WO2023122915A1 - 一种车辆变道的预警方法及装置 - Google Patents

一种车辆变道的预警方法及装置 Download PDF

Info

Publication number
WO2023122915A1
WO2023122915A1 PCT/CN2021/141795 CN2021141795W WO2023122915A1 WO 2023122915 A1 WO2023122915 A1 WO 2023122915A1 CN 2021141795 W CN2021141795 W CN 2021141795W WO 2023122915 A1 WO2023122915 A1 WO 2023122915A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
vehicle
lane
probability
lane change
Prior art date
Application number
PCT/CN2021/141795
Other languages
English (en)
French (fr)
Inventor
尹天宇
李腾
夏兵
张峻豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180024801.XA priority Critical patent/CN116685515A/zh
Priority to PCT/CN2021/141795 priority patent/WO2023122915A1/zh
Publication of WO2023122915A1 publication Critical patent/WO2023122915A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle

Definitions

  • the present application relates to the technical field of automobiles, and, more specifically, to a method and device for early warning of vehicle lane change.
  • the turn signal control system in the vehicle judges whether the vehicle has the behavior of pressing the lane line. When the vehicle has the behavior of pressing the lane line, it determines the probability that the vehicle may change lanes, and when the lane change When the probability is greater than the set threshold, the driver will be reminded.
  • the turn signal control system in the vehicle determines whether the vehicle has a tendency to change lanes according to the position deviation d between the vehicle body and the lane line and the angle deviation ⁇ between the vehicle body and the lane line collected by the camera.
  • the present application provides an early warning method and device for vehicle lane change, which can determine the probability of the vehicle's possible lane change by the turn signal control system in the vehicle even in the absence of lane lines. Furthermore, the present application can also output different prompt information for different lane changing probabilities after determining the probability that the target vehicle may change lanes.
  • the present application provides an early warning method for vehicle lane change, which is applied to a vehicle and includes: acquiring a first target angle between the target vehicle and a first vehicle, the first vehicle including a target vehicle located in front of the target vehicle and close to the target vehicle. The vehicle with the smallest vehicle distance; obtaining the second target angle between the target vehicle and the second vehicle, the second vehicle including the vehicle located behind the target vehicle and having the smallest distance from the target vehicle; according to the first target angle and the second target The included angle determines the target lane change probability of the target vehicle.
  • the turn signal control system in the target vehicle can be based on the angle between the vehicle in front of the target vehicle and the target vehicle, and the angle between the vehicle behind the target vehicle and the target vehicle Determine the probability that the target vehicle will change lanes.
  • the turn signal control system in the target vehicle needs to rely on the lane line when determining the probability of the target vehicle changing lanes.
  • the probability that the target vehicle has a lane change is determined by the angle between the vehicle in front of the target vehicle and the target vehicle, and the angle between the vehicle behind the target vehicle and the target vehicle. Therefore, Even when the lane line cannot be detected, the probability of the target vehicle changing lanes can be determined.
  • determining the target lane change probability of the target vehicle according to the first target included angle and the second target included angle includes: The first lane change probability of the target vehicle having a mapping relationship between the target included angle and the second target included angle, the first mapping relationship indicating the relationship between the first included angle and the second included angle and the lane change probability of the vehicle
  • the mapping relationship, the first angle includes the angle formed by the vehicle in front of the vehicle and the vehicle, and the second angle includes the angle formed by the vehicle behind the vehicle and the vehicle;
  • the first lane change probability is determined as the target lane change probability.
  • the turn signal control system in the target vehicle can determine the target lane change probability corresponding to the target vehicle according to the mapping relationship between the first included angle and the second included angle and the lane change probability of the vehicle. Further, it can be determined whether the target vehicle has a lane-changing tendency according to the target lane-changing probability. It can be understood that the method can determine the target lane change probability corresponding to the target vehicle even when no lane line is detected.
  • determining the target lane change probability of the target vehicle according to the first target included angle and the second target included angle includes: Angle and the second target angle have a first lane-changing probability of the target vehicle, the first mapping relationship indicates the mapping relationship between the first included angle and the second included angle and the lane-changing probability of the vehicle, the first The angle includes the angle formed by the vehicle in front of the vehicle and the vehicle, and the second angle includes the angle formed by the vehicle behind the vehicle and the vehicle; the first lane line on the target side of the target vehicle is obtained, and the first lane line includes the angle between the vehicle and the target.
  • the distance of the vehicle is less than the lane line of the first preset distance, and the target side includes the left side of the target vehicle and/or the right side of the target vehicle; acquiring a second lane line located on the target side, the second lane line includes the distance from the target vehicle Lane lines greater than or equal to the first preset distance and less than the second preset distance; according to the distance difference between the first lane line and the second lane line, determine the probability that there is a lane on the target side of the target vehicle; according to the first variable
  • the lane probability and the probability of lane existence on the target side are used to determine the target lane change probability of the target vehicle.
  • the turn signal control system in the target vehicle can also determine the probability that there is a lane on the target side of the target vehicle according to the first lane line and the second lane line located on the target side of the target vehicle, and then based on the first variable
  • the lane probability and the probability of lane existence on the target side jointly determine the target lane change probability.
  • the turn signal control system determines that the target vehicle may change lanes, when the target vehicle is driving in a single lane or the target vehicle is driving in the sidemost lane, the possibility of the target vehicle changing lanes It is also very low.
  • the turn signal control system determines that the target vehicle may change lanes, no matter whether the target vehicle is driving in a single lane or the target vehicle is driving in the most side lane, the turn signal control system will All will output prompt information to the driver, thereby bringing disturbance to the driver.
  • the probability that there is a lane on the target side of the target vehicle is also considered, and then the target lane change probability is jointly determined based on the first lane change probability and the probability that there is a lane on the target side, thereby improving the determined target lane change probability of accuracy.
  • the first mapping relationship between the first included angle and the second included angle and the lane change probability of the vehicle is satisfied:
  • f 1 represents the first included angle
  • f 2 represents the second included angle
  • min(f 1 , f 2 ) indicates the minimum value of f 1 and f 2
  • represents the lane change probability of the vehicle .
  • the probability that a lane exists on the target side of the target vehicle is determined according to the distance difference between the first lane line and the second target lane line,
  • the method includes: when the distance difference is less than a third preset distance, determining that the probability of a lane existing on the target side of the target vehicle is 0.
  • determining the probability that there is a lane on the target side of the target vehicle further includes: When the difference is greater than or equal to the third preset distance and smaller than the fourth preset distance, it is determined that the probability of a lane existing on the target side of the target vehicle is between 0 and 1.
  • determining the probability that there is a lane on the target side of the target vehicle further includes: when the distance difference is greater than or equal to At the fourth preset distance, it is determined that the probability that a lane exists on the target side of the target vehicle is 1.
  • the first preset distance is equal to 2 meters
  • the second preset distance is equal to 6 meters.
  • the third preset distance is equal to 1.5 meters
  • the fourth preset distance is equal to 2 meters.
  • the probability that there is a lane on the target side and the distance difference satisfies a second mapping relationship:
  • D represents the distance difference
  • represents the probability that there is a lane on the target side.
  • determining the target lane change probability of the target vehicle according to the first target included angle and the second target included angle includes: determining a lane line function corresponding to the first lane line;
  • the vehicle steering model of the target vehicle determines the trajectory function corresponding to the wheel on the target side of the target vehicle; when there is a first target intersection point between the lane line function and the trajectory function corresponding to the wheel on the target side, according to the wheel on the target side to the first
  • the arc length of the target intersection point and the driving speed of the target vehicle determine the target vehicle crossing time TTLC of the target vehicle; based on the first lane change probability, the probability of lane existence on the target side and TTLC, the target vehicle lane change probability is determined.
  • the lane line function corresponding to the first lane line can more accurately describe the first lane line, and the trajectory function corresponding to the wheel on the target side can also better reflect the running track of the target vehicle, therefore, based on the lane line
  • the accuracy of TTLC determined by the function and the running trajectory of the target vehicle will be higher.
  • it is jointly determined based on the first lane change probability, the probability of lane existence on the target side, and TTLC. Therefore, the accuracy of the determined target lane change probability will be further improved .
  • the first lane change probability ⁇ , the probability ⁇ of a lane on the target side, the TTLC and the target vehicle's target lane change probability satisfy a third mapping relation:
  • v represents the traveling speed of the target vehicle
  • represents the steering wheel angle of the target vehicle
  • a represents the weight of the steering wheel angle of the target vehicle
  • b represents the weight of the TTLC
  • T represents the Target lane change probability
  • the method further includes: outputting target prompt information, the target prompt information indicating that the driver is at the target lane change probability The action to perform.
  • the outputting target prompt information includes: determining the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information; The prompt information corresponding to the target lane change probability is output as the target prompt information.
  • the turn signal control system can output different prompt information based on different lane change probabilities.
  • the method provided in this embodiment can realize a slight reminder when the target vehicle’s target lane change probability is small to reduce interference to the driver.
  • the target lane change probability is high, it will be reminded in a stronger way to reduce the occurrence of dangerous situations.
  • the determining the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information includes: when the target changes When the lane probability is less than the first warning threshold and the turn signal of the target vehicle is turned on, determining the prompt information corresponding to the target lane change probability includes: prompting the driver to turn off the turn signal by voice.
  • determining the prompt information corresponding to the target lane change probability further includes: when the target lane change When the probability is greater than or equal to the first warning threshold and less than the second warning threshold, determining the prompt information corresponding to the target lane change probability includes: reminding the driver of an operation to be performed through an instrument.
  • determining the prompting information corresponding to the target lane-changing probability also includes: when the target lane-changing probability is greater than Or when it is equal to the second warning threshold and less than the third warning threshold, determining the prompt information corresponding to the target lane change probability includes: reminding the driver of the operation to be performed through instruments and lights.
  • the determining the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information further includes: when the target When the lane change probability is greater than or equal to the third warning threshold, determining the prompt information corresponding to the target lane change probability includes: reminding the driver of the operation to be performed through instruments, lights and voice.
  • the present application provides an early warning device for vehicle lane change, which is applied to a vehicle, and includes: an acquisition module, configured to acquire a first target angle between the target vehicle and the first vehicle, and acquire the first target angle between the target vehicle and the second vehicle.
  • the second target angle between the vehicles, the first vehicle includes the vehicle located in front of the target vehicle and the vehicle with the smallest distance from the target vehicle, and the second vehicle includes the vehicle located behind the target vehicle and the vehicle with the smallest distance from the target vehicle;
  • the determination module uses Based on the first target included angle and the second target included angle, the target lane change probability of the target vehicle is determined.
  • the determination module is specifically configured to: determine the first target angle of the target vehicle that has a mapping relationship with the first target angle and the second target angle according to the first mapping relationship.
  • Lane-changing probability indicates the mapping relationship between the first included angle and the second included angle and the lane-changing probability of the vehicle
  • the first included angle includes the angle formed by the vehicle in front of the vehicle and the vehicle
  • the second angle includes the angle formed by the vehicle behind the vehicle and the vehicle
  • the first lane change probability is determined as the target lane change probability.
  • the determination module is specifically configured to: determine, according to the first mapping relationship, all the objects that have a mapping relationship with the first target angle and the second target angle.
  • the first lane-changing probability of the target vehicle indicates the mapping relationship between the first included angle and the second included angle and the lane-changing probability of the vehicle, the first included angle includes the front of the vehicle
  • the acquisition module is also used to: acquire the first angle on the target side of the target vehicle a lane line and a second lane line located on the target side, the first lane line includes a lane line whose distance from the target vehicle is less than a first preset distance, the target side includes the left side of the target vehicle and/or the right side of the target vehicle, the second The second lane line includes a lane line whose distance from the target vehicle is greater than or equal to the first preset distance and less than the second preset
  • the first mapping relationship is satisfied between the first included angle and the second included angle and the lane change probability of the vehicle:
  • f 1 represents the first included angle
  • f 2 represents the second included angle
  • min(f 1 , f 2 ) indicates the minimum value of f 1 and f 2
  • represents the lane change probability of the vehicle .
  • the determining module is further configured to: when the distance difference is less than a third preset distance, determine that the probability of a lane existing on the target side of the target vehicle is 0.
  • the determining module is further configured to: when the distance difference is greater than or equal to the third preset distance and less than a fourth preset distance, determine the The probability that there is a lane on the target side lies between 0 and 1.
  • the determining module is further configured to: when the distance difference is greater than or equal to the fourth preset distance, determine that the probability of a lane existing on the target side of the target vehicle is 1.
  • the first preset distance is equal to 2 meters
  • the second preset distance is equal to 6 meters.
  • the third preset distance is equal to 1.5 meters
  • the fourth preset distance is equal to 2 meters.
  • the probability that there is a lane on the target side and the distance difference satisfy a second mapping relationship:
  • D represents the distance difference
  • represents the probability that there is a lane on the target side.
  • the determination module is further configured to: determine the lane line function corresponding to the first lane line; track function; in the case where there is a first target intersection point between the lane line function and the track function corresponding to the wheel on the target side, determine the target vehicle’s target according to the arc length from the wheel on the target side to the first target point of intersection and the travel speed of the target vehicle Vehicle line crossing time TTLC; based on the first lane change probability, the probability of lane existence on the target side and TTLC, the target lane change probability of the target vehicle is determined.
  • the first lane change probability ⁇ , the probability ⁇ of a lane on the target side, the TTLC and the target vehicle's target lane change probability satisfy a third mapping relation:
  • v represents the traveling speed of the target vehicle
  • represents the steering wheel angle of the target vehicle
  • a represents the weight of the steering wheel angle of the target vehicle
  • b represents the weight of the TTLC
  • T represents the Target lane change probability
  • the device further includes an output module configured to: output target prompt information, the target prompt information indicates that the driver is at the target lane change probability The action to perform.
  • the output module is specifically configured to: determine the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information ; Outputting the prompt information corresponding to the target lane change probability as the target prompt information.
  • the output module is specifically configured to: determine the target lane change probability when the target lane change probability is less than the first warning threshold and the turn signal of the target vehicle is turned on
  • the corresponding prompt information includes: prompting the driver to turn off the turn signal by voice.
  • the output module is specifically configured to: when the target lane change probability is greater than or equal to a first warning threshold and less than a second warning threshold, determine that the target lane change
  • the prompt information corresponding to the probability includes: reminding the driver of an operation to be performed through an instrument.
  • the output module is specifically configured to: when the target lane change probability is greater than or equal to a second warning threshold and less than a third warning threshold, determine the target
  • the prompt information corresponding to the lane change probability includes: reminding the driver of an operation to be performed through instruments and lights.
  • the output module is specifically configured to: when the target lane change probability is greater than or equal to a third early warning threshold, determine a prompt corresponding to the target lane change probability
  • the information includes: prompting the driver what to do through instruments, lights and voice.
  • the present application provides an early warning device for vehicle lane change, including: a memory, a processor, and a transceiver; the memory is used to store program instructions; the processor is used to call the program instructions in the memory to execute The method described in the first aspect or any one of the possible implementations.
  • the present application provides an early warning system for vehicle lane change, including the early warning device for vehicle lane change described in the second aspect or the third aspect or any one of possible implementations thereof.
  • the present application provides a vehicle, including the vehicle lane change warning system described in the fourth aspect.
  • the present application provides a computer-readable storage medium, where the computer-readable medium stores program instructions for computer execution, and the program instructions include instructions for executing the first aspect or any one of the possible implementations. the method described.
  • the present application provides a computer program product, the computer program product includes computer program instructions, and when the computer program instructions are run on a computer, the computer implements the first aspect or any one of them. Possible implementations of the methods described.
  • the technical effect brought by any one of the implementation methods of the second aspect to the seventh aspect can refer to the technical effect brought by any possible implementation method of the above-mentioned first aspect, and details are not repeated here.
  • FIG. 1 is a structural schematic diagram of an application scenario provided by the present application
  • Fig. 2 is the structural schematic diagram of the early warning system of vehicle lane change provided by the present application
  • Fig. 3 is a flowchart schematic diagram of an early warning method for vehicle lane change provided by an embodiment of the present application
  • FIG. 4 is a schematic flow diagram for obtaining the first target angle provided by the present application.
  • FIG. 5 is a schematic flow chart for obtaining a second target angle provided by the present application.
  • FIG. 6 is a structural schematic diagram of a hierarchical reminder interface provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a system architecture for early warning of vehicle lane change provided by an embodiment of the present application.
  • Fig. 8 is a structural schematic diagram of the target vehicle provided by the present application.
  • FIG. 9 is a structural schematic diagram of an early warning device for vehicle lane change provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of an early warning device for vehicle lane change provided in another embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the scene includes a vehicle 101 , a vehicle 102 , a vehicle 103 and a vehicle 104 .
  • vehicle 101 , vehicle 102 , and vehicle 103 are located in the same lane
  • vehicle 104 is located in another lane
  • vehicle 101 is located in front of vehicle 102
  • vehicle 103 is located behind vehicle 102 .
  • the vehicle shown in FIG. 1 is only an example, and it may also include more vehicles, which is not limited in this embodiment of the present application.
  • each vehicle may have lane-changing behavior. It should be understood that when the vehicle has the behavior of changing lanes, the vehicle having the behavior of changing lanes should remind the vehicles behind the vehicle which is located in the lane changing through the turn signal, so as to reduce the occurrence of traffic accidents such as rear-end collisions and scratches.
  • the vehicle 101 may need to change lanes as an example, if the vehicle 101 may have a lane-changing behavior, the driver in the vehicle 101 should remind the driver in the vehicle 103 through the turn signal in the vehicle 101 , to reduce traffic accidents such as rear-end collision or scratching between the vehicle 103 and the vehicle 101 .
  • the driver due to unskilled drivers or poor driving habits, the driver often forgets to turn on the turn signal when changing lanes, or even turns on the turn signal in the wrong direction, which leads to misjudgment by the vehicles behind and leads to traffic accidents. occur.
  • the turn signal control system is also referred to as an early warning device for vehicle lane change.
  • FIG. 2 is a structural schematic diagram of an early warning system for vehicle lane change provided in the present application.
  • the warning system for vehicle lane change includes a turn signal control system 201 and a vehicle 202 .
  • this embodiment does not limit the specific deployment form of the turn signal control system 201 .
  • the turn signal control system 201 may be deployed in the vehicle 202, or may be deployed in the cloud.
  • the turning signal control system 201 judges in advance whether the vehicle 202 has a lane-changing tendency through the image collected by the camera, and if it is detected that the vehicle 202 has a lane-changing tendency, then the driver will be informed. Remind accordingly. More specifically, the turn signal control system 201 detects whether the vehicle has a lane-changing tendency in advance, and there are mainly two ways to remind the driver after detecting that the vehicle has a lane-changing tendency.
  • the turn signal control system in the vehicle judges whether the vehicle has the behavior of pressing the lane line. When the vehicle has the behavior of pressing the lane line, it determines the probability that the vehicle may change lanes, and when the lane change When the probability is greater than the set threshold, the driver will be reminded. In the second implementation, the turn signal control system in the vehicle determines whether the vehicle has a tendency to change lanes according to the position deviation d between the vehicle body and the lane line and the angle deviation ⁇ between the vehicle body and the lane line collected by the camera.
  • the embodiments of the present application provide an early warning method and device for vehicle lane change.
  • the turn signal control system in the target vehicle can calculate a target vehicle according to the angle between the vehicle in front of the target vehicle and the target vehicle, and the angle between the vehicle behind the target vehicle and the target vehicle Probability of being in a lane change situation.
  • the time to line crossing (TTLC) of the target vehicle and the probability that there are lanes on both sides of the target vehicle are also determined, and then the The probability of the lane situation, the vehicle crossing time of the target vehicle, and the probability of lanes on both sides of the target vehicle are used to comprehensively determine the target lane change probability of the target vehicle, so as to improve the accuracy of the determined target vehicle lane change probability.
  • TTLC time to line crossing
  • different prompt information can also be output for the target lane change probability, so that when the target lane change probability is small, the driver is prompted in a slight manner, thereby reducing Interference to the driver; or when the probability of the target lane change is high, the driver is prompted in a relatively strong way, thereby reducing the occurrence of traffic accidents.
  • FIG. 3 is a schematic flowchart of a method for early warning of vehicle lane change provided by an embodiment of the present application. As shown in FIG. 3 , the method in this embodiment of the present application includes S301, S302, and S303. The method in this application is applied to a vehicle, and the method in this application can be executed by the turn signal control system in FIG. 2 .
  • the target vehicle refers to a vehicle that needs to be determined whether it is possible to change lanes.
  • the first vehicle is located in front of the target vehicle. It can be understood that there may be at least one vehicle in front of the target vehicle, and in this embodiment, the first vehicle specifically refers to the vehicle with the smallest distance to the target vehicle.
  • the first vehicle refers to the vehicle 102 located in front of the target vehicle. And when there is at least one vehicle in front of the target vehicle, then the vehicle closest to the target vehicle is used as the first vehicle.
  • this embodiment does not limit the implementation manner of how to obtain the first target angle between the target vehicle and the first vehicle.
  • FIG. 4 is a schematic flowchart of obtaining the first target included angle provided by the present application.
  • first execute step S401 promptly acquire the image collected by the front-view camera in the vehicle, and then execute S402, promptly judge whether there is a first vehicle in front of the target vehicle through the collected image; vehicle, execute S403, that is, identify the position of the left rear wheel and the position of the right rear wheel of the first vehicle; otherwise, execute S404, that is, end the process; after that, if the position of the left rear wheel and the right rear wheel are determined position, and then perform S405, that is, determine the angle between the first vehicle and the target vehicle (ie, the first target angle) through the positions of the left rear wheel and the right rear wheel of the first vehicle.
  • the embodiment of the present application does not limit the calculation method of how to determine the angle between the first vehicle and the target vehicle through the position of the left rear wheel and the position of the right rear wheel of the first vehicle.
  • a horizontal line perpendicular to the target vehicle can be determined first, then a point in the horizontal line is taken as a reference point, and the points corresponding to the position of the left rear wheel are respectively connected with the reference point to form the first line segment, and the position of the right rear wheel is The point corresponding to the position is connected with the reference point to form a second line segment, and then the angle between the first line segment and the second line segment is determined as the first target angle between the first vehicle and the target vehicle.
  • the second vehicle is located behind the target vehicle. It can be understood that there may be at least one vehicle behind the target vehicle, and in this embodiment, the second vehicle specifically refers to the vehicle with the smallest distance to the target vehicle.
  • the second vehicle refers to the vehicle 103 located behind the target vehicle. And when there is at least one vehicle behind the target vehicle, the vehicle closest to the target vehicle is then used as the second vehicle.
  • this embodiment does not limit the implementation manner of how to obtain the second target included angle between the target vehicle and the second vehicle.
  • FIG. 5 is a schematic flowchart of obtaining the second target included angle provided by the present application.
  • first execute step S501 promptly obtain the image collected by the rear view camera in the vehicle, and then execute S502, promptly judge whether there is a second vehicle behind the target vehicle through the collected image; vehicle, execute S503, that is, identify the position of the left front wheel and the right front wheel of the second vehicle; otherwise, execute S504, that is, end the process; after that, if the position of the left front wheel and the right front wheel are determined, execute S505, that is, determine the angle between the second vehicle and the target vehicle (ie, the second target angle) according to the positions of the left front wheel and the right front wheel of the second vehicle.
  • a horizontal line perpendicular to the target vehicle can be determined first, and then a point in the horizontal line is taken as a reference point, and the points corresponding to the position of the left front wheel are respectively connected with the reference point to form a third line segment, and the position corresponding to the right front wheel The point is connected with the reference point to form a fourth line segment, and then the angle between the third line segment and the fourth line segment is determined as the second target angle between the second vehicle and the target vehicle.
  • first target included angle when the first target included angle is relatively small, it means that the angle between the target vehicle and the vehicle in front is basically the same, and when the second target included angle is also relatively small, it means that the angle between the rear vehicle and the target vehicle is basically the same. consistent. That is to say, if the first target angle and the second target angle are both small, it means that the angle between the target vehicle and the front and rear vehicles is basically the same, so the probability of the target vehicle changing lanes may be small, that is, the target vehicle lane changing probability may be very small.
  • the target vehicle has a certain angle deviation from the front vehicle and also has a certain angle deviation from the rear vehicle, so The target vehicle may have a high probability of changing lanes, that is, the target vehicle may have a high probability of changing lanes.
  • the first target angle is large and the second target angle is small, it means that there is a certain angle deviation between the target vehicle and the vehicle in front, and the angle with the vehicle behind is basically the same, so it can be explained
  • the probability that the vehicle in front may change lanes may be greater, while the probability that the target vehicle may change lanes is relatively small; or if the angle between the second target and the first target is small, it means that there is a gap between the target vehicle and the vehicle behind.
  • a certain angle deviation is basically the same as the angle of the vehicle in front, so it can be explained that the probability that the vehicle behind may change lanes may be greater, while the probability that the target vehicle may change lanes is relatively small.
  • the target vehicle may have a lane change probability. The probability is small.
  • the first target included angle and/or the second target included angle belong to a relatively large included angle or belong to a relatively small included angle
  • it is possible to use the first target included angle and/or the second The target included angle is determined by comparing it with a preset included angle threshold.
  • a first threshold and a second threshold may be set, wherein the second threshold is greater than the first threshold. Then when the value of the first target included angle is less than the first threshold, it is determined that the first target included angle is relatively small; when the value of the first target included angle is greater than or equal to the first threshold and smaller than the second threshold, it indicates that the first target included angle The angle is medium; when the value of the first target included angle is greater than or equal to the second threshold, it is determined that the first target included angle is relatively large.
  • a third threshold and a fourth threshold may be set, wherein the fourth threshold is greater than the third threshold. Then when the value of the second target included angle is less than the third threshold, it is determined that the second target included angle is relatively small; when the value of the second target included angle is greater than or equal to the third threshold and less than the fourth threshold, it indicates that the second target included angle The angle is medium; when the value of the second target included angle is greater than or equal to the fourth threshold, it is determined that the second target included angle is relatively large.
  • the first threshold, the second threshold, the third threshold, and the fourth threshold there is no limitation on how to obtain the first threshold, the second threshold, the third threshold, and the fourth threshold. For example, it can be determined through human experience.
  • the turn signal control system in the target vehicle can be based on the angle between the vehicle in front of the target vehicle and the target vehicle, and the angle between the vehicle behind the target vehicle and the target vehicle Determine the probability that the target vehicle will change lanes.
  • the turn signal control system in the target vehicle needs to rely on the lane line when determining the probability of the target vehicle changing lanes.
  • the angle between the vehicle in front of the target vehicle and the target vehicle and the angle between the vehicle behind the target vehicle and the target vehicle are used to determine the probability of the target vehicle changing lanes, even if In the case that the lane line cannot be detected, it is also possible to determine the probability that the target vehicle has a lane change.
  • S303 includes: according to the first mapping relationship, determining the first lane-changing probability of the target vehicle having a mapping relationship with the first target included angle and the second target included angle, the first mapping The relationship indicates the mapping relationship between the first angle and the second angle and the lane change probability of the vehicle, the first angle includes the angle formed by the vehicle in front of the vehicle and the vehicle, and the second angle includes the vehicle behind the vehicle and the vehicle The formed included angle; determine the first lane change probability as the target lane change probability.
  • first-order relationship between the angle formed by the vehicle in front of a certain vehicle and the certain vehicle, the angle formed by the vehicle behind the certain vehicle and the certain vehicle, and the lane change probability of the certain vehicle.
  • a mapping relationship It should be noted here that the specific form of the first mapping relationship is not limited in this embodiment.
  • the first mapping relationship satisfied between the first included angle and the second included angle and the lane change probability of the vehicle is:
  • f 1 indicates the first included angle
  • f 2 indicates the second included angle
  • min(f 1 , f 2 ) indicates the minimum value of f 1 and f 2
  • indicates the lane-changing probability of the vehicle.
  • the lane change probability of the target vehicle that has a mapping relationship with the first target included angle and the second target included angle can be determined (that is, the first lane change probability), and then use the first lane change probability as the target vehicle's target lane change probability.
  • the target vehicle may be determined whether the target vehicle has a lane change tendency based on the first lane change probability.
  • a threshold may be set, and then when the first lane change probability is greater than the threshold, it is determined that the target vehicle has a tendency to change lanes, and a prompt message may be output to the driver.
  • the turn signal control system in the target vehicle can determine the target lane change probability corresponding to the target vehicle according to the mapping relationship between the first included angle and the second included angle and the lane change probability of the vehicle. Further, it can be determined whether the target vehicle has a lane-changing tendency according to the target lane-changing probability. It can be understood that the method can determine the target lane change probability corresponding to the target vehicle even when no lane line is detected.
  • S303 includes: according to the first mapping relationship, determining the first lane-changing probability of the target vehicle having a mapping relationship with the first target included angle and the second target included angle, the first mapping The relationship indicates a mapping relationship between the first included angle and the second included angle and the lane change probability of the vehicle, the first included angle includes the included angle formed by the vehicle in front of the vehicle and the vehicle, and the second included angle includes the The angle formed by the vehicle behind the vehicle and the vehicle; the first lane line on the target side of the target vehicle is obtained, the first lane line includes a lane line whose distance from the target vehicle is less than the first preset distance, and the target side includes the target The left side of the vehicle and/or the right side of the target vehicle; acquiring a second lane line on the target side, the second lane line including a lane whose distance from the target vehicle is greater than or equal to the first preset distance and less than the second preset distance line; according to the distance difference between the first lane line and the second
  • the turn signal control system determines that the target vehicle may change lanes, it is almost impossible for the target vehicle to change lanes when the target vehicle is driving in a single lane or the target vehicle is driving in the sidemost lane. Yes, that is, the possibility of changing lanes is very low.
  • the turn signal control system determines that the target vehicle may change lanes, no matter whether the target vehicle is driving in a single lane or the target vehicle is driving in the sidemost lane, the turn signal control system will All will output prompt information to the driver, thereby bringing disturbance to the driver.
  • the turn signal control system in the target vehicle also considers the probability that there is a lane on the target side of the target vehicle, and then jointly determines the target lane change of the target vehicle based on the first lane change probability and the probability that there is a lane on the target side probability.
  • the turn signal control system can first obtain the first lane line (which can be considered as the edge line of the lane where the target vehicle is located) whose distance from the target side of the target vehicle is less than the first preset distance, and then obtain the target side distance from the target vehicle.
  • the second lane line whose side distance is greater than or equal to the first preset distance and less than the second preset distance (which can be considered as the edge line of the side lane of the lane where the target vehicle is located), and finally based on the distance between the first lane line and the second lane line The distance difference between them determines the probability that there is a lane on the target side of the target vehicle.
  • determining the probability that there is a lane on the target side of the target vehicle includes: when the distance difference is less than a third preset distance, determining The probability that there is a lane on the target side of the target vehicle is 0; when the distance difference is greater than or equal to the third preset distance and less than the fourth preset distance, it is determined that the probability that there is a lane on the target side of the target vehicle is between 0 and 1 ; When the distance difference is greater than or equal to the fourth preset distance, determine that the probability that there is a lane on the target side of the target vehicle is 1.
