WO2022270966A1 - 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents
음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2022270966A1 WO2022270966A1 PCT/KR2022/009014 KR2022009014W WO2022270966A1 WO 2022270966 A1 WO2022270966 A1 WO 2022270966A1 KR 2022009014 W KR2022009014 W KR 2022009014W WO 2022270966 A1 WO2022270966 A1 WO 2022270966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- negative electrode
- resin
- alkali metal
- silicon
- Prior art date
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 56
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 32
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title abstract description 13
- 239000002923 metal particle Substances 0.000 claims abstract description 35
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 33
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 56
- 229910052710 silicon Inorganic materials 0.000 claims description 34
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- 239000006183 anode active material Substances 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 23
- 239000010703 silicon Substances 0.000 claims description 23
- 229910002804 graphite Inorganic materials 0.000 claims description 20
- 239000010439 graphite Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 229910052748 manganese Inorganic materials 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 17
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 16
- 229910052749 magnesium Inorganic materials 0.000 claims description 16
- 239000011856 silicon-based particle Substances 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 15
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 14
- 239000006182 cathode active material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 11
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000003792 electrolyte Substances 0.000 claims description 9
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 229910021382 natural graphite Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 5
- 238000013329 compounding Methods 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 4
- 230000000536 complexating effect Effects 0.000 claims description 4
- 229910003472 fullerene Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000011301 petroleum pitch Substances 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 238000001694 spray drying Methods 0.000 claims description 4
- 229910000676 Si alloy Inorganic materials 0.000 claims description 3
- 239000011300 coal pitch Substances 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 2
- 229930006000 Sucrose Natural products 0.000 claims description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 239000012461 cellulose resin Substances 0.000 claims description 2
- 239000007841 coal based oil Substances 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 239000000295 fuel oil Substances 0.000 claims description 2
- 239000007849 furan resin Substances 0.000 claims description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 claims description 2
- HAUKUGBTJXWQMF-UHFFFAOYSA-N lithium;propan-2-olate Chemical compound [Li+].CC(C)[O-] HAUKUGBTJXWQMF-UHFFFAOYSA-N 0.000 claims description 2
- 239000011302 mesophase pitch Substances 0.000 claims description 2
- 238000003801 milling Methods 0.000 claims description 2
- 239000011328 organic synthetic pitch Substances 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 229920006350 polyacrylonitrile resin Polymers 0.000 claims description 2
- 229920006122 polyamide resin Polymers 0.000 claims description 2
- 239000009719 polyimide resin Substances 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 239000011269 tar Substances 0.000 claims description 2
- 238000011282 treatment Methods 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 20
- -1 amorphous Chemical compound 0.000 description 17
- 238000000576 coating method Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 239000006258 conductive agent Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011255 nonaqueous electrolyte Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 238000004627 transmission electron microscopy Methods 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 239000011267 electrode slurry Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052795 boron group element Inorganic materials 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 239000012686 silicon precursor Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013705 LiNi 1-x Mn Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910017796 Sb Si—Y Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910020997 Sn-Y Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910008859 Sn—Y Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000006256 anode slurry Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910021475 bohrium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- NKCVNYJQLIWBHK-UHFFFAOYSA-N carbonodiperoxoic acid Chemical compound OOC(=O)OO NKCVNYJQLIWBHK-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PWRLWCQANJNXOR-UHFFFAOYSA-N dilithium chloro(dioxido)borane Chemical compound [Li+].[Li+].[O-]B([O-])Cl PWRLWCQANJNXOR-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000006051 mesophase pitch carbide Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910021481 rutherfordium Inorganic materials 0.000 description 1
- 229910021477 seaborgium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002409 silicon-based active material Substances 0.000 description 1
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- MDCWDBMBZLORER-UHFFFAOYSA-N triphenyl borate Chemical compound C=1C=CC=CC=1OB(OC=1C=CC=CC=1)OC1=CC=CC=C1 MDCWDBMBZLORER-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/06—Metal silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/01—Crystal-structural characteristics depicted by a TEM-image
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material, a method for producing the same, and a lithium secondary battery including the same. It relates to a lithium secondary battery including the same.
- Lithium Ion Battery has high energy density and is easy to design, so it is adopted and used as a major power supply source for mobile electronic devices. The range is getting wider.
- silicon-based anode materials have received a lot of attention because they have a very high energy density compared to currently commercialized graphite anode materials.
- the silicon-based negative electrode material has fatal disadvantages such as deterioration of electrochemical properties due to the formation of an unstable SEI layer due to side reactions between the silicon surface and the electrolyte, or crushing of the electrode material due to internal stress due to rapid volume expansion occurring during charging and discharging. has
- Patent Document 1 Korean Patent Publication No. 2019-0101807
- Patent Document 2 US Patent No. 8,158,282
- an object of the present invention is to provide an anode active material for a high-output secondary battery capable of stable charge/discharge behavior under high current density while having high capacity and high energy density.
- an object of the present invention is to provide an electrode and a lithium secondary battery including the negative electrode active material.
- One aspect of the present disclosure includes a core and a shell surrounding the core,
- the metal particles include at least one selected from the group consisting of Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn, and Ge,
- the alkali metal-containing material is represented by the following formula (1),
- An anode active material is provided.
