WO2020107176A1 - 一种障碍物检测方法及装置 - Google Patents

一种障碍物检测方法及装置 Download PDF

Info

Publication number
WO2020107176A1
WO2020107176A1 PCT/CN2018/117505 CN2018117505W WO2020107176A1 WO 2020107176 A1 WO2020107176 A1 WO 2020107176A1 CN 2018117505 W CN2018117505 W CN 2018117505W WO 2020107176 A1 WO2020107176 A1 WO 2020107176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
obstacle
main sensor
echo
distance
Prior art date
Application number
PCT/CN2018/117505
Other languages
English (en)
French (fr)
Inventor
郑佳
李维
吴祖光
周鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880093375.3A priority Critical patent/CN112105953B/zh
Priority to PCT/CN2018/117505 priority patent/WO2020107176A1/zh
Publication of WO2020107176A1 publication Critical patent/WO2020107176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00

Definitions

  • the present application relates to the technical field of ultrasonic detection, in particular to an obstacle detection method and device.
  • the embodiments of the present application provide an obstacle detection method and device, which are used to improve the accuracy of obstacle boundary detection.
  • an obstacle detection method includes: receiving a first echo signal from a primary sensor and a second echo signal from at least one secondary sensor, the first echo signal being received by the primary sensor
  • the ultrasonic signal sent by the main sensor is an echo signal after being reflected by an obstacle
  • the second echo signal is an echo signal received by at least one auxiliary sensor after the ultrasonic signal sent by the main sensor is reflected by the obstacle
  • the array includes a primary sensor and at least one secondary sensor; the first distance between the primary sensor and the obstacle is determined according to the first echo signal of the primary sensor, and the secondary sensor is determined based on the second echo signal of each secondary sensor The second distance between the obstacles; according to the first distance, the second distance, the position of the main sensor and the detection angle of the main sensor, determine the position of the obstacle.
  • the mode between each sensor and the obstacle is determined by the mode of multiple transmission (that is, the main sensor sends an ultrasonic signal, and the main sensor and at least one auxiliary sensor receive the echo signal after the ultrasonic signal is reflected by the obstacle) Distance, thereby avoiding interference between adjacent sensors and reducing detection errors.
  • the obstacle is determined by combining the distance between the main sensor and the auxiliary sensor and the obstacle, and the position of the main sensor and the detection angle of the main sensor The position of the object, thereby improving the detection angle resolution and the accuracy of obstacle boundary detection.
  • the method further includes: determining the position of the parking space according to the positions of the obstacles on both sides of the parking space. In the foregoing possible implementation manners, when the vehicle is at a high speed or a low speed, the accuracy of the parking space detection can be improved.
  • a distance is set between any two adjacent sensors in the sensor array.
  • the aftershock interference of the ultrasonic signal can be effectively reduced or avoided, thereby reducing the detection error.
  • determining the position of the obstacle according to the first distance, the second distance, the position of the main sensor, and the detection angle of the main sensor includes: according to the first distance, the main sensor Position of the main sensor and the detection angle of the main sensor to determine the echo boundary of the obstacle; modify the echo boundary according to the second distance to obtain the boundary truncation points at both ends of the echo boundary, the echo boundary and the boundary truncation The point is used to determine the position of the obstacle.
  • correcting the echo boundary of the obstacle determined by the first distance through the second distance can improve the detection angle resolution, and thereby improve the accuracy of obstacle boundary detection.
  • determining the echo boundary of the obstacle according to the first distance, the position of the main sensor, and the detection angle of the main sensor includes: using the position of the main sensor as the center of the circle, the main The detection angle of the sensor is taken as the fan arc and the first distance is taken as the radius, and the formed echo arc is determined as the echo boundary of the obstacle.
  • the method before receiving the first echo signal from the main sensor and the second echo signal from at least one auxiliary sensor, the method further includes: sending control information to the sensor array, The control information is used to instruct the main sensor to send the ultrasonic signal, and instruct the main sensor and at least one auxiliary sensor to receive the echo signal after the ultrasonic signal is reflected by the obstacle.
  • the control information is used to instruct the main sensor to send the ultrasonic signal, and instruct the main sensor and at least one auxiliary sensor to receive the echo signal after the ultrasonic signal is reflected by the obstacle.
  • an obstacle detection device including a receiving unit for receiving a first echo signal from a main sensor and a second echo signal from at least one auxiliary sensor, the first echo The signal is the echo signal received by the main sensor after the ultrasonic signal sent by the main sensor is reflected by the obstacle, and the second echo signal is the ultrasonic signal received by the at least one auxiliary sensor and sent by the main sensor by the obstacle
  • the sensor array includes a main sensor and at least one auxiliary sensor; a determination unit for determining the first distance between the main sensor and the obstacle according to the first echo signal of the main sensor, and according to each The second echo signal of the auxiliary sensor determines the second distance between the auxiliary sensor and the obstacle; the determination unit is also used to determine the first distance, the second distance, the position of the main sensor and the detection angle of the main sensor The location of the obstacle.
  • the determination unit is further configured to determine the position of the parking space according to the positions of the obstacles on both sides of the parking space.
  • the determination unit is further configured to: determine the echo boundary of the obstacle according to the first distance, the position of the main sensor, and the detection angle of the main sensor; The echo boundary is corrected to obtain boundary truncation points at both ends of the echo boundary. The echo boundary and the boundary truncation point are used to determine the position of the obstacle.
  • the determination unit is further configured to: use the position of the main sensor as a center of the circle, the detection angle of the main sensor as the fan radian, and the first distance as the radius, and the formed echo arc is determined as The echo boundary of the obstacle.
  • the further device includes: a sending unit, configured to send control information to the sensor array, where the control information is used to instruct the main sensor to send an ultrasonic signal, and to indicate the main sensor and at least one auxiliary The sensor receives the echo signal after the ultrasonic signal is reflected by the obstacle.
  • an obstacle detection device including a processor and a memory, where code and data are stored in the memory, and the processor runs the code in the memory to cause the device to perform the first aspect or any of the first aspect Obstacle detection method provided by a possible implementation manner.
  • an on-vehicle device includes: a processor and a sensor array; wherein the sensor array includes a main sensor and at least one auxiliary sensor, and the processor is the second aspect or any possible implementation of the second aspect
  • the obstacle detection device provided by the method.
  • a distance is set between any two adjacent sensors in the sensor array.
  • a readable storage medium in which instructions are stored, and when the readable storage medium runs on a device, the device is allowed to perform the first aspect or any one of the first aspects
  • the obstacle detection method provided by the implementation is provided.
  • a computer program product is provided.
  • the computer program product runs on a computer, the computer is caused to execute the obstacle detection method provided by the first aspect or any possible implementation manner of the first aspect.
  • the device, computer storage medium, or computer program product of any one of the obstacle detection methods provided above is used to perform the corresponding method provided above. Therefore, for the beneficial effects it can achieve, refer to the above The beneficial effects of the provided corresponding methods will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart 1 of an obstacle detection method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a first distance and a second distance provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram 1 of an echo boundary provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a boundary truncation point of an echo boundary provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 2 of an echo boundary provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a position of an obstacle provided by an embodiment of the present application.
  • FIG. 8 is a second schematic flowchart of an obstacle detection method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a parking space provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 1 of an obstacle detection device according to an embodiment of the present application.