  • the first preset distance is equal to 2 meters
  • the second preset distance is equal to 6 meters
  • the third preset distance is equal to 1.5 meters
  • the fourth preset distance is equal to 2 meters. That is to say, obtain the lane line within 2m from the vehicle body as the first lane line (that is, the edge line of the current lane), and obtain the second lane line (that is, the edge line beside the vehicle) that is between 2 meters and 6 meters away from the vehicle on the same side. edge of the lane).
  • the probability that there is a lane on the target side of the target vehicle may be determined based on the following manner:
  • the present application does not limit the implementation manner of how to acquire the first lane line and the second lane line.
  • “Canny” detection and Hough transform method detection can be used.
  • the target lane change probability is jointly determined by the first lane change probability and the probability of lane existence on the target side, thereby improving the determined target lane change probability of accuracy.
  • TTLC time to line crossing
  • a method for determining TTLC is: determine the lane line function corresponding to the first lane line; determine the track function corresponding to the wheel on the target side of the target vehicle according to the vehicle steering model of the target vehicle; If there is a first target intersection in the trajectory function corresponding to the wheel on the target side, the target vehicle crossing time TTLC of the target vehicle is determined according to the arc length from the wheel on the target side to the first target intersection and the driving speed of the target vehicle.
  • the first lane line is the target side lane line of the lane where the target vehicle is located, for example, the first lane line is the left lane line of the lane where the target vehicle is located, or the right lane line of the lane where the target vehicle is located.
  • the lane line function corresponding to the first lane line may be obtained by fitting the first lane line of the lane where the target vehicle is located in the collected bird's-eye view image through cubic curve fitting.
  • the left lane marking function f 1 and the right lane marking function f 2 are obtained.
  • the vehicle steering model may use the Ackermann steering model to respectively obtain the trajectory functions corresponding to the wheels on the target side of the target vehicle.
  • the Ackermann steering model reference may be made to descriptions in related technologies, and details are not repeated here.
  • the arc length of the target vehicle is determined based on the arc length from the wheel on the target side to the first target intersection point and the driving speed of the target vehicle.
  • Target vehicle crossing time TTLC Target vehicle crossing time
  • the trajectory function corresponding to the wheel on the target side can also better reflect the running track of the target vehicle, therefore, based on the lane line
  • the accuracy of TTLC determined by the function and the running trajectory of the target vehicle is higher.
  • this embodiment does not limit the implementation of how to jointly determine the target lane change probability of the target vehicle based on the first lane change probability, the probability of a lane existing on the target side, and TTLC.
  • the first lane-changing probability ⁇ , the probability of a lane on the target side ⁇ , the TTLC and the target vehicle’s target lane-changing probability satisfy the following third mapping relationship:
  • v represents the driving speed of the target vehicle
  • represents the steering wheel angle of the target vehicle
  • a represents the weight of the steering wheel angle of the target vehicle
  • b represents the weight of the TTLC
  • T represents the target lane change probability
  • the ⁇ value can be used to assist in judging whether the lane is about to change.
  • the turn signal control system may also output target prompting information, the target prompting information indicating the operation performed by the driver at the target lane-changing probability.
  • the outputting target prompt information includes: determining the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information; The prompt information of is output as the target prompt information.
  • the turn signal control system can output different prompt information based on different lane change probabilities. Therefore, when the target probability of the target vehicle is small, it can be reminded in a slight way to reduce the interference to the driver, and when the target probability of the target vehicle is high, it can be reminded in a stronger way to reduce the occurrence of dangerous situations.
  • FIG. 6 is a schematic structural diagram of a hierarchical reminder interface provided by an embodiment of the present application.
  • the graded reminder interface includes an ambient light 601 , a speaker 602 and an instrument display 603 .
  • the instrument display may include a left turn warning light, a right turn warning light and a current turning image of the target vehicle.
  • the turn signal control system believes that the target lane change probability is high, multiple ways can be used to jointly remind the driver, including but not limited to ambient light 601 reminder, speaker 602 Voice prompt and instrument 603 prompt.
  • the turn signal control system considers that the probability of the target lane change is medium, it may output some of the above-mentioned prompting ways.
  • the turn signal control system considers that the probability of the target lane change is low, it may only output a small part of the above-mentioned multiple prompting ways or not prompt.
  • the target lane-changing probability in order to determine whether the target lane-changing probability belongs to a low probability, a medium probability, or a relatively high probability, the target lane-changing probability can be compared with a preset probability threshold.
  • the driver is prompted to turn off the turn signal by voice.
  • determining the prompt information corresponding to the target lane change probability includes: reminding the driver of the operation to be performed through the instrument .
  • the target lane change probability is greater than or equal to the second warning threshold T2 and smaller than the third warning threshold T3, the driver is reminded of the operation to be performed through instruments and lights.
  • the driver is prompted with an operation to be performed through instruments, lights and voice.
  • the embodiment of the present application does not limit how to select the first warning threshold T1 , the second warning threshold T2 and the third warning threshold T3 .
  • it can be selected through manual experience.
  • this embodiment may include an information collection module group, an information processing module group, and a comprehensive judgment and classification reminder module.
  • the information collection module group mainly includes: a wheel speed collection module 701 and a steering wheel angle collection module 702 .
  • the wheel speed acquisition module 701 is used to acquire the driving speed of the target vehicle
  • the steering wheel angle acquisition module 702 is used to acquire the steering wheel angle information of the target vehicle.
  • the information collection module group also includes a left and right image generation module 703 , a bird's-eye view generation module 704 and a front and rear image generation module 703 .
  • the image on the left of the target vehicle and the image on the right of the target vehicle are acquired by the left and right image generation module 703, and the image on the front of the target vehicle and the image behind the target vehicle are acquired by the front and rear image generation module 703.
  • the bird's-eye view generation module 704 generates a bird's-eye view based on the acquired images.
  • FIG. 8 is a structural schematic diagram of a target vehicle provided in this application.
  • a camera 801 , a camera 802 , a camera 803 and a camera 804 may be respectively deployed around the body of the target vehicle. More specifically, the camera 801 is installed on the front bumper of the target vehicle for acquiring images of the front side of the target vehicle, the camera 802 is installed on the rear bumper of the target vehicle for acquiring images of the rear of the target vehicle, and the camera 803 is installed The right view mirror of the target vehicle is used to acquire the image of the right side of the target vehicle, and the camera 804 is installed on the left view mirror of the target vehicle to acquire the image of the left side of the target vehicle.
  • the information processing module group includes a lane identification module 706 on both sides, a front and rear vehicle pose discrimination module 707 and a TTL calculation module 708 .
  • the two-side lane recognition module 706 is configured to: judge the probability that there is a lane on the target side of the target vehicle based on the image on the left side of the target vehicle and the image on the right side of the target vehicle. For example, the probability that there is a lane on the left side of the target vehicle is determined based on the image on the left side of the target vehicle acquired by the camera, or the probability that there is a lane on the right side of the target vehicle is determined based on the image on the right side of the target vehicle acquired by the camera.
  • the lane recognition module on both sides can determine the probability of lane existence on the target side by referring to the method of how to determine the probability of lane existence on the target side of the target vehicle in the above-mentioned embodiments of the present application, which will not be repeated here.
  • the front and rear vehicle pose discrimination module 707 is used to: determine the angle between the target vehicle and the front and rear vehicles based on the acquired image in front of the target vehicle and the image behind it, so as to obtain the probability that the target vehicle is in a lane change situation, mainly processing Scene without lane lines. It is noted here that the front and rear vehicle pose discrimination module can refer to the description of how to determine the probability of the target vehicle being in a lane-changing situation to determine the first lane-changing probability in the above-mentioned embodiments of the present application, and details are not repeated here.
  • the TTL calculation module 708 is mainly used to: detect the lane line based on the generated bird's-eye view view image, the driving speed of the target vehicle acquired by the wheel speed acquisition module and the steering wheel angle of the target vehicle acquired by the steering wheel angle acquisition module, and jointly calculate to obtain TTLC. It is noted here that the TTL calculation module may determine the TTLC with reference to the method of how to determine the TTLC in the foregoing embodiments of the present application, and details are not repeated here.
  • the comprehensive determination and grading reminder module 709 is mainly used to: integrate the acquired driving speed of the target vehicle, the acquired steering wheel angle of the target vehicle and the output of each information processing module to obtain the target lane change of the target vehicle probability. And, according to the level of the target lane change probability, different levels of reminders are made in the hierarchical reminder interface. For example, a level-1 reminder, a level-2 reminder, and a level-3 reminder are made based on the probability of a target lane change.
  • the comprehensive judgment and graded reminder module can refer to the method of how to make different levels of reminders in the graded reminder interface according to the different target lane change probabilities in the above embodiments of the present application, and will not be repeated here.
  • Fig. 9 is a structural schematic diagram of an early warning device for vehicle lane change provided by an embodiment of the present application.
  • the apparatus shown in FIG. 9 may be used to execute the method described in any one of the foregoing embodiments.
  • an apparatus 900 in this embodiment includes: an acquiring module 901 and a determining module 902 .
  • the acquiring module 901 is configured to acquire a first target included angle between the target vehicle and the first vehicle, and acquire a second target included angle between the target vehicle and the second vehicle, the first vehicle includes a vehicle located in front of the target vehicle and The vehicle with the smallest distance to the target vehicle, the second vehicle includes a vehicle located at the rear of the target vehicle and the vehicle with the smallest distance from the target vehicle; a determination module 902 is configured to determine the target change of the target vehicle according to the first target angle and the second target angle Road probability.
  • the determining module 902 is specifically configured to: determine the first lane-changing probability of the target vehicle having a mapping relationship with the first target angle and the second target angle according to the first mapping relationship, the first The mapping relationship indicates the mapping relationship between the first angle and the second angle and the lane change probability of the vehicle, the first angle includes the angle formed by the vehicle in front of the vehicle and the vehicle, and the second angle includes the vehicle The angle formed by the rear vehicle and the vehicle; the first lane change probability is determined as the target lane change probability.
  • the determination module 902 is specifically configured to: determine the first lane-changing probability of the target vehicle having a mapping relationship with the first target angle and the second target angle according to the first mapping relationship, the The first mapping relationship indicates the mapping relationship between the first angle and the second angle and the lane change probability of the vehicle, the first angle includes the angle formed by the vehicle in front of the vehicle and the vehicle, the The second angle includes the angle formed by the vehicle behind the vehicle and the vehicle; the acquiring module 901 is further configured to: acquire the first lane line on the target side of the target vehicle and the second lane line on the target side , the first lane line includes a lane line whose distance from the target vehicle is less than a first preset distance, the target side includes the left side of the target vehicle and/or the right side of the target vehicle, and the second lane line includes a distance from the target vehicle greater than or A lane line that is equal to the first preset distance and less than the second preset distance; the determination module 902 is also used to: determine that there is
  • the first mapping relationship between the first included angle and the second included angle and the first lane change probability is satisfied:
  • f 1 indicates the first included angle
  • f 2 indicates the second included angle
  • min(f 1 , f 2 ) indicates the minimum value of f 1 and f 2
  • indicates the first lane change probability
  • the determining module 902 is further configured to: when the distance difference is less than a third preset distance, determine that the probability of a lane existing on the target side of the target vehicle is 0.
  • the determination module 902 is further configured to: determine that there is a lane on the target side of the target vehicle when the distance difference is greater than or equal to a third preset distance and less than a fourth preset distance The probability of is between 0 and 1.
  • the determining module 902 is further configured to: when the distance difference is greater than or equal to a fourth preset distance, determine that the probability of a lane existing on the target side of the target vehicle is 1.
  • the first preset distance is equal to 2 meters
  • the second preset distance is equal to 6 meters.
  • the third preset distance is equal to 1.5 meters
  • the fourth preset distance is equal to 2 meters.
  • D represents the distance difference
  • represents the probability that there is a lane on the target side.
  • the determination module 902 is further configured to: determine a lane line function corresponding to the first lane line; determine a trajectory function corresponding to a wheel on the target side of the target vehicle according to the vehicle steering model of the target vehicle; In the case where there is a first target intersection between the lane line function and the trajectory function corresponding to the wheel on the target side, the target vehicle crossing time of the target vehicle is determined according to the arc length from the wheel on the target side to the first target intersection point and the driving speed of the target vehicle TTLC: determining a target lane change probability of the target vehicle based on the first lane change probability, the probability of a lane existing on the target side, and the TTLC.
  • the first lane change probability ⁇ , the probability ⁇ of a lane existing on the target side, the TTLC and the target vehicle's target lane change probability satisfy a third mapping relationship:
  • v represents the traveling speed of the target vehicle
  • represents the steering wheel angle of the target vehicle
  • a represents the weight of the steering wheel angle of the target vehicle
  • b represents the weight of the TTLC
  • T represents the Target lane change probability
  • the device further includes an output module 903, configured to output target prompt information, where the target prompt information indicates an operation performed by the driver at the target lane change probability.
  • the output module 903 is specifically configured to: determine the prompt information corresponding to the target lane change probability based on the mapping relationship between different lane change probabilities and different prompt information; The prompt information corresponding to the target lane change probability is output as the target prompt information.
  • the output module 903 is specifically configured to: determine the prompt information corresponding to the target lane change probability when the target lane change probability is less than the first warning threshold and the turn signal of the target vehicle is turned on Including: prompting the driver to turn off the turn signal through voice.
  • the output module 903 is specifically configured to: when the target lane change probability is greater than or equal to the first warning threshold and less than the second warning threshold, determine the prompt corresponding to the target lane change probability
  • the information includes: prompting the driver with an operation to be performed through the instrument.
  • the output module 903 is specifically configured to: determine that the target lane change probability corresponds to The prompt information includes: reminding the driver of the operation to be performed through the instrument and lights.
  • the output module 903 is specifically configured to: when the target lane change probability is greater than or equal to the third warning threshold, determining the prompt information corresponding to the target lane change probability includes: Gauges, lights and voice prompts the driver what to do.
  • Fig. 10 is a schematic structural diagram of an early warning device for vehicle lane change provided in another embodiment of the present application.
  • the device shown in FIG. 10 may be used to execute the method described in any one of the foregoing embodiments.
  • the apparatus 1000 of this embodiment includes: a memory 1001 , a processor 1002 , a communication interface 1003 and a bus 1004 .
  • the memory 1001 , the processor 1002 , and the communication interface 1003 are connected to each other through a bus 1004 .
  • the memory 1001 may be a read only memory (read only memory, ROM), a static storage device, a dynamic storage device or a random access memory (random access memory, RAM).
  • the memory 1001 may store a program, and when the program stored in the memory 1001 is executed by the processor 1002, the processor 1002 is configured to execute each step of the method shown in FIG. 3 .
  • the processor 1002 may adopt a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application specific integrated circuit (application specific integrated circuit, ASIC), or one or more integrated circuits, for executing related programs to Realize the method shown in Figure 3 of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 1002 may also be an integrated circuit chip with signal processing capability. During implementation, each step of the method shown in FIG. 3 in the embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 1002 or instructions in the form of software.
  • the above-mentioned processor 1002 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application-specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, Discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 1001, and the processor 1002 reads the information in the memory 1001, and combines its hardware to complete the functions required by the units included in the device of the present application. For example, it can execute various steps/functions of the embodiment shown in FIG. 3 .
  • the communication interface 1003 may use, but is not limited to, a transceiver device such as a transceiver to implement communication between the device 1000 and other devices or communication networks.
  • the bus 1004 may include a pathway for transferring information between various components of the apparatus 1000 (eg, the memory 1001, the processor 1002, the communication interface 1003).
  • the apparatus 1000 shown in the embodiment of the present application may be an electronic device, or may also be a chip configured in the electronic device.
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.

Abstract

一种车辆变道的预警方法及装置,应用于车辆,包括:获取目标车辆与第一车辆之间的第一目标夹角,第一车辆包括位于目标车辆的前方且与目标车辆距离最小的车辆;获取目标车辆与第二车辆之间的第二目标夹角,第二车辆包括位于目标车辆的后方且与目标车辆距离最小的车辆;根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率。在实际应用中,能够在无法检测到车道线的情况下,准确地确定出目标车辆的目标变道概率。

Description

一种车辆变道的预警方法及装置 技术领域
本申请涉及汽车技术领域,并且,更具体地,涉及一种车辆变道的预警方法及装置。
背景技术
随着交通运输业的快速发展以及汽车保有量的急剧增长,交通事故频频发生,给人们的生活和社会发展带来了严重影响。研究表明,在交通事故中,因车辆变道导致的交通事故占很大一部分,其主要原因是由于驾驶员不熟练或驾驶习惯欠佳等,使得驾驶员在变道时通常忘记打转向灯、甚至开启错误方向的转向灯,从而导致后方车辆误判,引发交通事故的发生。因此,在车辆行驶时,提前检测车辆是否具有变道倾向,以在检测到车辆有变道倾向后对驾驶员进行提醒成为研究热点。
目前,提前检测车辆是否具有变道倾向,以在检测到车辆有变道倾向后对驾驶员进行提醒主要有两种方式。在第一种实现方式中,车辆中的转向灯控制系统判断车辆是否有压车道线的行为,当车辆有压车道线的行为时,则确定车辆可能变道的概率,并当该变道的概率大于设定阈值时对驾驶员进行提醒。在第二种实现方式中,车辆中的转向灯控制系统根据摄像头采集到的车身与车道线的位置偏差d和车身与车道线的角度偏差α,来确定车辆是否有变道倾向。更具体地,计算PC=|α+d|,当PC值小于低峰阈值时,则确定车辆变道的概率较低,当PC值大于高峰阈值时,则确定车辆变道的概率较高并对驾驶员进行提醒。
然而,不论是第一种实现方式,还是第二种实现方式,在确定车辆可能变道的概率时都需要依赖于车道线,当无法检测到车道线时,就无法确定出车辆可能变道的概率,进一步地,也无法正确地向驾驶员进行提醒。
因此,如何能在没有车道线的情况下,车辆中的转向灯控制系统还能够确定出车辆可能变道的概率,成为亟待解决的技术问题。
发明内容
本申请提供一种车辆变道的预警方法及装置,能够在在没有车道线的情况下,车辆中的转向灯控制系统也够确定出车辆可能变道的概率。进一步地,本申请还能够在确定出目标车辆可能变道的概率后,针对不同的变道概率输出不同的提示信息。
第一方面,本申请提供一种车辆变道的预警方法,应用于车辆,包括:获取目标车辆与第一车辆之间的第一目标夹角,第一车辆包括位于目标车辆的前方且与目标车辆距离最小的车辆;获取目标车辆与第二车辆之间的第二目标夹角,第二车辆包括位于目标车辆的后方且与目标车辆距离最小的车辆;根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率。
本实施例提供的车辆变道的预警方法,目标车辆中的转向灯控制系统可以根据目 标车辆的前方车辆与目标车辆之间的夹角,以及目标车辆的后方车辆与目标车辆之间的夹角确定出目标车辆存在变道的概率。
可以理解的是,在现有技术中,目标车辆中的转向灯控制系统在确定目标车辆存在变道的概率时是需要依赖于车道线的。而在本实施例中,由于是通过目标车辆的前方车辆与目标车辆之间的夹角,以及目标车辆的后方车辆与目标车辆之间的夹角确定出目标车辆存在变道的概率,因此,即使是在无法检测到车道线的情况下,也能够确定出目标车辆存在变道的概率。
结合第一方面,在一种可能的实现方式中,根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率,包括:根据第一映射关系,确定与所述第一目标夹角和所述第二目标夹角具有映射关系的所述目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,所述第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,所述第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;将所述第一变道概率确定为所述目标变道概率。
该实现方式中,目标车辆中的转向灯控制系统能够根据第一夹角和第二夹角与车辆的变道概率之间的映射关系,确定出目标车辆对应的目标变道概率。从而进一步地,可以根据该目标变道概率确定出目标车辆是否有变道倾向。可以理解的是,该方法即使是在没有检测到车道线的情况下,也能够确定出目标车辆对应的目标变道概率。
结合第一方面,在一种可能的实现方式中,根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率,包括:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,第一夹角包括车辆的前方车辆与车辆形成的夹角,第二夹角包括车辆的后方车辆与车辆形成的夹角;获取位于目标车辆的目标侧的第一车道线,第一车道线包括与目标车辆的距离小于第一预设距离的车道线,目标侧包括目标车辆的左侧和/或目标车辆的右侧;获取位于目标侧的第二车道线,第二车道线包括与目标车辆的距离大于或等于第一预设距离且小于第二预设距离的车道线;根据第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率;根据第一变道概率与目标侧存在车道的概率,确定目标车辆的目标变道概率。
本实施例中,目标车辆中的转向灯控制系统还可以根据位于目标车辆的目标侧的第一车道线和第二车道线确定出在目标车辆的目标侧存在车道的概率,然后基于第一变道概率与目标侧存在车道的概率,共同确定目标变道概率。
可以理解的是,即使转向灯控制系统确定出了目标车辆可能存在变道的情况,但当目标车辆行驶在单一车道或者目标车辆行驶在最旁边车道的场景下,目标车辆进行变道的可能性也是很低的。并且,在现有技术中,只要转向灯控制系统确定出了目标车辆可能存在变道的情况,那么就不论目标车辆是否行驶在单一车道或者目标车辆行驶在最旁边车道的场景,转向灯控制系统都会向驾驶员输出提示信息,从而给驾驶员带来干扰。因此,在本实施例中,还考虑目标车辆的目标侧存在车道的概率,然后基于第一变道概率与目标侧存在车道的概率共同确定出目标变道概率,从而提升确定出的目标变道概率的准确性。
结合第一方面,在一种可能的实现方式中,第一夹角和第二夹角与车辆的变道概 率之间满足所述第一映射关系:
Figure PCTCN2021141795-appb-000001
其中,f 1表示所述第一夹角,f 2表示所述第二夹角,min(f 1,f 2)指示f 1和f 2中的最小值,β表示所述车辆的变道概率。
结合第一方面,在一种可能的实现方式中,根据所述第一车道线与所述第二目标车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率,包括:在距离差小于第三预设距离时,确定目标车辆的所述目标侧存在车道的概率为0。
结合第一方面,在一种可能的实现方式中,根据第一车道线与第二车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率,还包括:在距离差大于或等于第三预设距离且小于第四预设距离时,确定目标车辆的目标侧存在车道的概率位于0至1之间。
结合第一方面,在一种可能的实现方式中,根据第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率,还包括:在距离差大于或等于第四预设距离时,确定目标车辆的所述目标侧存在车道的概率为1。
结合第一方面,在一种可能的实现方式中,第一预设距离等于2米,第二预设距离等于6米。
结合第一方面,在一种可能的实现方式中,第三预设距离等于1.5米,第四预设距离等于2米。
结合第一方面,在一种可能的实现方式中,所述目标侧存在车道的概率与所述距离差之间满足第二映射关系:
α=0.2+(D-1.5)×1.6
其中,D表示所述距离差,α表示所述目标侧存在车道的概率。
结合第一方面,在一种可能的实现方式中,根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率,包括:确定第一车道线对应的车道线函数;根据目标车辆的车辆转向模型,确定目标车辆的目标侧的车轮对应的轨迹函数;在车道线函数与目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,根据目标侧的车轮至第一目标交点的弧长与目标车辆的行驶速度确定目标车辆的目标车辆越线时间TTLC;基于第一变道概率、目标侧存在车道的概率和TTLC,确定目标车辆的目标变道概率。
可以理解的是,由于第一车道线对应的车道线函数更能准确地描述第一车道线,而目标侧的车轮对应的轨迹函数也更能体现出目标车辆的运行轨迹,因此,基于车道线函数和目标车辆的运行轨迹的方式确定出的TTLC准确性会较高。进一步地,本实施例在确定目标变道概率时,是基于第一变道概率、目标侧存在车道的概率和TTLC共同确定了,因此,确定出的目标变道概率的准确性会进一步得到提升。
结合第一方面,在一种可能的实现方式中,所述第一变道概率β、所述目标侧存在车道的概率α、所述TTLC和所述目标车辆的目标变道概率满足第三映射关系:
Figure PCTCN2021141795-appb-000002
其中,v表示所述目标车辆的行驶速度,θ表示所述目标车辆的方向盘转角,a表示所述目标车辆的方向盘转角所占的权重,b表示所述TTLC所占的权重,T表示所述目标变道概率。
结合第一方面,在一种可能的实现方式中,在确定目标车辆的目标变道概率之后,所述方法还包括:输出目标提示信息,所述目标提示信息指示驾驶员在目标变道概率时执行的操作。
结合第一方面,在一种可能的实现方式中,所述输出目标提示信息,包括:基于不同的变道概率与不同的提示信息之间的映射关系,确定目标变道概率对应的提示信息;将目标变道概率对应的提示信息作为目标提示信息进行输出。
本实施例中,不同的变道概率与不同的提示信息之间存在映射关系。也就是说,转向灯控制系统可以基于不同的变道概率输出不同的提示信息。相比现有技术中只能输出单一的提醒方式,本实施例提供的方法,可以实现在目标车辆的目标变道概率较小时以轻微的方式提醒以减少对驾驶员的干扰,而在目标车辆的目标变道概率较大时以较强烈的方式提醒以减少危险情况的发生。
结合第一方面,在一种可能的实现方式中,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,包括:当目标变道概率小于第一预警阈值且目标车辆的转向灯开启的情况下,确定目标变道概率对应的提示信息包括:通过语音提示驾驶员关闭转向灯。
结合第一方面,在一种可能的实现方式中,基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,还包括:当目标变道概率大于或等于第一预警阈值且小于第二预警阈值的情况下,确定目标变道概率对应的提示信息包括:通过仪表提示驾驶员应执行的操作。
结合第一方面,在一种可能的实现方式中,基于不同的变道概率与不同的提示信息之间的映射关系,确定目标变道概率对应的提示信息,还包括:当目标变道概率大于或等于第二预警阈值且小于第三预警阈值的情况下,确定目标变道概率对应的提示信息包括:通过仪表和灯光提示驾驶员应执行的操作。
结合第一方面,在一种可能的实现方式中,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,还包括:当目标变道概率大于或等于第三预警阈值的情况下,确定目标变道概率对应的提示信息包括:通过仪表、灯光和语音提示驾驶员应执行的操作。
第二方面,本申请提供一种车辆变道的预警装置,应用于车辆,包括:获取模块,用于获取目标车辆与第一车辆之间的第一目标夹角,和获取目标车辆与第二车辆之间的第二目标夹角,第一车辆包括位于目标车辆的前方且与目标车辆距离最小的车辆,第二车辆包括位于目标车辆的后方且与目标车辆距离最小的车辆;确定模块,用于根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率。
结合第二方面,在一种可能的实现方式中,所述确定模块具体用于:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,第二夹角包括车辆的后方车辆与车辆形成的夹角;将第一变道概率确定为目标变道概率。
结合第二方面,在一种可能的实现方式中,所述确定模块具体用于:根据第一映射关系,确定与所述第一目标夹角和所述第二目标夹角具有映射关系的所述目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间 的映射关系,所述第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,所述第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;所述获取模块还用于:获取位于目标车辆的目标侧的第一车道线和位于目标侧的第二车道线,第一车道线包括与目标车辆的距离小于第一预设距离的车道线,目标侧包括目标车辆的左侧和/或目标车辆的右侧,第二车道线包括与目标车辆的距离大于或等于第一预设距离且小于第二预设距离的车道线;所述确定模块还用于:根据第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率;根据第一变道概率与目标侧存在车道的概率,确定目标车辆的目标变道概率。
结合第二方面,在一种可能的实现方式中,第一夹角和第二夹角与车辆的变道概率之间满足所述第一映射关系:
Figure PCTCN2021141795-appb-000003
其中,f 1表示所述第一夹角,f 2表示所述第二夹角,min(f 1,f 2)指示f 1和f 2中的最小值,β表示所述车辆的变道概率。
结合第二方面,在一种可能的实现方式中,所述确定模块还用于:在距离差小于第三预设距离时,确定目标车辆的目标侧存在车道的概率为0。
结合第二方面,在一种可能的实现方式中,所述确定模块还用于:在距离差大于或等于所述第三预设距离且小于第四预设距离时,确定目标车辆的所述目标侧存在车道的概率位于0至1之间。
结合第二方面,在一种可能的实现方式中,所述确定模块还用于:在距离差大于或等于第四预设距离时,确定目标车辆的目标侧存在车道的概率为1。
结合第二方面,在一种可能的实现方式中,所述第一预设距离等于2米,所述第二预设距离等于6米。
结合第二方面,在一种可能的实现方式中,所述第三预设距离等于1.5米,所述第四预设距离等于2米。
结合第二方面,在一种可能的实现方式中,所述目标侧存在车道的概率与距离差之间满足第二映射关系:
α=0.2+(D-1.5)×1.6
其中,D表示所述距离差,α表示所述目标侧存在车道的概率。
结合第二方面,在一种可能的实现方式中,所述确定模块还用于:确定第一车道线对应的车道线函数;根据目标车辆的车辆转向模型,确定目标车辆的目标侧的车轮对应的轨迹函数;在车道线函数与目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,根据目标侧的车轮至第一目标交点的弧长与目标车辆的行驶速度确定目标车辆的目标车辆越线时间TTLC;基于第一变道概率、目标侧存在车道的概率和TTLC,确定目标车辆的目标变道概率。
结合第二方面,在一种可能的实现方式中,所述第一变道概率β、所述目标侧存在车道的概率α、所述TTLC和所述目标车辆的目标变道概率满足第三映射关系:
Figure PCTCN2021141795-appb-000004
其中,v表示所述目标车辆的行驶速度,θ表示所述目标车辆的方向盘转角,a表 示所述目标车辆的方向盘转角所占的权重,b表示所述TTLC所占的权重,T表示所述目标变道概率。
结合第二方面,在一种可能的实现方式中,所述装置还包括输出模块,所述输出模块用于:输出目标提示信息,所述目标提示信息指示驾驶员在所述目标变道概率时执行的操作。
结合第二方面,在一种可能的实现方式中,所述输出模块具体用于:基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息;将所述目标变道概率对应的提示信息作为所述目标提示信息进行输出。
结合第二方面,在一种可能的实现方式中,所述输出模块具体用于:当目标变道概率小于第一预警阈值且所述目标车辆的转向灯开启的情况下,确定目标变道概率对应的提示信息包括:通过语音提示驾驶员关闭所述转向灯。
结合第二方面,在一种可能的实现方式中,所述输出模块具体用于:当目标变道概率大于或等于第一预警阈值且小于第二预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表提示所述驾驶员应执行的操作。
结合第二方面,在一种可能的实现方式中,所述输出模块具体用于:当所述目标变道概率大于或等于第二预警阈值且小于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表和灯光提示所述驾驶员应执行的操作。
结合第二方面,在一种可能的实现方式中,所述输出模块具体用于:当所述目标变道概率大于或等于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表、灯光和语音提示所述驾驶员应执行的操作。
第三方面,本申请提供一种车辆变道的预警装置,包括:存储器、处理器和收发器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令执行如第一方面或其中任意一种可能的实现方式所述的方法。
第四方面,本申请提供一种车辆变道的预警系统,包括第二方面或第三方面或其中任意一种可能的实现方式所述的车辆变道的预警装置。
第五方面,本申请提供一种车辆,包括第四方面所述的车辆变道的预警系统。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读介质存储用于计算机执行的程序指令,该程序指令包括用于执行如第一方面或其中任意一种可能的实现方式所述的方法。
第七方面,本申请提供一种计算机程序产品,所述计算机程序产品中包括计算机程序指令,当所述计算机程序指令在计算机上运行时,使得所述计算机实现如第一方面或其中任意一种可能的实现方式所述的方法。
其中,第二方面至第七方面中任一种实现方式所带来的技术效果可参见上述第一方面的任一种可能的实现方法所带来的技术效果,不予赘述。
附图说明
图1为本申请提供的应用场景的结构性示意图;
图2为本申请提供的车辆变道的预警系统的结构性示意图;
图3为本申请一个实施例提供的车辆变道的预警方法的流程性示意图;
图4为本申请提供的一种可以获得第一目标夹角的流程性示意图;
图5为本申请提供的一种可以获得第二目标夹角的流程性示意图;
图6为本申请一个实施例提供的分级提醒界面的结构性示意图;
图7为本申请实施例提供的一种车辆变道的预警的系统架构示意图;
图8为本申请提供的目标车辆的结构性示意图;
图9为本申请一个实施例提供的车辆变道的预警装置的结构性示意图;
图10为本申请另一个实施例提供的车辆变道的预警装置的结构性示意图。
具体实施方式
为了更好地理解本申请实施例的技术方案,下面先对本申请实施例中使用到的一些概念进行介绍。
近年来,随着交通运输业和汽车技术的快速发展,汽车保有量急剧增长。但是,伴随着汽车保有量的急剧增长,交通事故频频发生,给人们的生活和社会发展带来了严重影响。研究表明,在交通事故中,因车辆变道导致的交通事故占很大一部分,其主要原因是由于驾驶员不熟练或驾驶习惯欠佳等,使得驾驶员在变道时通常忘记打转向灯、甚至开启错误方向的转向灯,从而导致后方车辆误判,引发交通事故的发生。
示例性地,图1为本申请一个实施例提供的应用场景的示意图。如图1所示,该场景中包括车辆101、车辆102、车辆103和车辆104。其中,车辆101、车辆102、车辆103位于同一个车道,车辆104位于另一个车道,车辆101位于车辆102的前方,车辆103位于车辆102的后方。在此说明的是,图1中所示的车辆仅是一种示例,其还可以包括更多的车辆,本申请实施例对此不做限定。
通常,对于图1所示场景中的车辆,每个车辆都可能存在变道的行为。应理解,当车辆具有变道的行为时,该具有变道行为的车辆应该通过转向灯对位于该变道车辆的后方车辆进行提醒,从而减少追尾、剐蹭等交通事故的发生。示例性地,以车辆101为可能需要变道的车辆为例,如果该车辆101可能存在变道行为,那么车辆101中的驾驶员应该通过车辆101中的转向灯向车辆103中驾驶员进行提醒,以减少车辆103与车辆101之间的追尾或者剐蹭等交通事故。然而,会存在驾驶员不熟练或驾驶习惯欠佳等情况,使得驾驶员在变道时通常忘记打转向灯、甚至开启错误方向的转向灯的情况,从而导致后方车辆误判,引发交通事故的发生。
因此,在车辆行驶时,为了降低交通事故的发生,通常会通过转向灯控制系统提前检测车辆是否具有变道倾向,以在检测到车辆有变道倾向后对驾驶员进行提醒。在此说明的是,在本申请中,也将转向灯控制系统称为车辆变道的预警装置。
示例性地,图2为本申请提供的车辆变道的预警系统的结构性示意图。如图2所示,车辆变道的预警系统包括转向灯控制系统201和车辆202。在此说明的是,本实施例对转向灯控制系统201的具体部署形式不做限定。例如,转向灯控制系统201可以部署在车辆202中,又或者可以部署在云端。
对于图2所示的车辆变道的预警系统,转向灯控制系统201通过摄像头采集的图像来提前判断车辆202是否具有变道倾向,若检测到车辆202具有变道倾向时,则对驾驶员进行相应地提醒。更具体地,转向灯控制系统201提前检测车辆是否具有变道倾向,以在检测到 车辆有变道倾向后对驾驶员进行提醒主要有两种方式。
在第一种实现方式中,车辆中的转向灯控制系统判断车辆是否有压车道线的行为,当车辆有压车道线的行为时,则确定车辆可能变道的概率,并当该变道的概率大于设定阈值时对驾驶员进行提醒。在第二种实现方式中,车辆中的转向灯控制系统根据摄像头采集到的车身与车道线的位置偏差d和车身与车道线的角度偏差α,来确定车辆是否有变道倾向。更具体地,计算PC=|α+d|,当PC值小于低峰阈值时,则确定车辆变道的概率较低,当PC值大于高峰阈值时,则确定车辆变道的概率较高并对驾驶员进行提醒。
但是,不论是第一种实现方式,还是第二种实现方式,在确定车辆可能变道的概率时都需要依赖于车道线,当无法检测到车道线时,就无法确定出车辆可能变道的概率,进一步地,也无法正确地向驾驶员进行提醒。
因此,如何能在没有车道线的情况下,车辆中的转向灯控制系统还能够确定出车辆可能变道的概率,成为亟待解决的技术问题。
鉴于此,本申请实施例提供一种车辆变道的预警方法及装置。本申请提供的方法中,目标车辆中的转向灯控制系统可以根据目标车辆的前方车辆与目标车辆之间的夹角,以及目标车辆的后方车辆与目标车辆之间的夹角计算得到一个目标车辆处于变道情况的概率。更进一步地,在确定出目标车辆处于变道情况的概率后,还确定目标车辆的车辆越线时间(time to line crossing,TTLC)和目标车辆两侧存在车道的概率,然后通过目标车辆处于变道情况的概率、目标车辆的车辆越线时间和目标车辆两侧存在车道的概率,综合确定出目标车辆的目标变道概率,以提升确定出的目标车辆的目标变道概率的准确性。此外,在本申请中,当确定出目标变道概率后,还能够针对目标变道概率输出不同的提示信息,以使得在目标变道概率较小时以轻微的方式向驾驶员进行提示,从而减少对驾驶员的干扰;或者在目标变道概率较大时以比较强烈的方式向驾驶员提示,从而减少交通事故的发生。
下面,结合具体的实施例,对本申请中的车辆变道的预警方法进行描述。
图3为本申请一个实施例提供的车辆变道的预警方法的流程性示意图。如图3所示,本申请实施例的方法包括S301、S302和S303。本申请中的方法应用于车辆,本申请中的方法可以由图2中的转向灯控制系统执行。
S301,获取目标车辆与第一车辆之间的第一目标夹角,所述第一车辆包括位于目标车辆的前方且与目标车辆距离最小的车辆。
本实施例中,目标车辆是指需要确定是否可能会进行变道的车辆。本实施例中,第一车辆位于目标车辆的前方。可以理解的是,在目标车辆的前方可能存在至少一个车辆,在本实施例中,第一车辆具体是指与目标车辆之间的距离最小的车辆。
应理解,当目标车辆的前方只有一个车辆时,那么该一个车辆可以作为第一车辆。以图1为例,假设目标车辆为车辆101,那么第一车辆是指位于该目标车辆前方的车辆102。而当目标车辆的前方有至少一个车辆时,那么就以距离目标车辆最近的车辆作为第一车辆。
在此说明的是,本实施例对如何获取目标车辆与第一车辆之间的第一目标夹角的实现方式不做限定。
示例性地,在一种可实现方式中,图4为本申请提供的一种可以获得第一目标夹角的流程性示意图。如图4所示,首先执行步骤S401,即获取车辆中的前视摄像头采集到的图像,然后执行S402,即通过采集到的图像判断在目标车辆的前方是否存在第一车辆;当存在第一车辆时,则执行S403,即识别第一车辆的左后车轮的位置以及右后车轮的位置;否 则,执行S404,即结束该流程;之后,若确定出左后车轮的位置以及右后车轮的位置,再执行S405,即通过第一车辆的左后车轮的位置以及右后车轮的位置确定第一车辆与目标车辆的夹角(即第一目标夹角)。
在此说明的是,本申请实施例对如何通过第一车辆的左后车轮的位置以及右后车轮的位置确定出第一车辆与目标车辆的夹角的计算方式不做限定。例如可以先确定出一条垂直于目标车辆的水平线,然后取该水平线中的一个点作为基准点,分别将左后车轮的位置对应的点与基准点连接形成第一线段,将右后车轮的位置对应的点与基准点连接形成第二线段,然后将第一线段与第二线段之间的夹角确定为第一车辆与目标车辆之间的第一目标夹角。
S302,获取目标车辆与第二车辆之间的第二目标夹角,所述第二车辆包括位于目标车辆的后方且与目标车辆距离最小的车辆。
本实施例中,第二车辆位于目标车辆的后方。可以理解的是,在目标车辆的后方可能存在至少一个车辆,在本实施例中,第二车辆具体是指与目标车辆之间的距离最小的车辆。
应理解,当目标车辆的后方只有一个车辆时,那么该一个车辆可以作为第二车辆。以图1为例,假设目标车辆为车辆101,那么第二车辆是指位于该目标车辆后方的车辆103。而当目标车辆的后方有至少一个车辆时,那么就以距离目标车辆最近的车辆作为第二车辆。
在此说明的是,本实施例对如何获取目标车辆与第二车辆之间的第二目标夹角的实现方式不做限定。
示例性地,在一种可实现方式中,图5为本申请提供的一种可以获得第二目标夹角的流程性示意图。如图5所示,首先执行步骤S501,即获取车辆中的后视摄像头采集到的图像,然后执行S502,即通过采集到的图像判断在目标车辆的后方是否存在第二车辆;当存在第二车辆时,则执行S503,即识别第二车辆的左前车轮的位置以及右前车轮的位置;否则,执行S504,即结束该流程;之后,若确定出左前车轮的位置以及右前车轮的位置,再执行S505,即通过第二车辆的左前车轮的位置以及右前车轮的位置确定第二车辆与目标车辆的夹角(即第二目标夹角)。
在此说明的是,本申请实施例对如何通过第二车辆的左前车轮的位置以及右前车轮的位置确定出第二车辆与目标车辆的夹角的计算方式不做限定。例如可以先确定出一条垂直于目标车辆的水平线,然后取该水平线中的一个点作为基准点,分别将左前车轮的位置对应的点与基准点连接形成第三线段,将右前车轮的位置对应的点与基准点连接形成第四线段,然后将第三线段与第四线段之间的夹角确定为第二车辆与目标车辆之间的第二目标夹角。
S303,根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率。
可以理解的是,当第一目标夹角比较小时,说明目标车辆与前方车辆的角度基本上是一致的,而当第二目标夹角也比较小时,说明后方车辆与目标车辆的角度基本上也是一致的。也就是说,若第一目标夹角和第二目标夹角均较小,就说明目标车辆与前后车辆的角度基本一致,因此目标车辆存在变道的概率可能较小,即目标变道概率可能很小。
同理,可以理解的是,若第一目标夹角和第二目标夹角均很大,说明目标车辆与前方车辆在存在一定角度的偏差的同时,还与后方车辆存在一定角度的偏差,因此目标车辆存在变道的概率可能较大,即目标变道概率可能很大。
同理,还可以理解的是,若第一目标夹角很大而第二目标夹角很小,就说明目标车辆 与前方车辆存在一定的角度偏差,而与后方车辆角度基本一致,因此可以说明前方车辆可能存在变道的概率可能较大,而目标车辆存在变道的概率较小;又或者若第二目标夹角很大而第一目标夹角很小,就说明目标车辆与后方车辆存在一定的角度偏差,而与前方车辆角度基本一致,因此可以说明后方车辆可能存在变道的概率可能较大,而目标车辆存在变道的概率较小。即,若第一目标夹角与第二目标夹角中有一个较大,另一个较小,就说明前方车辆或后方车辆中可能存在变道的概率可能较大,而目标车辆存在变道的概率较小。
在具体实施时,为了确定出第一目标夹角和/或第二目标夹角是属于比较大的夹角,还是属于比较小的夹角,可以通过将第一目标夹角和/或第二目标夹角与预设的夹角阈值进行比较来确定。
作为一种示例,以第一目标夹角为例进行说明,可以设定第一阈值和第二阈值,其中第二阈值大于第一阈值。然后当第一目标夹角的值小于第一阈值时,确定第一目标夹角比较小;当第一目标夹角的值大于或等于第一阈值且小于第二阈值时,说明第一目标夹角为中等;当第一目标夹角的值大于或等于第二阈值时,确定第一目标夹角比较大。
作为另一种示例,以第二目标夹角为例进行说明,可以设定第三阈值和第四阈值,其中第四阈值大于第三阈值。然后当第二目标夹角的值小于第三阈值时,确定第二目标夹角比较小;当第二目标夹角的值大于或等于第三阈值且小于第四阈值时,说明第二目标夹角为中等;当第二目标夹角的值大于或等于第四阈值时,确定第二目标夹角比较大。
在此说明的是,本实施例对如何获取到第一阈值、第二阈值、第三阈值和第四阈值的方式不做限定。例如可以通过人工经验的方式确定。
本实施例提供的车辆变道的预警方法,目标车辆中的转向灯控制系统可以根据目标车辆的前方车辆与目标车辆之间的夹角,以及目标车辆的后方车辆与目标车辆之间的夹角确定出目标车辆存在变道的概率。
可以理解的是,在现有技术中,目标车辆中的转向灯控制系统在确定目标车辆存在变道的概率时是需要依赖于车道线的。而在本实施中,由于是通过目标车辆的前方车辆与目标车辆之间的夹角,以及目标车辆的后方车辆与目标车辆之间的夹角确定出目标车辆存在变道的概率,因此,即使是在无法检测到车道线的情况下,也能够确定出目标车辆存在变道的概率。
可选地,在一种可实现方式中,S303包括:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,第一夹角包括车辆的前方车辆与车辆形成的夹角,第二夹角包括车辆的后方车辆与车辆形成的夹角;将第一变道概率确定为目标变道概率。
本实施例中,某个车辆的前方车辆与该某个车辆形成的夹角以及该某个车辆的后方车辆与该某个车辆形成的夹角与该某个车辆的变道概率之间存在第一映射关系。在此说明的是,本实施例对第一映射关系的具体形式不做限定。
示例性地,第一夹角和第二夹角与车辆的变道概率之间满足的第一映射关系为:
Figure PCTCN2021141795-appb-000005
其中,f 1表示第一夹角,f 2表示第二夹角,min(f 1,f 2)指示f 1和f 2中的最小值,β表示车辆的变道概率。
因此,当确定了第一目标夹角和第二目标夹角之后,便可以基于第一映射关系,确定出与第一目标夹角和第二目标夹角具有映射关系的目标车辆的变道概率(即第一变道概率),然后将该第一变道概率作为目标车辆的目标变道概率。
可以理解的是,当确定出该第一变道概率之后,更进一步地,还可以基于该第一变道概率确定目标车辆是否具有变道倾向。在一种可实现方式中,可以设定一个阈值,然后当第一变道概率大于该阈值时,确定目标车辆具有变道倾向,并可以向驾驶员输出提示信息。
该实现方式中,目标车辆中的转向灯控制系统能够根据第一夹角和第二夹角与车辆的变道概率之间的映射关系,确定出目标车辆对应的目标变道概率。从而进一步地,可以根据该目标变道概率确定出目标车辆是否有变道倾向。可以理解的是,该方法即使是在没有检测到车道线的情况下,也能够确定出目标车辆对应的目标变道概率。
可选地,在一种可实现方式中,S303包括:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;获取位于目标车辆的目标侧的第一车道线,第一车道线包括与目标车辆的距离小于第一预设距离的车道线,目标侧包括目标车辆的左侧和/或目标车辆的右侧;获取位于目标侧的第二车道线,第二车道线包括与目标车辆的距离大于或等于第一预设距离且小于第二预设距离的车道线;根据第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率;根据第一变道概率与目标侧存在车道的概率,确定目标车辆的目标变道概率。
其中,有关第一映射关系以及基于第一映射关系得到第一变道概率的相关描述可以参考本申请上述部分中的描述,此处不再赘述。
可以理解的是,即使转向灯控制系统确定出了目标车辆可能存在变道的情况,但当目标车辆行驶在单一车道或者目标车辆行驶在最旁边车道的场景下,目标车辆几乎是不可能变道的,即变道的可能性非常低。但是,在现有技术中,只要转向灯控制系统确定出了目标车辆可能存在变道的情况,那么就不论目标车辆是否行驶在单一车道或者目标车辆行驶在最旁边车道的场景,转向灯控制系统都会向驾驶员输出提示信息,从而给驾驶员带来干扰。
因此,本实施例中,目标车辆中的转向灯控制系统还考虑目标车辆的目标侧存在车道的概率,然后基于第一变道概率与目标侧存在车道的概率,共同确定目标车辆的目标变道概率。
在具体实施时,转向灯控制系可以先获取与目标车辆的目标侧距离小于第一预设距离的第一车道线(可以认为是目标车辆所在车道的边缘线),然后获取与目标车辆的目标侧距离大于或等于第一预设距离且小于第二预设距离的第二车道线(可以认为是目标车辆所在车道的旁边车道的边缘线),最后基于第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率。
在一种可能的实现方式中,基于第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率,包括:在距离差小于第三预设距离时,确定目标车辆的目标侧存在车道的概率为0;在距离差大于或等于第三预设距离且小于第四预设 距离时,确定目标车辆的所述目标侧存在车道的概率位于0至1之间;在距离差大于或等于第四预设距离时,确定目标车辆的目标侧存在车道的概率为1。
示例性地,第一预设距离等于2米,第二预设距离等于6米,第三预设距离等于1.5米,所述第四预设距离等于2米。也就是说,获取距离车身2m以内的车道线作为第一车道线(即当前所在车道的边缘线),和获取同侧距离车辆在2米到6米之间的第二车道线(也即旁边车道的边缘线)。进一步地,在该示例中,在检测到了第一车道线和第二车道线之后,可以基于以下方式确定出目标车辆的目标侧存在车道的概率:
首先计算第一车道线与目标车辆的距离D 1,和计算第二车道线与目标车辆的距离D 2,然后,若D 2不存在,或D 2-D 1<1.5m,则认为目标侧不存在车道(即旁边不存在车道);若1.5m≤D 2-D 1<2.0m,则按照α=0.2+(D 2-D 1-1.5)×1.6计算;若D 2-D 1≥2.0m,则α=1。
在此说明的是,本申请对如何获取第一车道线和第二车道线的实现方式不做限定。例如,可以使用“Canny”检测和霍夫变换方法检测的方式。
本实施例中,在确定出第一变道概率和目标侧存在车道的概率之后,通过第一变道概率与目标侧存在车道的概率共同确定目标变道概率,从而提升确定出的目标变道概率的准确性。
可以理解的是,车辆越线时间(time to line crossing,TTLC)可以预测驾驶人换道意图和预先告知车辆距离车道线的越线时间,因此,可以作为判断某个车辆的变道概率的一个考虑因素。鉴于此,本申请中,为了进一步提升确定出的目标变道概率的准确性,还可以引入TTLC,然后基于第一变道概率、目标侧存在车道的概率和TTLC,再共同确定出目标车辆的目标变道概率。
本实施例中,一种确定TTLC的方法为:确定第一车道线对应的车道线函数;根据目标车辆的车辆转向模型,确定目标车辆的目标侧的车轮对应的轨迹函数;在车道线函数与目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,根据目标侧的车轮至第一目标交点的弧长与目标车辆的行驶速度确定目标车辆的目标车辆越线时间TTLC。
其中,第一车道线即为目标车辆所在车道的目标侧车道线,例如,第一车道线为目标车辆所在车道的左侧车道线,或者目标车辆所在车道的右侧车道线。
在此说明的是,本实施例对如何获取到第一车道线对应的车道线函数实现方式不做限定。例如,可以对采集到的俯视图图像中的目标车辆所在车道的第一车道线,并通过三次曲线拟合获得第一车道线对应的车道线函数。例如获得左侧车道线函数f 1和右侧车道线函数f 2
还在此说明的是,本实施例对车辆转向模型的具体形式不做限定。示例性地,车辆转向模型可以使用阿克曼转向模型分别求出目标车辆的目标侧的车轮对应的轨迹函数。其中,有关阿克曼转向模型的详细描述可以参考相关技术中的描述,此处不再赘述。
在车道线函数与目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,本实施例中,基于目标侧的车轮至第一目标交点的弧长与目标车辆的行驶速度确定目标车辆的目标车辆越线时间TTLC。
可以理解的是,由于第一车道线对应的车道线函数更能准确地描述第一车道线, 而目标侧的车轮对应的轨迹函数也更能体现出目标车辆的运行轨迹,因此,基于道线函数和目标车辆的运行轨迹的方式确定出的TTLC准确性更高。
在此说明的是,本实施例对如何基于第一变道概率、目标侧存在车道的概率和TTLC共同确定目标车辆的目标变道概率的实现方式不做限定。
例如,第一变道概率β、目标侧存在车道的概率α、TTLC和目标车辆的目标变道概率满足如下第三映射关系:
Figure PCTCN2021141795-appb-000006
其中,v表示目标车辆的行驶速度,θ表示目标车辆的方向盘转角,a表示目标车辆的方向盘转角所占的权重,b表示所述TTLC所占的权重,T表示目标变道概率。
可以看出,当在停车起步场景时,对于上述第三映射关系,v比较小,θ的占比较高,即主要根据方向盘转角来判定目标车辆的变道概率。
可以看出,当在高速行驶场景时,v比较小,β一般较小(高速行驶时变道车辆的转向幅度很小),TTLC所在项在多项式中的占比较高,主要时通过车辆轨迹线与车道线之间的关系来判断是否即将变道。
可以看出,在无车道线时,可以通过β值辅助判断是否即将变道。
可以看出,在目标车辆的目标侧没有其他车道时,α较小,无论其他项取值如何,目标变道概率都会比较小。
进一步地,本申请中,在确定出目标车辆的目标变道概率之后,转向灯控制系统还可以输出目标提示信息,所述目标提示信息指示驾驶员在目标变道概率时执行的操作。
在一种可实现方式中,所述输出目标提示信息,包括:基于不同的变道概率与不同的提示信息之间的映射关系,确定目标变道概率对应的提示信息;将目标变道概率对应的提示信息作为目标提示信息进行输出。
本实施例中,不同的变道概率与不同的提示信息之间存在映射关系。也就是说,在本实施例中,转向灯控制系统可以基于不同的变道概率输出不同的提示信息。从而可以实现在目标车辆的目标概率较小时以轻微的方式提醒以减少对驾驶员的干扰,而在目标车辆的目标概率较大时以较强烈的方式提醒以减少危险情况的发生。
在一种可实现方式中,图6为本申请一个实施例提供的分级提醒界面的结构性示意图。如图6所示,该分级提醒界面中包括氛围灯601、扬声器602和仪表显示603。其中,仪表显示中可以包左转向提醒灯和右转向提醒灯以及级目标车辆的当前转弯图像。
对于图6所示的分级提醒界面,示例性地,若转向灯控制系统认为目标变道概率很高,那么可以利用多种方式共同提示驾驶员,包括但不限于氛围灯601提示、扬声器602进行语音提示和仪表603提示。作为另一种示例,若转向灯控制系统认为目标变道概率为中等,那么可以输出上述多种提示方式中的部分提示方式。作为又一种示例,若转向灯控制系统认为目标变道概率较低,那么可以仅输出上述多种提示方式中的一小部分提示方式或者不提示。
在具体实施时,为了确定出目标变道概率是属于较低的概率,还是属于中等的概率,又或者时属于比较大的概率,可以通过将目标变道概率与预设的概率阈值进行比较来确定。
示例性地,当目标变道概率小于第一预警阈值T1且目标车辆的转向灯开启的情况 下,通过语音提示驾驶员关闭所述转向灯。
示例性地,当目标变道概率大于或等于第一预警阈值T1且小于第二预警阈值T2的情况下,确定目标变道概率对应的提示信息包括:通过仪表提示所述驾驶员应执行的操作。
示例性地,当目标变道概率大于或等于第二预警阈值T2且小于第三预警阈值T3的情况下,通过仪表和灯光提示所述驾驶员应执行的操作。
示例性地,当目标变道概率大于或等于第三预警阈值T3的情况下,通过仪表、灯光和语音提示所述驾驶员应执行的操作。
在此说明的是,本申请实施例对于如何选取第一预警阈值T1、第二预警阈值T2和第三预警阈值T3的方式不做限定。例如可以通过人工经验选取。
下面,结合图7,说明一种能够实现车辆变道的预警方法的系统架构示意图。如图7所示,本实施例中可以包括信息采集模块群、信息处理模块群、综合判定与分级提醒模块。
其中,信息采集模块群主要包括:轮速采集模块701和方向盘转角采集模块702。其中,轮速采集模块701用于获取目标车辆的行驶速度,方向盘转角采集模块702用于获取目标车辆的方向盘转角信息。
此外,信息采集模块群还包括左右图像生成模块703,环视鸟瞰图生成模块704和前后图像生成模块703。具体地,通过左右图像生成模块703获取位于目标车辆左方的图像和位于目标车辆右方的图像,通过前后图像生成模块703获取位于目标车辆前方的图像和位于目标车辆后方的图像。通过环视鸟瞰图生成模块704基于已获取到的图像生成环视鸟瞰图。
示例性地,图8为本申请提供的目标车辆的结构性示意图。如图8所示,在目标车辆的车身四周可以分别部署有摄像头801、摄像头802、摄像头803和摄像头804。更具体地,摄像头801安装在目标车辆的前保险杠上,用于获取目标车辆前侧的图像,摄像头802安装在目标车辆的后保险杠上,用于获取目标车辆后方的图像,摄像头803安装在目标车辆的右视镜上,用于获取目标车辆右方的图像,摄像头804安装在目标车辆的左视镜上,用于获取目标车辆左方的图像。
本实施例中,信息处理模块群包括两侧车道识别模块706,前后车辆位姿判别模块707和TTL计算模块708。
其中,两侧车道识别模块706用于:基于目标车辆左方的图像以及目标车辆右方的图像来判断目标车辆的目标侧存在车道的概率。例如,基于摄像头获取的目标车辆左方的图像判断目标车辆的左侧存在车道的概率,或者基于摄像头获取的目标车辆右方的图像判断目标车辆的右侧存在车道的概率。在此说明的是,两侧车道识别模块可以参考本申请上述实施例中关于如何确定目标车辆的目标侧存在车道的概率的方法确定出目标侧存在车道的概率,此处不再赘述。
其中,前后车辆位姿判别模块707用于:基于获取的目标车辆前方的图像以及后方的图像,来确定目标车辆与前后车辆的夹角,从而得到目标车辆处于变道情况的概率,主要是处理无车道线的场景。在此说明的是,前后车辆位姿判别模块可以参考本申请上述实施例中关于如何确定目标车辆处于变道情况的概率的方法确定出第一变道概率中的描述,此处不再赘述。
其中,TTL计算模块708主要用于:基于生成的环视鸟瞰图检测车道线,轮速采集模块获取的目标车辆的行驶速度和方向盘转角采集模块获取的目标车辆的方向盘转角,共同计算得到TTLC。在此说明的是,TTL计算模块可以参考本申请上述实施例中关于如何确定TTLC的方法确定出TTLC,此处不再赘述。
本实施例中,综合判定与分级提醒模块709主要用于:将获取的目标车辆的行驶速度、获取的目标车辆的方向盘转角和每个信息处理模块的输出进行整合,得到目标车辆的目标变道概率。以及,根据这个目标变道概率的高低在分级提醒界面中做不同程度的提醒。例如,基于目标变道概率的高低分别做一级提醒、二级提醒和三级提醒。在此说明的是,综合判定与分级提醒模块可以参考本申请上述实施例中关于如何根据目标变道概率的不同在分级提醒界面中做不同程度的提醒的方法,此处不再赘述。
图9为本申请一个实施例提供的车辆变道的预警装置的结构性示意图。图9所示的装置可以用于执行前述任意一个实施例中所述的方法。
如图9所示,本实施例的装置900包括:获取模块901和确定模块902。
获取模块901,用于获取目标车辆与第一车辆之间的第一目标夹角,和获取目标车辆与第二车辆之间的第二目标夹角,第一车辆包括位于目标车辆的前方且与目标车辆距离最小的车辆,第二车辆包括位于目标车辆的后方且与目标车辆距离最小的车辆;确定模块902,用于根据第一目标夹角和第二目标夹角,确定目标车辆的目标变道概率。
在一种可能的实现方式中,确定模块902具体用于:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,第二夹角包括车辆的后方车辆与车辆形成的夹角;将第一变道概率确定为目标变道概率。
在一种可能的实现方式中,确定模块902具体用于:根据第一映射关系,确定与第一目标夹角和第二目标夹角具有映射关系的目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,所述第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,所述第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;所述获取模块901还用于:获取位于目标车辆的目标侧的第一车道线和位于目标侧的第二车道线,第一车道线包括与目标车辆的距离小于第一预设距离的车道线,目标侧包括目标车辆的左侧和/或目标车辆的右侧,第二车道线包括与目标车辆的距离大于或等于第一预设距离且小于第二预设距离的车道线;所述确定模块902还用于:根据第一车道线与第二车道线之间的距离差,确定目标车辆的目标侧存在车道的概率;根据第一变道概率与目标侧存在车道的概率,确定目标车辆的目标变道概率。
在一种可能的实现方式中,第一夹角和第二夹角与第一变道概率之间满足第一映射关系:
Figure PCTCN2021141795-appb-000007
其中,f 1表示第一夹角,f 2表示所述第二夹角,min(f 1,f 2)指示f 1和f 2中的最小值, β表示第一变道概率。
在一种可能的实现方式中,所述确定模块902还用于:在距离差小于第三预设距离时,确定所述目标车辆的所述目标侧存在车道的概率为0。
在一种可能的实现方式中,所述确定模块902还用于:在距离差大于或等于第三预设距离且小于第四预设距离时,确定所述目标车辆的所述目标侧存在车道的概率位于0至1之间。
在一种可能的实现方式中,所述确定模块902还用于:在距离差大于或等于第四预设距离时,确定目标车辆的所述目标侧存在车道的概率为1。
在一种可能的实现方式中,所述第一预设距离等于2米,所述第二预设距离等于6米。
在一种可能的实现方式中,所述第三预设距离等于1.5米,所述第四预设距离等于2米。
在一种可能的实现方式中,所述目标侧存在车道的概率与所述距离差之间满足第二映射关系:
α=0.2+(D-1.5)×1.6
其中,D表示所述距离差,α表示所述目标侧存在车道的概率。
在一种可能的实现方式中,所述确定模块902还用于:确定第一车道线对应的车道线函数;根据目标车辆的车辆转向模型,确定目标车辆的目标侧的车轮对应的轨迹函数;在车道线函数与目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,根据目标侧的车轮至第一目标交点的弧长与目标车辆的行驶速度确定目标车辆的目标车辆越线时间TTLC;基于第一变道概率、目标侧存在车道的概率和TTLC,确定目标车辆的目标变道概率。
在一种可能的实现方式中,所述第一变道概率β、所述目标侧存在车道的概率α、所述TTLC和所述目标车辆的目标变道概率满足第三映射关系:
Figure PCTCN2021141795-appb-000008
其中,v表示所述目标车辆的行驶速度,θ表示所述目标车辆的方向盘转角,a表示所述目标车辆的方向盘转角所占的权重,b表示所述TTLC所占的权重,T表示所述目标变道概率。
在一种可能的实现方式中,所述装置还包括输出模块903,用于输出目标提示信息,所述目标提示信息指示驾驶员在所述目标变道概率时执行的操作。
在一种可能的实现方式中,所述输出模块903具体用于:基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息;将所述目标变道概率对应的提示信息作为所述目标提示信息进行输出。
在一种可能的实现方式中,所述输出模块903具体用于:当目标变道概率小于第一预警阈值且所述目标车辆的转向灯开启的情况下,确定目标变道概率对应的提示信息包括:通过语音提示驾驶员关闭所述转向灯。
在一种可能的实现方式中,所述输出模块903具体用于:当目标变道概率大于或等于第一预警阈值且小于第二预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表提示所述驾驶员应执行的操作。
在一种可能的实现方式中,所述输出模块903具体用于:当所述目标变道概率大于或等于第二预警阈值且小于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表和灯光提示所述驾驶员应执行的操作。
在一种可能的实现方式中,所述输出模块903具体用于:当所述目标变道概率大于或等于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表、灯光和语音提示所述驾驶员应执行的操作。
图10为本申请另一个实施例提供的车辆变道的预警装置的结构性示意图。图10所示的装置可以用于执行前述任意一个实施例所述的方法。
如图10所示,本实施例的装置1000包括:存储器1001、处理器1002、通信接口1003以及总线1004。其中,存储器1001、处理器1002、通信接口1003通过总线1004实现彼此之间的通信连接。
存储器1001可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器1001可以存储程序,当存储器1001中存储的程序被处理器1002执行时,处理器1002用于执行图3所示的方法的各个步骤。
处理器1002可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请图3所示的方法。
处理器1002还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例图3的方法的各个步骤可以通过处理器1002中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器1002还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1001,处理器1002读取存储器1001中的信息,结合其硬件完成本申请装置包括的单元所需执行的功能,例如,可以执行图3所示实施例的各个步骤/功能。
通信接口1003可以使用但不限于收发器一类的收发装置,来实现装置1000与其他设备或通信网络之间的通信。
总线1004可以包括在装置1000各个部件(例如,存储器1001、处理器1002、通信接口1003)之间传送信息的通路。
应理解,本申请实施例所示的装置1000可以是电子设备,或者,也可以是配置于电子设备中的芯片。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所 述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种车辆变道的预警方法,其特征在于,应用于车辆,包括:
    获取目标车辆与第一车辆之间的第一目标夹角,所述第一车辆包括位于所述目标车辆的前方且与所述目标车辆距离最小的车辆;
    获取所述目标车辆与第二车辆之间的第二目标夹角,所述第二车辆包括位于所述目标车辆的后方且与所述目标车辆距离最小的车辆;
    根据所述第一目标夹角和所述第二目标夹角,确定所述目标车辆的目标变道概率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一目标夹角和所述第二目标夹角,确定所述目标车辆的目标变道概率,包括:
    根据第一映射关系,确定与所述第一目标夹角和所述第二目标夹角具有映射关系的所述目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,所述第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,所述第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;
    将所述第一变道概率确定为所述目标变道概率。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一目标夹角和所述第二目标夹角,确定所述目标车辆的目标变道概率,包括:
    根据第一映射关系,确定与所述第一目标夹角和所述第二目标夹角具有映射关系的所述目标车辆的第一变道概率,所述第一映射关系指示第一夹角和第二夹角与车辆的变道概率之间的映射关系,所述第一夹角包括所述车辆的前方车辆与所述车辆形成的夹角,所述第二夹角包括所述车辆的后方车辆与所述车辆形成的夹角;
    获取位于所述目标车辆的目标侧的第一车道线,所述第一车道线包括与所述目标车辆的距离小于第一预设距离的车道线,所述目标侧包括所述目标车辆的左侧和/或所述目标车辆的右侧;
    获取位于所述目标侧的第二车道线,所述第二车道线包括与所述目标车辆的距离大于或等于所述第一预设距离且小于第二预设距离的车道线;
    根据所述第一车道线与所述第二车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率;
    根据所述第一变道概率与所述目标侧存在车道的概率,确定所述目标车辆的目标变道概率。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一夹角和所述第二夹角与所述车辆的变道概率之间满足所述第一映射关系:
    Figure PCTCN2021141795-appb-100001
    其中,f 1表示所述第一夹角,f 2表示所述第二夹角,min(f 1,f 2)指示f 1和f 2中的最小值,β表示所述车辆的变道概率。
  5. 根据权利要求3或4所述的方法,其特征在于,所述根据所述第一车道线与所述第二车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率,包括:
    在所述距离差小于第三预设距离时,确定所述目标车辆的所述目标侧存在车道的概率为0。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一车道线与所述第二车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率,还包括:
    在所述距离差大于或等于所述第三预设距离且小于第四预设距离时,确定所述目标车辆的所述目标侧存在车道的概率位于0至1之间。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一车道线与所述第二车道线之间的距离差,确定所述目标车辆的所述目标侧存在车道的概率,还包括:
    在所述距离差大于或等于所述第四预设距离时,确定所述目标车辆的所述目标侧存在车道的概率为1。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述第一预设距离等于2米,所述第二预设距离等于6米。
  9. 根据权利要求8所述的方法,其特征在于,所述第三预设距离等于1.5米,所述第四预设距离等于2米。
  10. 根据权利要求9所述的方法,其特征在于,所述目标侧存在车道的概率与所述距离差之间满足第二映射关系:
    α=0.2+(D-1.5)×1.6
    其中,D表示所述距离差,α表示所述目标侧存在车道的概率。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,所述根据所述第一目标夹角和所述第二目标夹角,确定所述目标车辆的目标变道概率,包括:
    确定所述第一车道线对应的车道线函数;
    根据所述目标车辆的车辆转向模型,确定所述目标车辆的所述目标侧的车轮对应的轨迹函数;
    在所述车道线函数与所述目标侧的车轮对应的轨迹函数存在第一目标交点的情况下,根据所述目标侧的车轮至所述第一目标交点的弧长与所述目标车辆的行驶速度确定所述目标车辆的目标车辆越线时间TTLC;
    基于所述第一变道概率、所述目标侧存在车道的概率和所述TTLC,确定所述目标车辆的目标变道概率。
  12. 根据权利要求11所述的方法,其特征在于,所述第一变道概率β、所述目标侧存在车道的概率α、所述TTLC和所述目标车辆的目标变道概率满足第三映射关系:
    Figure PCTCN2021141795-appb-100002
    其中,v表示所述目标车辆的行驶速度,θ表示所述目标车辆的方向盘转角,a表示所述目标车辆的方向盘转角所占的权重,b表示所述TTLC所占的权重,T表示所述目标变道概率。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,在确定所述目标车辆的目标变道概率之后,所述方法还包括:
    输出目标提示信息,所述目标提示信息指示驾驶员在所述目标变道概率时执行的操作。
  14. 根据权利要求13所述的方法,其特征在于,所述输出目标提示信息,包括:
    基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率 对应的提示信息;
    将所述目标变道概率对应的提示信息作为所述目标提示信息进行输出。
  15. 根据权利要求14所述的方法,其特征在于,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,包括:
    当所述目标变道概率小于第一预警阈值且所述目标车辆的转向灯开启的情况下,确定所述目标变道概率对应的提示信息包括:通过语音提示驾驶员关闭所述转向灯。
  16. 根据权利要求14或15所述的方法,其特征在于,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,还包括:
    当所述目标变道概率大于或等于第一预警阈值且小于第二预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表提示所述驾驶员应执行的操作。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,还包括:
    当所述目标变道概率大于或等于第二预警阈值且小于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表和灯光提示所述驾驶员应执行的操作。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述基于不同的变道概率与不同的提示信息之间的映射关系,确定所述目标变道概率对应的提示信息,还包括:
    当所述目标变道概率大于或等于第三预警阈值的情况下,确定所述目标变道概率对应的提示信息包括:通过仪表、灯光和语音提示所述驾驶员应执行的操作。
  19. 一种车辆变道的预警装置,其特征在于,所述装置包括用于执行如权利要求1至18中任一项所述的方法的模块。
  20. 一种车辆变道的预警装置,其特征在于,包括:存储器、处理器和收发器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令执行如权利要求1至18中任一项所述的方法。
  21. 一种车辆变道的预警系统,其特征在于,包括权利要求19或20所述的车辆变道的预警装置。
  22. 一种车辆,其特征在于,包括权利要求21所述的车辆变道的预警系统。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序指令,该程序指令包括用于执行如权利要求1至18中任一项所述的方法。
  24. 一种计算机程序产品,所述计算机程序产品中包括计算机程序指令,其特征在于,当所述计算机程序指令在计算机上运行时,使得所述计算机实现如权利要求1至18中任一项所述的方法。
PCT/CN2021/141795 2021-12-27 2021-12-27 一种车辆变道的预警方法及装置 WO2023122915A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180024801.XA CN116685515A (zh) 2021-12-27 2021-12-27 一种车辆变道的预警方法及装置
PCT/CN2021/141795 WO2023122915A1 (zh) 2021-12-27 2021-12-27 一种车辆变道的预警方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141795 WO2023122915A1 (zh) 2021-12-27 2021-12-27 一种车辆变道的预警方法及装置

Publications (1)

Publication Number Publication Date
WO2023122915A1 true WO2023122915A1 (zh) 2023-07-06

Family

ID=86996850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141795 WO2023122915A1 (zh) 2021-12-27 2021-12-27 一种车辆变道的预警方法及装置

Country Status (2)

Country Link
CN (1) CN116685515A (zh)
WO (1) WO2023122915A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112627A (ja) * 2009-11-30 2011-06-09 Toyota Motor Corp 経路作成装置
CN109584630A (zh) * 2018-12-13 2019-04-05 辽宁工业大学 一种基于车联网的车辆变道预警装置及预警方法
CN110239532A (zh) * 2019-05-20 2019-09-17 浙江吉利控股集团有限公司 一种车辆变道辅助方法、装置、终端及存储介质
CN110435541A (zh) * 2019-08-05 2019-11-12 西藏宁算科技集团有限公司 一种基于视觉识别和测距的车辆变道预警方法和系统
WO2019218861A1 (zh) * 2018-05-14 2019-11-21 华为技术有限公司 一种行车道路的估计方法以及行车道路估计系统
CN111409649A (zh) * 2019-01-04 2020-07-14 奥迪股份公司 车辆变道的预警方法及装置、计算机设备和存储介质
US20210300360A1 (en) * 2020-03-27 2021-09-30 Aptiv Technologies Limited Warning System for a Host Automotive Vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112627A (ja) * 2009-11-30 2011-06-09 Toyota Motor Corp 経路作成装置
WO2019218861A1 (zh) * 2018-05-14 2019-11-21 华为技术有限公司 一种行车道路的估计方法以及行车道路估计系统
CN109584630A (zh) * 2018-12-13 2019-04-05 辽宁工业大学 一种基于车联网的车辆变道预警装置及预警方法
CN111409649A (zh) * 2019-01-04 2020-07-14 奥迪股份公司 车辆变道的预警方法及装置、计算机设备和存储介质
CN110239532A (zh) * 2019-05-20 2019-09-17 浙江吉利控股集团有限公司 一种车辆变道辅助方法、装置、终端及存储介质
CN110435541A (zh) * 2019-08-05 2019-11-12 西藏宁算科技集团有限公司 一种基于视觉识别和测距的车辆变道预警方法和系统
US20210300360A1 (en) * 2020-03-27 2021-09-30 Aptiv Technologies Limited Warning System for a Host Automotive Vehicle

Also Published As

Publication number Publication date
CN116685515A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US9180814B2 (en) Vehicle rear left and right side warning apparatus, vehicle rear left and right side warning method, and three-dimensional object detecting device
CN107487258B (zh) 盲区检测系统和方法
US9983306B2 (en) System and method for providing target threat assessment in a collision avoidance system on a vehicle
US20160167579A1 (en) Apparatus and method for avoiding collision
US20170309181A1 (en) Apparatus for recognizing following vehicle and method thereof
US9694747B2 (en) Method and system for providing a collision alert
JP2012089114A (ja) 障害物認識装置
CN106257556B (zh) 检测和通信车道分割操纵
WO2021047275A1 (zh) 一种车道线信息的确定方法及装置
WO2022147758A1 (zh) 一种盲区告警区域的确定方法及装置
TW201428701A (zh) 車道偏離警示系統與車道辨識裝置以及相關方法
US20220032906A1 (en) Device and method for reducing collision risk
JP2008117073A (ja) 割り込み車両検出装置
TWI549102B (zh) 車道偏離警示系統與車道辨識裝置以及相關方法
US20190359218A1 (en) Blind spot detection
US11501642B2 (en) Method and system of detecting a wrong-way driving vehicle
CN112249007A (zh) 一种车辆危险报警方法及相关设备
CN111104824A (zh) 车道偏离的检测方法、电子设备及计算机可读存储介质
CN113771881A (zh) 车辆换道控制方法、装置、电子设备及存储介质
WO2023122915A1 (zh) 一种车辆变道的预警方法及装置
CN110834626B (zh) 行车障碍预警方法、装置、车辆和存储介质
JP2006160032A (ja) 運転状態判定装置及び運転状態判定方法
CN115520216A (zh) 行车状态判断方法、装置、计算机设备和存储介质
US11820378B2 (en) Apparatus for assisting lane change, vehicle, system having the same, and method thereof
CN113688662A (zh) 机动车过车警示方法、装置、电子装置和计算机设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180024801.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969300

Country of ref document: EP

Kind code of ref document: A1