- A is at least one selected from the group consisting of Li, Na and K;
- M is at least one selected from the group consisting of Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn, and Ge;
- Another aspect of the present application is to prepare an alkali metal-metal particle precursor by grinding and spray-drying the metal particles and the alkali metal precursor,
- the metal particles include at least one selected from Si, Al, Ti, Mn, Ni, Cu, V, Zr, Mn, Co, Fe, and Nb,
- the alkali metal precursor includes at least one selected from the group consisting of Li, Na and K,
- a method for producing a negative electrode active material is provided.
- Another aspect of the present application including the negative electrode active material,
- Another aspect of the present application is a negative electrode including the negative electrode active material
- It provides a lithium secondary battery comprising an electrolyte disposed between the negative electrode and the positive electrode.
- the negative electrode active material according to the present invention has an effect of providing a high-output secondary battery capable of stable charge/discharge behavior under high current density while having high capacity and high energy density.
- FIG. 1 is a schematic diagram showing an anode active material having a core-shell structure according to an embodiment of the present invention.
- Example 2 is a scanning electron microscope (SEM) photograph of the negative electrode active material according to Example 1 of the present invention.
- Example 3 is a transmission electron microscopy (TEM) photograph of the negative electrode active material according to Example 1 of the present invention.
- EDS 4 is an Energy Dispersive X-ray Spectroscopy (EDS) line scan analysis result of a cross section of an anode active material according to Example 1 of the present invention.
- EDS Energy Dispersive X-ray Spectroscopy
- the negative electrode active material includes a core and a shell surrounding the core, and includes metal particles coated with an alkali metal-containing material on all or part of the surface, wherein the metal particles It may include at least one selected from the group consisting of Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn, and Ge, and the alkali metal-containing material may be represented by Formula 1 below.
- A is at least one selected from the group consisting of Li, Na and K;
- M is at least one selected from the group consisting of Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn, and Ge;
- Part or all of the surface of the metal particle of the negative electrode active material may be coated with the alkali metal-containing material.
- the alkali metal-containing material may coat 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% of the surface of the metal particle.
- the degree of coating can be adjusted by changing process conditions during the preparation of the negative electrode active material.
- the metal particles coated with the alkali metal-containing material on the surface may be included in both the core and the shell, and the contents in the core and the shell may be adjusted by changing process conditions during manufacture.
- relatively more metal particles coated with the alkali metal-containing material may be included in the core than in the shell.
- the alkali metal-containing material coated on the surface of the metal particle has high ion conductivity, it is possible to improve the rate capability by facilitating the electrochemical reaction of the metal. In addition, the improved rate characteristics can improve high-rate charge-discharge and high-speed charge performance of the battery.
- the metal particles may be silicon (Si)-containing particles, and may be at least one selected from the group consisting of silicon particles, silicon oxide particles, silicon carbide particles, and silicon alloy particles.
- the silicon-containing particles may be represented by Formula 2 below.
- the silicon carbide may be SiC
- the silicon alloy may be, for example, a Si—Z alloy (where Z is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, or a rare earth element) And one or more elements selected from combinations thereof, but not Si).
- the average particle diameter (D50) of the silicon (Si)-containing particles may be 50 to 1,000 nm, preferably 600 to 900 nm.
- the average particle diameter of the silicon-containing particles exceeds 1,000 nm, high battery capacity may be obtained, but battery life may be very short, and when the average particle diameter of the silicon-containing particles is less than 50 nm, battery capacity and efficiency are lowered Manufacturing costs may be high.
- the size of the crystal grains of the metal particles may be 5 to 50 nm, preferably 10 to 20 nm.
- the crystal grain size of the metal particle is less than 5 nm, it may be advantageous in terms of battery life, but it is disadvantageous in realizing capacity, and when the crystal grain size exceeds 50 nm, manufacturing cost and life stability of the battery may be disadvantageous. .
- a in Chemical Formula 1 may be Li and y may be 1.
- the alkali metal containing material may be Li x M.
- the core may further include amorphous carbon
- the shell may include crystalline carbon
- the shell may be a carbon-based shell and may be mostly composed of crystalline carbon, and most of the carbon components added to the core may be amorphous carbon.
- the carbon-based shell may include a small amount of amorphous carbon
- the core may include a small amount of crystalline carbon
- the specific gravity of graphite may increase and the specific gravity of amorphous carbon may decrease as the distance from the center of the core increases.
- the added carbon component of the carbon-based shell and core may play a role of mitigating the volume expansion of the metal particles whose surfaces are entirely or partially coated with an alkali metal-containing material during charging and discharging.
- the amorphous carbon of the core may be positioned between metal particles whose surfaces are entirely or partially coated with alkali metal-containing materials and may surround metal particles whose surfaces are entirely or partially coated with alkali metal-containing materials. That is, the amorphous carbon may serve as a matrix, and may become a core in which metal particles coated with an alkali metal-containing substance on the whole or part of the surface are dispersed.
- pores may be formed in the core of the anode active material, and internal pores of the core may reduce initial irreversible capacity of the battery and help mitigate volume expansion of Si.
- the volume of the pores formed in the core may be 0.01 to 0.5 cc/g. As the distance from the center of the core increases, the specific gravity of the void may decrease.
- a method for producing an anode active material includes preparing an alkali metal-metal particle precursor by grinding and spray-drying metal particles and an alkali metal precursor; mixing and complexing the alkali metal-metal particle precursor, amorphous carbon and crystalline carbon; And a heat treatment step; may include.
- the metal particles include at least one selected from Si, Al, Ti, Mn, Ni, Cu, V, Zr, Mn, Co, Fe, and Nb, and the alkali metal precursor is a group consisting of Li, Na, and K. It may include any one or more selected from.
- the alkali metal precursor is positioned on the metal particle, and in the heat treatment process, all or part of the surface of the metal particle may be coated with an alkali metal-containing material.
- the alkali metal precursor is Li 2 CO 3 , LiOH, LiOH hydrate, NaOH, NaOH hydrate, KOH, KOH hydrate, lithium acetate (Li acetate), lithium isopropoxide (Li isopropoxide) , LiCl and It may be any one or more selected from the group consisting of Li 2 O.
- the amorphous carbon is coal-based pitch, mesophase pitch, petroleum-based pitch, tar, coal-based oil, petroleum-based heavy oil, organic synthetic pitch, sucrose, naphthalene resin, polyvinyl alcohol resin, furfuryl alcohol (furfuryl alcohol) resin, polyacrylonitrile resin, polyamide resin, phenol resin, furan resin, cellulose resin, styrene resin, epoxy resin or vinyl chloride resin, block copolymers, polyols and polyimide resins selected from the group consisting of Any one or more, and the crystalline carbon may be any one or more selected from the group consisting of natural graphite, artificial graphite, expanded graphite, graphene, carbon black, and fullerene.
- Natural graphite is naturally occurring graphite, and includes flake graphite, high crystalline graphite, and microcrystalline or cryptocrystalline (amorphous) graphite.
- Artificial graphite is artificially synthesized graphite, which is made by heating amorphous carbon to a high temperature, and includes primary or electrographite, secondary graphite, graphite fiber, and the like.
- Expanded graphite Inflates vertical layers of molecular structure by intercalating chemicals such as acids or alkalis between graphite layers and heating them.
- Graphene includes a single layer or multiple monolayers of graphite.
- Carbon black is a crystalline material with a smaller regularity than graphite, and when carbon black is heated at about 3,000° C. for a long time, it can be changed into graphite.
- Fullerene is a carbon mixture containing at least 3% by weight of fullerene, which is a polyhedral bundle-shaped compound of 60 or more carbon atoms.
- the first carbon-based material one kind or a combination of two or more kinds of these crystalline carbons may be used.
- natural graphite or artificial graphite may be used.
- the crystalline carbon may have a spherical, plate-like, fibrous, tubular or powdery form.
- pitch may be used as the amorphous carbon.
- the pitch may use a pitch having a softening point of 100 to 250 ° C, and in particular, a petroleum or coal-based pitch having a QI (quinolone insoluble) component of 5% by weight or less, more preferably 1% by weight or less may be used.
- QI quinolone insoluble
- natural graphite may be preferably used.
- the purity of the graphite a high purity grade having a fixed carbon content of 99% by weight or more, more preferably 99.95% by weight or more can be used.
- flaky graphite may be suitable for enhancing conductivity through contact with silicon.
- the conjugation step may be performed by a physical method.
- the physical method may include at least one selected from the group consisting of high-energy processes such as milling, stirring, mixing, and compression.
- the compounding step may be performed by ball milling.
- the planetary ball mill can efficiently mix and pulverize the mixture in a non-contact manner with the composition in a rotating and revolving mixing manner.
- a ball that can be used for ball milling may be, for example, a zirconia ball, and the type of ball is not limited, and the size of the ball may be, for example, about 0.3 to 10 mm, but is not limited thereto.
- the reaction time of the complexation step is 1 minute to 24 hours
- the reaction temperature is 40 ⁇ 250 °C
- the reaction atmosphere can be carried out under the conditions of the atmosphere or inert atmosphere.
- the treatment temperature of the heat treatment step may be 700 ⁇ 1,100 °C.
- the heat treatment time is not particularly limited, but may be performed in the range of 10 minutes to 5 hours, for example.
- An electrode according to another aspect of the present disclosure may include the negative active material, and a lithium secondary battery may include an electrode including the negative active material as a negative electrode and a positive electrode positioned opposite the negative electrode; and an electrolyte disposed between the negative electrode and the positive electrode.
- the negative electrode includes the negative electrode active material.
- the negative electrode active material composition is molded into a predetermined shape, or copper foil, etc. It can be manufactured by a method of applying to the current collector of.
- the anode may further include an anode active material commonly used as an anode active material of a lithium battery in the art in addition to the anode active material described above.
- anode active materials may include, for example, at least one selected from the group consisting of lithium metal, metals alloyable with lithium, transition metal oxides, non-transition metal oxides, and carbon-based materials.
- the metal alloyable with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb Si—Y alloy (where Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, A rare earth element or a combination thereof, but not Si), a Sn-Y alloy (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 to Group 16 element, a transition metal, a rare earth element, or a combination thereof, and Sn is not), etc.
- the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, It may be Se, Te, Po, or a combination thereof.
