WO2021047275A1 - 一种车道线信息的确定方法及装置 - Google Patents

一种车道线信息的确定方法及装置 Download PDF

Info

Publication number
WO2021047275A1
WO2021047275A1 PCT/CN2020/101452 CN2020101452W WO2021047275A1 WO 2021047275 A1 WO2021047275 A1 WO 2021047275A1 CN 2020101452 W CN2020101452 W CN 2020101452W WO 2021047275 A1 WO2021047275 A1 WO 2021047275A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane line
line information
information
lane
map server
Prior art date
Application number
PCT/CN2020/101452
Other languages
English (en)
French (fr)
Inventor
王子升
池清华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20862576.4A priority Critical patent/EP4024007A4/en
Publication of WO2021047275A1 publication Critical patent/WO2021047275A1/zh
Priority to US17/690,066 priority patent/US20220196408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/343Calculating itineraries, i.e. routes leading from a starting point to a series of categorical destinations using a global route restraint, round trips, touristic trips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • G01C21/3896Transmission of map data from central databases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk

Definitions

  • This application relates to the field of automatic driving or intelligent driving, and in particular to a method and device for determining lane line information.
  • the lane line detection has great constraints on the driving strategy of the vehicle, so it is essential to enable the automatic driving function.
  • Traditional methods use artificially set features to extract relevant lane line segmentation. This method performs well in highway scenes, but its generalization ability is very weak. The performance is very unstable for different light and ground types. Deep learning methods improve the generalization performance of detection, but currently, for complex scenes, such as lane lines that are blocked, and roads where the lane lines are not clear enough, there will be many false detections and missed detections.
  • This application provides a method and device for determining lane line information, which are used to accurately determine lane line information.
  • the present application provides a method for determining lane line information.
  • the method includes: a first device acquires first lane line information corresponding to a position of a vehicle, where the first lane line information comes from a map server; A device acquires second lane line information; the first device determines third lane line information according to the first lane line information and the second lane line information.
  • the first device may be a chip or an integrated circuit.
  • the lane line information obtained from the map server is merged with the detected lane line information to remove false inspections and retrieve missed inspections, which helps to improve the performance of lane line detection and realize accurate determination of lane line information. Improve driving performance and safety.
  • the first lane line information includes at least one first lane line information; the second lane line information includes at least one second lane line information; the third lane line information It includes information on part or all of the lane lines in the at least one second lane line.
  • the first device determines that at least one lane line of the at least one second lane line is abnormal or monitors the map information of the map server to change, and then sends a request to the map server Message, the request message is used to request to obtain the first lane line information.
  • the map server can be requested to send the first lane line information corresponding to the position of the vehicle when the road section changes, so that the amount of data transmission can be reduced and the performance of lane line detection can be improved.
  • the first device determining third lane line information according to the first lane line information and the second lane line information includes: the first device according to the first lane line information Lane line information, the second lane line information, and at least one historical lane line information determine the third lane line information.
  • the first lane line information includes at least one of the number of first lane lines, the first lane line type, and the lane line curve type.
  • the second lane line information includes the number of the second lane line, the type of the second lane line, the lateral offset of the lane line, the orientation of the lane line, the curvature of the lane line, and the derivative of the curvature of the lane line. At least one of them.
  • the present application provides a device for determining lane line information.
  • the device may be a first device or a chip used in the first device.
  • the device has the function of realizing the above-mentioned first aspect or each embodiment of the first aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a device for determining lane line information, including: a processor and a memory; the memory is used to store computer execution instructions, and when the device is running, the processor executes the computer execution instructions stored in the memory , So that the device executes the method described in any of the first aspect or the first aspect.
  • the present application provides an apparatus for determining lane line information, including: including units or means for executing the steps of the first aspect or the embodiments of the first aspect.
  • the present application provides a device for determining lane line information, including a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute any of the above-mentioned first aspect or the first aspect. method.
  • the processor includes one or more.
  • the present application provides an apparatus for determining lane line information, including a processor, configured to be connected to a memory, and configured to call a program stored in the memory to execute the above-mentioned first aspect or any of the first aspects.
  • a processor configured to be connected to a memory, and configured to call a program stored in the memory to execute the above-mentioned first aspect or any of the first aspects.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • this application also provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause a processor to execute the above-mentioned first aspect or any of the first aspects. The method described.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute any of the methods described in the first aspect or the first aspect.
  • the present application also provides a chip system, including a processor, configured to execute the above-mentioned first aspect or any method described in the first aspect.
  • Figure 1 is a schematic diagram of a possible network architecture provided by this application.
  • Figure 2 is a schematic flow chart of a method for determining lane information provided by this application
  • FIG. 3 is a schematic diagram of a vehicle-mounted system provided by this application.
  • FIG. 4 is a schematic diagram of another vehicle-mounted system provided by this application.
  • FIG. 5 is a schematic flowchart of another method for determining lane information provided by this application.
  • FIG. 6 is a schematic flowchart of another method for determining lane information provided by this application.
  • FIG. 7 is a schematic flowchart of another method for determining lane information provided by this application.
  • FIG. 8 is a schematic flowchart of another method for determining lane information provided by this application.
  • FIG. 9 is a schematic diagram of a device for determining lane information provided by this application.
  • FIG. 10 is a schematic diagram of another apparatus for determining lane information provided by this application.
  • the architecture includes the first device and the map server.
  • the first device may include a central processing unit (Central Processing Unit, CPU), a digital signal processing (digital signal processing, DSP), a graphics processing unit (Graphics Processing Unit, GPU), a part of a memory module, or All.
  • the first device may be physically independent of the vehicle but may establish a connection with the vehicle in a wired or wireless manner, or the first device may be installed on the vehicle as a part of the vehicle.
  • the first device may be integrated with a central controller on the vehicle, or it may be an independently designed device.
  • the map server refers to the backend server configured with maps.
  • the map may be a possible map in the prior art, such as Baidu map, Gaode map, etc. The embodiments of this application do not make specific limitations.
  • this application provides a method for determining lane information.
  • the method includes the following steps:
  • Step 201 The first device obtains first lane line information corresponding to the position of the vehicle, and the first lane line information comes from a map server.
  • the positioning module sends the location information of the vehicle to the map server, and then the map server obtains the lane line information corresponding to the location from the map server according to the location information of the vehicle, that is, the first lane line information, and then sends it to the first device Sending the first lane line information, or the map server sends the first lane line information to other devices or modules in the in-vehicle system, and the other devices or modules forward the first lane line information to the first device.
  • the positioning module may be a positioning module in a vehicle-mounted system.
  • the first lane line information here includes at least one first lane line information.
  • the first lane line information includes at least one of the number of first lane lines, the first lane line type, and the lane line curve type.
  • the number of first lane lines refers to the number of lane lines corresponding to the position of the vehicle stored in the map server, such as 2, 3, or 4, etc.
  • the first lane line type refers to the type of lane line corresponding to the location of the vehicle stored in the map server, such as a double yellow line, a single yellow line, a white dashed line, or a white solid line.
  • Lane curve types include curves and straight lines.
  • Step 202 The first device obtains the second lane line information.
  • the second lane line information includes at least one second lane line information.
  • the second lane line information may be at least one of the number of second lane lines, the type of the second lane line, the lateral offset of the lane line, the orientation of the lane line, the curvature of the lane line, and the derivative of the curvature of the lane line.
  • the number of second lane lines refers to the number of lane lines detected by the camera device, such as 2, 3, or 4, etc.
  • the second lane line type refers to the type of the lane line detected by the camera device, such as a double yellow line, a single yellow line, a white dashed line, or a white solid line.
  • the lateral offset of the lane line refers to the distance of the lateral offset between each lane line and the vehicle.
  • the direction of the lane line refers to the direction of each lane line in the vehicle coordinate system.
  • the curvature of the lane line refers to the degree of curvature of each lane line.
  • the first device detects the image information in one or more frames of image information to obtain the second lane line information. Further optionally, the first device may detect image information in the one or more frames of image information to obtain pixel information, and process the pixel information to obtain second lane line information. In this step, the one or more frames of image information are obtained from the vehicle-mounted device.
  • the vehicle-mounted device may be a photosensitive component installed on the vehicle body (such as the front, rear, or sideways), and the device photographs the road section ahead to obtain the one or more frames of image information.
  • the first device obtains the second lane line information from the second device.
  • the second device may be any possible device in the in-vehicle system, such as a central controller, etc.
  • a central controller etc.
  • the specific process of acquiring the second lane line information by the second device please refer to the first device in the previous optional design The process of obtaining the second lane line information will not be repeated here.
  • Step 203 The first device determines the third lane line information according to the first lane line information and the second lane line information.
  • lane lines are unclear due to some reasons, some lane lines are blocked by vehicles, and the road surface is relatively untidy, so the second lane line information detected by the camera device may be inaccurate.
  • the number of detected second lane lines is incorrect.
  • some lane lines are not clear and the number of second lane lines detected is less than the actual number of lane lines, or the strip stains on some roads are misdetected and lead to detection.
  • the number of second lane lines reached is more than the actual number of lane lines.
  • the detected second lane line type is incorrect.
  • the first device merges the acquired first lane line information from the map server with the acquired second lane line information from the camera device to obtain the third lane line information.
  • the lane line information can be regarded as the use of the first lane line information to calibrate the second lane line information, so as to remove false inspections, retrieve missed inspections, and obtain the third lane line information.
  • the third lane line information can be understood as the updated second lane line information.
  • the third lane line information includes information on part or all of the lane lines in at least one second lane line.
  • the third lane line information may be at least one of the number of the third lane line, the type of the third lane line, the lateral deviation of the lane line, the orientation of the lane line, the curvature of the lane line, and the derivative of the curvature of the lane line.
  • the number, type, lateral offset, orientation, curvature and the derivative of curvature of the lane lines reference may be made to the aforementioned description of the first lane line, which will not be repeated here.
  • the first device may determine the foregoing third lane line information according to the first lane line information, the second lane line information, and at least one historical lane line information.
  • the historical lane line information can be the final result of the lane line information detected at the last moment or the previous position, that is, when determining the third lane line information, the historical lane line information is also referred to, which can improve the detection of the lane line Correctness.
  • the third lane line information may be used as the finally obtained lane line information corresponding to the position of the vehicle.
  • the next position can be detected based on the above-mentioned third lane information, that is, the third lane line information is used as the historical lane line information, and the lane line detection of the next position is performed to To continuously improve the detection accuracy of lane lines.
  • the lane line information obtained from the map server is merged with the detected lane line information to remove false inspections and retrieve missed inspections, which helps to improve the performance of lane line detection and realize accurate determination of lane line information. Improve driving performance and safety.
  • the map server sends corresponding first lane line information to the first device or other devices or modules of the vehicle system each time it receives the location information of the vehicle sent by the positioning module.
  • the lane line information has continuity at this time, that is, remains unchanged within a certain time or distance, so the first device does not need to perform the above steps 201-203 to perform the lane line. Therefore, there is no need to obtain the above-mentioned first lane line information. Therefore, as an extension of the above embodiment, when the first device determines that lane line detection is needed, it sends a request message to the map server. The request message is used to request the first lane line information.
  • the corresponding first lane line information will be obtained according to the position information of the vehicle last sent by the positioning module and sent to the above-mentioned first device or other devices or modules of the in-vehicle system. In this way, it will help save signaling overhead.
  • the first device determines that lane line detection is required:
  • the first device determines that at least one lane line of the at least one second lane line is abnormal.
  • the lane line is determined to be abnormal; or when the type of second lane line is different from the type of lane line determined when the vehicle is at the previous position , It is determined that the lane line is abnormal; or when the curvature of the lane line has a large change compared with the curvature of the vehicle at the previous position, it is determined that the lane line is abnormal, and so on.
  • the first device determines that the map information has changed.
  • the method for the first device to determine that the map information has changed includes but is not limited to:
  • Method 1 The first device monitors that the map information has changed.
  • Method 2 The first device receives a signal that triggers GPS calibration or map calibration, such as a base station broadcast signal or calibration position signal, near the intersection or at a certain location, so as to determine that the map information has changed.
  • a signal that triggers GPS calibration or map calibration such as a base station broadcast signal or calibration position signal
  • the first device determines that the map information has changed, it means that the lane line information has changed, so it can request the map server to obtain the first lane line information, so as to determine the above-mentioned third lane line information.
  • the map server can be requested to send the first lane line information corresponding to the position of the vehicle when the road section changes. That is, the sparse use of map information can reduce the amount of data transmission and help improve the performance of lane line detection.
  • the camera module can be any kind of photosensitive component, such as a camera, etc.
  • the positioning module can be used for position sensing, such as a position sensor, the detection module is used to detect lane line information, and the fusion module is used to detect
  • the lane line information of the module that is, the above-mentioned second lane line information
  • the lane line from the map server that is, the above-mentioned first lane line information
  • the decision module It is used for decision-making to implement driving control based on the final lane line information.
  • the detection module, the fusion module, and the decision module may all include a processor (such as a CPU, GPU, DSP) and a memory module. Or it can be understood as the logical function division of the processor and the memory module to obtain modules with different functions, that is, the detection module, the fusion module, and the decision module.
  • FIG. 3 a schematic structural diagram of a vehicle-mounted system provided for this application.
  • the vehicle-mounted system includes a camera module, a detection module, a fusion module, and a positioning module.
  • the vehicle-mounted system may also include a decision-making module.
  • the functions of the detection module, the fusion module and the decision module can be referred to the embodiments in FIG. 5 to FIG. 6.
  • the above-mentioned first device includes the fusion module in FIG. 3.
  • the above-mentioned second device includes the detection module in FIG. 3.
  • the first device obtains the second lane line information from the second device.
  • the above-mentioned first device includes the fusion module and the detection module in FIG. 3.
  • the first device acquires the second lane line information, which can be understood as the first device generates the second lane line information.
  • the above-mentioned first device includes the fusion module, the detection module, and the decision module in FIG. 3.
  • the first device acquires the second lane line information, which can be understood as the first device generates the second lane line information.
  • FIG. 4 there is a schematic diagram of another vehicle-mounted system provided for this application.
  • the vehicle-mounted system includes a camera module, a detection module, and a positioning module.
  • the vehicle-mounted system may also include a decision-making module.
  • the functions of the detection module and the decision module can be referred to the embodiments in Fig. 7 to Fig. 8.
  • the above-mentioned first device includes the detection module in FIG. 4.
  • the first device generates second lane line information.
  • the above-mentioned first device includes the detection module and the decision module in FIG. 4.
  • the first device generates second lane line information.
  • the difference between the vehicle-mounted system shown in Figure 4 and the vehicle-mounted system shown in Figure 3 is that the functions of the fusion module are integrated on the detection module in Figure 4, that is, the detection module in Figure 4 has the detection module in Figure 3 And the function of the fusion module.
  • FIG. 5 there is a schematic flowchart of another method for determining lane line information provided by this application.
  • the method is based on the on-board system shown in FIG. 3, and in this example, the first device includes the fusion in FIG. Module, the above-mentioned second device includes the detection module in FIG. 3.
  • the method includes the following steps:
  • Step 501 The positioning module sends the location information of the vehicle to the map server.
  • the map server can receive the location information of the vehicle.
  • the positioning module can continuously report the location information of the current location of the vehicle to the map server, for example, periodically.
  • Step 502 The camera module photographs the position of the vehicle to obtain image information.
  • the camera module can obtain one or more frames of image information by driving the photosensitive components mounted on the vehicle body (such as the front, rear, or sideways).
  • Step 503 The camera module sends image information to the detection module.
  • the detection module can receive the image information.
  • Step 504 The detection module detects the image information to obtain second lane line information.
  • the detection module may perform network detection on each frame of image information obtained to obtain pixel information, and then perform post-processing on the pixel information to obtain the second lane line information.
  • Step 505 The detection module sends the first lane line information to the fusion module.
  • the fusion module can receive the first lane line information.
  • Step 506 The fusion module determines that the second lane line is abnormal or monitors that the map information has changed, and then sends a request message to the map server.
  • the request message is used to request to obtain the first lane line information corresponding to the position of the vehicle.
  • the map server can receive the request message.
  • This step 506 is optional.
  • Step 507 The map server sends the first lane line information to the fusion module.
  • the fusion module can receive the first lane line information.
  • step 506 the relationship between the above step 506 and step 507 is:
  • whether the map server sends the first lane line information has nothing to do with whether the fusion module sends the request message, that is, the map server continuously sends the first lane line information to the fusion module based on the location information of the current location in step 501.
  • Lane line information instead of sending the first lane line information after receiving the above request message.
  • whether the map server sends the first lane line information is related to whether the fusion module sends the request message, that is, when the fusion module sends the request message, the map server is triggered to send the current location of the vehicle to the fusion module
  • Step 508 The fusion module determines the third lane line information according to the first lane line information and the second lane line information.
  • the fusion module may determine the third lane line information according to the first lane line information, the second lane line information, and at least one historical lane line information.
  • the fusion module may also send the third lane line information to the decision-making module, and the decision-making module executes the automatic driving maneuver according to the third lane line information.
  • step 501 may be executed in any step before step 507, which is not limited in this application.
  • FIG. 6 there is a schematic flow chart of another method for determining lane line information provided by this application.
  • the method is based on the vehicle-mounted system shown in FIG. 3, and in this example, the above-mentioned first device includes the fusion in FIG. Module, the above-mentioned second device includes the detection module in FIG. 3.
  • the method includes the following steps:
  • Step 601 The positioning module sends the location information of the vehicle to the map server.
  • the map server can receive the location information of the vehicle.
  • the positioning module can continuously report the location information of the current location of the vehicle to the map server, for example, periodically.
  • Step 602 The camera module photographs the position of the vehicle to obtain image information.
  • the camera module can obtain one or more frames of image information by driving the photosensitive components mounted on the vehicle body (such as the front, rear, or sideways).
  • Step 603 The camera module sends image information to the detection module.
  • the detection module can receive the image information.
  • Step 604 The detection module detects the image information to obtain fourth lane line information.
  • the detection module may perform network detection on each frame of image information obtained to obtain pixel information, and then perform post-processing on the pixel information to obtain fourth lane line information.
  • the fourth lane line information includes at least one fourth lane line information.
  • the fourth lane line information may be at least one of the number of fourth lane lines, the type of the fourth lane line, the lateral offset of the lane line, the orientation of the lane line, the curvature of the lane line, and the derivative of the curvature of the lane line.
  • Step 605 The detection module determines that the fourth lane line is abnormal or monitors that the map information has changed, and then sends a request message to the map server.
  • the request message is used to request to obtain the first lane line information corresponding to the position of the vehicle.
  • the map server can receive the request message.
  • Step 606 The map server sends the first lane line information to the detection module and the fusion module.
  • the detection module and the fusion module can receive the first lane line information.
  • step 605 the relationship between the above step 605 and step 606 is:
  • whether the map server sends the first lane line information has nothing to do with whether the detection module sends the request message, that is, the map server continuously sends the detection module and the fusion module based on the location information of the current location in step 601 Send the first lane line information instead of sending the first lane line information after receiving the above request message.
  • whether the map server sends the first lane line information is related to whether the detection module sends the request message, that is, when the detection module sends the request message, the map server is triggered to send the current location of the vehicle to the detection module and the fusion module
  • the location information corresponds to the first lane line information; when the detection module does not send a request message, the map server does not send the first lane line information corresponding to the location information of the vehicle's current location to the detection module and the fusion module.
  • the map server may also only send the first lane line information to the fusion module, and then the fusion module sends the first lane line information to the detection module.
  • the map server may only send the first lane line information to the detection module, and the subsequent detection module may send the first lane line information to the fusion module.
  • Step 607 The detection module detects the image information according to the first lane line information to obtain the second lane line information.
  • the image information in this step is the image information in step 604 described above.
  • the first lane line information is used as a reference, and the image information is re-detected, so that the second lane line information that is more accurate than the fourth lane line information can be obtained.
  • the detection module can perform network detection on each frame of image information obtained according to the first lane line information to obtain pixel information, and then perform post-processing on the pixel information to obtain the second lane line information.
  • Step 608 The detection module sends the second lane line information to the fusion module.
  • the fusion module can receive the second lane line information.
  • Step 609 The fusion module determines the third lane line information according to the first lane line information and the second lane line information.
  • the fusion module may determine the third lane line information according to the first lane line information, the second lane line information, and at least one historical lane line information.
  • the fusion module may also send the third lane line information to the decision-making module, and the decision-making module executes the automatic driving maneuver according to the third lane line information.
  • FIG. 7 there is a schematic flowchart of another method for determining lane line information provided by this application.
  • the method is based on the vehicle-mounted system shown in FIG. 4, and in this example, the above-mentioned first device includes the detection in FIG. Module.
  • the method includes the following steps:
  • Steps 701 to 704 are the same as steps 501 to 504 of the embodiment in FIG. 5.
  • Step 705 The detection module determines that the second lane line is abnormal or monitors that the map information has changed, and then sends a request message to the map server.
  • the request message is used to request to obtain the first lane line information corresponding to the position of the vehicle.
  • the map server can receive the request message.
  • This step 705 is optional.
  • Step 706 The map server sends the first lane line information to the detection module.
  • the detection module can receive the first lane line information.
  • step 705 the relationship between the above step 705 and step 706 is:
  • whether the map server sends the first lane line information has nothing to do with whether the detection module sends the request message, that is, the map server continuously sends the first lane line information to the detection module based on the location information of the current location in step 701.
  • Lane line information instead of sending the first lane line information after receiving the above request message.
  • whether the map server sends the first lane line information is related to whether the detection module sends the request message, that is, when the detection module sends the request message, the map server is triggered to send the current location of the vehicle to the detection module
  • Step 707 The detection module determines the third lane line information according to the first lane line information and the second lane line information.
  • the detection module may determine the third lane line information based on the first lane line information, the second lane line information, and at least one historical lane line information.
  • the detection module may also send the third lane line information to the decision-making module, and the decision-making module executes the automatic driving maneuver according to the third lane line information.
  • step 701 may be executed in any step before step 706, which is not limited in this application.
  • FIG. 8 there is a schematic flow chart of another method for determining lane line information provided by this application.
  • the method is based on the vehicle-mounted system shown in FIG. 4, and in this example, the above-mentioned first device includes the detection in FIG. Module.
  • the method includes the following steps:
  • Steps 801 to 804 are the same as steps 601 to 604 of Embodiment 6, and reference may be made to the foregoing description.
  • step 805 the detection module determines that the fourth lane line is abnormal or monitors that the map information has changed, and then sends a request message to the map server.
  • the request message is used to request to obtain the first lane line information corresponding to the position of the vehicle.
  • the map server can receive the request message.
  • the fourth lane line here is similar to the fourth lane line in the embodiment in FIG. 6, and the foregoing description may be referred to.
  • step 804 and step 805 are optional.
  • Step 806 The map server sends the first lane line information to the detection module.
  • the detection module can receive the first lane line information.
  • step 805 the relationship between the above step 805 and step 806 is:
  • whether the map server sends the first lane line information has nothing to do with whether the detection module sends the request message. That is, the map server continuously sends the first lane line information to the detection module based on the location information of the current location in step 801. Lane line information, instead of sending the first lane line information after receiving the above request message.
  • whether the map server sends the first lane line information is related to whether the detection module sends the request message, that is, when the detection module sends the request message, the map server is triggered to send the current location of the vehicle to the detection module
  • Step 807 The detection module detects the image information according to the first lane line information to obtain the second lane line information.
  • the image information in this step is the image information in step 804 described above.
  • the first lane line information is used as a reference, and the image information is re-detected, so that the second lane line information that is more accurate than the fourth lane line information can be obtained.
  • the detection module can perform network detection on each frame of image information obtained according to the first lane line information to obtain pixel information, and then perform post-processing on the pixel information to obtain the second lane line information.
  • Step 808 The detection module determines the third lane line information according to the first lane line information and the second lane line information.
  • the detection module may determine the third lane line information according to the first lane line information, the second lane line information, and at least one historical lane line information.
  • the detection module may also send the third lane line information to the decision-making module, and the decision-making module executes the automatic driving maneuver according to the third lane line information.
  • each network element described above includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the present invention.
  • the apparatus 900 may exist in the form of software or hardware.
  • the apparatus 900 may include: a processing unit 902 and a communication unit 901.
  • the communication unit 901 may include a receiving unit and a sending unit.
  • the processing unit 902 is used to control and manage the actions of the device 900.
  • the communication unit 901 is used to support communication between the device 900 and other network entities. Further, the processing unit may be one or more processing units.
  • the processing unit 902 may be a processor or a controller, for example, a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, a DSP, an application specific integrated circuit (ASIC), and a field programmable gate.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors or a combination of a DSP and at least one microprocessor, and so on.
  • the communication unit 901 is an interface circuit of the device for receiving signals from other devices.
  • the communication unit 901 is an interface circuit for the chip to receive signals from other chips or devices, or an interface circuit for the chip to send signals to other chips or devices.
  • the processing unit 902 is a processor, it may be one or more processors. If the processors are multiple processors, the multiple processors cooperate to complete the corresponding functional processing.
  • the multiple processors may include one or more of a CPU, a DSP, or a GPU.
  • the device 900 may be the first device in the foregoing embodiment, or may be a chip used in the first device.
  • the processing unit 902 may be, for example, one or more processors
  • the communication unit 901 may be, for example, a transceiver.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 902 may be, for example, one or more processors
  • the communication unit 901 may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit 902 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located in the chip in the first device.
  • External storage units such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the one or more processors may include one or more of CPU, DSP, or GPU.
  • the device is the first device in the above-mentioned embodiment
  • the communication unit 901 is configured to obtain the first lane line information corresponding to the position of the vehicle, the first lane line information comes from the map server; and , Used to obtain the second lane line information; the processing unit 902, used to determine the third lane line information according to the first lane line information and the second lane line information.
  • the first lane line information includes at least one first lane line information; the second lane line information includes at least one second lane line information; the third lane line information It includes information on part or all of the lane lines in the at least one second lane line.
  • the processing unit 902 is further configured to determine that at least one lane line of the at least one second lane line is abnormal or to monitor changes in the map information of the map server; the communication unit 901.
  • the request message is further configured to send a request message to the map server, where the request message is used to request to obtain the first lane line information.
  • the processing unit 902 is specifically configured to determine the third lane line information according to the first lane line information, the second lane line information, and at least one historical lane line information .
  • the first lane line information includes at least one of the number of first lane lines, the first lane line type, and the lane line curve type.
  • the second lane line information includes the number of the second lane line, the type of the second lane line, the lateral offset of the lane line, the orientation of the lane line, the curvature of the lane line, and the derivative of the curvature of the lane line. At least one of them.
  • the apparatus may be the first apparatus in the above-mentioned embodiment.
  • the device 1000 includes a processor 1002 and a communication interface 1003.
  • the device 1000 may further include a memory 1001.
  • the device 1000 may further include a communication line 1004.
  • the communication interface 1003, the processor 1002, and the memory 1001 may be connected to each other through a communication line 1004;
  • the communication line 1004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). , Referred to as EISA) bus and so on.
  • the communication line 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1002 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the present application.
  • the processor 1002 may also include one or more of a CPU, a DSP, or a GPU.
  • the communication interface 1003 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 1001 may be a ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through a communication line 1004. The memory can also be integrated with the processor.
  • the memory 1001 is used to store computer-executed instructions for executing the solution of the present application, and the processor 1002 controls the execution.
  • the processor 1002 is configured to execute computer execution instructions stored in the memory 1001, so as to implement the method for determining lane line information provided in the foregoing embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the embodiment of the present application also provides a detection system for providing a detection function for a vehicle. It includes at least one device for determining lane line information mentioned in the foregoing embodiment of the present application or a device including the device for determining lane line information, and at least one sensor.
  • the embodiment of the present application also provides a system, which is applied to unmanned driving or intelligent driving, which includes at least one device for determining lane line information mentioned in the above-mentioned embodiment of the present application or includes a device for determining lane line information. device of. Further, the system can also include a central controller, which can provide decision-making or control for unmanned driving or intelligent driving.
  • An embodiment of the present application also provides a vehicle that includes at least one device for determining lane line information mentioned in the foregoing embodiment of the present application or a device including the device for determining lane line information.
  • At least one refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • Multiple refers to two or more than two, and other quantifiers are similar.
  • a device means to one or more such devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in the ASIC.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车道线信息的确定方法及装置,适用于自动驾驶或智能驾驶领域。该方法包括:第一装置获取与车辆的位置对应的第一车道线信息,第一车道线信息来自地图服务器(201);第一装置获取第二车道线信息(202);第一装置根据第一车道线信息和第二车道线信息,确定第三车道线信息(203)。将从地图服务器获取的车道线信息与检测到的车道线信息进行融合,以去除虚检,找回漏检,有助于提高车道线检测性能,实现准确确定车道线信息,提高驾驶性能和安全性。

Description

一种车道线信息的确定方法及装置
相关申请的交叉引用
本申请要求在2019年09月09日提交中国专利局、申请号为201910863626.8、申请名称为“一种车道线信息的确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶或智能驾驶领域,尤其涉及一种车道线信息的确定方法及装置。
背景技术
车道线检测对行车的驾驶策略有很大约束,因此其对于使能自动驾驶功能至关重要。传统方法利用人为设定的特征去提取相关的车道线分割,该方法在高速公路场景下表现良好,然而其泛化能力非常弱。对于不同光线、地面类型的表现非常不稳定。深度学习方法提升了检测的泛化性能,但目前对于复杂场景,例如车道线被遮挡,车道线不够清晰的路面进行检测的效果会出现很多误检和漏检现象。
综上所述,目前亟需一种准确地确定车道线信息的方法。
发明内容
本申请提供一种车道线信息的确定方法及装置,用以实现准确地确定车道线信息。
第一方面,本申请提供一种车道线信息的确定方法,该方法包括:第一装置获取与车辆的位置对应的第一车道线信息,所述第一车道线信息来自地图服务器;所述第一装置获取第二车道线信息;所述第一装置根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息。可选的,所述第一装置可以为芯片或者集成电路。
基于上述方案,将从地图服务器获取的车道线信息与检测到的车道线信息进行融合,以此去除虚检,找回漏检,有助于提高车道线检测性能,实现准确确定车道线信息,提高驾驶性能和安全性。
在一种可能的实现方法中,所述第一车道线信息包括至少一个第一车道线的信息;所述第二车道线信息包括至少一个第二车道线的信息;所述第三车道线信息包括所述至少一个第二车道线中的部分或全部车道线的信息。
在一种可能的实现方法中,所述第一装置确定所述至少一个第二车道线中的至少一个车道线异常或监听所述地图服务器的地图信息发生变化,则向所述地图服务器发送请求消息,所述请求消息用于请求获取所述第一车道线信息。基于该方案,可在路段发生变化时请求地图服务器发送车辆的位置对应的第一车道线信息,从而可以减少数据传输量,有助于提升车道线检测的性能。
在一种可能的实现方法中,所述第一装置根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息,包括:所述第一装置根据所述第一车道线信息、所述第二车道线信息和至少一个历史车道线信息,确定所述第三车道线信息。
在一种可能的实现方法中,所述第一车道线信息包括第一车道线数量、第一车道线种类、车道线曲直类型中的至少一个。
在一种可能的实现方法中,所述第二车道线信息包括第二车道线数量、第二车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。
第二方面,本申请提供一种车道线信息的确定装置,该装置可以是第一装置,还可以是用于第一装置的芯片。该装置具有实现上述第一方面或第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请提供一种车道线信息的确定装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面任意所述的方法。
第四方面,本申请提供一种车道线信息的确定装置,包括:包括用于执行上述第一方面或第一方面的各实施例的各个步骤的单元或手段(means)。
第五方面,本申请提供一种车道线信息的确定装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一方面或第一方面任意所述的方法。该处理器包括一个或多个。
第六方面,本申请提供一种车道线信息的确定装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一方面或第一方面任意所述的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第七方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行上述第一方面或第一方面任意所述的方法。
第八方面,本申请还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面任意所述的方法。
第九方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面或第一方面任意所述的方法。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为本申请提供的一种车道信息的确定方法流程示意图;
图3为本申请提供的一种车载系统示意图;
图4为本申请提供的又一种车载系统示意图;
图5为本申请提供的又一种车道信息的确定方法流程示意图;
图6为本申请提供的又一种车道信息的确定方法流程示意图;
图7为本申请提供的又一种车道信息的确定方法流程示意图;
图8为本申请提供的又一种车道信息的确定方法流程示意图;
图9为本申请提供的一种车道信息的确定装置示意图;
图10为本申请提供的又一种车道信息的确定装置示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,为本申请适用的一种可能的网络架构。该架构中包括第一装置和地图服务器。
这里需要说明的是,第一装置可以包括中央处理器(Central Processing Unit,CPU)、数字信号处理(digital signal processing,DSP)、图形处理器(Graphics Processing Unit,GPU)、内存模块中的部分或全部。第一装置可以是在物理上独立于车辆但可以通过有线或无线方式与车辆建立连接,或者是第一装置安装于车辆上,作为车辆的一部分。具体的,所述第一装置可以与集成在车载的中央控制器中,或者,也可以是独立设计的设备。地图服务器指的是配置有地图的后台服务器。该地图可以为现有技术中可能的地图,如百度地图、高德地图等。本申请实施例不做具体限定。
基于图1所示的网络架构,本申请提供一种车道信息的确定方法,参考图2,该方法包括以下步骤:
步骤201,第一装置获取与车辆的位置对应的第一车道线信息,第一车道线信息来自地图服务器。
可选的,定位模块向地图服务器发送车辆的位置信息,然后地图服务器根据车辆的位置信息,从地图服务器获取到与该位置对应的车道线信息,即第一车道线信息,然后向第一装置发送该第一车道线信息,或者是地图服务器向车载系统内的其他装置或模块发送该第一车道线信息,由该其他装置或模块向第一装置转发该第一车道线信息。具体的,所述定位模块可以是车载系统内的定位模块。
这里的第一车道线信息包括至少一个第一车道线的信息。第一车道线信息包括第一车道线数量、第一车道线种类、车道线曲直类型中的至少一个。第一车道线数量指的是地图服务器中存储的与该车辆的位置对应的车道线的数量,比如为2条、3条、或4条等。第一车道线种类指的是地图服务器中存储的与该车辆的位置对应的车道线的种类,比如为双黄线、单黄线、白色虚线、或白色实线等。车道线曲直类型包括曲线、直线。
步骤202,第一装置获取第二车道线信息。
第二车道线信息包括至少一个第二车道线的信息。该第二车道线信息可以是第二车道线数量、第二车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。其中,第二车道线数量指的是摄像装置检测到的车道线的数量,比如为2条、3条、或4条等。第二车道线种类指的是摄像装置检测到的车道线的种类,比如为双黄线、单黄线、白色虚线、或白色实线等。车道线横向偏移指的是各条车道线与车辆之间的横向偏移的距离。车道线的朝向指的是各条车道线在车辆坐标系中的朝向。车道线的曲率指的是各条车道线的弯曲程度。
一种可选的设计中,所述第一装置对一帧或多帧图像信息中的图像信息进行检测以得到第二车道线信息。进一步可选的,所述第一装置可以对所述一帧或多帧图像信息中的图像信息进行检测得到像素信息,并对像素信息进行处理,得到第二车道线信息。该步骤中,所述一帧或多帧图像信息是从车载装置得到的。比如,所述车载装置可以为安装在车身(如 车头、车尾、或侧身)的感光元器件,该器件对前方路段进行拍摄,得到所述一帧或多帧图像信息。
另一种可选的设计中,所述第一装置从第二装置获取第二车道线信息。所述第二装置可以为车载系统中的任一种可能的装置,例如中央控制器等,所述第二装置获取第二车道线信息的具体过程可以参见上一可选的设计中第一装置获取所述第二车道线信息的过程,这里不再赘述。
步骤203,第一装置根据第一车道线信息和第二车道线信息,确定第三车道线信息。
在一些场景中,车道线由于一些原因呈现不清晰,部分车道线被车辆遮挡,路面也相对不整洁,这样摄像装置检测得到的第二车道线信息可能是不准确。比如,检测得到的第二车道线数量不正确,如某些车道线不清晰导致检测到的第二车道线数量少于实际的车道线数量,或者一些路上的条状污迹被误检导致检测到的第二车道线数量多于实际的车道线数量。再比如,检测得到的第二车道线种类不正确。
因此,通过该步骤203,第一装置将获取到的来自地图服务器的第一车道线信息,与获取到的来自摄像装置的第二车道线信息进行融合,得到第三车道线信息,该第三车道线信息可以看做是使用第一车道线信息对第二车道线信息进行校准,以此去除虚检,找回漏检,从而得到第三车道线信息。该第三车道线信息可以理解为更新后的第二车道线信息。
该第三车道线信息包括至少一个第二车道线中的部分或全部车道线的信息。第三车道线信息可以是第三车道线数量、第三车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。其中,关于车道线数量、种类、横向偏移、朝向、曲率和曲率的导数的解释可以参考前述对于第一车道线的相关描述,这里不再赘述。
作为一种实现方式,作为该步骤203的一种具体实现方式,第一装置可以根据第一车道线信息、第二车道线信息和至少一个历史车道线信息,确定上述第三车道线信息。该历史车道线信息可以是上一时刻或上一位置检测得到的车道线信息的最终结果,即在确定第三车道线信息时,还参考了历史的车道线信息,从而可以提升车道线的检测正确性。
作为一种实现方式,可以将第三车道线信息作为最终得到的与该车辆的位置对应的车道线信息。
作为一种实现方式,在车载行驶过程中,在下一位置,可以基于上述第三车道信息进行检测,即将该第三车道线信息作为历史车道线信息,执行对下一位置的车道线检测,以便于不断提升车道线的检测正确性。
基于上述方案,将从地图服务器获取的车道线信息与检测到的车道线信息进行融合,以此去除虚检,找回漏检,有助于提高车道线检测性能,实现准确确定车道线信息,提高驾驶性能和安全性。
上述步骤201-步骤203的实现方案中,地图服务器每次接收到定位模块发送的车辆的位置信息时,都会向上述第一装置或车载系统的其他装置或模块发送相应的第一车道线信息。然而在有些场景,如车辆在直线车道上行驶,此时车道线信息具有连续性,即在一定时间或距离内保持不变,因而第一装置无需执行上述步骤201-步骤203的方案进行车道线检测,从而也无需获取上述第一车道线信息。因此,作为上述实施例的一个扩展方案,当第一装置确定需要进行车道线检测时,则向地图服务器发送请求消息,该请求消息用于请求获取第一车道线信息,对于地图服务器,只有在接收到请求消息时,在会根据定位模块最近一次发送的车辆的位置信息,获取相应的第一车道线信息并发送至上述第一装置或车 载系统的其他装置或模块。如此,将有助于节约信令开销。
作为一种实现方式,在以下一种或多种情形下,第一装置确定需要进行车道线检测:
情形1,第一装置确定至少一个第二车道线中的至少一个车道线异常。
比如,当第二车道线数量与车辆在上个位置时确定的车道线数量不同时,则确定车道线异常;或者当第二车道线种类与车辆在上个位置时确定的车道线种类不同时,则确定车道线异常;或者当车道线的曲率与车辆在上个位置的曲率相比,发生较大变化时,确定车道线异常,等等。
情形2,第一装置确定地图信息发生变化。
第一装置确定地图信息发生变化的方法包括但不限于:
方法1,第一装置监听到地图信息发生变化。
方法2,第一装置在路口附近或者某位置收到触发GPS校准或地图校准的信号,如基站广播信号或校准位置信号等,从而确定地图信息发生变化。
该情形中,当第一装置确定地图信息发生变化,意味着车道线信息发生变化,因而可以向地图服务器请求获取第一车道线信息,以便于确定上述第三车道线信息。
基于上述扩展方案,可在路段发生变化时请求地图服务器发送车辆的位置对应的第一车道线信息,即通过稀疏的使用地图信息,可以减少数据传输量,有助于提升车道线检测的性能。
下面结合具体示例,对上述图2实施例的方法进行说明。以下示例中,相机模块可以是任一种感光元器件,例如摄像头等,定位模块可以用于位置感知,例如可以是位置感知器,检测模块用于检测车道线信息,融合模块用于将来自检测模块的车道线信息(即上述第二车道线信息)和来自地图服务器的车道线(即上述第一车道线信息)进行融合得到最终的车道线信息(即上述第三车道线信息),决策模块用于决策根据最终的车道线信息执行驾驶控制。在具体实现中,检测模块、融合模块和决策模块均可以包括处理器(如CPU、GPU、DSP)和内存模块。或者理解为,对处理器和内存模块进行逻辑功能的划分,得到具备不同功能的模块,即检测模块、融合模块和决策模块。如图3所示,为本申请提供的一种车载系统结构示意图,该车载系统包括相机模块、检测模块、融合模块和定位模块,可选的,该车载系统还可以包括决策模块。其中,检测模块、融合模块和决策模块的功能可以参见图5至图6实施例。
作为一种实现方式,上述第一装置包括图3中的融合模块。进一步可选的,上述第二装置包括图3中的检测模块。在一种可选的设计中,第一装置从第二装置获取第二车道线信息。
作为又一种实现方式,上述第一装置包括图3中的融合模块和检测模块。在该实现方式中,第一装置获取第二车道线信息,可以理解为第一装置生成第二车道线信息。
作为又一种实现方式,上述第一装置包括图3中的融合模块、检测模块和决策模块。在该实现方式中,第一装置获取第二车道线信息,可以理解为第一装置生成第二车道线信息。
如图4所示,为本申请提供的又一种车载系统示意图,该车载系统包括相机模块、检测模块和定位模块,可选的,该车载系统还可以包括决策模块。其中,检测模块和决策模 块的功能可以参见图7至图8实施例。
作为一种实现方式,上述第一装置包括图4中的检测模块。在该实现方式中,第一装置生成第二车道线信息。
作为又一种实现方式,上述第一装置包括图4中的检测模块和决策模块。在该实现方式中,第一装置生成第二车道线信息。
其中,图4所示的车载系统与图3所示的车载系统的区别在于:图4中将融合模块的功能集成实现于检测模块上,即图4中的检测模块具备图3中的检测模块和融合模块的功能。
下面首先针对图3所示的车载系统,对图2所示的实施例的方法进行说明。
如图5所示,为本申请提供的又一种车道线信息的确定方法流程示意图,该方法是基于图3所示的车载系统,且该示例中,上述第一装置包括图3中的融合模块,上述第二装置包括图3中的检测模块。
该方法包括以下步骤:
步骤501,定位模块向地图服务器发送车辆的位置信息。相应地,地图服务器可以接收到该车辆的位置信息。
在车辆行驶过程中,定位模块可以不断地向地图服务器上报车辆当前所在位置的位置信息,比如周期性上报。
步骤502,相机模块对车辆的位置进行拍摄,得到图像信息。
相机模块可以通过驱动安装在车身(如车头、车尾、或侧身)的感光元器件,得到一帧或多帧图像信息。
步骤503,相机模块向检测模块发送图像信息。相应地,检测模块可以接收到该图像信息。
步骤504,检测模块对图像信息进行检测,得到第二车道线信息。
检测模块可以是对得到的每帧图像信息进行网络检测,得到像素信息,然后对像素信息进行后处理,得到第二车道线信息。
步骤505,检测模块向融合模块发送第一车道线信息。相应地,融合模块可以接收到该第一车道线信息。
步骤506,融合模块确定第二车道线异常或监听到地图信息发生变化,则向地图服务器发送请求消息,该请求消息用于请求获取车辆的位置对应的第一车道线信息。相应地,地图服务器可以接收到该请求消息。
该步骤506可选。
步骤507,地图服务器向融合模块发送第一车道线信息。相应地,融合模块可以接收到第一车道线信息。
需要说明的是,以上步骤506与步骤507的关系为:
在第一种实现方法中,地图服务器是否发送第一车道线信息与融合模块是否发送请求消息没有关系,即地图服务器是基于步骤501的当前所在位置的位置信息,不断地向融合模块发送第一车道线信息,而不是接收到上述请求消息才发送第一车道线信息。
在第二种实现方法中,地图服务器是否发送第一车道线信息与融合模块是否发送请求消息有关系,即当融合模块发送请求消息时,则触发地图服务器向融合模块发送车辆当前 所在位置的位置信息对应的第一车道线信息;当融合模块没有发送请求消息时,则地图服务器不向融合模块发送车辆当前所在位置的位置信息对应的第一车道线信息。
步骤508,融合模块根据第一车道线信息和第二车道线信息,确定第三车道线信息。
可选的,融合模块可以根据第一车道线信息、第二车道线信息和至少一个历史车道线信息,确定第三车道线信息。
可选的,在步骤508之后,融合模块还可以将第三车道线信息发送至决策模块,由决策模块根据第三车道线信息执行自动驾驶操控。
需要说明的是,上述步骤501可以是在步骤507之前的任意步骤执行,本申请不做限定。
如图6所示,为本申请提供的又一种车道线信息的确定方法流程示意图,该方法是基于图3所示的车载系统,且该示例中,上述第一装置包括图3中的融合模块,上述第二装置包括图3中的检测模块。
该方法包括以下步骤:
步骤601,定位模块向地图服务器发送车辆的位置信息。相应地,地图服务器可以接收到该车辆的位置信息。
在车辆行驶过程中,定位模块可以不断地向地图服务器上报车辆当前所在位置的位置信息,比如周期性上报。
步骤602,相机模块对车辆的位置进行拍摄,得到图像信息。
相机模块可以通过驱动安装在车身(如车头、车尾、或侧身)的感光元器件,得到一帧或多帧图像信息。
步骤603,相机模块向检测模块发送图像信息。相应地,检测模块可以接收到该图像信息。
步骤604,检测模块对图像信息进行检测,得到第四车道线信息。
检测模块可以是对得到的每帧图像信息进行网络检测,得到像素信息,然后对像素信息进行后处理,得到第四车道线信息。第四车道线信息包括至少一个第四车道线的信息。该第四车道线信息可以是第四车道线数量、第四车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。
步骤605,检测模块确定第四车道线异常或监听到地图信息发生变化,则向地图服务器发送请求消息,该请求消息用于请求获取车辆的位置对应的第一车道线信息。相应地,地图服务器可以接收到该请求消息。
上述步骤604和步骤605可选。
步骤606,地图服务器向检测模块和融合模块发送第一车道线信息。相应地,检测模块和融合模块可以接收到第一车道线信息。
需要说明的是,以上步骤605与步骤606的关系为:
在第一种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息没有关系,即地图服务器是基于步骤601的当前所在位置的位置信息,不断地向检测模块和融合模块发送第一车道线信息,而不是接收到上述请求消息才发送第一车道线信息。
在第二种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息有关系,即当检测模块发送请求消息时,则触发地图服务器向检测模块和融合模块发 送车辆当前所在位置的位置信息对应的第一车道线信息;当检测模块没有发送请求消息时,则地图服务器不向检测模块和融合模块发送车辆当前所在位置的位置信息对应的第一车道线信息。
可选的,该步骤606中,地图服务器也可以只向融合模块发送第一车道线信息,然后融合模块向检测模块发送第一车道线信息。或者,地图服务器也可以只向检测模块发送第一车道线信息,后续检测模块可以向融合模块发送第一车道线信息。
步骤607,检测模块根据第一车道线信息对图像信息进行检测,得到第二车道线信息。
该步骤中的图像信息即为上述步骤604的图像信息。该步骤是将第一车道线信息作为参考,重新对图像信息检测,从而可以得到比上述第四车道线信息更为准确的第二车道线信息。
比如,检测模块可以根据第一车道线信息对得到的每帧图像信息进行网络检测,得到像素信息,然后对像素信息进行后处理,得到第二车道线信息。
步骤608,检测模块向融合模块发送第二车道线信息。相应地,融合模块可以接收到该第二车道线信息。
步骤609,融合模块根据第一车道线信息和第二车道线信息,确定第三车道线信息。
可选的,融合模块可以根据第一车道线信息、第二车道线信息和至少一个历史车道线信息,确定第三车道线信息。
可选的,在步骤609之后,融合模块还可以将第三车道线信息发送至决策模块,由决策模块根据第三车道线信息执行自动驾驶操控。
如图7所示,为本申请提供的又一种车道线信息的确定方法流程示意图,该方法是基于图4所示的车载系统,且该示例中,上述第一装置包括图4中的检测模块。
该方法包括以下步骤:
步骤701至步骤704,同图5实施例的步骤501至步骤504。
步骤705,检测模块确定第二车道线异常或监听到地图信息发生变化,则向地图服务器发送请求消息,该请求消息用于请求获取车辆的位置对应的第一车道线信息。相应地,地图服务器可以接收到该请求消息。
该步骤705可选。
步骤706,地图服务器向检测模块发送第一车道线信息。相应地,检测模块可以接收到第一车道线信息。
需要说明的是,以上步骤705与步骤706的关系为:
在第一种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息没有关系,即地图服务器是基于步骤701的当前所在位置的位置信息,不断地向检测模块发送第一车道线信息,而不是接收到上述请求消息才发送第一车道线信息。
在第二种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息有关系,即当检测模块发送请求消息时,则触发地图服务器向检测模块发送车辆当前所在位置的位置信息对应的第一车道线信息;当检测模块没有发送请求消息时,则地图服务器不向检测模块发送车辆当前所在位置的位置信息对应的第一车道线信息。
步骤707,检测模块根据第一车道线信息和第二车道线信息,确定第三车道线信息。
可选的,检测模块可以根据第一车道线信息、第二车道线信息和至少一个历史车道线 信息,确定第三车道线信息。
可选的,在步骤707之后,检测模块还可以将第三车道线信息发送至决策模块,由决策模块根据第三车道线信息执行自动驾驶操控。
需要说明的是,上述步骤701可以是在步骤706之前的任意步骤执行,本申请不做限定。
如图8所示,为本申请提供的又一种车道线信息的确定方法流程示意图,该方法是基于图4所示的车载系统,且该示例中,上述第一装置包括图4中的检测模块。
该方法包括以下步骤:
步骤801至步骤804,同实施例6的步骤601至步骤604,可参考前述描述。
步骤805,检测模块确定第四车道线异常或监听到地图信息发生变化,则向地图服务器发送请求消息,该请求消息用于请求获取车辆的位置对应的第一车道线信息。相应地,地图服务器可以接收到该请求消息。
这里的第四车道线与图6实施例中的第四车道线类似,可参考前述描述。
上述步骤804和步骤805可选。
步骤806,地图服务器向检测模块发送第一车道线信息。相应地,检测模块可以接收到第一车道线信息。
需要说明的是,以上步骤805与步骤806的关系为:
在第一种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息没有关系,即地图服务器是基于步骤801的当前所在位置的位置信息,不断地向检测模块发送第一车道线信息,而不是接收到上述请求消息才发送第一车道线信息。
在第二种实现方法中,地图服务器是否发送第一车道线信息与检测模块是否发送请求消息有关系,即当检测模块发送请求消息时,则触发地图服务器向检测模块发送车辆当前所在位置的位置信息对应的第一车道线信息;当检测模块没有发送请求消息时,则地图服务器不向检测模块发送车辆当前所在位置的位置信息对应的第一车道线信息。
步骤807,检测模块根据第一车道线信息对图像信息进行检测,得到第二车道线信息。
该步骤中的图像信息即为上述步骤804的图像信息。该步骤是将第一车道线信息作为参考,重新对图像信息检测,从而可以得到比上述第四车道线信息更为准确的第二车道线信息。
比如,检测模块可以根据第一车道线信息对得到的每帧图像信息进行网络检测,得到像素信息,然后对像素信息进行后处理,得到第二车道线信息。
步骤808,检测模块根据第一车道线信息和第二车道线信息,确定第三车道线信息。
可选的,检测模块可以根据第一车道线信息、第二车道线信息和至少一个历史车道线信息,确定第三车道线信息。
可选的,在步骤808之后,检测模块还可以将第三车道线信息发送至决策模块,由决策模块根据第三车道线信息执行自动驾驶操控。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件 还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
如图9所示,为本申请所涉及的车道线信息的确定装置的一种可能的示例性框图,该装置900可以以软件或硬件的形式存在。装置900可以包括:处理单元902和通信单元901。作为一种实现方式,该通信单元901可以包括接收单元和发送单元。处理单元902用于对装置900的动作进行控制管理。通信单元901用于支持装置900与其他网络实体的通信。进一步,所述处理单元可以为一个或者多个处理单元。
其中,处理单元902可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,DSP,专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器的组合或者DSP和至少一个微处理器的组合等等。通信单元901是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元901是该芯片用于从其它芯片或装置接收信号的接口电路,或者,是该芯片用于向其它芯片或装置发送信号的接口电路。进一步,所述处理单元902为处理器时,可以为一个或者多个处理器。若所述处理器为多个处理器,则多个处理器共同配合完成相应的功能处理。可选的,所述多个处理器可以包含CPU、DSP或者GPU中的一个或者多个。
该装置900可以为上述实施例中的第一装置,还可以为用于第一装置的芯片。例如,当装置900为第一装置时,该处理单元902例如可以是一个或者多个处理器,该通信单元901例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当装置900为用于第一装置的芯片时,该处理单元902例如可以是一个或者多个处理器,该通信单元901例如可以是输入/输出接口、管脚或电路等。该处理单元902可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该第一装置内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,所述一个或多个处理器可以包含CPU、DSP或者GPU中的一个或者多个。
在一个实施例中,该装置为上述实施例中的第一装置,则通信单元901,用于获取与车辆的位置对应的第一车道线信息,所述第一车道线信息来自地图服务器;以及,用于获取第二车道线信息;处理单元902,用于根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息。
在一种可能的实现方法中,所述第一车道线信息包括至少一个第一车道线的信息;所述第二车道线信息包括至少一个第二车道线的信息;所述第三车道线信息包括所述至少一个第二车道线中的部分或全部车道线的信息。
在一种可能的实现方法中,所述处理单元902,还用于确定所述至少一个第二车道线 中的至少一个车道线异常或监听所述地图服务器的地图信息发生变化;所述通信单元901,还用于向所述地图服务器发送请求消息,所述请求消息用于请求获取所述第一车道线信息。
在一种可能的实现方法中,所述处理单元902,具体用于根据所述第一车道线信息、所述第二车道线信息和至少一个历史车道线信息,确定所述第三车道线信息。
在一种可能的实现方法中,所述第一车道线信息包括第一车道线数量、第一车道线种类、车道线曲直类型中的至少一个。
在一种可能的实现方法中,所述第二车道线信息包括第二车道线数量、第二车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。
可以理解的是,该装置用于上述车道线信息的确定方法时的具体实现过程以及相应的有益效果,可以参考前述方法实施例中的相关描述,这里不再赘述。
如图10所示,为本申请提供的又一种车道线信息的确定装置示意图,该装置可以是上述实施例中的第一装置。该装置1000包括:处理器1002和通信接口1003,可选的,装置1000还可以包括存储器1001。可选的,装置1000还可以包括通信线路1004。其中,通信接口1003、处理器1002以及存储器1001可以通过通信线路1004相互连接;通信线路1004可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1002可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。可选的,所述处理器1002还可以包含CPU、DSP或者GPU中的一个或者多个。
通信接口1003,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器1001可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1004与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1001用于存储执行本申请方案的计算机执行指令,并由处理器1002来控制执行。处理器1002用于执行存储器1001中存储的计算机执行指令,从而实现本申请上述实施例提供的车道线信息的确定方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本申请实施例还提供一种探测系统,用于为车辆提供探测功能。其包括至少一个本申请上述实施例提到的车道线信息的确定装置或者包括包含有所述车道线信息的确定装置 的设备,以及至少一个传感器。
本申请实施例还提供一种系统,应用于无人驾驶或智能驾驶中,其包括至少一个本申请上述实施例提到的车道线信息的确定装置或者包括包含有所述车道线信息的确定装置的设备。进一步,该系统还可以包括中央控制器,该系统可以为无人驾驶或者智能驾驶提供决策或控制。
本申请实施例还提供一种车辆,所述车辆包括至少一个本申请上述实施例提到的车道线信息的确定装置或者包括包含有所述车道线信息的确定装置的设备。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意 形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (16)

  1. 一种车道线信息的确定方法,其特征在于,包括:
    第一装置获取与车辆的位置对应的第一车道线信息,所述第一车道线信息来自地图服务器;
    所述第一装置获取第二车道线信息;
    所述第一装置根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息。
  2. 如权利要求1所述的方法,其特征在于:
    所述第一车道线信息包括至少一个第一车道线的信息;
    所述第二车道线信息包括至少一个第二车道线的信息;
    所述第三车道线信息包括所述至少一个第二车道线中的部分或全部车道线的信息。
  3. 如权利要求2所述的方法,其特征在于,还包括:
    所述第一装置确定所述至少一个第二车道线中的至少一个车道线异常或监听所述地图服务器的地图信息发生变化,则向所述地图服务器发送请求消息,所述请求消息用于请求获取所述第一车道线信息。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一装置根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息,包括:
    所述第一装置根据所述第一车道线信息、所述第二车道线信息和至少一个历史车道线信息,确定所述第三车道线信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一车道线信息包括第一车道线数量、第一车道线种类、车道线曲直类型中的至少一个。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第二车道线信息包括第二车道线数量、第二车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。
  7. 一种车道线信息的确定装置,其特征在于,包括:
    通信单元,用于获取与车辆的位置对应的第一车道线信息,所述第一车道线信息来自地图服务器;以及,用于获取第二车道线信息;
    处理单元,用于根据所述第一车道线信息和所述第二车道线信息,确定第三车道线信息。
  8. 如权利要求7所述的装置,其特征在于:
    所述第一车道线信息包括至少一个第一车道线的信息;
    所述第二车道线信息包括至少一个第二车道线的信息;
    所述第三车道线信息包括所述至少一个第二车道线中的部分或全部车道线的信息。
  9. 如权利要求8所述的装置,其特征在于,所述处理单元,还用于确定所述至少一个第二车道线中的至少一个车道线异常或监听所述地图服务器的地图信息发生变化;
    所述通信单元,还用于向所述地图服务器发送请求消息,所述请求消息用于请求获取所述第一车道线信息。
  10. 如权利要求7-9任一项所述的装置,其特征在于,所述处理单元,具体用于根据所述第一车道线信息、所述第二车道线信息和至少一个历史车道线信息,确定所述第三车道线信息。
  11. 如权利要求7-10任一项所述的装置,其特征在于,所述第一车道线信息包括第一车道线数量、第一车道线种类、车道线曲直类型中的至少一个。
  12. 如权利要求7-11任一所述的装置,其特征在于,所述第二车道线信息包括第二车道线数量、第二车道线种类、车道线横向偏移、车道线的朝向、车道线的曲率、车道线曲率的导数中的至少一个。
  13. 一种车道线信息的确定装置,其特征在于,包括处理器,用于与存储器相连,调用所述存储器中存储的程序,以执行如权利要求1-6任一所述的方法。
  14. 一种车道线信息的确定装置,其特征在于,处理器和存储器,其中,所述存储器用于存储计算机可执行指令,当所述处理器执行所述计算机可执行指令时,使所述装置执行如权利要求1-6任一所述的方法。
  15. 一种车载系统,其特征在于,包括如权利要求7-12任一所述的装置。
  16. 一种存储介质,其特征在于,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得处理器执行如权利要求1-6任一所述的方法。
PCT/CN2020/101452 2019-09-09 2020-07-10 一种车道线信息的确定方法及装置 WO2021047275A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20862576.4A EP4024007A4 (en) 2019-09-09 2020-07-10 METHOD AND APPARATUS FOR DETERMINING LANE LINE INFORMATION
US17/690,066 US20220196408A1 (en) 2019-09-09 2022-03-09 Lane Line Information Determining Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910863626.8A CN112461257A (zh) 2019-09-09 2019-09-09 一种车道线信息的确定方法及装置
CN201910863626.8 2019-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/690,066 Continuation US20220196408A1 (en) 2019-09-09 2022-03-09 Lane Line Information Determining Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021047275A1 true WO2021047275A1 (zh) 2021-03-18

Family

ID=74807608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101452 WO2021047275A1 (zh) 2019-09-09 2020-07-10 一种车道线信息的确定方法及装置

Country Status (4)

Country Link
US (1) US20220196408A1 (zh)
EP (1) EP4024007A4 (zh)
CN (1) CN112461257A (zh)
WO (1) WO2021047275A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105829A1 (en) * 2021-06-15 2022-12-21 Nio Technology (Anhui) Co., Ltd Lane line determination method and system, vehicle, and storage medium
EP4125061A1 (en) * 2021-07-30 2023-02-01 Nio Technology (Anhui) Co., Ltd Road model generation method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204867A1 (zh) * 2021-03-29 2022-10-06 华为技术有限公司 一种车道线检测方法及装置
CN113758501A (zh) * 2021-09-08 2021-12-07 广州小鹏自动驾驶科技有限公司 检测地图中的异常车道线的方法和可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150025789A1 (en) * 2013-07-16 2015-01-22 Honda Research Institute Europe Gmbh Technique for lane assignment in a vehicle
CN105197014A (zh) * 2014-06-30 2015-12-30 现代自动车株式会社 用于识别车辆的行驶车道的装置和方法
CN105698812A (zh) * 2016-01-15 2016-06-22 武汉光庭科技有限公司 一种自动驾驶中基于安全驾驶地图和两侧摄像头的车道线检测系统及其方法
CN105973245A (zh) * 2016-04-28 2016-09-28 百度在线网络技术(北京)有限公司 利用无人驾驶车辆更新在线地图的方法和装置
CN107021104A (zh) * 2017-04-21 2017-08-08 天津英创汇智汽车技术有限公司 一种车道识别补偿方法和装置
CN107499310A (zh) * 2017-08-17 2017-12-22 广州大学 基于车联网和车载道路识别的车道保持辅助方法及系统
CN108303103A (zh) * 2017-02-07 2018-07-20 腾讯科技(深圳)有限公司 目标车道的确定方法和装置
CN109766878A (zh) * 2019-04-11 2019-05-17 深兰人工智能芯片研究院(江苏)有限公司 一种车道线检测的方法和设备
CN109829351A (zh) * 2017-11-23 2019-05-31 华为技术有限公司 车道信息的检测方法、装置及计算机可读存储介质
CN110174113A (zh) * 2019-04-28 2019-08-27 福瑞泰克智能系统有限公司 一种车辆行驶车道的定位方法、装置及终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10796569B2 (en) * 2016-01-26 2020-10-06 Mitsubishi Electric Corporation Vehicle determination apparatus, vehicle determination method, and computer readable medium
EP3843001A1 (en) * 2016-07-21 2021-06-30 Mobileye Vision Technologies Ltd. Crowdsourcing and distributing a sparse map, and lane measurements for autonomous vehicle navigation
CN107643086B (zh) * 2016-07-22 2021-04-13 北京四维图新科技股份有限公司 一种车辆定位方法、装置及系统
WO2020004817A1 (ko) * 2018-06-26 2020-01-02 에스케이텔레콤 주식회사 차선 정보 검출 장치, 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨 프로그램을 저장하는 컴퓨터 판독가능한 기록매체
KR102611927B1 (ko) * 2018-07-11 2023-12-08 르노 에스.아.에스. 주행 환경 정보의 생성 방법, 운전 제어 방법, 주행 환경 정보 생성 장치
CN109189796B (zh) * 2018-08-20 2020-10-13 武汉中海庭数据技术有限公司 高精度地图数据管理方法及装置
US11073831B2 (en) * 2018-10-17 2021-07-27 Baidu Usa Llc Autonomous driving using a standard navigation map and lane configuration determined based on prior trajectories of vehicles
CN109816980A (zh) * 2019-02-20 2019-05-28 东软睿驰汽车技术(沈阳)有限公司 一种确定车辆所处车道的方法及相关装置
CN113538919B (zh) * 2019-03-11 2022-10-28 百度在线网络技术(北京)有限公司 车道偏离识别方法、装置、设备和存储介质
CN109931944B (zh) * 2019-04-02 2021-12-07 阿波罗智联(北京)科技有限公司 一种ar导航方法、装置、车端设备、服务端及介质
WO2020220182A1 (zh) * 2019-04-29 2020-11-05 深圳市大疆创新科技有限公司 一种车道线检测方法、装置、控制设备及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150025789A1 (en) * 2013-07-16 2015-01-22 Honda Research Institute Europe Gmbh Technique for lane assignment in a vehicle
CN105197014A (zh) * 2014-06-30 2015-12-30 现代自动车株式会社 用于识别车辆的行驶车道的装置和方法
CN105698812A (zh) * 2016-01-15 2016-06-22 武汉光庭科技有限公司 一种自动驾驶中基于安全驾驶地图和两侧摄像头的车道线检测系统及其方法
CN105973245A (zh) * 2016-04-28 2016-09-28 百度在线网络技术(北京)有限公司 利用无人驾驶车辆更新在线地图的方法和装置
CN108303103A (zh) * 2017-02-07 2018-07-20 腾讯科技(深圳)有限公司 目标车道的确定方法和装置
CN107021104A (zh) * 2017-04-21 2017-08-08 天津英创汇智汽车技术有限公司 一种车道识别补偿方法和装置
CN107499310A (zh) * 2017-08-17 2017-12-22 广州大学 基于车联网和车载道路识别的车道保持辅助方法及系统
CN109829351A (zh) * 2017-11-23 2019-05-31 华为技术有限公司 车道信息的检测方法、装置及计算机可读存储介质
CN109766878A (zh) * 2019-04-11 2019-05-17 深兰人工智能芯片研究院(江苏)有限公司 一种车道线检测的方法和设备
CN110174113A (zh) * 2019-04-28 2019-08-27 福瑞泰克智能系统有限公司 一种车辆行驶车道的定位方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024007A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105829A1 (en) * 2021-06-15 2022-12-21 Nio Technology (Anhui) Co., Ltd Lane line determination method and system, vehicle, and storage medium
EP4125061A1 (en) * 2021-07-30 2023-02-01 Nio Technology (Anhui) Co., Ltd Road model generation method and device

Also Published As

Publication number Publication date
CN112461257A (zh) 2021-03-09
EP4024007A1 (en) 2022-07-06
US20220196408A1 (en) 2022-06-23
EP4024007A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2021047275A1 (zh) 一种车道线信息的确定方法及装置
US9180814B2 (en) Vehicle rear left and right side warning apparatus, vehicle rear left and right side warning method, and three-dimensional object detecting device
US10139818B2 (en) Visual communication system for autonomous driving vehicles (ADV)
WO2021098211A1 (zh) 一种路况信息的监测方法及装置
CN110867132B (zh) 环境感知的方法、装置、电子设备和计算机可读存储介质
US9694747B2 (en) Method and system for providing a collision alert
WO2022134364A1 (zh) 车辆的控制方法、装置、系统、设备及存储介质
WO2018018940A1 (zh) 车辆定位的方法、装置、终端及计算机存储介质
WO2021155685A1 (zh) 一种更新地图的方法、装置和设备
WO2022147758A1 (zh) 一种盲区告警区域的确定方法及装置
US10565871B2 (en) Method and device for requesting for road right
US20200108835A1 (en) Server, information processing method, and non-transitory storage medium storing program
US20200207351A1 (en) Method and apparatus for testing ramp driving performance, and storage medium
JP2019211416A (ja) 運転支援装置
US20200262449A1 (en) Alarming method, device, server and system for dangerous road behavior
WO2023025007A1 (zh) 车辆避让方法、装置、车载设备及存储介质
JP7119197B2 (ja) 車線属性検出
WO2021185104A1 (zh) 一种车道线信息确定方法及装置
WO2021189385A1 (zh) 一种目标检测方法以及装置
US20230358547A1 (en) Map matching method and apparatus, electronic device and storage medium
JP2007212418A (ja) 車載レーダ装置
WO2021217669A1 (zh) 一种目标检测方法及装置
JP6185327B2 (ja) 車両後側方警報装置、車両後側方警報方法および他車両距離検出装置
US20210035451A1 (en) Platooning controller, system including the same, and method thereof
WO2020107176A1 (zh) 一种障碍物检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020862576

Country of ref document: EP

Effective date: 20220329