所述第一过渡过程与所述理想跟停过程进行车辆跟停控制。
  4. 如权利要求3所述的车辆跟停控制方法,其中,所述根据所述第一过渡过程与所述理想跟停过程进行车辆跟停控制的步骤包括:
    获取所述第一过渡过程对应的过渡曲线与所述理想跟停过程对应的理想跟停曲线融合的融合曲线公式,根据所述融合曲线公式构建加速度计算公式;
    将所述当前车速输入至所述加速度计算公式进行计算,以得到所述本车车辆所需的加速度;
    根据所述加速度控制本车车辆的速度以进行车辆跟停控制。
  5. 如权利要求3所述的车辆跟停控制方法,其中,所述判断所述当前距离是否大于预设安全距离的步骤之后,还包括:
    响应于所述判断所述当前距离不大于预设安全距离,确定所述坐标系中预设理想跟停曲线与横坐标的交点对应的理想停车坐标点;
    连接所述第一坐标点和所述理想停车坐标点,以获得第二过渡过程,根据所述第二过渡过程进行车辆跟停控制。
  6. 如权利要求2所述的车辆跟停控制方法,其中,所述将所述当前车速与所述本车车辆对应的理想车速比较的步骤之后,还包括:
    响应于所述当前车速小于所述理想车速,计算所述理想车速对应的参照速度,判断所述当前车速是否大于所述参照速度;
    响应于所述当前车速大于所述参照速度,确定所述参照速度在所述坐标系中的参照速度直线,并确定所述参照速度直线和所述坐标系中预设的理想跟停曲线的交点对应的第三坐标点;
    根据所述第一坐标点和所述第三坐标点确定第三过渡过程,根据所述第三过渡过程与所述理想跟停过程进行车辆跟停控制。
  7. 如权利要求6所述的车辆跟停控制方法,其中,所述判断所述当前车速是否大于所述参照速度的步骤之后,还包括:
    响应于所述当前车速小于所述参照速度,确定所述坐标系中所述当前车速对应的第二直线,并确定所述坐标系中的预设理想跟停曲线和所述第二直线的交点对应的第四坐标点;
    响应于所述第四坐标点对应的本车车辆车速大于所述第三坐标点对应的本车车辆车速,获取所述第二直线和所述参照速度直线之间的交点对应的第五坐标点,根据所述第一坐标点、所述第五坐标点及所述第三坐标点确定第四过渡过程,根据所述第四过渡过程与所述理想跟停过程进行车辆跟停控制;或,
    响应于所述第四坐标点对应的本车车辆车速小于或等于所述第三坐标点对应的本车车辆车速,根据所述第一坐标点和所述第四坐标点确定第五过渡过程,根据所述第五过渡过程与所述理想跟停过程进行车辆跟停控制。
  8. 如权利要求1所述的车辆跟停控制方法,其中,所述根据预设的概率计算模型、所述运动信息和所述周围环境信息计算所述本车车辆前方的目标车辆停车或将要停车的目标概率值的步骤包括:
    根据所述周围环境信息和所述运动信息确定不同场景下的各预设事件;
    获取预设的事件概率对照表和/或预设函数公式,根据所述事件概率对照表和/或预设函数公式确定所述各预设事件对应的概率值;
    将所述概率值输入所述概率计算模型中,计算获得所述目标车辆停车或将要停车的目标概率值。
  9. 一种车辆跟停控制装置,其中,所述车辆跟停控制包括存储器、处理器、以及存储在所述存储器上并可在所述处理器上运行的跟停控制程序,所述跟停控制程序被处理器执行时实现如权利要求1至8中任一项所述的车辆跟停控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有跟停控制程序,所述跟停控制程序被处理器执行时实现如权利要求1至8中任一项所述的车辆跟停控制方法的步骤。
PCT/CN2022/091198 2021-07-22 2022-05-06 车辆跟停控制方法、装置及计算机可读存储介质 WO2023000757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110834017.7 2021-07-22
CN202110834017.7A CN113460050B (zh) 2021-07-22 2021-07-22 车辆跟停控制方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023000757A1 true WO2023000757A1 (zh) 2023-01-26

Family

ID=77881932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091198 WO2023000757A1 (zh) 2021-07-22 2022-05-06 车辆跟停控制方法、装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113460050B (zh)
WO (1) WO2023000757A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113460050B (zh) * 2021-07-22 2022-11-15 上汽通用五菱汽车股份有限公司 车辆跟停控制方法、装置及计算机可读存储介质
CN114506322B (zh) * 2022-02-16 2023-06-30 岚图汽车科技有限公司 跟车控制方法、装置、设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170291602A1 (en) * 2016-04-11 2017-10-12 David E. Newman Systems and methods for hazard mitigation
CN110775034A (zh) * 2019-11-07 2020-02-11 厦门金龙联合汽车工业有限公司 一种自动刹车辅助系统控制方法、终端设备及存储介质
CN110884490A (zh) * 2019-10-28 2020-03-17 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、系统、车辆及存储介质
CN111252066A (zh) * 2020-01-19 2020-06-09 一汽解放汽车有限公司 紧急制动控制方法、装置、车辆及存储介质
US20210024056A1 (en) * 2019-07-22 2021-01-28 Mando Corporation Parking alignment adjustment apparatus and method
CN112389466A (zh) * 2020-12-03 2021-02-23 安徽江淮汽车集团股份有限公司 车辆自动避让方法、装置、设备及存储介质
CN113085852A (zh) * 2021-04-09 2021-07-09 中移(上海)信息通信科技有限公司 自动驾驶车辆的行为预警方法、装置及云端设备