- the transition metal oxide may be lithium titanium oxide, vanadium oxide, or lithium vanadium oxide.
- the non-transition metal oxide may be SnO 2 , SiOx (0 ⁇ x ⁇ 2), and the like.
- the carbon-based material may be crystalline carbon, amorphous carbon, or a mixture thereof.
- the crystalline carbon may be graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (low-temperature calcined carbon) or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, and the like.
- the negative electrode active material and the carbon-based material are used together, the oxidation reaction of the silicon-based active material is suppressed, an SEI film is effectively formed to form a stable film, and electrical conductivity is improved, thereby further improving lithium charging and discharging characteristics. .
- anode active materials may be mixed and blended with the anode active material described above, coated on the surface of the anode active material, or used in any other combination.
- the binder used in the negative electrode active material composition is a component that assists in the bonding of the negative electrode active material and the conductive agent and the bonding to the current collector, and is added in an amount of 1 to 50 parts by weight based on 100 parts by weight of the negative electrode active material.
- the binder may be added in an amount of 1 to 30 parts by weight, 1 to 20 parts by weight, or 1 to 15 parts by weight based on 100 parts by weight of the negative electrode active material.
- binders examples include polyvinylidene fluoride, polyvinylidene chloride, polybenzimidazole, polyimide, polyvinyl acetate, polyacrylonitrile, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropyl Cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyaniline, acrylonitrile butadiene styrene, phenol resin, epoxy resin, polyethylene terephthalate, polytetrafluoro Roethylene, polyphenylsulfide, polyamideimide, polyetherimide, polyethylenesulfone, polyamide, polyacetal, polyphenylene oxide, polybutyleneterephthalate, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM , styrene butadiene rubber,
- the negative electrode may optionally further include a conductive agent in order to further improve electrical conductivity by providing a conductive passage to the negative electrode active material.
- the conductive agent anything generally used in a lithium battery may be used, and examples thereof include carbon-based materials such as carbon black, acetylene black, ketjen black, and carbon fiber (eg vapor grown carbon fiber); metal-based materials such as metal powders or metal fibers, such as copper, nickel, aluminum, and silver; A conductive material comprising a conductive polymer such as a polyphenylene derivative or a mixture thereof can be used. The content of the conductive material can be appropriately adjusted and used. For example, the weight ratio of the negative electrode active material and the conductive agent may be added in a range of 99:1 to 90:10.
- NMP N-methylpyrrolidone
- acetone water, etc.
- the amount of the solvent is 1 to 10 parts by weight based on 100 parts by weight of the negative electrode active material. When the content of the solvent is in the above range, the operation for forming the active material layer is easy.
- the current collector is generally made to have a thickness of 3 to 500 ⁇ m.
- the current collector is not particularly limited as long as it does not cause chemical change in the battery and has conductivity, and for example, the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
- a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
- fine irregularities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and nonwoven fabrics.
- a negative electrode plate may be obtained by directly coating the prepared negative active material composition on a current collector to prepare a negative electrode plate, or by casting on a separate support and laminating a negative active material film peeled from the support to a copper foil current collector.
- the negative electrode is not limited to the forms listed above and may have forms other than the above forms.
- the negative active material composition may be used not only for manufacturing an electrode of a lithium secondary battery, but also for manufacturing a printable battery by being printed on a flexible electrode substrate.
- a cathode active material composition in which a cathode active material, a conductive agent, a binder, and a solvent are mixed is prepared to manufacture a cathode.
- any lithium-containing metal oxide commonly used in the art may be used.
- Li a A 1-b B b D 2 (wherein 0.90 ⁇ a ⁇ 1.8 and 0 ⁇ b ⁇ 0.5); Li a E 1-b B b O 2-c D c (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2-b B b O 4-c D c (wherein 0 ⁇ b ⁇ 0.5 and 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b B c D ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ 2); Li a Ni 1-bc Co b B c O 2- ⁇ F ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ 2); Li a Ni 1-bc Co b B c O 2- ⁇ F ⁇ (wherein 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ 2); Li a Ni 1-bc Co b B c O 2- ⁇
- A is Ni, Co, Mn, or a combination thereof
- B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element, or a combination thereof
- D is O, F, S, P, or a combination thereof
- E is Co, Mn, or a combination thereof
- F is F, S, P, or a combination thereof
- G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or combinations thereof
- Q is Ti, Mo, Mn, or a combination thereof
- I is Cr, V, Fe, Sc, Y, or a combination thereof
- J is V, Cr, Mn, Co, Ni, Cu, or combinations thereof.
- the coating layer may include a coating element compound of an oxide, a hydroxide, an oxyhydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxycarbonate of a coating element.
- Compounds constituting these coating layers may be amorphous or crystalline.
- the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or mixtures thereof may be used.
- any coating method may be used as long as the compound can be coated in a method (eg, spray coating, dipping method, etc.) that does not adversely affect the physical properties of the positive electrode active material by using these elements. Since it is a content that can be well understood by those skilled in the art, a detailed description thereof will be omitted.
- the conductive agent, binder, and solvent may be the same as those of the anode active material composition described above. In some cases, it is also possible to form pores in the electrode plate by further adding a plasticizer to the positive active material composition and the negative active material composition.
- the content of the cathode active material, conductive agent, binder, and solvent is at a level commonly used in a lithium battery.
- the cathode current collector has a thickness of 3 to 500 ⁇ m, and is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
- stainless steel, aluminum, nickel, titanium, fired carbon, Alternatively, aluminum or stainless steel surface treated with carbon, nickel, titanium, silver, or the like may be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics are possible.
- the prepared cathode active material composition may be directly coated on a cathode current collector and dried to prepare a cathode electrode plate.
- a positive electrode plate may be manufactured by casting the positive active material composition on a separate support and then laminating a film obtained by peeling from the support on a positive current collector.
- the positive electrode and the negative electrode may be separated by a separator, and any separator commonly used in a lithium battery may be used.
- any separator commonly used in a lithium battery may be used.
- those having low resistance to ion migration of the electrolyte and excellent ability to absorb the electrolyte are suitable.
- it is a material selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and combinations thereof, and may be in the form of non-woven fabric or woven fabric.
- the separator has a pore diameter of 0.01 to 10 ⁇ m and a thickness of generally 5 to 300 ⁇ m.
- the lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and lithium.
- a non-aqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte, and the like are used as the non-aqueous electrolyte.
- non-aqueous electrolyte examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma-butyl Rolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphoric acid triesters, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, An aprotic organic solvent such as methyl propionate or ethyl propionate may be used.
- organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymer containing an ionic dissociation group or the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, and the like of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , etc. may be used.
- Any lithium salt can be used as long as it is commonly used in lithium batteries, and is a material that is good for dissolving in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborate, lower aliphatic carbolic acid
- One or more materials such as lithium carbonate, lithium 4 phenyl borate, imide, etc. may be used.
- Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin, pouch, etc. depending on the shape, Depending on the size, it can be divided into a bulk type and a thin film type.
- the pulverized solution was spray-dried to prepare silicon precursor particles having an average particle diameter (D50) of 5 ⁇ m.
- the silicon precursor particles, petroleum pitch, and graphite were respectively put into a compounding machine (manufactured by Hansol Chemical) at a ratio of 60:20:20 based on weight, and compounding was performed for 30 minutes. Thereafter, an anode active material was prepared by heat treatment at 900° C. for 3 hours in an argon (Ar) gas atmosphere.
- a compounding machine manufactured by Hansol Chemical
- an anode active material was prepared by heat treatment at 900° C. for 3 hours in an argon (Ar) gas atmosphere.
- An anode active material was prepared in the same manner as in Example 1, except that silicon having an average particle diameter (D50) of 84 nm was used.
- An anode active material was prepared in the same manner as in Example 1, except that silicon having an average particle diameter (D50) of 136 nm was used.
- An anode active material was prepared in the same manner as in Example 1, except that the amount of LiOH was changed to 0.1 part by weight.
- An anode active material was prepared in the same manner as in Example 1, except that the amount of silicon particles was changed to 1.5 parts by weight.
- An anode active material was prepared in the same manner as in Example 1, except that the amount of silicon particles was changed to 0.5 parts by weight.
- An anode active material was prepared in the same manner as in Example 1, except that the heat treatment temperature was set to 1,250 °C.
- An anode active material was prepared in the same manner as in Example 1, except that the heat treatment temperature was set to 750°C.
- An anode active material was prepared in the same manner as in Example 1, except that LiOH was not added.
- An anode slurry was prepared by uniformly mixing the anode active material prepared in Examples 1 to 8 and Comparative Example 1, the conductive material (Super P), and the binder (SBR-CMC) in a weight ratio of 93:3:4.
- the prepared negative electrode slurry was coated on a copper foil current collector having a thickness of 20 ⁇ m, and the coated electrode plate was dried at 120° C. for 30 minutes, and then pressed to prepare a negative electrode.
- CR2032 type coin half cell was prepared by using 1.0M LiPF6 dissolved in a mixed solvent.
- the positive electrode was prepared as follows.
- a positive electrode slurry was prepared by mixing LiNi 0.6 Co 0.2 Mn 0.2 O 2 as a positive electrode active material and PVA-PAA as a binder in a weight ratio of 1: 1, and the positive electrode slurry was coated on an aluminum foil current collector having a thickness of 12 ⁇ m, and the coating The completed electrode plate was dried at 120° C. for 15 minutes, and then pressed to prepare a positive electrode.
- CR2032 type coin full cell was prepared by dissolving 1.5M LiPF6 in a 20% mixed solvent.
- FIG. 2A The results of scanning electron microscope (SEM) analysis on the cross section of the negative active material prepared in Example 1 are shown in FIG. 2A.
- Table 1 below shows average grain sizes of silicon particles analyzed through transmission electron microscopy (TEM) analysis.
- the negative electrode active material prepared in Example 1 was sampled by FIB (Nova200 manufactured by FEI), and using STEM-EDS (JEOL-2200FS manufactured by Nippon Electronics Co., Ltd.) under the condition of an acceleration voltage of 20 kV, EDS line scan ) analysis was performed.
- the concentration ratio of carbon, silicon, and oxygen in the core and shell was analyzed through the EDS line scan performed along the XY line corresponding to the horizontal axis of the cross section of the negative electrode active material prepared in Example 1. .
- the concentrations of silicon and oxygen were relatively higher in the core than in the shell, and the concentration of carbon was higher in the shell than in the core.
- the silicon particles coated with Li x Si were mainly distributed in the core, and the shell contained a smaller number of silicon particles coated with Li x Si than the core, and most of them were composed of carbon.
- the components of the core and shell of the negative electrode active material of the core-shell structure of the present application could be specifically identified through EDS line scan analysis.
- the battery characteristics of the coin half cell and the coin full cell manufactured using the negative electrode active material prepared in Examples 1 to 8 and Comparative Example 1 were evaluated as follows.
- a coin full cell was used to measure lifespan characteristics, and a coin half cell was used to evaluate other battery characteristics.
- the coin half-cells manufactured using the negative electrode active materials prepared in Examples 1 to 8 and Comparative Example 1 were charged with a constant current at 25 ° C. at a current of 0.1C rate until the voltage reached 0.01V (vs. Li), and , while maintaining 0.01V, constant voltage charging was performed until the current reached 0.05C. After resting the charged cell for 10 minutes, it was discharged with a constant current of 0.1C until the voltage reached 1.5V (vs. Li) during discharge (2 times, initial formation).
- the "C” is the discharge rate of the cell, which means a value obtained by dividing the total capacity of the cell by the total discharge time.
- the coin full cell prepared using the negative electrode manufactured using the negative electrode active material prepared in Examples 1 to 8 and Comparative Example 1 had a voltage of 4.2V (vs. Li) at a current of 0.1C rate at 25 ° C. ), and constant voltage charging until the current reaches 0.05C while maintaining 4.2V. After resting the charged cell for 10 minutes, it was discharged with a constant current of 0.1 C until the voltage reached 2.7V (vs. Li) during discharge (2 times, initial formation).
- the cell was charged with a constant current at 25 ° C. at a current of 1.0C rate until the voltage reached 4.2V (vs. Li), and was charged with a constant voltage until the current reached 0.05C while maintaining 4.2V.
- a cycle of discharging at a constant current of 1.0 C was repeated until the voltage reached 2.7V (vs. Li) during discharge (cycles 1 to 100).
- Table 2 below shows the measured initial discharge capacity, initial efficiency, and lifespan characteristics of cells using negative electrode active materials prepared in Examples 1 to 8 and Comparative Example 1.
- the initial discharge capacity represents the charge and discharge capacity in the first cycle.
- the batteries of Examples 1 to 8 exhibited initial discharge capacities of 1,100 to 1,330 mAh/g, initial efficiencies of 83 to 90%, life characteristics of 75 to 90%, and output characteristics of 70 to 85%.
- Example 1 Comparative Example 1 had lower battery characteristics than Example 1.
- Comparative Example 1 exhibited slightly reduced characteristics compared to Example 1 in initial discharge capacity, initial efficiency, and life characteristics, and in particular, output characteristics were greatly reduced.
- the negative active material including the silicon particles coated with the alkali metal-containing material (Li x Si) of the present application has excellent battery characteristics, particularly output characteristics, compared to the negative active material including the uncoated silicon particles.
- the negative electrode active material according to the present invention has an effect of providing a high-output secondary battery capable of stable charge/discharge behavior under high current density while having high capacity and high energy density.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Si 입자 크기 (D50, nm) |
Si 입자 결정립 크기 (D50,nm) |
|
실시예1 | 102 | 15.62 |
실시예2 | 84 | 14.89 |
실시예3 | 136 | 17.21 |
실시예4 | 104 | 15.81 |
실시예5 | 100 | 15.02 |
실시예6 | 103 | 15.45 |
실시예7 | 105 | 22.76 |
실시예8 | 101 | 9.17 |
비교예1 | 103 | 15.79 |
초기 방전용량 (mAh/g) |
초기 효율 (%) |
수명특성 (% @100th) |
출력특성 (% @ 2.0C) |
|
실시예1 | 1329.3 | 88.6 | 88.4 | 81.3 |
실시예2 | 1267.7 | 85.1 | 87.9 | 77.0 |
실시예3 | 1358.5 | 89.7 | 78.0 | 78.1 |
실시예4 | 1101.8 | 85.6 | 87.2 | 73.0 |
실시예5 | 1324.0 | 88.3 | 81.7 | 73.8 |
실시예6 | 1303.5 | 87.2 | 84.3 | 75.6 |
실시예7 | 1171.3 | 89.4 | 88.0 | 72.3 |
실시예8 | 1233.5 | 83.5 | 82.4 | 75.7 |
비교예1 | 1327.8 | 88.4 | 86.4 | 74.6 |
Claims (14)
- 코어 및 코어를 둘러싸는 쉘을 포함하고,알칼리 금속 함유물로 표면의 전체 또는 일부가 코팅된 금속 입자를 포함하며,상기 금속 입자는 Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn 및 Ge 로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하고,상기 알칼리 금속 함유물이 하기 화학식 1로 표시되는,음극 활물질.[화학식 1]AxMyOz상기 화학식 1에서,A는 Li, Na 및 K로 이루어진 그룹에서 선택된 어느 하나 이상이고,M은 Mg, Al, Si, Ca, Fe, Mg, Mn, Co, Ni, Zn 및 Ge 로 이루어진 그룹에서 선택된 어느 하나 이상이며,0.1≤x≤2.0, 0≤y≤2.0 및 0≤z≤2.0 이다.
- 제1항에 있어서,상기 금속 입자는 실리콘(Si) 함유 입자인,음극 활물질.
- 제2항에 있어서,상기 실리콘(Si) 함유 입자는 실리콘 입자, 실리콘 산화물 입자, 실리콘 탄화물 입자 및 실리콘 합금 입자로 이루어진 군에서 선택된 어느 하나 이상을 포함하는,음극 활물질.
- 제2항에 있어서,상기 실리콘(Si) 함유 입자의 평균 입경(D50)이 50~1,000nm 이고,하기 화학식 2로 표시되는,음극 활물질.[화학식 2]SiOx (0≤x≤0.5)
- 제1항에 있어서,상기 금속 입자의 결정립의 크기가 5~50nm 인,음극 활물질.
- 제1항에 있어서,상기 알칼리 금속 함유물은상기 화학식 1의 A가 Li이고, y는 1인,음극 활물질.
- 제1항에 있어서,상기 코어는 비정질 탄소를 포함하고,상기 쉘은 결정질 탄소를 포함하는,음극 활물질.
- 금속 입자 및 알칼리 금속 전구체를 분쇄하고, 분무 건조하여 알칼리 금속-금속 입자 전구체를 제조하는 단계;상기 알칼리 금속-금속 입자 전구체, 비정질 탄소 및 결정질 탄소를 혼합하여 복합화하는 단계; 및열처리 단계;를 포함하고,상기 금속 입자는 Si, Al, Ti, Mn, Ni, Cu, V, Zr, Mn, Co, Fe 및 Nb 중에서 선택되는 어느 하나 이상을 포함하고,상기 알칼리 금속 전구체는 Li, Na 및 K로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하는,음극 활물질의 제조방법.
- 제8항에 있어서,상기 알칼리 금속 전구체는 Li2CO3, LiOH, LiOH의 수화물, NaOH, NaOH의 수화물, KOH, KOH의 수화물, 리튬 아세테이트(Li acetate), 리튬 이소프로폭사이드(Li isopropoxide), LiCl 및 Li2O로 이루어진 군에서 선택되는 어느 하나 이상을 포함하는,음극 활물질의 제조방법.
- 제8항에 있어서,상기 비정질 탄소는 석탄계 피치, 메조페이스 피치(mesophase pitch), 석유계 피치, 타르, 석탄계 오일, 석유계 중질유, 유기 합성 피치, 수크로오스(sucrose), 나프탈렌 수지, 폴리비닐알코올 수지, 퍼푸릴 알코올(furfuryl alcohol) 수지, 폴리아크릴로니트릴 수지, 폴리아미드 수지, 페놀 수지, 퓨란 수지, 셀룰로오스 수지, 스티렌 수지, 에폭시 수지 또는 염화 비닐 수지, 블록 공중합체, 폴리올 및 폴리이미드 수지로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하고,상기 결정질 탄소는 천연흑연, 인조흑연, 팽창흑연, 그래핀, 카본블랙 및 플러렌로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는,음극 활물질의 제조방법.
- 제8항에 있어서,상기 복합화 단계는 밀링, 교반, 혼합 및 압축으로 이루어지는 군으로부터 선택되는 어느 하나 이상에 의해서 수행되는,음극 활물질의 제조방법.
- 제8항에 있어서,상기 열처리 단계의 처리 온도는 700~1,100℃인,음극 활물질의 제조방법.
- 제1항 내지 제7항 중 어느 한 항의 음극 활물질을 포함하는,전극.
- 제1항 내지 제7항 중 어느 한 항의 음극 활물질을 포함하는 음극;상기 음극과 대항하여 위치하는 양극; 및상기 음극과 상기 양극 사이에 배치된 전해질;을 포함하는,리튬 이차전지.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22828813.0A EP4362133A1 (en) | 2021-06-25 | 2022-06-24 | Negative electrode active material, method for preparing same, and lithium secondary battery comprising same |
JP2023578166A JP2024524961A (ja) | 2021-06-25 | 2022-06-24 | 負極活物質、その製造方法およびこれを含むリチウム二次電池 |
US18/566,002 US20240253992A1 (en) | 2021-06-25 | 2022-06-24 | Negative electrode active material, method for preparing same, and lithium secondary battery comprising same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0082918 | 2021-06-25 | ||
KR1020210082918A KR102694221B1 (ko) | 2021-06-25 | 2021-06-25 | 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022270966A1 true WO2022270966A1 (ko) | 2022-12-29 |
Family
ID=84544650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/009014 WO2022270966A1 (ko) | 2021-06-25 | 2022-06-24 | 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240253992A1 (ko) |
EP (1) | EP4362133A1 (ko) |
JP (1) | JP2024524961A (ko) |
KR (1) | KR102694221B1 (ko) |
WO (1) | WO2022270966A1 (ko) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011113862A (ja) * | 2009-11-27 | 2011-06-09 | Hitachi Maxell Ltd | 非水二次電池およびその製造方法 |
US8158282B2 (en) | 2008-11-13 | 2012-04-17 | Nanotek Instruments, Inc. | Method of producing prelithiated anodes for secondary lithium ion batteries |
KR101368474B1 (ko) * | 2012-03-23 | 2014-03-03 | 강원대학교산학협력단 | 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
JP2016506035A (ja) * | 2012-12-05 | 2016-02-25 | サムスン エレクトロニクス カンパニー リミテッド | 表面改質された負極活物質用シリコンナノ粒子及びその製造方法 |
KR20170069163A (ko) * | 2015-12-10 | 2017-06-20 | 주식회사 엘지화학 | 리튬 이차전지용 음극활물질의 제조 방법 및 이를 적용한 리튬 이차전지 |
JP6256855B2 (ja) * | 2014-07-15 | 2018-01-10 | 川上 総一郎 | 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法 |
KR20190101807A (ko) | 2018-02-23 | 2019-09-02 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369708B2 (ja) * | 2009-01-26 | 2013-12-18 | 旭硝子株式会社 | 二次電池用負極材料およびその製造方法 |
KR20120101971A (ko) * | 2011-03-07 | 2012-09-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
CN104603993B (zh) * | 2012-09-27 | 2017-09-01 | 三洋电机株式会社 | 非水电解质二次电池用负极活性物质以及使用该负极活性物质的非水电解质二次电池 |
JP6208957B2 (ja) * | 2013-03-06 | 2017-10-04 | ソニー株式会社 | 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
-
2021
- 2021-06-25 KR KR1020210082918A patent/KR102694221B1/ko active IP Right Grant
-
2022
- 2022-06-24 WO PCT/KR2022/009014 patent/WO2022270966A1/ko active Application Filing
- 2022-06-24 US US18/566,002 patent/US20240253992A1/en active Pending
- 2022-06-24 JP JP2023578166A patent/JP2024524961A/ja active Pending
- 2022-06-24 EP EP22828813.0A patent/EP4362133A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8158282B2 (en) | 2008-11-13 | 2012-04-17 | Nanotek Instruments, Inc. | Method of producing prelithiated anodes for secondary lithium ion batteries |
JP2011113862A (ja) * | 2009-11-27 | 2011-06-09 | Hitachi Maxell Ltd | 非水二次電池およびその製造方法 |
KR101368474B1 (ko) * | 2012-03-23 | 2014-03-03 | 강원대학교산학협력단 | 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 |
JP2016506035A (ja) * | 2012-12-05 | 2016-02-25 | サムスン エレクトロニクス カンパニー リミテッド | 表面改質された負極活物質用シリコンナノ粒子及びその製造方法 |
JP6256855B2 (ja) * | 2014-07-15 | 2018-01-10 | 川上 総一郎 | 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法 |
KR20170069163A (ko) * | 2015-12-10 | 2017-06-20 | 주식회사 엘지화학 | 리튬 이차전지용 음극활물질의 제조 방법 및 이를 적용한 리튬 이차전지 |
KR20190101807A (ko) | 2018-02-23 | 2019-09-02 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
EP4362133A1 (en) | 2024-05-01 |
KR102694221B1 (ko) | 2024-08-13 |
KR20230000609A (ko) | 2023-01-03 |
JP2024524961A (ja) | 2024-07-09 |
US20240253992A1 (en) | 2024-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021132761A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2017099456A1 (ko) | 카본으로 이루어진 코어를 포함하는 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2018101809A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2019088340A1 (ko) | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2022260383A1 (ko) | 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법 | |
WO2019078503A1 (ko) | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
WO2021154026A1 (ko) | 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2021080374A1 (ko) | 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체 | |
WO2022211589A1 (ko) | 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법 | |
WO2020111898A1 (ko) | 리튬 이차전지용 양극 활물질 전구체의 제조 방법 | |
WO2023027499A1 (ko) | 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지 | |
WO2019004699A1 (ko) | 리튬 이차전지 | |
WO2022191639A1 (ko) | 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법 | |
WO2019045399A2 (ko) | 리튬 이차전지 | |
WO2021154035A1 (ko) | 리튬 이차전지용 양극 활물질 및 이의 제조 방법 | |
WO2022255665A1 (ko) | 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 | |
WO2020141953A1 (ko) | 이차전지용 음극 활물질, 이를 포함하는 전극 및 이의 제조방법 | |
WO2018236166A1 (ko) | 리튬 이차전지 | |
WO2022114872A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2019066129A2 (ko) | 복합음극활물질, 이의 제조 방법 및 이를 포함하는 음극을 구비한 리튬이차전지 | |
WO2020256440A1 (ko) | 복합 음극, 및 상기 복합 음극을 포함한 리튬 이차 전지 | |
WO2022092477A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 | |
WO2020180125A1 (ko) | 리튬 이차전지 | |
WO2018236060A1 (ko) | 수산화철(FeOOH)의 제조방법 및 수산화철을 포함하는 리튬-황 전지용 양극 | |
WO2020067793A1 (ko) | 황-탄소 복합체 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22828813 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18566002 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2023578166 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022828813 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022828813 Country of ref document: EP Effective date: 20240125 |