  • FIG. 11 is a second structural diagram of an obstacle detection device provided by an embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • At least one of the following or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the character "/" generally indicates that the related object is a "or” relationship.
  • the words “first” and “second” do not limit the number and the execution order.
  • FIG. 1 is a schematic structural diagram of a vehicle-mounted device provided by an embodiment of the present application.
  • the vehicle-mounted device may be applied to a vehicle.
  • the vehicle-mounted device may include a processor and at least one sensor array.
  • the processor may be a central processor unit, a general-purpose processor, a digital signal processor, a digital signal processor, a microcontroller or a microprocessor, or the like.
  • the processor may also include other hardware circuits or accelerators, such as application specific integrated circuits, field programmable gate arrays or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • At least one sensor array may include one or more sensor arrays (multiple sensor arrays may be connected in series through a local inter-connect (network) line), and the controller LAN bus (control area BUS, CAN-BUS) connection, so that the processor can communicate with at least one sensor array via LIN line and CAN-BUS.
  • Each sensor array may include multiple sensors, and one sensor of the multiple sensors may be used as a main sensor (for example, a sensor located in the middle of the sensor array is used as a main sensor), and the remaining sensors may be used as auxiliary sensors.
  • the sensor may be an automatic parking assistance (APA) sensor.
  • APA automatic parking assistance
  • at least one sensor array includes two APA arrays, the two APA arrays are respectively located on both sides of the vehicle, and each APA array includes 5 APA sensors as an example for description.
  • FIG. 2 is a schematic flowchart of an obstacle detection method provided by an embodiment of the present application.
  • the method can be applied to the vehicle-mounted device shown in FIG. 1, and can be specifically executed by a processor in the vehicle-mounted device. Referring to FIG. 2, the method It includes the following steps.
  • the processor receives the first echo signal from the main sensor and the second echo signal from at least one auxiliary sensor.
  • the sensor array may include a main sensor and at least one auxiliary sensor, and the at least one auxiliary sensor may include one or more auxiliary sensors.
  • the main sensor and the auxiliary sensor may have the same sensor parameters, for example, the detection angle and detection distance of the main sensor and the auxiliary sensor are the same.
  • the main sensor may be located in the middle of the sensor array.
  • the APA array shown in FIG. 1 above includes five APA sensors.
  • the sensor in the middle position may serve as the main sensor, and the remaining four sensors may serve as auxiliary sensors.
  • a distance is set between any two adjacent sensors in the sensor array, and the distance may be different when the sensor type, manufacturer, or sensor parameters are different, such as the APA array shown in FIG. 1
  • the distance between two adjacent sensors can be 30cm.
  • the first echo signal is an echo signal received by the main sensor after the ultrasonic signal sent by the main sensor is reflected by the obstacle
  • the second echo signal is sent by the main sensor and received by at least one auxiliary sensor
  • the echo signal after the ultrasonic signal is reflected by the obstacle, the sensor array includes a main sensor and at least one auxiliary sensor.
  • the method may further include: S200.
  • the processor sends control information to the sensor array, the control information is used to instruct the main sensor to send an ultrasonic signal, and instruct at least one auxiliary sensor in the main sensor and the sensor array to receive the echo signal after the ultrasonic signal is reflected by the obstacle .
  • the processor when the processor sends the control information to the sensor array, it can be implemented in several different ways, as described below.
  • the processor sends control information corresponding to the sensor to only one sensor at a time, and sends control information corresponding to different sensors by multiple times; for example, the processor sends the first control information to the main sensor, the first A piece of control information is used to instruct the main sensor to send an ultrasonic signal and receive the echo signal after the ultrasonic signal is reflected by the obstacle.
  • the processor sends second control information to each of the at least one auxiliary sensor. One auxiliary sensor corresponds to The second control information is used to instruct the secondary sensor to receive the echo signal after the ultrasonic signal is reflected by the obstacle.
  • the processor sends control information corresponding to the multiple sensors to multiple sensors at a time; for example, the processor sends control information including multiple fields to the sensor array, and different fields may be used to carry the sensor Control information corresponding to different sensors in the array, for example, at least one auxiliary sensor includes 4 auxiliary sensors, the control information includes 5 fields, the first field is used to instruct the main sensor to send an ultrasonic signal, and receive the ultrasonic signal is blocked For the echo signal reflected by the object, the second to fifth fields are used to instruct the four auxiliary sensors to receive the echo signal after the ultrasonic signal is reflected by the obstacle.
  • the processor sends the control information in the first and second ways at the same time; exemplarily, the processor sends the first control information to the main sensor, the first control information is used to instruct the main sensor to send ultrasonic Signal and receive the echo signal after the ultrasonic signal is reflected by the obstacle, the processor sends second control information including multiple fields to at least one auxiliary sensor, and different fields may be used to carry control information corresponding to different auxiliary sensors .
  • the processor sends the control information to the sensor array.
  • the main sensor may send an ultrasonic signal according to the control information corresponding to the main sensor in the control information, and receive the ultrasonic signal is blocked The echo signal after the object is reflected; each auxiliary sensor can receive the echo signal after the ultrasonic signal is reflected by the obstacle according to the corresponding control information in the control information.
  • the main sensor can send the received echo signal to the processor, and each auxiliary sensor can also send the respective received echo signal to the processor.
  • control information may also be used to indicate the frequency at which the main sensor sends ultrasonic signals.
  • the control information is used to instruct the main sensor to send ultrasonic signals at a fixed frequency.
  • the main sensor can send the ultrasonic signal according to the frequency indicated by the control information, and the main sensor and the auxiliary sensor can also receive the echo signal after the ultrasonic signal is reflected by the obstacle according to a certain frequency, and will The echo signals received by each are sent to the processor.
  • the processor may receive the first echo signal from the main sensor and the second echo signal from the at least one auxiliary sensor after a fixed time delay.
  • the processor may also receive echo signals from each sensor at a certain frequency, that is, the processor Within a period of time, multiple frames of echo signals (ie, multiple first echo signals) from the primary sensor and multiple frames of echo signals (ie, multiple second echo signals) from each secondary sensor can be received.
  • S202 The processor determines the first distance between the main sensor and the obstacle according to the first echo signal of the main sensor, and determines the auxiliary sensor and the obstacle according to the second echo signal of each auxiliary sensor The second distance between.
  • a second distance is determined according to the second echo signal of the auxiliary sensor; when at least one auxiliary sensor includes multiple auxiliary sensors, the second distance is determined according to the multiple auxiliary sensors.
  • the two echo signals determine that multiple second distances are obtained, that is, one auxiliary sensor corresponds to one second distance.
  • the ultrasonic signal is relative to the primary sensor and at least For a secondary sensor, the travel time to reach the obstacle is the same (that is, the time that the ultrasonic signal reaches the echo point of each sensor at the obstacle is the same, and the echo point here can refer to the starting point of the echo signal ), the return time of each echo signal received by each sensor relative to the obstacle is different due to the position of the sensor (ie, the distance between each sensor and the obstacle is different).
  • the label 0 is used to indicate the main sensor
  • the label 1 to label 4 are used to indicate the four auxiliary sensors as an example.
  • the time and return time can be shown in Table 1 below.
  • T 0 , T 1 , T 2 , T 3 and T 4 in Table 1 respectively represent the sum of the outbound time and the return time corresponding to the sensors labeled 0-label 4 (that is, the total round trip time).
  • R 2 C*(T 2 -T 0 /2)
  • R 3 C*(T 3 -T 0 /2)
  • R 4 C*(T 4 -T 0 /2)
  • the corresponding first distance R 0 and four second distances R 1 , R 2 , R 3 and R 4 may be as shown in FIG. 3.
  • the processor when the processor receives the multi-frame echo signals from the main sensor and the multi-frame echo signals from each auxiliary sensor within a period of time, the processor can determine the Multiple first distances and multiple second distances corresponding to each secondary sensor.
  • S203 The processor determines the position of the obstacle according to the first distance, the second distance, the position of the main sensor, and the detection angle of the main sensor.
  • the processor can determine the echo boundary of the obstacle according to the first distance, the position of the main sensor and the detection angle of the main sensor; modify the echo boundary according to the second distance to obtain the echo boundary two The boundary cutoff point at the end, the echo boundary and the boundary cutoff point are used to determine the position of the obstacle.
  • the processor may establish a grid coordinate system, the origin of the grid coordinate system may be the center point of the vehicle on which the vehicle-mounted device is installed, and the position of the main sensor may include the coordinates of the main sensor in the grid coordinate system Position and elevation angle of the main sensor.
  • the processor may use the position of the main sensor as the center of the circle, the detection angle of the main sensor as the sector arc, and the first distance as the radius
  • the elevation angle of the main sensor is used to determine the direction of the arc of the sector, so that the formed echo arc can be determined as the echo boundary of the obstacle.
  • the coordinate position of the main sensor in the grid coordinate system is (X 0 , Y 0 ) as an example for description.
  • the echo boundary can be expressed by (x i , y i ) in the following formula (1), R 0 in the formula (1) represents the first distance, and (X 0 , Y 0 ) represents the main sensor’s Coordinate position, Represents the detection angle of the main sensor, ⁇ represents the resolution of the grid coordinate system, Means round down.
  • each secondary sensor in at least one secondary sensor is represented as (X j , Y j ), and the second distance corresponding to each secondary sensor is represented as R j .
  • the value range of j is 1 to N, and N is the number of at least one auxiliary sensor, then the echo boundary can be modified according to the following formulas (2) and (3) to obtain the boundary truncation points at both ends of the echo boundary.
  • (X jh , y jh ) in formula (2) represents the corresponding value of (x i , y i ) when formula (2) takes the minimum value (the value of k at this time is h), step is the same as the above formula ( The steps in 1) are consistent.
  • the processor may also determine the position of the obstacle according to the foregoing manner through a plurality of first distances determined within a period of time and a plurality of second distances corresponding to each auxiliary sensor.
  • the processor determines the echo boundary corresponding to each first distance in the plurality of first distances in the manner of determining the echo boundary described above, and the corresponding multiple echo boundaries may be as shown in FIG. 6 for
  • Each echo boundary determines the boundary truncation point according to the above, and the boundary of the obstacle determined by each echo boundary and the corresponding boundary truncation point may be as shown in FIG. 7.
  • the method further includes: S204.
  • S204 The processor determines the position of the parking space according to the positions of the obstacles on both sides of the parking space.
  • the processor may determine the location of the parking space according to the positions of obstacles on both sides of the parking space. For example, if the positions of two obstacles determined by the processor are as shown in FIG. 9, that is, the processor determines the positions of obstacles (ie vehicles) on both sides of a parking space, and between the two obstacles The distance is greater than or equal to the width of the parking space, then the processor can determine the position between the two obstacles as the location of the parking space.
  • the processor performs a mode of controlling the sensor array to use a multi-send (that is, the main sensor sends an ultrasonic signal, and the main sensor and at least one auxiliary sensor receive the echo signal after the ultrasonic signal is reflected by the obstacle) Signal detection and determine the distance between each sensor and the obstacle, thereby avoiding interference between adjacent sensors and reducing detection errors, while using the second distance to the obstacle determined by the first distance
  • the wave boundary is corrected to obtain the position of the obstacle, thereby improving the detection angle resolution and the accuracy of obstacle boundary detection.
  • the position of the parking space can be accurately and effectively determined, and the accuracy of the parking space detection is improved.
  • the vehicle-mounted device includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the functional module of the obstacle detection device according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 10 shows a schematic structural diagram of an obstacle detection device involved in the foregoing embodiment.
  • the device may be a chip or a processing device, including: a receiving unit 1001 and Determination unit 1002.
  • the receiving unit 1001 is used to support the device to execute S201 in the above method embodiment
  • the determining unit 1002 is used to support the device to execute S202, S203 in the above method embodiment, and/or other devices used in the technology described herein process.
  • the determining unit 1002 is also used to support the device to execute S204 in the foregoing method embodiment.
  • the device further includes: a sending unit 1003; wherein, the sending unit 1003 is used to support the device to execute S200 in the foregoing method embodiment. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the above determination unit 1002 may be a processor
  • the sending unit 1003 may be a transmitter
  • the receiving unit 1001 may be a receiver.
  • the receiver and the transmitter may be integrated into a transceiver, and the transceiver may also be called Communication Interface.
  • FIG. 11 is a schematic structural diagram of another obstacle detection apparatus according to an embodiment of the present application.
  • the apparatus may be a chip or a processing device, including: a memory 1101 and a processor 1102.
  • the memory 1101 is used to store the program code and data of the device
  • the processor 1102 is used to control and manage the operation of the device shown in FIG. 11, for example, the processor 1102 is used to support the device to execute the above method embodiment.
  • the device shown in FIG. 11 may further include a communication interface 1103, and the communication interface 1103 is used to support the device to execute S200 and S201 in the foregoing method embodiments.
  • the processor 1102 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a processing chip, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof . It can implement or execute various, for example, logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the processor 1102 may also be a combination that realizes a computing function, for example, includes one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication interface 1103 may be a transceiver, a transceiver circuit, or a transceiver interface.
  • the memory 1101 may be a volatile memory, a non-volatile memory, or the like.
  • the communication interface 1103, the processor 1102, and the memory 1101 are connected to each other through a bus 1104;
  • the bus 1104 may be a peripheral component interconnection standard (English: Peripheral Component Interconnect, PCI) bus or an extended industry standard structure (English: Extended Industry Standard) Architecture. , EISA) bus and so on.
  • the bus 1104 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the memory 1101 may be included in the processor 1102.
  • An embodiment of the present application also provides a vehicle-mounted device.
  • the structure of the vehicle-mounted device may be as shown in FIG. 1 above.
  • the device includes: a processor and a sensor array; where the sensor array includes a main sensor and at least one auxiliary sensor, the processor may The obstacle detection device provided in any one of the above-mentioned FIG. 10 or FIG. 11.
  • a distance is set between any two adjacent sensors in the sensor array.
  • the processor performs a mode of controlling the sensor array to use a multi-send (that is, the main sensor sends an ultrasonic signal, and the main sensor and at least one auxiliary sensor receive the echo signal after the ultrasonic signal is reflected by the obstacle) Signal detection and determine the distance between each sensor and the obstacle, thereby avoiding interference between adjacent sensors and reducing detection errors, while using the second distance to the obstacle determined by the first distance
  • the wave boundary is corrected to obtain the position of the obstacle, thereby improving the detection angle resolution and the accuracy of obstacle boundary detection.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a division of logical functions.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed in multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application may essentially be part of or contribute to the existing technology, or all or part of the technical solutions may be embodied in the form of software products, which are stored in a storage medium
  • several instructions are included to enable the terminal to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种障碍物检测方法及装置,涉及超声波检测技术领域,用于提高障碍物边界检测的精确度。该方法包括:接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号(S201),第一回波信号为主传感器接收的在主传感器发送的超声波信号被障碍物反射后的回波信号,第二回波信号为至少一个辅传感器接收的在主传感器发送的该超声波信号被障碍物反射后的回波信号;根据主传感器的第一回波信号确定主传感器与障碍物之间的第一距离,根据每个辅传感器的第二回波信号确定该辅传感器与障碍物之间的第二距离(S202);根据第一距离、第二距离、主传感器的位置和主传感器的探测角度,确定障碍物的位置(S203)。

Description

一种障碍物检测方法及装置 技术领域
本申请涉及超声波检测技术领域,尤其涉及一种障碍物检测方法及装置。
背景技术
随着社会的不断发展,汽车的数量日益增多,由泊车入位造成的交通事故也逐渐增多,因此人们对泊车时的安全性和操作便捷性提出了更高的要求,希望有种装置能够解决汽车泊车给人们带来的不便,消除驾驶中的不安全因素。因此,市场上也出现了很多以泊车入位功能为主的车载装置。
目前,现有技术中以泊车入位功能为主的车载装置大都是采用单个超声波传感器通过自发自收的模式进行泊车位的检测,存在着检测角度分辨率低、障碍物边界检测误差大以及虚警率高等问题。
发明内容
本申请的实施例提供一种障碍物检测方法及装置,用于提高障碍物边界检测的精确度。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种障碍物检测方法,该方法包括:接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号,第一回波信号为主传感器接收的在主传感器发送的超声波信号被障碍物反射后的回波信号,第二回波信号为至少一个辅传感器接收的在主传感器发送的所述超声波信号被所述障碍物反射后的回波信号,传感器阵列包括主传感器和至少一个辅传感器;根据主传感器的第一回波信号确定主传感器与所述障碍物之间的第一距离,以及根据每个辅传感器的第二回波信号确定辅传感器与所述障碍物之间的第二距离;根据第一距离、第二距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的位置。上述技术方案中,通过一发多收(即主传感器发送超声波信号,主传感器和至少一个辅传感器接收该超声波信号被障碍物反射后的回波信号)的模式确定每个传感器与障碍物之间的距离,从而避免了相邻传感器之间的干扰,降低了检测误差,同时结合主传感器和辅传感器与障碍物之间的距离、以及主传感器的位置和主传感器的探测角度,确定所述障碍物的位置,从而提高了检测角度分辨率和障碍物边界检测的精确度。
在第一方面的一种可能的实现方式中,该方法还包括:根据泊车位两侧的所述障碍物的位置,确定泊车位的位置。上述可能的实现方式中,在车辆处于高速或者低速情况下,均能够提高泊车位检测的精确度。
在第一方面的一种可能的实现方式中,传感器阵列中任意相邻的两个传感器之间设置有间距。上述可能的实现方式中,通过合理地设置相邻两个传感器之间的间距,能够有效减小或避免超声波信号的余震干扰,从而降低检测误差。
在第一方面的一种可能的实现方式中,根据第一距离、第二距离、主传感器的位 置和主传感器的探测角度,确定所述障碍物的位置,包括:根据第一距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的回波边界;根据第二距离对该回波边界进行修正,得到该回波边界两端的边界截断点,该回波边界和该边界截断点用于确定所述障碍物的位置。上述可能的实现方式中,通过第二距离对利用第一距离确定得到的所述障碍物的回波边界进行修正,能够提高检测角度分辨率,进而提高障碍物边界检测的精确度。
在第一方面的一种可能的实现方式中,根据第一距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的回波边界,包括:将主传感器的位置作为圆心、主传感器的探测角度作为扇面弧度和第一距离作为半径,形成的回波弧线确定为所述障碍物的回波边界。上述可能的实现方式中,提供了一种简单有效的确定所述障碍物的回波边界的方式。
在第一方面的一种可能的实现方式中,在接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号之前,该方法还包括:向传感器阵列发送控制信息,该控制信息用于指示主传感器发送所述超声波信号、以及指示主传感器和至少一个辅传感器接收所述超声波信号被所述障碍物反射后的回波信号。上述可能的实现方式中,通过控制传感器阵列采用一发多收的模式,能够避免相邻传感器之间的干扰,从而降低检测误差。
第二方面,提供一种所述障碍物检测装置,该装置包括:接收单元,用于接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号,第一回波信号为主传感器接收的在主传感器发送的超声波信号被障碍物反射后的回波信号,第二回波信号为至少一个辅传感器接收的在主传感器发送的所述超声波信号被所述障碍物反射后的回波信号,传感器阵列包括主传感器和至少一个辅传感器;确定单元,用于根据主传感器的第一回波信号确定主传感器与所述障碍物之间的第一距离,以及根据每个辅传感器的第二回波信号确定辅传感器与所述障碍物之间的第二距离;确定单元,还用于根据第一距离、第二距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的位置。
在第二方面的一种可能的实现方式中,确定单元还用于:根据泊车位两侧的所述障碍物的位置,确定泊车位的位置。
在第二方面的一种可能的实现方式中,确定单元还用于:根据第一距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的回波边界;根据第二距离对该回波边界进行修正,得到该回波边界两端的边界截断点,该回波边界和该边界截断点用于确定所述障碍物的位置。
在第二方面的一种可能的实现方式中,确定单元还用于:将主传感器的位置作为圆心、主传感器的探测角度作为扇面弧度和第一距离作为半径,形成的回波弧线确定为所述障碍物的回波边界。
在第二方面的一种可能的实现方式中,该还装置包括:发送单元,用于向传感器阵列发送控制信息,该控制信息用于指示主传感器发送超声波信号、以及指示主传感器和至少一个辅传感器接收所述超声波信号被障碍物反射后的回波信号。
第三方面,提供一种所述障碍物检测装置,该装置包括处理器和存储器,存储器中 存储代码和数据,处理器运行存储器中的代码使得该装置执行第一方面或者第一方面的任一种可能的实现方式所提供的障碍物检测方法。
第四方面,提供一种车载装置,该装置包括:处理器和传感器阵列;其中,传感器阵列包括主传感器和至少一个辅传感器,处理器为第二方面或者第二方面的任一种可能的实现方式所提供的障碍物检测装置。
在第四方面的一种可能的实现方式中,传感器阵列中任意相邻的两个传感器之间设置有间距。
本申请的又一方面,提供一种可读存储介质,可读存储介质中存储有指令,当可读存储介质在设备上运行时,使得设备执行第一方面或者第一方面的任一种可能的实现方式所提供的障碍物检测方法。
本申请的又一方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面或者第一方面的任一种可能的实现方式所提供的障碍物检测方法。
可以理解地,上述提供的任一种障碍物检测方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种车载装置的结构示意图;
图2为本申请实施例提供的一种障碍物检测方法的流程示意图一;
图3为本申请实施例提供的一种第一距离和第二距离的示意图;
图4为本申请实施例提供的一种回波边界的示意图一;
图5为本申请实施例提供的一种回波边界的边界截断点的示意图;
图6为本申请实施例提供的一种回波边界的示意图二;
图7为本申请实施例提供的一种障碍物的位置的示意图;
图8为本申请实施例提供的一种障碍物检测方法的流程示意图二;
图9为本申请实施例提供的一种泊车位的示意图;
图10为本申请实施例提供的一种障碍物检测装置的结构示意图一;
图11为本申请实施例提供的一种障碍物检测装置的结构示意图二。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a、b和c可以是单个,也可以是多个。字符“/”一般表示前后关联对象是一种“或”的关系。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数量和执行次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不 应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
图1为本申请实施例提供的一种车载装置的结构示意图,该车载装置可应用于车辆上,该车载装置可以包括:处理器和至少一个传感器阵列。其中,处理器可以是中央处理器单元、通用处理器、数字信号处理器、数字信号处理器、微控制器或微处理器等。进一步的,处理器还可以包括其他硬件电路或加速器,如专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
至少一个传感器阵列可以包括一个或者多个传感器阵列(多个传感器阵列可以通过局域互联网(local inter-connect network,LIN)线串联),LIN线与处理器之间可以通过控制器局域网总线(control area network BUS,CAN-BUS)连接,从而处理器可通过LIN线和CAN-BUS与至少一个传感器阵列通信。其中,每个传感器阵列可以包括多个传感器,且多个传感器中的一个传感器可以作为主传感器(比如,将位于传感器阵列中间的传感器作为主传感器),其余的传感器可以作为辅传感器。该传感器可以是泊车辅助(auto parking assist,APA)传感器。图1中以至少一个传感器阵列包括两个APA阵列,两个APA阵列分别位于车辆的两侧,每个APA阵列包括5个APA传感器为例进行说明。
图2为本申请实施例提供的一种障碍物检测方法的流程示意图,该方法可应用于上述图1所示的车载装置,具体可以由车载装置中的处理器执行,参见图2,该方法包括以下几个步骤。
S201:处理器接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号。
其中,传感器阵列可以包括主传感器和至少一个辅传感器,至少一个辅传感器可以包括一个或者多个辅传感器。主传感器和辅传感器可以具有相同的传感器参数,比如,主传感器和辅传感器的探测角度和探测距离等均相同。主传感器可以位于该传感器阵列的中间,比如上述图1所示的APA阵列包括5个APA传感器,位于中间位置的传感器可以作为主传感器,其余4个传感器可以作为辅传感器。可选的,传感器阵列中任意相邻的两个传感器之间设置有间距,且当传感器的型号、生产厂家或传感器参数等不同时,该间距也可以不同,比如以图1所示的APA阵列为例,相邻的两个传感器之间的间距可以为30cm。在本申请实施例中,第一回波信号为主传感器接收的在主传感器发送的超声波信号被障碍物反射后的回波信号,第二回波信号为至少一个辅传感器接收的在主传感器发送的所述超声波信号被所述障碍物反射后的回波信号,传感器阵列包括主传感器和至少一个辅传感器。
进一步的,如图2所示,在S201之前,该方法还可以包括:S200。
S200:该处理器向传感器阵列发送控制信息,该控制信息用于指示主传感器发送超声波信号、以及指示主传感器和传感器阵列中的至少一个辅传感器接收该超声波信号被障碍物反射后的回波信号。
可选的,该处理器向传感器阵列发送该控制信息时,可以通过以下几种不同的方式实现,具体如下所述。
第一种、该处理器一次仅向一个传感器发送该传感器对应的控制信息,通过多次来完成不同传感器对应的控制信息的发送;示例性的,处理器向主传感器发送第一控制信息,第一控制信息用于指示主传感器发送超声波信号,并接收该超声波信号被障碍物反射后的回波信号,处理器向至少一个辅传感器中的每个辅传感器发送第二控制信息,一个辅传感器对应的第二控制信息用于指示该辅传感器接收该超声波信号被障碍物反射后的回波信号。
第二种、该处理器一次向多个传感器发送该多个传感器对应的控制信息;示例性的,处理器向该传感器阵列发送包括多个字段的控制信息,不同的字段可以用于承载该传感器阵列中不同的传感器对应的控制信息,比如,至少一个辅传感器包括4个辅传感器,该控制信息包括5个字段,第1个字段用于指示主传感器发送超声波信号,并接收该超声波信号被障碍物反射后的回波信号,第2-第5个字段分别用于指示4个辅传感器接收该超声波信号被障碍物反射后的回波信号。
第三种、该处理器同时通过上述第一种方式和第二种方式发送该控制信息;示例性的,处理器向主传感器发送第一控制信息,第一控制信息用于指示主传感器发送超声波信号,并接收该超声波信号被障碍物反射后的回波信号,处理器向至少一个辅传感器发送包括多个字段的第二控制信息,不同的字段可以用于承载不同的辅传感器对应的控制信息。
具体的,该处理器向传感器阵列发送该控制信息,当该传感器阵列接收到该控制信息时,主传感器可以根据该控制信息中主传感器对应的控制信息发送超声波信号,并接收该超声波信号被障碍物反射后的回波信号;每个辅传感器可以根据该控制信息中各自对应的控制信息接收该超声波信号被障碍物反射后的回波信号。之后,主传感器可以将接收到的回波信号发送给处理器,每个辅传感器也可以将各自接收到的回波信号发送给处理器。
可选的,该控制信息还可以用于指示主传感器发送超声波信号的频率,比如,该控制信息用于指示主传感器按照某一固定频率发送超声波信号。相应的,当主传感器发送超声波信号时,主传感器可以根据该控制信息指示的频率发送超声波信号,同时主传感器和辅传感器也可以按照一定频率接收超声波信号被障碍物反射后的回波信号,并将各自接收到的回波信号发送给处理器。
相应的,当该处理器向传感器阵列发送控制信息之后,该处理器可以延迟固定时间后接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号。可选的,当主传感器和辅传感器按照一定频率接收和发送超声波信号被所述障碍物反射后的回波信号时,该处理器也可以按照一定频率接收来自各个传感器的回波信号,即处理器在一段时间内可以接收到来自主传感器的多帧回波信号(即多个第一回波信号)、以及来自每个辅传感器的多帧回波信号(即多个第二回波信号)。
S202:该处理器根据主传感器的第一回波信号确定主传感器与所述障碍物之间的第一距离,以及根据每个辅传感器的第二回波信号确定该辅传感器与所述障碍物之间的第二距离。
其中,当至少一个辅传感器包括一个辅传感器时,根据该辅传感器的第二回波信号确定得到一个第二距离;当至少一个辅传感器包括多个辅传感器时,根据该多个辅传感器的第二回波信号确定得到多个第二距离,即一个辅传感器对应一个第二距离。由于主传感器的第一回波信号和至少一个辅传感器的第二回波信号都是主传感器发送的超声波信号被障碍物反射后的回波信号,则可以认为该超声波信号相对于主传感器和至少一个辅传感器,达到障碍物的去程时间是相同的(即认为该超声波信号到达每个传感器在障碍物处的回波点的时间相同,这里的回波点可以是指回波信号的起始点),每个传感器各自接收的回波信号相对于障碍物的返程时间由于传感器的位置不同而不同(即每个传感器与障碍物之间的距离不同)。
比如,以图1所示的5个APA传感器的标号分别为0-4,标号0用于表示主传感器,标号1-标号4用于表示4个辅传感器为例,每个传感器对应的去程时间和返程时间可以如下表1所示,每个传感器距离障碍物的距离可以通过R=C*t确定,C表示超声波信号的传播速率,t表示传感器对应的返程时间。表1中的T 0、T 1、T 2、T 3和T 4分别表示标号0-标号4的传感器对应的去程时间与返程时间之和(即往返总时间),标号0的主传感器与障碍物之间的第一距离可以表示为R 0=C*(T 0/2),标号1-标号4的辅传感器与障碍物之间的第二距离可以分别表示为R 1=C*(T 1-T 0/2)、R 2=C*(T 2-T 0/2)、R 3=C*(T 3-T 0/2)和R 4=C*(T 4-T 0/2),对应的第一距离R 0、四个第二距离R 1、R 2、R 3和R 4可以如图3所示。
表1
Figure PCTCN2018117505-appb-000001
进一步的,当该处理器在一段时间内接收到来自主传感器的多帧回波信号、以及来自每个辅传感器的多帧回波信号时,该处理器根据上述方式可以确定得到该段时间内的多个第一距离和每个辅传感器对应的多个第二距离。
S203:该处理器根据第一距离、第二距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的位置。
其中,该处理器可以根据第一距离、主传感器的位置和主传感器的探测角度,确定所述障碍物的回波边界;根据第二距离对该回波边界进行修正,得到该回波边界两端的边界截断点,该回波边界和该边界截断点用于确定所述障碍物的位置。
可选的,该处理器可以建立栅格坐标系,该栅格坐标系的原点可以是安装有车载装置的车辆的中心点,主传感器的位置可以包括主传感器在该栅格坐标系中的坐标位置和主传感器的仰角。具体的,如图4所示,当该处理器确定所述障碍物的回波边界时,该处理器可以将主传感器的位置作为圆心、主传感器的探测角度作为扇面弧度、第一距离作为半径,主传感器的仰角用于确定该扇面弧度的方向,从而形成的回波弧线可以确定为所述障碍物的回波边界。图4中以主传感器在该栅格坐标系中的坐标位置为(X 0,Y 0)为例进行说明。
示例性的,该回波边界可以通过如下公式(1)中的(x i,y i)表示,公式(1)中的R 0表示第一距离,(X 0,Y 0)表示主传感器的坐标位置,
Figure PCTCN2018117505-appb-000002
表示主传感器的探测角度,η表示该栅格坐标系的分辨率,
Figure PCTCN2018117505-appb-000003
表示向下取整。
Figure PCTCN2018117505-appb-000004
在根据第二距离对该回波边界进行修正时,假设至少一个辅传感器中每个辅传感器的位置表示为(X j,Y j),每个辅传感器对应的第二距离表示为R j,j的取值范围为1至N,N为至少一个辅传感器的数量,则可以根据如下公式(2)和(3)对该回波边界进行修正,得到该回波边界两端的边界截断点可以分别表示为(x L,y L)和(x R,y R),(x L,y L)用于表示左边的截断点,(x R,y R)用于表示右边的截断点。公式(2)中的(x jh,y jh)表示在公式(2)取最小值时对应的(x i,y i)的值(此时k的取值为h),step与上述公式(1)中的step一致。
Figure PCTCN2018117505-appb-000005
Figure PCTCN2018117505-appb-000006
示例性的,结合图4所示的该回波边界的示意图,假设按照上述公式(2)和(3)得到该回波边界两端的边界截断点(x L,y L)和(x R,y R)如图5所示,则该回波边界中位于边界截断点(x L,y L)和(x R,y R)之间的部分用于确定所述障碍物的位置,即图5中以L-R表示的弧线用于确定所述障碍物的位置。
进一步的,该处理器还可以通过一段时间内确定的多个第一距离和每个辅传感器对应的多个第二距离按照上述方式确定所述障碍物的位置。示例性的,该处理器按照上述确定回波边界的方式确定多个第一距离中每个第一距离对应的回波边界,则对应得到的多个回波边界可以如图6所示,针对每个回波边界按照上述确定边界截断点,每个回波边界和对应的边界截断点确定的障碍物的边界可以如图7所示。
进一步的,参见图8,在S203之后,该方法还包括:S204。
S204:该处理器根据泊车位两侧的所述障碍物的位置,确定泊车位的位置。
当该处理器在进行泊车位检测时,该处理器可以根据泊车位两侧的障碍物的位置确定该泊车位的位置。比如,若该处理器确定的两个障碍物的位置如图9所示,即该处理器确定了某一泊车位相邻两侧的障碍物(即车辆)的位置,且两个障碍物之间的距离大于或等于泊车位的宽度,则该处理器可以确定两个障碍物之间的位置为泊车位的位置。
在本申请实施例中,处理器通过控制传感器阵列采用一发多收(即主传感器发送超声波信号,主传感器和至少一个辅传感器接收该超声波信号被障碍物反射后的回波信号)的模式进行信号检测,并确定每个传感器与障碍物之间的距离,从而避免了相邻传感器之间的干扰,降低了检测误差,同时利用第二距离、对第一距离确定的所述 障碍物的回波边界进行修正得到所述障碍物的位置,从而提高了检测角度分辨率和障碍物边界检测的精确度。此外,通过检测泊车位两侧的障碍物的位置,能够准确有效的确定泊车位的位置,提高了泊车位检测的精确度。
上述主要从车载装置的角度对本申请实施例提供的障碍物检测方法进行了介绍。可以理解的是,该车载装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对障碍物检测装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的一种障碍物检测装置的结构示意图,该装置可以为芯片或者处理设备,包括:接收单元1001和确定单元1002。其中,接收单元1001用于支持该装置执行上述方法实施例中的S201;确定单元1002用于支持该装置执行上述方法实施例中的S202、S203,和/或用于本文所描述的技术的其他过程。可选地,确定单元1002还用于支持该装置执行上述方法实施例中的S204。进一步的,该装置还包括:发送单元1003;其中,发送单元1003用于支持该装置执行上述方法实施例中的S200。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,上述确定单元1002可以为处理器,发送单元1003可以为发送器,接收单元1001可以为接收器,接收器和发送器可以集成为收发器,收发器也可以称为通信接口。
图11为本申请实施例所涉及的另一种障碍物检测装置的结构示意图,该装置可以为芯片或者处理设备,包括:存储器1101和处理器1102。其中,存储器1101用于存储该装置的程序代码和数据,处理器1102用于对图11所示的装置的动作进行控制管理,例如,处理器1102用于支持该装置执行上述方法实施例中的S202-S204,和/或用于本文所描述的技术的其他过程。可选的,图11所示的装置还可以包括通信接口1103,通信接口1103用于支持该装置执行上述方法实施例中的S200和S201。
其中,处理器1102可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,处理芯片、现场可编程门阵列或者其他可编程逻辑器件,晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种例如逻辑方框,模块和电路。处理器1102也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信接口1103可以是收发器、收发电路或收发接口等。存储器1101可以是易失性存储器或者非易失性存储器等。
例如,通信接口1103、处理器1102以及存储器1101通过总线1104相互连接;总线1104可以是外设部件互连标准(英文:Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,EISA)总线等。总线1104可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。可选地,存储器1101可以包括于处理器1102中。
本申请实施例还提供一种车载装置,该车载装置的结构可以参见上述图1所示,该装置包括:处理器和传感器阵列;其中,传感器阵列包括主传感器和至少一个辅传感器,处理器可以为上述图10或图11任一项所提供的障碍物检测装置。可选的,传感器阵列中任意相邻的两个传感器之间设置有间距。
在本申请实施例中,处理器通过控制传感器阵列采用一发多收(即主传感器发送超声波信号,主传感器和至少一个辅传感器接收该超声波信号被障碍物反射后的回波信号)的模式进行信号检测,并确定每个传感器与障碍物之间的距离,从而避免了相邻传感器之间的干扰,降低了检测误差,同时利用第二距离、对第一距离确定的所述障碍物的回波边界进行修正得到所述障碍物的位置,从而提高了检测角度分辨率和障碍物边界检测的精确度。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得终端执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种障碍物检测方法,其特征在于,所述方法包括:
    接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号,所述第一回波信号为所述主传感器接收的在所述主传感器发送的超声波信号被障碍物反射后的回波信号,所述第二回波信号为所述至少一个辅传感器接收的在所述主传感器发送的所述超声波信号被所述障碍物反射后的回波信号,传感器阵列包括所述主传感器和所述至少一个辅传感器;
    根据所述主传感器的第一回波信号确定所述主传感器与所述障碍物之间的第一距离,以及根据每个辅传感器的第二回波信号确定所述辅传感器与所述障碍物之间的第二距离;
    根据所述第一距离、所述第二距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据泊车位两侧的所述障碍物的位置,确定所述泊车位的位置。
  3. 根据权利要求1所述的方法,其特征在于,所述传感器阵列中任意相邻的两个传感器之间设置有间距。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据所述第一距离、所述第二距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的位置,包括:
    根据所述第一距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的回波边界;
    根据所述第二距离对所述回波边界进行修正,得到所述回波边界两端的边界截断点,所述回波边界和所述边界截断点用于确定所述障碍物的位置。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的回波边界,包括:
    将所述主传感器的位置作为圆心、所述主传感器的探测角度作为扇面弧度和所述第一距离作为半径,形成的回波弧线确定为所述障碍物的回波边界。
  6. 根据权利要求1-5任一所述的方法,其特征在于,在所述接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号之前,所述方法还包括:
    向所述传感器阵列发送控制信息,所述控制信息用于指示所述主传感器发送所述超声波信号、以及指示所述主传感器和所述至少一个辅传感器接收所述超声波信号被所述障碍物反射后的回波信号。
  7. 一种障碍物检测装置,其特征在于,所述装置包括:
    接收单元,用于接收来自主传感器的第一回波信号和来自至少一个辅传感器的第二回波信号,所述第一回波信号为所述主传感器接收的在所述主传感器发送的超声波信号被障碍物反射后的回波信号,所述第二回波信号为所述至少一个辅传感器接收的在所述主传感器发送的所述超声波信号被所述障碍物反射后的回波信号,传感器阵列包括所述主传感器和所述至少一个辅传感器;
    确定单元,用于根据所述主传感器的第一回波信号确定所述主传感器与所述障碍物之间的第一距离,以及根据每个辅传感器的第二回波信号确定所述辅传感器与所述障碍物之间的第二距离;
    所述确定单元,还用于根据所述第一距离、所述第二距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的位置。
  8. 根据权利要求7所述的装置,其特征在于,所述确定单元,还用于:
    根据泊车位两侧的所述障碍物的位置,确定所述泊车位的位置。
  9. 根据权利要求7或8所述的装置,其特征在于,所述确定单元,还用于:
    根据所述第一距离、所述主传感器的位置和所述主传感器的探测角度,确定所述障碍物的回波边界;
    根据所述第二距离对所述回波边界进行修正,得到所述回波边界两端的边界截断点,所述回波边界和所述边界截断点用于确定所述障碍物的位置。
  10. 根据权利要求9所述的装置,其特征在于,所述确定单元,还用于:
    将所述主传感器的位置作为圆心、所述主传感器的探测角度作为扇面弧度和所述第一距离作为半径,形成的回波弧线确定为所述障碍物的回波边界。
  11. 根据权利要求7-10任一项所述的装置,其特征在于,所述还装置包括:
    发送单元,用于向所述传感器阵列发送控制信息,所述控制信息用于指示所述主传感器发送超声波信号、以及指示所述主传感器和所述至少一个辅传感器接收所述超声波信号被障碍物反射后的回波信号。
  12. 一种障碍物检测装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储代码和数据,所述处理器运行所述存储器中的代码使得所述装置执行上述权利要求1-6任一项所述的障碍物检测方法。
  13. 一种车载装置,其特征在于,所述装置包括:处理器和传感器阵列;其中,传感器阵列包括主传感器和至少一个辅传感器,所述处理器为权利要求7-11任一项所述的障碍物检测装置。
  14. 根据权利要求13所述的车载装置,其特征在于,所述传感器阵列中任意相邻的两个传感器之间设置有间距。
  15. 一种可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述可读存储介质在设备上运行时,使得所述设备执行权利要求1-6任一项所述的障碍物检测方法。
  16. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-6任一项所述的障碍物检测方法。
PCT/CN2018/117505 2018-11-26 2018-11-26 一种障碍物检测方法及装置 WO2020107176A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093375.3A CN112105953B (zh) 2018-11-26 2018-11-26 一种障碍物检测方法及装置
PCT/CN2018/117505 WO2020107176A1 (zh) 2018-11-26 2018-11-26 一种障碍物检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117505 WO2020107176A1 (zh) 2018-11-26 2018-11-26 一种障碍物检测方法及装置

Publications (1)

Publication Number Publication Date
WO2020107176A1 true WO2020107176A1 (zh) 2020-06-04

Family

ID=70853344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117505 WO2020107176A1 (zh) 2018-11-26 2018-11-26 一种障碍物检测方法及装置

Country Status (2)

Country Link
CN (1) CN112105953B (zh)
WO (1) WO2020107176A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710863B (zh) * 2022-03-29 2023-09-05 惠州莫思特智照科技有限公司 一种智能感应控制方法和装置
CN116400362B (zh) * 2023-06-08 2023-08-08 广汽埃安新能源汽车股份有限公司 一种行车边界检测方法、装置、存储介质及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892249A (zh) * 2005-07-05 2007-01-10 李世雄 无控制盒的倒车雷达装置
JP2009264872A (ja) * 2008-04-24 2009-11-12 Nippon Soken Inc 物体検出装置
CN101887125A (zh) * 2010-06-24 2010-11-17 浙江海康集团有限公司 一种泊车辅助用倒车雷达测距定位方法及其系统
CN102141620A (zh) * 2011-01-06 2011-08-03 同致电子科技(厦门)有限公司 一种无主机泊车雷达系统总线控制与障碍物探测的方法
CN103969649A (zh) * 2014-04-23 2014-08-06 奇瑞汽车股份有限公司 一种倒车测距方法、装置及系统
CN104502916A (zh) * 2014-12-25 2015-04-08 苏州智华汽车电子有限公司 一种雷达倒车系统及其雷达倒车方法
CN107957583A (zh) * 2017-11-29 2018-04-24 江苏若博机器人科技有限公司 一种多传感器融合全天候快速无人车探测避障系统
CN108116406A (zh) * 2017-12-29 2018-06-05 广州优保爱驾科技有限公司 一种探头通用自动泊车系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028992A1 (de) * 2009-08-28 2011-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Position eines Hindernisses relativ zu einem Fahrzeug, insbesondere einem Kraftfahrzeug, zur Verwendung in einem Fahrerassistenzsystem des Fahrzeuges
CN105242276A (zh) * 2015-09-15 2016-01-13 清华大学苏州汽车研究院(吴江) 一种基于超声波传感器的泊车辅助系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892249A (zh) * 2005-07-05 2007-01-10 李世雄 无控制盒的倒车雷达装置
JP2009264872A (ja) * 2008-04-24 2009-11-12 Nippon Soken Inc 物体検出装置
CN101887125A (zh) * 2010-06-24 2010-11-17 浙江海康集团有限公司 一种泊车辅助用倒车雷达测距定位方法及其系统
CN102141620A (zh) * 2011-01-06 2011-08-03 同致电子科技(厦门)有限公司 一种无主机泊车雷达系统总线控制与障碍物探测的方法
CN103969649A (zh) * 2014-04-23 2014-08-06 奇瑞汽车股份有限公司 一种倒车测距方法、装置及系统
CN104502916A (zh) * 2014-12-25 2015-04-08 苏州智华汽车电子有限公司 一种雷达倒车系统及其雷达倒车方法
CN107957583A (zh) * 2017-11-29 2018-04-24 江苏若博机器人科技有限公司 一种多传感器融合全天候快速无人车探测避障系统
CN108116406A (zh) * 2017-12-29 2018-06-05 广州优保爱驾科技有限公司 一种探头通用自动泊车系统及方法

Also Published As

Publication number Publication date
CN112105953A (zh) 2020-12-18
CN112105953B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN109669451B (zh) 自主驾驶支持设备及方法
EP3699888A1 (en) Interaction method and apparatus between vehicles
EP3888985B1 (en) Lane changing method and system for autonomous vehicles, and vehicle
US11161547B2 (en) Parking assistance device
US10282994B2 (en) Wireless communication apparatus and method for supporting vehicle-to-vehicle wireless communication
US20200108833A1 (en) Path generation apparatus at intersection, and method and apparatus for controlling vehicle at intersection
WO2021047275A1 (zh) 一种车道线信息的确定方法及装置
WO2022147758A1 (zh) 一种盲区告警区域的确定方法及装置
CN111699404B (zh) 行驶辅助目标获取方法与装置、雷达、行驶系统与车辆
WO2020107176A1 (zh) 一种障碍物检测方法及装置
JP2021526649A (ja) 超音波レーダアレイ、障害物検出方法、デバイス、記憶媒体、プログラム及びシステム
WO2021185104A1 (zh) 一种车道线信息确定方法及装置
WO2021189385A1 (zh) 一种目标检测方法以及装置
JP4644590B2 (ja) 周辺車両位置検出装置および周辺車両位置検出方法
CN110834626A (zh) 行车障碍预警方法、装置、车辆和存储介质
CN113581174B (zh) 一种车辆的障碍物定位方法及障碍物定位装置
JP6319211B2 (ja) 車々間通信による情報提供装置
EP3760518B1 (en) Method and device for autonomous driving control, vehicle, storage medium and electronic device
US11235775B2 (en) Method and device for determining the curve of a road
CN111210297B (zh) 一种上车点的划分方法及装置
CN112633124A (zh) 一种自动驾驶车辆的目标车判断方法及电子设备
JP2004199494A (ja) 車両用接触判断装置
WO2023122915A1 (zh) 一种车辆变道的预警方法及装置
WO2023206166A1 (zh) 目标检测方法及装置
US20240215788A1 (en) Collided position determination method, computer-readable storage medium, and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941928

Country of ref document: EP

Kind code of ref document: A1