CN113460050A (zh) * 2021-07-22 2021-10-01 上汽通用五菱汽车股份有限公司 车辆跟停控制方法、装置及计算机可读存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870674B2 (ja) * 2000-07-13 2007-01-24 日産自動車株式会社 車両用追従走行制御装置
JP4036693B2 (ja) * 2002-06-28 2008-01-23 ダイハツ工業株式会社 車両走行制御装置
JP2009220630A (ja) * 2008-03-13 2009-10-01 Fuji Heavy Ind Ltd 車両の走行制御装置
JP5377026B2 (ja) * 2009-03-27 2013-12-25 ダイハツ工業株式会社 追従走行制御装置
DE102012213815A1 (de) * 2011-08-03 2013-02-07 Continental Teves Ag & Co. Ohg Verfahren und System zum Anhalten eines Kraftfahrzeugs
JP6230620B2 (ja) * 2013-12-10 2017-11-15 三菱電機株式会社 走行制御装置
CN104859654B (zh) * 2015-05-12 2017-12-26 同济大学 车辆限速目标距离的实时计算方法及跟驰运行控制方法
CN106593666A (zh) * 2016-12-30 2017-04-26 上汽通用五菱汽车股份有限公司 一种根据档位设置行车怠速的方法
US10948912B2 (en) * 2017-10-31 2021-03-16 Passion Mobility Ltd. Automatic following system and method
JP7135746B2 (ja) * 2018-11-07 2022-09-13 トヨタ自動車株式会社 運転支援装置
CN111795832B (zh) * 2020-06-02 2022-09-02 福瑞泰克智能系统有限公司 一种智能驾驶车辆测试方法、装置及设备
CN112172790B (zh) * 2020-06-24 2022-10-28 上汽通用五菱汽车股份有限公司 自动停车的控制方法、装置及计算机可读存储介质
CN112855914B (zh) * 2021-01-04 2022-05-17 重庆长安汽车股份有限公司 一种车辆加减速执行机构切换控制方法、装置及存储介质
CN112874521B (zh) * 2021-01-22 2022-06-14 北京罗克维尔斯科技有限公司 一种车辆跟停的控制方法、装置及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170291602A1 (en) * 2016-04-11 2017-10-12 David E. Newman Systems and methods for hazard mitigation
US20210024056A1 (en) * 2019-07-22 2021-01-28 Mando Corporation Parking alignment adjustment apparatus and method
CN110884490A (zh) * 2019-10-28 2020-03-17 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、系统、车辆及存储介质
CN110775034A (zh) * 2019-11-07 2020-02-11 厦门金龙联合汽车工业有限公司 一种自动刹车辅助系统控制方法、终端设备及存储介质
CN111252066A (zh) * 2020-01-19 2020-06-09 一汽解放汽车有限公司 紧急制动控制方法、装置、车辆及存储介质
CN112389466A (zh) * 2020-12-03 2021-02-23 安徽江淮汽车集团股份有限公司 车辆自动避让方法、装置、设备及存储介质
CN113085852A (zh) * 2021-04-09 2021-07-09 中移(上海)信息通信科技有限公司 自动驾驶车辆的行为预警方法、装置及云端设备
CN113460050A (zh) * 2021-07-22 2021-10-01 上汽通用五菱汽车股份有限公司 车辆跟停控制方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN113460050B (zh) 2022-11-15
CN113460050A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023000757A1 (zh) 车辆跟停控制方法、装置及计算机可读存储介质
CN109421711B (zh) 跟车速度控制方法、装置、系统、计算机设备及存储介质
US10854080B2 (en) Vehicle control system
CN113044059A (zh) 用于车辆的安全系统
WO2018223890A1 (zh) 一种车辆自动换道控制方法和装置
CN108961839A (zh) 行车变道方法及装置
CN110598980B (zh) 交通场景的风险评估方法及装置
CN111038504B (zh) 车辆自适应巡航控制方法、装置、车辆及存储介质
CN110834646B (zh) 变道辅助预警方法、装置、设备及存储介质
CN116252817A (zh) 一种自动驾驶换道决策方法、装置、设备及存储介质
CN112542061B (zh) 基于车联网的借道超车控制方法、装置、系统及存储介质
CN112644495B (zh) 一种汽车智能辅助驾驶换道预警的计算方法
WO2018058265A1 (zh) 一种汽车控制方法及系统
CN112419783A (zh) 一种车辆辅助驾驶系统、方法和装置
US20220402490A1 (en) Vehicle Control Method and Apparatus
CN110834626A (zh) 行车障碍预警方法、装置、车辆和存储介质
CN111038503A (zh) 车辆自适应巡航控制方法、装置、车辆及存储介质
WO2023230740A1 (zh) 一种异常驾驶行为识别的方法、装置和交通工具
CN113500993B (zh) 防碰撞功能参数的标定方法、车辆及可读存储介质
CN113942504B (zh) 一种自适应巡航控制方法及装置
CN111710188B (zh) 车辆告警提示的方法、装置、电子设备及存储介质
CN113386763A (zh) 驾驶员辅助装置及其操作方法
US11708075B2 (en) Enhanced adaptive cruise control
WO2023122915A1 (zh) 一种车辆变道的预警方法及装置
CN114084136B (zh) 车辆变道过程中的纵向控制跟车目标选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE