WO2023000198A1 - 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法 - Google Patents

二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法 Download PDF

Info

Publication number
WO2023000198A1
WO2023000198A1 PCT/CN2021/107565 CN2021107565W WO2023000198A1 WO 2023000198 A1 WO2023000198 A1 WO 2023000198A1 CN 2021107565 W CN2021107565 W CN 2021107565W WO 2023000198 A1 WO2023000198 A1 WO 2023000198A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
mixture
oxalic acid
dioxalate borate
present
Prior art date
Application number
PCT/CN2021/107565
Other languages
English (en)
French (fr)
Inventor
张先林
沈鸣
李伟峰
杨志勇
Original Assignee
江苏华盛锂电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华盛锂电材料股份有限公司 filed Critical 江苏华盛锂电材料股份有限公司
Priority to CN202180100855.XA priority Critical patent/CN117897389A/zh
Priority to PCT/CN2021/107565 priority patent/WO2023000198A1/zh
Publication of WO2023000198A1 publication Critical patent/WO2023000198A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of synthesis of electrolyte additives for lithium ion batteries, and in particular relates to a preparation method of lithium dioxalate borate and a preparation method of lithium ion battery electrolyte.
  • Lithium-ion batteries have the advantages of high energy density, high output voltage, long cycle life, no memory effect, and low environmental pollution. They are the most attractive and potential secondary batteries. , Gradually expand and apply to the vehicle-mounted power lithium-ion lithium battery market, the market prospect is extremely broad.
  • Lithium-ion battery electrolyte one of the four key materials of lithium-ion batteries, is mainly composed of electrolyte and electrolyte, and the performance of the electrolyte plays a key role in the electrolyte and lithium-ion batteries.
  • Lithium hexafluorophosphate as the most mature electrolyte salt in commercialization, is widely used in lithium-ion battery electrolyte materials.
  • lithium hexafluorophosphate has the disadvantages of easy hydrolysis and poor thermal stability. It is prone to decomposition reaction to generate hydrofluoric acid, which will cause corrosion of lithium-ion battery electrode materials and attenuation of battery performance.
  • Lithium dioxalate borate (LiBOB), as a new electrolyte lithium salt, has good chemical properties and stability, and its thermal decomposition temperature can reach 300 °C. Lithium dioxalate borate can form a stable SEI film on the surface of the electrode material to prevent the solvation reaction of the electrode material. It has high electrical conductivity and a wide electrochemical window, which can improve the stability and safety of lithium-ion batteries. Extends lithium-ion battery life.
  • the preparation methods of lithium dioxalate borate are mainly solid-phase method and liquid-phase method, and the reaction raw materials all adopt oxalic acid, boric acid, lithium hydroxide or lithium carbonate, and generate lithium dioxalate borate under water or anhydrous.
  • lithium dioxalate borate easily absorbs water to form lithium dioxalate borate hydrate.
  • a partial hydrolysis reaction occurs. Described hydrolysis reaction is as follows:
  • the presence of water, the remaining raw materials of the reaction, and the intermediate reaction products all present a protonic acid type with strong acidic characteristics.
  • the product is easy to agglomerate and wrap.
  • the residues in the product such as iron, nickel and chromium will exceed the standard due to material corrosion, which requires cumbersome
  • the subsequent solvent extraction process repeated extraction or recrystallization to remove.
  • the present invention provides a kind of method for preparing lithium dioxalate borate, described method comprises:
  • step (2) moisture is removed from the reacted mixture.
  • the lithium dioxalate borate-containing product is dehydrated at a temperature of 150-250° C. to provide an anhydrous lithium dioxalate borate-containing product.
  • step (2) the reaction removes moisture from the reaction mixture under stirring conditions.
  • the method is carried out in a glass, glass-lined or nickel-based alloy container.
  • the oxalic acid compound includes anhydrous oxalic acid, oxalic acid hydrate or a mixture thereof.
  • the alkaline lithium salt includes lithium hydroxide, lithium hydroxide monohydrate, lithium carbonate, lithium bicarbonate, lithium acetate or a mixture of two or more thereof.
  • the boron-containing compound includes boric acid, metaboric acid or a mixture thereof.
  • the nickel-based alloy is selected from alloys of nickel and one or more of iron, zinc, copper, chromium, molybdenum and tungsten.
  • the present invention also provides a kind of method for preparing lithium-ion battery electrolyte, described method comprises:
  • the beneficial effect of the present invention is that: the method for preparing lithium dioxalate borate in the present invention can ensure that there is basically no side reaction and improve the yield. Moreover, the method can also reduce or eliminate the agglomeration and wrapping phenomenon of the product, and improve the purity of the product. In addition, the method can greatly reduce the residual metal ions in the product. Moreover, the product containing lithium dioxalate borate obtained by the method for preparing lithium dioxalate borate in the present invention is dissolved in the electrolyte solvent without purification, and is directly used as a lithium ion electrolyte after filtration.
  • Fig. 1 shows the solid-state NMR 11 B spectrum of lithium dioxalate borate prepared in a specific embodiment of the present invention.
  • Fig. 2 shows the Fourier transform infrared absorption spectrogram (FTIR) of lithium dioxalate borate prepared in a specific embodiment of the present invention.
  • FTIR Fourier transform infrared absorption spectrogram
  • the lithium dioxalate borate has the following structure:
  • the oxalic acid compound comprises the following structure:
  • the method for preparing lithium dioxalate borate comprises: providing a mixture comprising an oxalic acid compound, an alkaline lithium salt and a boron-containing compound.
  • the oxalate compound, the basic lithium salt, and the boron-containing compound are mixed, blended, and stirred simultaneously to provide the mixture.
  • the mixing, blending and agitation can be carried out by means of batch mixing, continuous mixing, mechanical mixing, gravity mixing and the like.
  • the equipment used for the above-mentioned mixing, blending and stirring can be well known to those of ordinary skill in the art, including but not limited to: coulter mixer, ribbon mixer, gravity-free mixer, V-shaped mixer, double-helix cone mixer machine, high and low speed liquid mixer, planetary power mixer, etc.
  • the mixture containing oxalic acid compound, basic lithium salt and boron-containing compound can °C, 50-160°C, 70-160°C, 90-160°C, 110-160°C, 130-160°C, 50-130°C, 70-130°C, 90-130°C, 110-130°C, 50-110°C
  • the reaction is carried out at a temperature of 70-110°C, 90-110°C, 50-90°C, 70-90°C or 50-70°C.
  • the mixture comprising the oxalic acid compound, the basic lithium salt and the boron-containing compound can be reacted at a temperature of 105-125°C.
  • the reaction can be carried out under the condition of stirring.
  • the stirring speed can be 100-600 rev/min (rpm), 100-500 rev/min, 100-400 rev/min, 100-200 rev/min, 200-600 rev/min (rpm), 200-500 revolutions per minute, 200-400 revolutions per minute, 400-600 revolutions per minute (rpm), 400-500 revolutions per minute, or 500-600 revolutions per minute (rpm).
  • the reaction time can be 6-48 hours, 6-36 hours, 6-24 hours, 6-12 hours, 12-48 hours, 12-36 hours, 12-24 hours, 24-48 hours, 24-36 hours, or 36-48 hours.
  • the reaction can be carried out in the absence of air or an inert atmosphere (eg, nitrogen, etc.).
  • an inert atmosphere eg, nitrogen, etc.
  • the reaction requires water harvesting, that is, removal of water from the reacting mixture.
  • the reaction can be carried out under normal pressure and negative pressure conditions. Carrying out the reaction under negative pressure conditions is conducive to quickly removing moisture from the reaction system.
  • the reaction may be performed under agitation to remove moisture from the reacted mixture.
  • the moisture content is 100-150 grams of water/minute/400 grams of oxalic acid compound, 100-125 grams of water/minute/400 grams of oxalic acid compound or 125-150 grams of water/minute/400 grams of oxalic acid compound
  • the speed is removed from the reaction system.
  • the ratio of the removed moisture to the total water in the reaction system is 90-98% by weight, 90-95% by weight, 90-93% by weight, 90-95% by weight, 90-93% by weight % or 93-95% by weight.
  • the remaining moisture can be removed in a subsequent dehydration operation.
  • the compound containing oxalic acid, the basic lithium salt and the boron-containing compound can be mixed and reacted in a stoichiometric ratio.
  • the oxalic acid compound includes anhydrous oxalic acid (C 2 H 2 O 4 ), oxalic acid hydrate (eg, oxalic acid dihydrate C 2 H 2 O 4 ⁇ 2H 2 O) or a mixture thereof.
  • the purity requirement of the oxalic acid compound is above 95%, above 96%, above 97%, above 98% or above 99%.
  • the alkaline lithium salt includes lithium hydroxide (LiOH), lithium hydroxide monohydrate (LiOH ⁇ H 2 O), lithium carbonate (Li 2 CO 3 ), lithium bicarbonate (LiHCO 3 ), lithium acetate or a mixture of two or more thereof.
  • LiOH lithium hydroxide
  • LiOH ⁇ H 2 O lithium hydroxide monohydrate
  • Li 2 CO 3 lithium carbonate
  • LiHCO 3 lithium bicarbonate
  • lithium acetate or a mixture of two or more thereof Usually, the purity requirement of the basic lithium salt is above 95%, above 96%, above 97%, above 98% or above 99%.
  • the content of lithium hydroxide is more than 56%.
  • the boron-containing compound includes boric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) or a mixture thereof.
  • the purity requirement of the boron-containing compound is above 95%, above 96%, above 97%, above 98% or above 99%.
  • reaction that comprises the mixture of lithium hydroxide, anhydrous oxalic acid and boric acid to prepare lithium dioxalate borate is as follows:
  • the product containing lithium dioxalate borate can be heated at 150-250°C, 180-250°C, 200-250°C, 230-250°C, 150-230°C, 180-230°C, 200-230°C , 150-200°C, 180-200°C or 150-180°C for dehydration.
  • the product containing lithium dioxalate borate can be dehydrated at a temperature of 150-200°C.
  • the present invention can provide a substantially anhydrous lithium dioxalate borate-containing product.
  • the term "substantially" means that the water content in the product is below 200ppm, 100ppm, or even below 50ppm.
  • the method is carried out in a glass, glass-lined or nickel-based alloy vessel (including a stirring device, etc., for example, the stirring device may be made of a nickel-based alloy).
  • a stirring device may be made of a nickel-based alloy. This can avoid the introduction of other metal ions due to friction between the reaction raw materials, stirring equipment, etc. and the reaction vessel during the stirring process, resulting in subsequent additional purification steps.
  • the nickel-based alloy is selected from alloys of nickel and one or more of iron, zinc, copper, chromium, molybdenum and tungsten.
  • the nickel-based alloy material includes, but is not limited to: nickel-copper alloy, nickel-zinc alloy, nickel-chromium alloy, nickel-molybdenum alloy, nickel-chromium-molybdenum alloy, nickel-chromium-molybdenum-copper alloy, and nickel-chromium-molybdenum-tungsten alloy Alloy etc.
  • the invention can also conveniently prepare the lithium ion battery electrolyte.
  • the lithium dioxalate borate prepared by the present invention can be directly dissolved in the electrolyte solvent without additional treatment such as purification, and the electrolyte solution that can be used for lithium-ion batteries can be directly obtained after filtration.
  • the product comprising lithium dioxalate borate formed by the reaction of the present invention has sufficient purity (for example, more than 95%, more than 96%, more than 97%, more than 98%, or more than 99%), and it can be obtained without additional treatment such as purification. In some cases, it is directly dissolved in the solvent of the electrolyte solution for lithium-ion batteries.
  • the solvent can be a solvent commonly used in the field of lithium-ion battery electrolyte, for example, a mixed solvent of the following three components: dimethyl carbonate with a mass ratio of 1:1:1: ethylene carbonate: ethyl methyl carbonate). Dissolve according to the concentration of 0.8 mol/l, filter to remove insoluble matter, and obtain a colorless transparent liquid, which is the lithium ion battery electrolyte.
  • the product containing lithium dioxalate borate obtained in the present invention can also be purified by solvent extraction to remove insoluble impurities to obtain a transparent liquid containing lithium dioxalate borate.
  • the clear liquid can be stripped of solvent to obtain lithium dioxalate borate as a solid.
  • the solvent may be selected from one or more of ethyl acetate, methyl acetate, acetonitrile, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, acetone, and tetrahydrofuran.
  • the oxalic acid compound, the boron-containing compound and the alkaline lithium salt are mechanically mixed in a container made of glass substrate or nickel-based alloy, and then the temperature is raised to react and collect water, followed by high-temperature dehydration, thereby producing Obtain anhydrous lithium borate dioxalate product.
  • the content of water and metal ions is very low, and it can be directly used as an electrolyte additive to be added to the lithium-ion electrolyte, avoiding the subsequent cumbersome solvent extraction or recrystallization process.
  • each reaction raw material is as follows:
  • Oxalic acid dihydrate purchased from Shandong Fengyuan Fine Materials Co., Ltd. or Anhui Dongfeng Chemical Co., Ltd.;
  • Lithium hydroxide monohydrate purchased from Sichuan Zhiyuan Lithium Industry Co., Ltd. or Chengdu Kaifei High Energy Chemical Industry Co., Ltd.
  • the moisture content was determined by non-interfering Karl Fischer coulometric titration based on N-methylformamide (W. Larsson, J. C. Panitz, A. Cedergren. Talanta, 2006, 69: 276-280).
  • the content of main metal impurity ions was determined by inductively coupled plasma atomic emission spectrometry (for example, JY/T015-1996 "General Rules for Inductively Coupled Plasma Atomic Emission Spectrometry").
  • the content of the metal impurity ions is lower than the industry standard required by the lithium-ion battery electrolyte.
  • the moisture in the lithium dioxalate borate solid was 76 ppm, and the purity of the lithium dioxalate borate was 99.15%. After calculation, the yield of lithium dioxalate borate is 97.51%.
  • the iron ion content in the lithium dioxalate borate solid is 0.4 ppm
  • the chromium ion content is 0.5 ppm
  • the nickel ion content is 0.6 ppm.
  • the moisture in the lithium dioxalate borate solid was 38 ppm, and the purity of the lithium dioxalate borate was 98.45%. After calculation, the yield of lithium dioxalate borate is 97.34%.
  • the iron ion content in the lithium dioxalate borate solid is 0.5 ppm
  • the chromium ion content is 0.6 ppm
  • the nickel ion content is 0.6 ppm.
  • lithium dioxalate borate solid After the reaction was completed, it was cooled to room temperature under the isolation of air, and 91.5 g of lithium dioxalate borate solid was obtained, wherein the water content was 235 ppm, the purity was 65.5%, and the yield was 61.85%.
  • the iron ion content in the lithium dioxalate borate solid is 1.5ppm
  • the chromium ion content is 1.2ppm
  • the nickel ion content is 0.3ppm.
  • lithium dioxalate borate 93.1 g
  • the iron ion content in the lithium dioxalate borate solid is 160ppm
  • the chromium ion content is 36ppm
  • the nickel ion content is 18ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本发明属于锂离子电池电解液添加剂合成领域,具体涉及一种二草酸硼酸锂的制备方法,所述方法包括:(1)提供包含草酸化合物、碱性锂盐和含硼化合物的混合物;(2)在50-200℃的温度下、使所述混合物进行反应,形成含有二草酸硼酸锂的产物;在步骤(2)中,将水分从反应的混合物中移出。本发明的方法可以确保基本无副反应,提高产率;减少或消除产品出现的结块和包裹现象,提高产品的纯度;并可以大大降低产品中残留的金属离子。

Description

二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法 技术领域
本发明属于锂离子电池电解液添加剂合成领域,具体涉及一种二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法。
技术背景
锂离子电池具有能量密度高、输出电压高、循环寿命长、无记忆效应、环境污染小等优点,是最具有吸引力和发展潜力的二次电池,随着锂电池各项材料技术提升与完善,逐步扩大并应用于车载动力锂离子锂电池市场,市场前景极为广阔。锂离子电池四大关键材料之一的锂离子电池电解液,其主要成分为电解质和电解液组成,其中电解质的性能对电解液及锂离子电池发挥着关键性的作用。
六氟磷酸锂作为目前商业化中最成熟的电解质盐,广泛应用锂离子电池电解液材料中。但是六氟磷酸锂存在着易水解,热稳定性较差等缺点,容易发生分解反应生成氢氟酸,会造成锂离子电池电极材料腐蚀及电池性能的衰减。
二草酸硼酸锂(LiBOB)作为一种新型电解质锂盐,具有良好的化学性能和稳定性能,其热分解温度可达300℃。二草酸硼酸锂能够在电极材料表面极形成稳定的SEI膜,防止电极材料的溶剂化反应,具有较高的电导率和较宽的电化学窗口,可提高锂离子电池的稳定性和安全性,延长锂离子电池使用寿命。
目前,二草酸硼酸锂的制备方法主要为固相法和液相法,反应原料均采用草酸、硼酸和氢氧化锂或碳酸锂,在有水或无水下生成二草酸硼酸锂。但是,二草酸硼酸锂易吸水,形成二草酸硼酸锂水合物。同时,在水的作用下,发生部分水解反应。所述水解反应如下:
LiB(C 2O 4) 2+2H 2O→LiBO 2+2H 2C 2O 4
LiB(C 2O 4) 2+3H 2O→LiOOCCOOH+H 3BO 3+H 2C 2O 4
其中,水的存在、反应剩余原材料以及中间反应产物均呈现较强酸性 特征的质子酸类型,同时在产品高温干燥环节中逐步移除水时,产品容易结块和包裹。而且,使用普通金属材质材料强力搅拌来克服产品在高温除水时出现的结块现象时,因其强质子酸存在,产品中如铁,镍及铬等离子因材料腐蚀造成残留超标,这需要繁琐的后续溶剂萃取工艺反复萃取或重结晶来去除。
目前,需要一种新颖的二草酸硼酸锂的制备方法,该方法可以大大避免现有技术中出现的水解等副反应,提高产率;可以避免因产品结块和包裹所导致的产品纯度低。此外,所述方法还可以大大降低产品中残留的金属离子。
发明内容
本发明示例实施方式的目的在于解决现有技术中存在的上述和其它的不足。
一方面,本发明提供一种制备二草酸硼酸锂的方法,所述方法包括:
(1)提供包含草酸化合物、碱性锂盐和含硼化合物的混合物;
(2)在50-200℃的温度下、使所述混合物进行反应,形成含有二草酸硼酸锂的产物;
在步骤(2)中,将水分从反应的混合物中移出。
在本发明实施方式中,在150-250℃的温度下,将所述含有二草酸硼酸锂的产物脱水,提供无水的含有二草酸硼酸锂的产物。
在本发明实施方式中,所述草酸化合物、碱性锂盐和含硼化合物的摩尔比为C 2O 4 2-∶Li∶B=(2-2.2)∶(1-1.1)∶1。
在本发明实施方式中,步骤(2)中,所述反应在搅拌条件下将水分从反应的混合物中移出。
在本发明实施方式中,所述方法在玻璃、搪玻璃或镍基合金容器中进行。
在本发明实施方式中,所述草酸化合物包括无水草酸、草酸水合物或者它们的混合物。
在本发明实施方式中,所述碱性锂盐包括氢氧化锂、氢氧化锂单水合物、碳酸锂、碳酸氢锂、乙酸锂或者它们两种或多种的混合物。
在本发明实施方式中,所述含硼化合物包括硼酸、偏硼酸或者它们的混合物。
在本发明实施方式中,所述镍基合金选自镍与铁、锌、铜、铬、钼及钨中一种或多种的合金。
另一方面,本发明还提供一种制备锂离子电池电解液的方法,所述方法包括:
(a)在无需提纯的情况下,将基本上无水的含有二草酸硼酸锂的产物直接溶于电解液溶剂中;和
(b)过滤,得到锂离子电池电解液。
本发明的有益效果在于:本发明制备二草酸硼酸锂的方法可以确保基本无副反应,提高产率。并且,该方法还可以减少或消除产品出现的结块和包裹现象,提高产品的纯度。此外,所述方法还可以大大降低产品中残留的金属离子。而且,本发明所述制备二草酸硼酸锂的方法所制得的含有二草酸硼酸锂的产物在无需提纯的情况下溶于电解液溶剂中,过滤后,直接作为锂离子电解液使用。
附图说明
通过结合附图对于本发明的示例性实施例进行描述,可以更好地理解本发明。在附图中,
图1显示了本发明具体实施方式中制得的二草酸硼酸锂的固体核磁 11B谱。
图2显示了本发明具体实施方式中制得的二草酸硼酸锂的傅立叶变换红外吸收光谱图(FTIR)。
具体实施方式
本发明将参考其示例性实施方式在下文中更全面地进行描述。对这些示例性实施方式进行描述以使本发明完备和完整,并能够向本领域技术人员完全地展示本发明的范围。实际上,本发明可以以许多不同的形式实施, 不应看作仅限于本文所述实施方式;并且,提供这些实施方式使得本发明可以满足适用的法律要求。
在本发明中,所述二草酸硼酸锂具有以下结构:
Figure PCTCN2021107565-appb-000001
在本发明中,所述草酸化合物包含以下结构:
Figure PCTCN2021107565-appb-000002
本发明中,制备二草酸硼酸锂的方法包括:提供包含草酸化合物、碱性锂盐和含硼化合物的混合物。在一些实施方式中,将草酸化合物、碱性锂盐和含硼化合物三者同时进行混合、掺混和搅拌,提供所述混合物。所述混合、掺混和搅拌可以采用分批混合、连续混合、机械混合、重力混合等方式进行。用于上述混合、掺混和搅拌的设备可以是本领域普通技术人员熟知的,包括但不限于:犁刀混合机、螺带混合机、无重力混合机、V型混合机、双螺旋锥形混合机、高低速液体混拌机、行星动力混合机等。
本发明中,所述包含草酸化合物、碱性锂盐和含硼化合物的混合物可以在50-200℃、70-200℃、90-200℃、110-200℃、130-200℃、160-200℃、50-160℃、70-160℃、90-160℃、110-160℃、130-160℃、50-130℃、70-130℃、90-130℃、110-130℃、50-110℃、70-110℃、90-110℃、50-90℃、70-90℃或50-70℃的温度下进行反应。在具体的实施方式中,所述包含草酸化合物、碱性锂盐和含硼化合物的混合物可以在105-125℃的温度下进行反应。
在本发明一些实施方式中,所述反应可以搅拌的条件下进行。通常,所述搅拌的速度可以是100-600转/分(rpm)、100-500转/分、100-400转/分、100-200转/分、200-600转/分(rpm)、200-500转/分、200-400转/分、400-600转/分(rpm)、400-500转/分、或500-600转/分(rpm)。
在本发明一些实施方式中,所述反应进行的时间可以6-48小时、6-36小 时、6-24小时、6-12小时、12-48小时、12-36小时、12-24小时、24-48小时、24-36小时或36-48小时。
在本发明一些实施方式中,所述反应可以在隔绝空气或惰性气氛(例如,氮气等)下进行。
本发明中,所述反应需要在采水的条件下,也就是说,将水分从反应的混合物中移出。在本发明一些实施方式中,所述反应可以在常压和负压条件下进行。在负压条件下进行反应有利于快速地将水分中所述反应系统中移出。在本发明实施方式中,所述反应可以在搅拌条件下将水分从反应的混合物中移出。
在本发明一些实施方式中,所述水分以100-150克水/分钟/400克草酸化合物、100-125克水/分钟/400克草酸化合物或125-150克水/分钟/400克草酸化合物的速度从反应系统中移出。在本发明一些实施方式中,移出的水分占所述反应系统中总水量的比例是90-98重量%、90-95重量%、90-93重量%、90-95重量%、90-93重量%或93-95重量%。通常,剩余的水分可以在后续的脱水操作中去除。
在本发明中,所述包含草酸化合物、碱性锂盐和含硼化合物可以化学计量比进行混合和反应。在一些实施方式中,所述草酸化合物、碱性锂盐和含硼化合物的摩尔比为C 2O 4 2-∶Li∶B=(2-2.2)∶(1-1.1)∶1、(2-2.1)∶(1-1.1)∶1或者(2-2.2)∶(1-1.05)∶1。在具体的实施方式中,所述草酸化合物、碱性锂盐和含硼化合物的摩尔比可以是C 2O 4 2-∶Li∶B=2.05∶1∶1。
在本发明实施方式中,所述草酸化合物包括无水草酸(C 2H 2O 4)、草酸水合物(例如,草酸二水合物C 2H 2O 4·2H 2O)或者它们的混合物。通常,所述草酸化合物的纯度要求是95%以上、96%以上、97%以上、98%以上或99%以上。
在本发明实施方式中,所述碱性锂盐包括氢氧化锂(LiOH)、氢氧化锂单水合物(LiOH·H 2O)、碳酸锂(Li 2CO 3)、碳酸氢锂(LiHCO 3)、乙酸锂或者它们两种或多种的混合物。通常,所述碱性锂盐的纯度要求是95%以上、96%以上、97%以上、98%以上或99%以上。针对氢氧化锂单水合物,所述氢氧化锂的含量为56%以上。
在本发明实施方式中,所述含硼化合物包括硼酸(H 3BO 3)、偏硼酸(HBO 2)或 者它们的混合物。通常,所述含硼化合物的纯度要求是95%以上、96%以上、97%以上、98%以上或99%以上。
在本发明一个具体实施方式中,包含氢氧化锂、无水草酸和硼酸的混合物制备二草酸硼酸锂的反应如下所示:
LiOH+2H 2C 2O 4+H 3BO 3→LiB(C 2O 4) 2+4H 2O。
在本发明中,所述含有二草酸硼酸锂的产物可以在150-250℃、180-250℃、200-250℃、230-250℃、150-230℃、180-230℃、200-230℃、150-200℃、180-200℃或150-180℃的温度下进行脱水。在具体的实施方式中,所述含有二草酸硼酸锂的产物可以在150-200℃的温度下进行脱水。通过脱水,本发明可以提供基本上无水的含有二草酸硼酸锂的产物。在本发明中,术语“基本上”是指产物中含水量低于200ppm、100ppm,甚至50ppm以下。
在本发明实施方式中,所述方法在玻璃、搪玻璃或镍基合金容器(包括搅拌装置等,例如,搅拌装置可以镍基合金材质)中进行。这可以避免搅拌过程中因反应原料、搅拌设备等与反应容器相互摩擦而引入的其它金属离子,导致后续额外的纯化步骤。
在本发明实施方式中,所述镍基合金选自镍与铁、锌、铜、铬、钼及钨中一种或多种的合金。在具体的实施方式中,所述镍基合金材料包括但不限定于:镍铜合金、镍锌合金、镍铬合金、镍钼合金、镍铬钼合金、镍铬钼铜合金以及镍铬钼钨合金等。
通过本发明制备的二草酸硼酸锂,本发明还可以方便地制备锂离子电池电解液。本发明制备的二草酸硼酸锂可以在无需提纯等额外处理的情况下,直接溶于电解液溶剂中,在过滤后直接得到可用于锂离子电池的电解液。
通过本发明所述反应形成包含二草酸硼酸锂的产物具有足够的纯度(例如,95%以上、96%以上、97%以上、98%以上或99%以上),其可以在无需提纯等额外处理的情况下直接溶于锂离子电池用电解液的溶剂中。所述溶剂可以锂离子电池电解液领域中常用的溶剂,例如,以下三种组分的混合溶剂:质量比为1∶1∶1的碳酸二甲酯∶碳酸乙烯酯∶碳酸甲乙酯)。依据0.8mol/l浓度进行溶解,过滤去除不溶解物,得到无色透明液体,即为锂离子电池电解液。
在本发明其它实施方式中,本发明得到含有二草酸硼酸锂的产物也可以使用溶剂萃取提纯,去除不溶解杂质,得到含有二草酸硼酸锂的透明液体。在进一步的实施方式中,该透明液体可以去除溶剂,得到二草酸硼酸锂固体。通过减压干燥,可以进一步脱除其中包裹的溶剂分子,得到无溶剂二草酸硼酸锂产品。所述溶剂可以选自乙酸乙酯、乙酸甲酯、乙腈、碳酸丙烯酯、碳酸二甲酯、碳酸甲乙酯、丙酮、四氢呋喃中一种或多种。
本发明中,在玻璃基材或镍基合金材质的容器中,将草酸化合物、含硼化合物与碱性锂盐进行机械混合,之后再升温反应并采水,后续进行高温脱水,由此可以制得无水二草酸硼酸锂产品。该产品中,水份和金属离子的含量均非常低,可以直接作为电解液添加剂配置到锂离子电解液中,避免了后续繁琐的溶剂萃取或重结晶工艺等。
实施例
下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件进行。除非另外说明,所有的百分比为重量百分比。
在实施例中,各反应原料如下:
草酸二水合物:购自山东丰元精细材料有限公司或安徽东风化工有限公司;
硼酸:购自美国硼砂集团(U.S.BORAX.INC);和
氢氧化锂一水合物:购自四川致远锂业有限公司或成都开飞高能化学工业有限公司。
<产物成分测定>
所得的产物经 11B固体核磁共振光谱以及傅立叶变换红外吸收光谱(FTIR)来检测。如图1和图2所示,证实本发明制备获得二草酸硼酸锂。
<水分含量的测定>
以基于N-甲基甲酰胺的无干涉卡尔费库仑滴定法(W.Larsson,J.C.Panitz,A.Cedergren.Talanta,2006,69:276-280)测定水分含量。
<金属离子的测定>
以电感耦合等离子体原子发射光谱分析法(例如,JY/T015-1996《感耦等离子原子发射光谱方法通则》)测定主要金属杂质离子的含量。在本发明中,金属杂质离子的含量均低于锂离子电池电解液要求的行业标准。
实施例1
将草酸二水合物126g(1mol)、硼酸30.9g(0.5mol)和氢氧化锂一水合物21g(0.5mol)进行机械混合,然后加入到带有镍-铬合金搅拌的三口玻璃烧瓶内。常压下,以150转/分钟的搅拌速度进行强力搅拌下,升温至110℃进行反应,在反应过程中采水53克。所得的反应物呈糊状,继续升温至150℃进行脱水,形成粉状产物。继续升温,在160℃继续快速搅拌脱水2小时,直至基本无水。脱水过程中,收集采出水26克。
接着,在隔绝空气下,产物冷却至室温,得到二草酸硼酸锂固体95.3g。
经测量,二草酸硼酸锂固体中水份为76ppm,二草酸硼酸锂的纯度为99.15%。经计算,二草酸硼酸锂的产率为97.51%。
而且,二草酸硼酸锂固体中铁离子含量为0.4ppm,铬离子含量为0.5ppm,以及镍离子含量为0.6ppm。
实施例2
将草酸二水合物138g(1.095mol)、硼酸30.9g(0.5mol)和氢氧化锂一水合物22g(0.524mol)进行机械混合,然后加入到带有镍-铬-钼合金搅拌的镍-铬-钼合金反应釜内。常压下,以150转/分钟的搅拌速度进行强力搅拌下,升温至115℃进行反应,在反应过程中采水57克。所得的反应物呈糊状,继续升温至155℃进行脱水,形成粉状产物。继续升温至180℃,继续快速搅拌脱水2小时,直至基本无水。脱水过程中,收集采出水27克。
接着,在隔绝空气下,产物冷却至室温,得到二草酸硼酸锂固体95.8g。
经测量,二草酸硼酸锂固体中水份为38ppm,二草酸硼酸锂的纯度为98.45%。经计算,二草酸硼酸锂的产率为97.34%。
而且,二草酸硼酸锂固体中铁离子含量为0.5ppm,铬离子含量为0.6ppm,以及镍离子含量为0.6ppm。
对比例1
将草酸二水合物126g(1.0mol)和硼酸30.9g(0.5mol)强力混合,升温至90-120℃采水,滴加氢氧化锂一水合物21g(0.5mol)的水溶液,加入到三口烧瓶(带包特氟龙涂层的搅拌装置)内,于110℃反应采水至糊状,继续升温至180-200℃瓶内呈块状,基本无水为止。
反应完毕,隔绝空气下冷却至室温,得到二草酸硼酸锂固体91.5g,其中,水份235ppm,纯度65.5%,收率61.85%。二草酸硼酸锂固体中铁离子含量为1.5ppm,铬离子含量为1.2ppm,镍离子含量为0.3ppm。
对比例2
将草酸二水合物126g(1.0mol)和硼酸30.9g(0.5mol)强力混合,升温至90-120℃采水,滴加氢氧化锂一水合物21g(0.5mol)的水溶液,加入到带有搅拌的304不锈钢釜内,于110℃反应采水至糊状,继续升温至180-200℃釜内呈块状,基本无水为止。
反应完毕,隔绝空气下冷却至室温,得到二草酸硼酸锂固体93.1g,水份187ppm,纯度63.2%,收率60.72%。二草酸硼酸锂固体中铁离子含量为160ppm,铬离子含量为36ppm,镍离子含量为18ppm。
应该理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种制备二草酸硼酸锂的方法,其特征在于,所述方法包括:
    (1)提供包含草酸化合物、碱性锂盐和含硼化合物的混合物;
    (2)在50-200℃的温度下、使所述混合物进行反应,形成含有二草酸硼酸锂的产物;
    在步骤(2)中,将水分从反应的混合物中移出。
  2. 根据权利要求1所述的方法,特征在于,在150-250℃的温度下,将所述含有二草酸硼酸锂的产物脱水,提供无水的含有二草酸硼酸锂的产物。
  3. 根据权利要求1所述的方法,特征在于,所述草酸化合物、碱性锂盐和含硼化合物的摩尔比为C 2O 4 2-∶Li∶B=(2-2.2)∶(1-1.1)∶1。
  4. 根据权利要求1所述的方法,特征在于,步骤(2)中,所述反应在搅拌条件下将水分从反应的混合物中移出。
  5. 根据权利要求1-4任一项所述的方法,特征在于,所述方法在玻璃、搪玻璃或镍基合金容器中进行。
  6. 根据权利要求1-4任一项所述的方法,特征在于,所述草酸化合物包括无水草酸、草酸水合物或者它们的混合物。
  7. 根据权利要求1-4任一项所述的方法,特征在于,所述碱性锂盐包括氢氧化锂、氢氧化锂单水合物、碳酸锂、碳酸氢锂、乙酸锂或者它们两种或多种的混合物。
  8. 根据权利要求1-4任一项所述的方法,特征在于,所述含硼化合物包括硼酸、偏硼酸或者它们的混合物。
  9. 根据权利要求5所述的方法,特征在于,所述镍基合金选自镍与铁、锌、铜、铬、钼及钨中一种或多种的合金。
  10. 一种制备锂离子电池电解液的方法,其特征在于,所述方法包括:
    (a)在无需提纯的情况下,将权利要求2所述方法制得的无水的含有二草酸硼酸锂的产物直接溶于电解液溶剂中;和
    (b)过滤,得到锂离子电池电解液。
PCT/CN2021/107565 2021-07-21 2021-07-21 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法 WO2023000198A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100855.XA CN117897389A (zh) 2021-07-21 2021-07-21 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法
PCT/CN2021/107565 WO2023000198A1 (zh) 2021-07-21 2021-07-21 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107565 WO2023000198A1 (zh) 2021-07-21 2021-07-21 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法

Publications (1)

Publication Number Publication Date
WO2023000198A1 true WO2023000198A1 (zh) 2023-01-26

Family

ID=84979693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107565 WO2023000198A1 (zh) 2021-07-21 2021-07-21 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法

Country Status (2)

Country Link
CN (1) CN117897389A (zh)
WO (1) WO2023000198A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914110A (zh) * 2010-07-21 2010-12-15 北京科技大学 一种采用流变相方法合成双草酸基硼酸锂的方法
CN102627661A (zh) * 2011-09-09 2012-08-08 兰州理工大学 双草酸硼酸锂的制备方法
KR101358682B1 (ko) * 2013-06-26 2014-02-07 주식회사 천보정밀 리튬 비스(옥살레이토)보레이트의 합성방법
CN105732682A (zh) * 2016-03-24 2016-07-06 洛阳和梦科技有限公司 硼酸锂基电解质固相生产方法
CN107602603A (zh) * 2017-10-13 2018-01-19 湖北省宏源药业科技股份有限公司 一种双草酸硼酸锂的制备方法
CN109232629A (zh) * 2018-11-28 2019-01-18 湖南科霸汽车动力电池有限责任公司 双草酸硼酸锂的制备方法
CN109608485A (zh) * 2018-12-29 2019-04-12 湖北省宏源药业科技股份有限公司 一种连续制备双草酸硼酸锂的方法
CN109734734A (zh) * 2018-12-18 2019-05-10 朝阳光达化工有限公司 一种二草酸硼酸锂的制备方法
CN111153918A (zh) * 2019-12-16 2020-05-15 山东石大胜华化工集团股份有限公司 一种双草酸硼酸锂的制备方法
CN111943970A (zh) * 2020-09-03 2020-11-17 江苏华盛锂电材料股份有限公司 一种二草酸硼酸锂的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914110A (zh) * 2010-07-21 2010-12-15 北京科技大学 一种采用流变相方法合成双草酸基硼酸锂的方法
CN102627661A (zh) * 2011-09-09 2012-08-08 兰州理工大学 双草酸硼酸锂的制备方法
KR101358682B1 (ko) * 2013-06-26 2014-02-07 주식회사 천보정밀 리튬 비스(옥살레이토)보레이트의 합성방법
CN105732682A (zh) * 2016-03-24 2016-07-06 洛阳和梦科技有限公司 硼酸锂基电解质固相生产方法
CN107602603A (zh) * 2017-10-13 2018-01-19 湖北省宏源药业科技股份有限公司 一种双草酸硼酸锂的制备方法
CN109232629A (zh) * 2018-11-28 2019-01-18 湖南科霸汽车动力电池有限责任公司 双草酸硼酸锂的制备方法
CN109734734A (zh) * 2018-12-18 2019-05-10 朝阳光达化工有限公司 一种二草酸硼酸锂的制备方法
CN109608485A (zh) * 2018-12-29 2019-04-12 湖北省宏源药业科技股份有限公司 一种连续制备双草酸硼酸锂的方法
CN111153918A (zh) * 2019-12-16 2020-05-15 山东石大胜华化工集团股份有限公司 一种双草酸硼酸锂的制备方法
CN111943970A (zh) * 2020-09-03 2020-11-17 江苏华盛锂电材料股份有限公司 一种二草酸硼酸锂的制备方法

Also Published As

Publication number Publication date
CN117897389A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP5870129B2 (ja) リチウムイオン二次電池の負極用粉末、およびその製造方法
EP2738861B1 (en) Method for producing lithium tetrafluoroborate solution
CN100593515C (zh) 一种无水四氟硼酸锂的制备方法
JP3970323B2 (ja) リチウム化リチウム酸化マンガンスピネルの改良された製造法
CN108640096B (zh) 一种二氟磷酸及二氟磷酸锂的制备方法
WO2023202093A1 (zh) 一种双氟磺酰亚胺锂的制备方法、锂离子电池
NO319152B1 (no) Sfaeroidisk agglomererte basiske kobolt(II)karbonater, sfaeroidisk agglomererte kobolt(II)hydroksider, samt fremgangsmate for fremstilling og anvendelse derav
KR20200049164A (ko) 매우 효율적인 리튬 비스(플루오로술포닐)이미드의 새로운 제조방법
CN112707418A (zh) 一种六氟磷酸锂的制备方法
CN106745282B (zh) 一种具有蛋黄‑蛋壳结构三氧化二锰的制备方法
WO2023134113A1 (zh) 双草酸硼酸锂的制备方法
WO2023000198A1 (zh) 二草酸硼酸锂的制备方法以及锂离子电池电解液的制备方法
CN109608485B (zh) 一种连续制备双草酸硼酸锂的方法
US20120164450A1 (en) Method for producing and treating nanosized doped zinc oxide particles
Masuya-Suzuki et al. Selective crystallization of dysprosium complex from neodymium/dysprosium mixture enabled by cooperation of coordination and crystallization
CN110683564B (zh) 一种含有六氟磷酸锂的混合物晶体及其应用
CN113929711A (zh) 一种二氟草酸硼酸锂的制备方法
CN109796481B (zh) 一种高温水相法制备的高纯双草酸硼酸锂及其应用
CN117199276A (zh) 碳包覆的富锂铁酸锂及其制备方法、正极补锂材料及应用
CN102167399B (zh) 一种蝴蝶结形三氧化二锑的制备方法
CN115557980B (zh) 一种双草酸硼酸钠的合成及提纯工艺
WO2023160101A1 (zh) 掺铝型针状四氧化三钴及其制备方法
CN115911357B (zh) 一种碳包覆铁酸锂材料的制备方法及其应用
CN115818592A (zh) 一种双氟磺酰亚胺钠的制备方法
JP3555720B2 (ja) ヘキサフルオロリン酸リチウムの付加化合物及びその製造方法並びにそれを用いた電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100855.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE