WO2022270629A1 - ポリプロピレン系樹脂組成物、シート成形体及び容器 - Google Patents

ポリプロピレン系樹脂組成物、シート成形体及び容器 Download PDF

Info

Publication number
WO2022270629A1
WO2022270629A1 PCT/JP2022/025362 JP2022025362W WO2022270629A1 WO 2022270629 A1 WO2022270629 A1 WO 2022270629A1 JP 2022025362 W JP2022025362 W JP 2022025362W WO 2022270629 A1 WO2022270629 A1 WO 2022270629A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
component
ethylene
polypropylene
resin composition
Prior art date
Application number
PCT/JP2022/025362
Other languages
English (en)
French (fr)
Inventor
稔 栗山
武 中島
Original Assignee
サンアロマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアロマー株式会社 filed Critical サンアロマー株式会社
Priority to JP2023530146A priority Critical patent/JPWO2022270629A1/ja
Priority to EP22828545.8A priority patent/EP4361212A1/en
Priority to CN202280042367.2A priority patent/CN117730120A/zh
Publication of WO2022270629A1 publication Critical patent/WO2022270629A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms

Definitions

  • the present invention relates to polypropylene resin compositions, sheet moldings and containers. This application claims priority based on Japanese Patent Application No. 2021-105708 filed in Japan on June 25, 2021, the content of which is incorporated herein.
  • Patent Literature 1 discloses a polypropylene-based resin composition suitable for obtaining an injection-molded article having an excellent balance between rigidity and impact resistance and good appearance.
  • the polypropylene resin composition When obtaining a sheet molded article from a polypropylene resin composition, the polypropylene resin composition is required to have high drawdown resistance, good sheet moldability, and good sheet productivity.
  • containers for example, cups, plates, trays, bottles, etc.
  • mechanical properties such as rigidity and impact resistance.
  • ice cream containers are required to have excellent impact resistance at extremely low temperatures of about -40°C. This is a physical property on a different dimension from the impact resistance around -5°C, and it has been quite difficult for conventional polypropylene-based resin compositions to meet this requirement.
  • the present invention provides a sheet molded article and a container having excellent impact resistance at extremely low temperatures of -40°C, and a polypropylene-based resin composition capable of forming the sheet molded article.
  • the total mass of (A), (B), and (C) is 70% by mass or more with respect to the total mass of the polypropylene resin composition,
  • the total mass of (A) and (B) is 50% by mass or more with respect to the total mass of the polypropylene resin composition,
  • the content of (A) is 99 parts by mass or less, the content of (B) is 1 part by mass or more, and the content of (C) is The content is 0 to 60 parts by mass
  • the content of ethylene-derived units in the propylene polymer (a1) is 0.5% by mass or less with respect to the total mass of the propylene polymer (a1),
  • the content of the copolymer (a2) is 27 to 45% by mass with respect to the total mass of the polypropylene resin (A),
  • the content of ethylene-derived units in the copolymer (a2) is 25 to 85% by mass with respect to the total mass of the copolymer (a2),
  • the polypropylene-based resin composition of the present invention By using the polypropylene-based resin composition of the present invention, it is possible to obtain a molded sheet having excellent impact resistance at an extremely low temperature of -40°C.
  • a container molded from this polypropylene-based resin composition or sheet molding can exhibit excellent impact resistance at an extremely low temperature of -40°C.
  • containers for example, miscellaneous goods, daily necessities, home appliance parts, electric and electronic parts, automobile parts, housing members, toy members, furniture members, building materials, packaging members, industrial materials, distribution materials, agricultural materials, etc. (including when used in the form of plastic cardboard).
  • FIG. 1 is a perspective view of a sheet molded body of an example of the present invention
  • FIG. 1 is a perspective view of an example container of the present invention
  • FIG. It is an example of a DSC chart of a sample taken from a pellet of a polypropylene-based resin produced in an example.
  • the polypropylene-based resin composition of the present invention comprises a continuous phase composed of a propylene polymer (hereinafter also referred to as component (a1)) and a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms (hereinafter referred to as component (a2 ), and a polypropylene resin (A) (hereinafter also referred to as component (A)) containing a rubber phase composed of It contains coalescence (B) (hereinafter also referred to as component (B)).
  • an inorganic filler (C) hereinafter also referred to as component (C) may or may not be included.
  • the total mass of component (A), component (B), and component (C) with respect to the total mass of the polypropylene resin composition is 70% by mass or more, and the lower limit is preferably 80% by mass or more, and 90% by mass. The above is more preferable, and 95% by mass or more is even more preferable. Moreover, less than 100 mass % is preferable as an upper limit. When it is at least the lower limit of the range, the impact resistance of the sheet molded article of the present invention at extremely low temperatures is enhanced. If it is less than the upper limit of the range, there is room for containing other components such as antioxidants and neutralizers.
  • the total mass of component (A) and component (B) with respect to the total mass of the polypropylene resin composition is 50% by mass or more, and the lower limit is preferably 60% by mass or more, more preferably 70% by mass or more, and 80 It is more preferably at least 95% by mass, particularly preferably at least 95% by mass. Moreover, less than 100 mass % is preferable as an upper limit. When it is at least the lower limit of the range, the impact resistance of the sheet molded article of the present invention at extremely low temperatures is enhanced. If it is less than the upper limit of the range, there is room for containing other components such as antioxidants and neutralizers.
  • the content of component (A) is 99 parts by mass or less with respect to a total of 100 parts by mass of components (A) and (B), and the lower limit is preferably 70 parts by mass or more, more preferably 80 parts by mass or more. Moreover, 95 mass parts or less are preferable as an upper limit, and 90 mass parts or less are more preferable. That is, ranges such as 70 to 99 parts by mass, 70 to 95 parts by mass, 70 to 90 parts by mass, 80 to 99 parts by mass, 80 to 95 parts by mass, and 80 to 90 parts by mass can be exemplified. When it is at least the lower limit value of the range, the rigidity of the sheet molding increases. When it is at most the upper limit of the range, the content of component (B) is relatively high, and the impact resistance of the sheet molded article of the present invention at extremely low temperatures is enhanced.
  • the content of component (B) is 1 part by mass or more with respect to a total of 100 parts by mass of components (A) and (B), and the lower limit is preferably 5 parts by mass or more, more preferably 10 parts by mass or more. Moreover, 30 mass parts or less are preferable as an upper limit, and 20 mass parts or less are more preferable. That is, ranges such as 1 to 30 parts by mass, 1 to 20 parts by mass, 5 to 30 parts by mass, 5 to 20 parts by mass, 10 to 30 parts by mass, and 10 to 20 parts by mass can be exemplified. When it is at least the lower limit of the above range, the impact resistance of the sheet molded article at extremely low temperatures is enhanced. When it is at most the upper limit of the above range, the content of component (A) is relatively high, and the rigidity of the molded sheet of the present invention is increased.
  • the content of component (C) is 0 to 60 parts by mass with respect to a total of 100 parts by mass of components (A) and (B), and the upper limit is preferably 40 parts by mass or less, more preferably 30 parts by mass or less. .
  • the upper limit of the above range it becomes easy to mold a sheet molded article from the polypropylene resin composition of the present invention, or to mold a container from the sheet molded article.
  • 1 and 2 show a sheet molding 10 and a cup-shaped container 20 formed from the sheet molding as an example of the present invention.
  • seat molded object increases by including a component (C).
  • MFR of the polypropylene resin composition at a temperature of 230 ° C. and a load of 2.16 kg is 0.1 to 3.0 g / 10 minutes
  • the lower limit is preferably 0.2 g / 10 minutes or more, 0.3 g / 10 minutes or more is more preferred.
  • the upper limit is preferably 2.5 g/10 minutes or less, more preferably 1.8 g/10 minutes or less, and even more preferably 1.0 g/10 minutes or less.
  • the MFR is a value measured by a method described later.
  • Sheet formability is excellent in it being more than the lower limit of the said range. Moreover, it is usually difficult to adjust and manufacture to less than 0.1 g/10 minutes. When it is at most the upper limit of the above range, the sheet formability (drawdown resistance) and sheet productivity are enhanced, and the impact resistance of the sheet molded article at extremely low temperatures is enhanced.
  • the polypropylene-based resin (A) contained in the polypropylene-based resin composition of the present invention is an aspect of an impact-resistant polypropylene polymer defined in JIS K6921-1, and is a continuation of the propylene polymer (component (a1)). It is composed of two or more phases including a phase and a rubber phase of the ethylene/ ⁇ -olefin copolymer (component (a2)) present as a dispersed phase in the continuous phase.
  • the polypropylene resin (A) may be a mixed resin in which the component (a1) and the component (a2) are mixed during polymerization, or the separately obtained component (a1) and the component (a2) are It may be a mixed resin mixed by melt-kneading.
  • Component (a1) and component (a2) are mixed at the time of polymerization, since a product with an excellent balance of rigidity, low-temperature impact resistance and tensile properties (hereinafter also referred to as "mechanical property balance") can be obtained at a lower cost. It is preferred that it is a material (polymerization mixture).
  • the component (a1) and the component (a2) can be mixed on the submicron order, so the polypropylene-based resin composition based on the polymerization mixture exhibits excellent mechanical property balance.
  • a mere mechanical mixture obtained by melt-kneading separately obtained component (a1) and component (a2) achieves similar uniform mixing to obtain an excellent balance of mechanical properties, storage and storage ⁇ Manufacturing costs increase due to the need to go through separate processes such as transfer, weighing, mixing, and melt-kneading. It is also not preferable from the viewpoint of energy cost.
  • the reason why the polymerization mixture and the mechanical mixture sometimes exhibit different physical properties is presumed to be that the state of dispersion of the component (a2) in the component (a1) is different. At present, no practical means for analyzing the state of dispersion at the molecular level including the state of the interface with (a1) is known. A method for producing the polypropylene-based resin (A) will be described later in detail.
  • the intrinsic viscosity (hereinafter also referred to as “XSIV”) of the xylene-soluble portion of the polypropylene resin (A) is 2.5 to 5.5 dl/g, and the lower limit is preferably 2.7 dl/g or more. Further, the upper limit is preferably 4.5 dl/g or less, more preferably 4.0 dl/g or less, and even more preferably 3.5 dl/g or less. That is, 2.5-4.5dl/g, 2.5-4.0dl/g, 2.5-3.5dl/g, 2.7-5.5dl/g, 2.7-4.5dl/ g, 2.7 to 4.0 dl/g, 2.7 to 3.5 dl/g, etc. can be exemplified.
  • XSIV is a value measured by a method described later.
  • the ratio ( Mw / Mn ) between the weight-average molecular weight Mw and the number-average molecular weight Mn , which are indicators of the molecular weight distribution of the propylene polymer (component (a1)) constituting the polypropylene-based resin (A), is 9 or less. is preferred, 8 or less is more preferred, and less than 7 is even more preferred. Within the above preferred range, the impact resistance of the sheet molded article at extremely low temperatures is enhanced.
  • the lower limit of the above ratio is not particularly limited, and an example of a standard is 3 or more.
  • the weight average molecular weight Mw and number average molecular weight Mn of the propylene polymer are values measured by the method described later.
  • the ethylene-derived unit content (hereinafter also referred to as “C2”) in the propylene polymer (component (a1)) constituting the polypropylene resin (A) is 0.5 with respect to the total mass of the propylene polymer. % by mass or less, preferably 0.3% by mass or less.
  • C2 is equal to or less than the upper limit, the rigidity of the sheet molding increases.
  • the lower limit of C2 is not particularly limited, and may be 0% by mass.
  • the propylene polymer may be a polypropylene homopolymer consisting only of propylene-derived units, and has 99.5% by mass or more and less than 100% by mass of propylene-derived units and more than 0% by mass and 0.5% by mass or less of ethylene-derived units. It may be a copolymer consisting of. C2 is measured by the 13 C-NMR method.
  • the average pore diameter (Dn) of component (a1) is preferably 8 ⁇ m to 50 ⁇ m, more preferably 8 to 30 ⁇ m, even more preferably 8 to 15 ⁇ m.
  • Dn is the average pore diameter D measured by mercury porosimetry according to JIS R1655.
  • the powder flowability of the polypropylene-based resin (A) composed of the component (a1) and the component (a2) is improved, resulting in improved productivity.
  • the mechanism is not clear, when the component (a1) has Dn in the above range, the sum of the pore size and the surface area of the pores is sufficient for the presence of the component (a2) in the component (a1).
  • the component (a2) is likely to be retained in the component (a1), so it is presumed that the powder fluidity of the polymer is improved.
  • the ethylene/ ⁇ -olefin copolymer (component (a2)) constituting the polypropylene resin (A) is a copolymer having ethylene-derived units and ⁇ -olefin-derived units having 3 to 10 carbon atoms.
  • the content of ethylene-derived units in component (a2) is 25 to 85% by mass with respect to the total mass of component (a2), and the lower limit is preferably 29% by mass or more, more preferably 40% by mass or more. 45% by mass or more is more preferable.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 55% by mass or less.
  • Ranges such as 40 to 70 mass%, 40 to 60 mass%, 40 to 55 mass%, 45 to 85 mass%, 45 to 70 mass%, 45 to 60 mass%, and 45 to 55 mass% can be exemplified. When it is at least the lower limit of the above range, the impact resistance of the sheet molded article at extremely low temperatures is enhanced.
  • the ethylene-derived unit content in component (a2) is measured by the 13 C-NMR method.
  • the content of the ethylene/ ⁇ -olefin copolymer (component (a2)) with respect to the total mass of the polypropylene resin (A) is 27 to 45% by mass, and the lower limit is preferably 29% by mass or more, and 32% by mass. The above is more preferable. Moreover, 42 mass % or less is preferable as an upper limit, and 38 mass % or less is more preferable. That is, 27 to 42% by mass, 27 to 38% by mass, 29 to 45% by mass, 29 to 42% by mass, 29 to 38% by mass, 32 to 45% by mass, 32 to 42% by mass, 32 to 38% by mass, etc. can be exemplified.
  • the content of component (a1) is preferably 55 to 73% by mass with respect to the total mass of polypropylene resin (A), depending on the content of component (a2).
  • the lower limit is preferably 58% by mass or more, more preferably 62% by mass or more
  • the upper limit is preferably 71% by mass or less, more preferably 68% by mass or less. That is, 55 to 71% by mass, 55 to 68% by mass, 58 to 73% by mass, 58 to 71% by mass, 58 to 68% by mass, 62 to 73% by mass, 62 to 71% by mass, 62 to 68% by mass, etc. can be exemplified.
  • ⁇ -olefins constituting the ethylene/ ⁇ -olefin copolymer (component (a2)) include propylene (1-propene), 1-butene, 1-pentene, 1-hexene, and 1-octene.
  • component (a2) include ethylene/propylene copolymers, ethylene/butene copolymers, ethylene/pentene copolymers, ethylene/hexene copolymers, and ethylene/octene copolymers.
  • an ethylene/propylene copolymer is preferable in consideration of improving the productivity of the polypropylene-based resin (A).
  • the MFR of the polypropylene resin (A) at a temperature of 230 ° C. and a load of 2.16 kg is preferably 0.1 g / 10 minutes or more as a lower limit, and 0.2 g / 10 minutes or more is more preferable, and 0.3 g/10 minutes or more is even more preferable.
  • the upper limit is preferably 2.5 g/10 minutes or less, more preferably 1.8 g/10 minutes or less, and even more preferably 1.0 g/10 minutes or less.
  • 0.1 to 2.5 g/10 minutes, 0.1 to 1.8 g/10 minutes, 0.1 to 1.0 g/10 minutes, 0.2 to 2.5 g/10 minutes, 0.2 to 1.8 g/10 min, 0.2-1.0 g/10 min, 0.3-2.5 g/10 min, 0.3-1.8 g/10 min, 0.3-1.0 g/10 min , etc. can be exemplified.
  • the MFR is a value measured by a method described later.
  • Sheet formability is excellent in it being more than the lower limit of the said range.
  • a crystallization peak is preferably observed at 85 to 105°C in DSC (differential scanning calorimetry) of the polypropylene resin (A).
  • This crystallization peak originates from the crystallization of the polyethylene component of the ethylene/ ⁇ -olefin copolymer (component (a2)) that constitutes the polypropylene resin (A).
  • component (a2) the polyethylene/ ⁇ -olefin copolymer
  • component (a2) component that constitutes the polypropylene resin (A).
  • the polyethylene component is particularly effective for low-temperature impact resistance, and when the component (a2) constituting the polypropylene-based resin (A) contains a polyethylene component, the cryogenic impact resistance of the present invention is further improved. . For this reason, even if the amount of the ethylene/ ⁇ -olefin polymer (B) added to the polypropylene-based resin (A) is small, the impact resistance at extremely low temperatures is sufficiently exhibited.
  • the calorific value ( ⁇ Hc) of the crystallization peak observed at 85 to 105° C. in DSC is an index of the amount of the polyethylene component contained in the polypropylene resin (A), and the component (a2) in the polypropylene resin (A). depends on the content of In addition to the ethylene-derived unit content of the component (a2), it also depends on the catalyst and polymerization conditions during the production of the polypropylene-based resin (A).
  • the lower limit of ⁇ Hc observed at 85 to 105 ° C. is 0.5 J / g or more from the viewpoint of increasing the impact resistance at extremely low temperatures. is preferred, and 1.0 J/g or more is more preferred.
  • ⁇ Hc 10 J/g or less
  • the rigidity is maintained, the affinity between the component (a1) and the component (a2) is maintained, and the rigidity and impact resistance are well balanced.
  • a more preferable upper limit of ⁇ Hc is 8.0 J/g or less. That is, ranges such as 0.5 to 10 J/g, 0.5 to 8.0 J/g, 1.0 to 10 J/g, and 1.0 to 8.0 J/g can be exemplified.
  • the ethylene/ ⁇ -olefin polymer (B) is a polymer of ethylene and an ⁇ -olefin having 2 to 10 carbon atoms.
  • ⁇ -olefins include ethylene, propylene (1-propene), 1-butene, 1-pentene, 1-hexene and 1-octene.
  • Specific examples of the ethylene/ ⁇ -olefin polymer (B) include polyethylene, ethylene/butene copolymer, ethylene/pentene copolymer, ethylene/hexene copolymer, and ethylene/octene copolymer.
  • polyethylene is preferable from the viewpoint of increasing the impact resistance of the sheet molded article at extremely low temperatures.
  • Polyethylene is preferably high density polyethylene (HDPE).
  • the density of HDPE is measured under conditions of 23° C. ⁇ 2° C. in accordance with JIS K6922-1:2018, and is preferably greater than 940 kg/m 3 and preferably greater than 954 kg/m 3 .
  • a guideline for the upper limit of the density of HDPE is 990 kg/m 3 .
  • inorganic filler (C) examples include natural silicic acid or silicates such as talc, kaolinite, clay, virophyllite, selinite, wollastonite, mica; hydrous calcium silicate, hydrous aluminum silicate, hydrous silicic acid, anhydrous Synthetic silicic acid or silicates such as silicic acid; carbonates such as precipitated calcium carbonate, ground calcium carbonate, magnesium carbonate; hydroxides such as aluminum hydroxide, magnesium hydroxide; zinc oxide, magnesium oxide, etc. oxides. From the viewpoint of shape, examples of the inorganic filler include the following.
  • powdery fillers such as hydrous calcium silicate, hydrous aluminum silicate, hydrous silicic acid, hydrous silicic acid, synthetic silicic acid or silicate; platy fillers such as talc, kaolinite, clay, mica; basic magnesium sulfate whiskers , calcium titanate whiskers, aluminum borate whiskers, sepiolite, PMF (Processed Mineral Filler), xonotlite, potassium titanate, and elestadite; balloon-like fillers such as glass balloons, fly ash balloons; Fibrous fillers such as fibers.
  • the inorganic filler one type may be used, or two or more types may be used in combination.
  • the inorganic filler may be surface-treated as necessary.
  • the inorganic filler used in the present invention is not limited, plate-like inorganic fillers are preferable from the viewpoint of enhancing the balance of mechanical properties by promoting the orientation of polypropylene crystals in the sheet molded article.
  • Talc, kaolinite, clay, mica and the like can be used as the plate-like inorganic filler, but talc is preferable in consideration of affinity with polypropylene resin, ease of procurement as a raw material, and economic efficiency.
  • mica and more preferably talc.
  • the volume average particle size of the inorganic filler (C) is preferably 1-10 ⁇ m, more preferably 2-7 ⁇ m. If the volume-average particle size is within the above range, the mechanical property balance of the sheet molding will be improved.
  • the volume average particle diameter can be measured as a 50% diameter in a volume-based cumulative fraction by a laser diffraction method (based on JIS R1629).
  • the polypropylene-based resin composition of the present invention includes, as optional components, in addition to the polypropylene-based resin (A), the ethylene/ ⁇ -olefin polymer (B) and the inorganic filler (C), as long as the effects of the present invention are not impaired.
  • Synthetic resins or synthetic rubbers other than the polypropylene-based resin (A) and the ethylene/ ⁇ -olefin polymer (B), and additives may also be included.
  • the additives include antioxidants, neutralizers, nucleating agents, weathering agents, pigments (organic or inorganic), internal and external lubricants, antiblocking agents, antistatic agents, chlorine absorbers, heat stabilizers.
  • melt-kneading method As a method for producing the polypropylene-based resin composition of the present invention, the polypropylene-based resin (A), the ethylene/ ⁇ -olefin polymer (B), and the inorganic filler (C) are mixed and then melt-kneaded. is mentioned.
  • Mixing methods include dry blending using a mixer such as a Henschel mixer, a tumbler, and a ribbon mixer.
  • melt-kneading method include a method of mixing while melting using a mixer such as a single-screw extruder, a twin-screw extruder, a Banbury mixer, a kneader, or a roll mill.
  • the melting temperature for melt-kneading is preferably 160 to 350°C, more preferably 170 to 260°C. After melt-kneading, it may be further pelletized.
  • the component (C) When blending the component (C), the component (C) may be dry-blended with pellets containing at least one of the component (A) and the component (B).
  • the dry-blended component (C) is uniformly mixed with the melted component (A) and component (B) when molding the polypropylene-based resin composition.
  • a so-called masterbatch obtained by melt-kneading a high-concentration component (C) with a resin component is added to at least one of the component (A) and the component (B) and melt-kneaded, or the component ( It may be dry blended with pellets containing at least one of A) and component (B).
  • the ratio of the resin component contained in the masterbatch and the addition amount of the masterbatch are adjusted so that the resin component contained in the masterbatch does not affect the physical properties of the polypropylene-based resin composition.
  • the content of the resin component contained in the masterbatch is preferably 30% by mass or less, more preferably 25% by mass or less, and even more preferably 20% by mass or less, relative to the total mass of the polypropylene-based resin composition of this embodiment. Within the above preferred range, it is possible to prevent the resin component contained in the masterbatch from adversely affecting the physical properties of the polypropylene-based resin composition.
  • the type of the resin component is not limited, olefin resins are preferable in consideration of affinity with polypropylene resins and ethylene/ ⁇ -olefin copolymers constituting the composition.
  • the content of the masterbatch is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less with respect to a total of 100 parts by mass of components (A) and (B).
  • the rigidity of the sheet can be increased without impairing the sheet moldability and the impact resistance of the sheet at extremely low temperatures.
  • the polypropylene resin (A) may be obtained by mixing a propylene polymer (component (a1)) and an ethylene/ ⁇ -olefin copolymer (component (a2)) during polymerization, or may be obtained by separately producing components. It may be obtained by mixing (a1) and component (a2) by melt-kneading.
  • the polypropylene-based resin (A) is preferably a polymerization mixture in which the component (a1) and the component (a2) are mixed during polymerization. Such a polymerization mixture is obtained by polymerizing ethylene monomers and ⁇ -olefin monomers in the presence of component (a1). According to this method, the productivity is increased and the dispersibility of the component (a2) in the component (a1) is increased, so that the mechanical property balance of the sheet molded product obtained using this method is improved.
  • a multistage polymerization method is typically used.
  • a propylene monomer and, if necessary, an ethylene monomer are polymerized to obtain a propylene polymer, and the obtained propylene
  • the polymerization mixture can be obtained by supplying the polymer to the second-stage polymerization reactor and polymerizing the ethylene monomer and the propylene monomer in the second-stage polymerization reactor.
  • the polymerization conditions may be similar to known polymerization conditions.
  • the polymerization conditions for the first stage include a slurry polymerization method in which propylene is in a liquid phase and the monomer density and productivity are high.
  • a gas phase polymerization method is generally used, which facilitates production of a copolymer having high solubility in propylene.
  • the polymerization temperature is preferably 50 to 90°C, more preferably 60 to 90°C, even more preferably 70 to 90°C. When the polymerization temperature is at least the lower limit of the above range, the productivity and stereoregularity of the obtained polypropylene are more excellent.
  • the polymerization pressure is preferably 25-60 bar (2.5-6.0 MPa), more preferably 33-45 bar (3.3-4.5 MPa), when carried out in the liquid phase. When carried out in the gas phase, it is preferably 5-30 bar (0.5-3.0 MPa), more preferably 8-30 bar (0.8-3.0 MPa).
  • Polymerization (polymerization of propylene monomer, polymerization of ethylene monomer, propylene monomer, etc.) is usually carried out using a catalyst. During polymerization, hydrogen may be added for molecular weight adjustment, if necessary.
  • the MFR of the polypropylene resin (A) and, in turn, the MFR of the polypropylene resin composition can be adjusted.
  • propylene Prior to polymerization in the first-stage polymerization reactor, propylene may be prepolymerized in order to form polymer chains on the solid catalyst component that will serve as a foothold for subsequent main polymerization. Prepolymerization is usually carried out at 40° C. or lower, preferably 30° C. or lower, more preferably 20° C. or lower.
  • a known olefin polymerization catalyst can be used as the catalyst.
  • a stereospecific Ziegler-Natta catalyst is preferable, and the following component (a), component (b) and component ( c) (hereinafter also referred to as “catalyst (X)”) is particularly preferred.
  • the polypropylene-based resin (A) is obtained by polymerizing an ethylene monomer and an ⁇ -olefin monomer (e.g., propylene monomer) in the presence of the propylene polymer using a catalyst (X) to obtain the polypropylene-based resin. It is preferable to manufacture by a method having a step of obtaining By using the catalyst (X), a polypropylene-based resin (A) having physical properties within the above ranges can be easily obtained.
  • the distribution of the molecular weight and stereoregularity of the propylene polymer obtained differs depending on the catalyst used (especially the electron donor compound of component (a)), and the difference affects the crystallization behavior. details have not been revealed.
  • Component (a) is prepared using, for example, a titanium compound, a magnesium compound and an electron donor compound.
  • a titanium compound used for component (a) a tetravalent titanium compound represented by the general formula: Ti(OR) g X 4-g (R is a hydrocarbon group, X is a halogen, 0 ⁇ g ⁇ 4) preferred.
  • Hydrocarbon groups include methyl, ethyl, propyl, butyl and the like, and halogen groups include Cl, Br and the like.
  • titanium compounds include titanium tetrahalides such as TiCl 4 , TiBr 4 and TiI 4 ; Ti(OCH 3 )Cl 3 , Ti(OC 2 H 5 )Cl 3 , Ti(On-C 4 trihalogenated alkoxy titaniums such as H9 )Cl3, Ti ( OC2H5 ) Br3 , Ti(O - isoC4H9 ) Br3 ; Ti ( OCH3) 2Cl2 , Ti ( OC2H ); 5 ) Dihalogenated alkoxy titanium such as 2Cl2 , Ti ( O n -C4H9 ) 2Cl2 , Ti ( OC2H5 ) 2Br2 ; Ti ( OCH3) 3Cl , Ti( OC2 monohalogenated trialkoxytitanium such as H5 ) 3Cl , Ti(O n -C4H9 ) 3Cl , Ti ( OC2H5 ) 3Br ; Ti ( OCH3)
  • titanium compounds may be used individually by 1 type, and may use 2 or more types together.
  • halogen-containing titanium compounds are preferred, titanium tetrahalides are more preferred, and titanium tetrachloride (TiCl 4 ) is particularly preferred.
  • magnesium compounds used in component (a) include magnesium compounds having magnesium-carbon bonds or magnesium-hydrogen bonds, such as dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, diamylmagnesium, dihexylmagnesium, didecylmagnesium, ethylmagnesium chloride, propylmagnesium chloride, butylmagnesium chloride, hexylmagnesium chloride, amylmagnesium chloride, butylethoxymagnesium, ethylbutylmagnesium, butylmagnesium hydride and the like.
  • magnesium compounds having magnesium-carbon bonds or magnesium-hydrogen bonds such as dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, diamylmagnesium, dihexylmagnesium, didecylmagnesium, ethylmagnesium chloride, propylmagnesium
  • magnesium compounds can be used, for example, in the form of complex compounds with organoaluminum or the like, and may be liquid or solid.
  • suitable magnesium compounds include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium fluoride; magnesium methoxy chloride, magnesium ethoxy chloride, magnesium isopropoxy chloride, magnesium butoxy chloride, magnesium octoxy chloride; alkoxy magnesium halides; allyloxy magnesium halides such as phenoxy magnesium chloride, methylphenoxy magnesium chloride; alkoxy magnesium halides such as ethoxy magnesium, isopropoxy magnesium, butoxy magnesium, n-octoxy magnesium, 2-ethylhexoxy magnesium; dialkoxymagnesium such as magnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium and ethoxymethoxymagnesium; allyloxymagnesium such as ethoxypropoxymagnesium, butoxyethoxymagnesium, phenoxy
  • the electron donor compound used for component (a) preferably contains a phthalate compound as an essential component.
  • a phthalate compound as an electron donor When the catalyst (X) containing a phthalate compound as an electron donor is used, a polypropylene resin in which the Mw / Mn of the propylene polymer is within the above range can be easily obtained.
  • an ethylene/ ⁇ -olefin copolymer is polymerized using a Ziegler-Natta catalyst, components with different ethylene-derived unit contents are generated (there is a so-called compositional distribution), but the phthalate compound is an electron donor.
  • the catalyst (X) contained as a solid When the catalyst (X) contained as a solid is used, a copolymer with a wide composition distribution can be obtained, and as a result, the content of ethylene-derived units effective for impact resistance at low temperatures is particularly large compared to the average value of the copolymer. It is believed that both the component and the component in which the content of ethylene-derived units effective for interfacial affinity with the propylene polymer is particularly low compared to the average value of the copolymer are likely to be produced. As a result, by using the catalyst (X) containing a phthalate-based compound as an electron donor, an ethylene/ ⁇ -olefin copolymer having a relatively large content of ethylene-derived units was produced in order to improve the impact resistance at extremely low temperatures.
  • phthalate compounds include monoethyl phthalate, dimethyl phthalate, methyl ethyl phthalate, monoisobutyl phthalate, mono-normal butyl phthalate, diethyl phthalate, ethyl isobutyl phthalate, ethyl normal butyl phthalate, di-n-propyl phthalate, diisopropyl phthalate, di n-butyl phthalate, diisobutyl phthalate, di-n-heptyl phthalate, di-2-ethylhexyl phthalate, di-n-octyl phthalate, dineopentyl phthalate, didecyl phthalate, benzyl butyl phthalate, diphenyl phthalate and the like. Among them,
  • Examples of electron donor compounds in the solid catalyst other than phthalate compounds include succinate compounds and diether compounds.
  • the succinate-based compound may be an ester of succinic acid, or an ester of substituted succinic acid having a substituent such as an alkyl group at the 1- or 2-position of succinic acid.
  • Specific examples include diethylsuccinate, dibutylsuccinate, diethylmethylsuccinate, diethyldiisopropylsuccinate, and diallylethylsuccinate.
  • diether compounds include 2-(2-ethylhexyl)-1,3-dimethoxypropane, 2-isopropyl-1,3-dimethoxypropane, 2-butyl-1,3-dimethoxypropane, 2-sec-butyl -1,3-dimethoxypropane, 2-cyclohexyl-1,3-dimethoxypropane, 2-phenyl-1,3-dimethoxypropane, 2-tert-butyl-1,3-dimethoxypropane, 2-cumyl-1,3 -dimethoxypropane, 2-(2-phenylethyl)-1,3-dimethoxypropane, 2-(2-cyclohexylethyl)-1,3-dimethoxypropane, 2-(p-chlorophenyl)-1,3-dimethoxypropane , 2-(diphenylmethyl)-1,3-dimethoxypropane, 2-(1-naphthyl
  • 1,1-bis(methoxymethyl)-cyclopentadiene 1,1-bis(methoxymethyl)-2,3,4,5-tetramethylcyclopentadiene; 1,1-bis(methoxymethyl)-2,3, 4,5-tetraphenylcyclopentadiene; 1,1-bis(methoxymethyl)-2,3,4,5-tetrafluorocyclopentadiene; 1,1-bis(methoxymethyl)-3,4-dicyclopentylcyclopentadiene; 1,1-bis(methoxymethyl)indene; 1,1-bis(methoxymethyl)-2,3-dimethylindene; 1,1-bis(methoxymethyl)-4,5,6,7-tetrahydroindene; 1,1-bis(methoxymethyl)-2, 3,6,7-tetrafluoroindene; 1,1-bis(methoxymethyl)-4,7-dimethylindene; 1,1-bis(methoxymethyl)-3,6-dimethylinden
  • the halogen atoms constituting component (a) include fluorine, chlorine, bromine, iodine, and mixtures thereof, with chlorine being particularly preferred.
  • organoaluminum compound of component (a) examples include trialkylaluminums such as triethylaluminum and tributylaluminum, trialkenylaluminums such as triisoprenylaluminum, and dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide.
  • R 1 2.5 Al(OR 2 ) 0.5 R 1 and R 2 may be different or the same) partially alkoxylated aluminum alkyls, dialkylaluminum halides such as diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, ethylaluminum sesquichloride, butyl Aluminum sesquichloride, alkylaluminum sesquihalogenides such as ethylaluminum sesquibromide, alkylaluminum dihalogenides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide, etc.
  • dialkylaluminum halides such as diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, ethylaluminum sesquichloride, butyl Aluminum sesquichloride, alkylaluminum sesquihalogenides
  • alkylaluminum diethyl Partially hydrogenated alkylaluminums such as aluminum hydride, dialkylaluminum hydrides such as dibutylaluminum hydride, ethylaluminum dihydride, alkylaluminum dihydrides such as propylaluminum dihydride, ethylaluminum ethoxychloride, butylaluminum butoxychloride , partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxy bromide, and the like.
  • the component (a) may be used alone or in combination of two or more.
  • organosilicon compound is used as the external electron donor compound of component (c).
  • Preferred organosilicon compounds include, for example, trimethylmethoxysilane, trimethylethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-amylmethyldiethoxysilane.
  • Silane diphenyldimethoxysilane, phenylmethyldimethoxysilane, diphenyldiethoxysilane, bis-o-tolyldimethoxysilane, bis-m-tolyldimethoxysilane, bis-p-tolyldimethoxysilane, bis-p-tolyldiethoxysilane, bisethylphenyldimethoxysilane , dicyclopentyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, methyltrimethoxysilane, n-propyltriethoxysilane, decyltri Methoxysilane, decyltri Methoxys
  • ethyltriethoxysilane n-propyltriethoxysilane, n-propyltrimethoxysilane, t-butyltriethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldiethoxysilane, t-butylethyldimethoxysilane Silane, t-butylpropyldimethoxysilane, t-butyl t-butoxydimethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, isobutylmethyldimethoxysilane, i-butylsec-butyldimethoxysilane, ethyl (perhydroisoquinoline 2-yl)dimethoxysilane, bis(decahydroisoquinolin-2-yl)dimethoxysilane, tri(
  • Organosilicon compounds play an important role, especially in controlling the amount of xylene insolubles.
  • the amount of the xylene-insoluble matter depends on the type and amount of the organosilicon compound and the polymerization temperature.
  • the amount of silicon compound is below a certain value, it greatly decreases. Therefore, when the polymerization temperature is 75° C.
  • the lower limit of the molar ratio between the organosilicon compound and the organoaluminum compound (organosilicon compound/organoaluminum) is preferably 0.015, more preferably 0.018.
  • the upper limit of the ratio is preferably 0.30, more preferably 0.20, and even more preferably 0.10.
  • 0.015-0.30, 0.015-0.20, 0.015-0.10, 0.018-0.30, 0.018-0.20, 0.018-0.10, etc. can be exemplified.
  • the xylene-insoluble matter increases as the polymerization temperature is raised.
  • the lower limit of the molar ratio is preferably 0.010, more preferably 0.015, and even more preferably 0.018.
  • the upper limit of the molar ratio is preferably 0.20, more preferably 0.14, and even more preferably 0.08.
  • component (a) is trialkylaluminum such as triethylaluminum and triisobutylaluminum
  • component (c) is organic silicon such as dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, diisopropyldimethoxysilane. Compounds are preferred.
  • the method for obtaining the polymerization mixture by the multi-stage polymerization method is not limited to the above method, and the propylene polymer (component (a1)) may be polymerized in a plurality of polymerization reactors, or the ethylene/ ⁇ -olefin copolymer may be The polymer (component (a2)) may be polymerized in multiple polymerization reactors.
  • a method of obtaining the polymerization mixture there is also a method of using a polymerization vessel having a gradient of monomer concentration and polymerization conditions.
  • Such a polymerizer may, for example, use at least two joined polymerization zones to polymerize the monomers in a gas phase polymerization.
  • a monomer is supplied and polymerized in a polymerization region composed of an ascending pipe, a monomer is supplied and polymerized in a descending pipe connected to the ascending pipe, and the ascending pipe and the descending pipe are used. is circulated to recover the polymerized product.
  • the method comprises means for wholly or partially preventing the gas mixture present in the riser from entering the downcomer. Also, a gas and/or liquid mixture is introduced into the downcomer having a different composition than the gas mixture present in the riser.
  • the method described in JP-T-2002-520426 can be applied.
  • the sheet molding of the present invention is obtained by molding the polypropylene resin composition of the present invention.
  • FIG. 1 shows a roll of sheet molding 10 as an example of the present invention.
  • the sheet molding of the present invention can be produced, for example, by a cast molding method.
  • the molding temperature is, for example, 150-350°C, preferably 170-250°C.
  • the thickness of the sheet molding of the present invention is, for example, more than 0.1 mm to 2.0 mm, preferably more than 0.1 mm to 1.0 mm, more preferably more than 0.1 mm to 0.5 mm, still more preferably 0.1 mm. It can be greater than ⁇ 0.4 mm.
  • the thickness of the sheet molding is measured by a known method such as a beta ray film thickness meter.
  • the high rate impact (unit: J) of the molded sheet of the present invention at ⁇ 40° C. is preferably more than 20 (>20) when measured by the test method described later, and the higher the value, the more preferable.
  • the "sheet peeling" of the sheet molded body of the present invention is preferably “ ⁇ " or more, which will be described later.
  • the stiffness of the sheet molding of the present invention is preferably 500 MPa or higher, more preferably 700 MPa or higher, even more preferably 900 MPa or higher, and the higher the better.
  • the stiffness is a value measured by the test method described later.
  • Microprolate MgCl 2 .2.1C 2 H 5 OH was prepared as follows. Into a 2 L autoclave equipped with a turbine stirrer and a suction pipe were placed 48 g of anhydrous MgCl 2 , 77 g of anhydrous C 2 H 5 OH, and 830 mL of kerosene under inert gas at ambient temperature. Heating the contents to 120° C. with stirring resulted in an adduct between the MgCl 2 and the alcohol which was melted and mixed with the dispersant. The nitrogen pressure inside the autoclave was maintained at 15 atmospheres. The suction pipe of the autoclave was externally heated to 120°C using a heating jacket.
  • the suction pipe had an inner diameter of 1 mm and a length of 3 m from one end of the heating jacket to the other.
  • the mixture was passed through this pipe at a speed of 7 m/sec.
  • the dispersion was taken with stirring into a 5 L flask containing 2.5 L of kerosene and externally cooled by a jacket maintaining an initial temperature of -40°C.
  • the final temperature of the dispersion was 0°C.
  • MgCl 2 .3C 2 H 5 OH in the form of solid spherical particles with a maximum diameter of less than 50 ⁇ m was obtained. Yield was 130 g.
  • the product thus obtained was freed of alcohol by gradually increasing the temperature from 50° C. to 100° C. in a stream of nitrogen until the alcohol content was reduced to 2.1 moles per mole of MgCl 2 .
  • TEAL triethylaluminum
  • DCPMS dicyclopentyldimethoxysilane
  • Prepolymerization was carried out by keeping the catalyst (X) obtained above in suspension in liquid propylene at 20° C. for 5 minutes.
  • the obtained prepolymer was introduced into the first-stage polymerization reactor of a polymerization apparatus equipped with two-stage polymerization reactors in series, and propylene was supplied to produce a propylene homopolymer.
  • the propylene homopolymer, propylene and ethylene were supplied to the second-stage polymerization reactor to produce an ethylene-propylene copolymer.
  • temperature and pressure were controlled and hydrogen was used as a molecular weight regulator.
  • the polymerization temperature and the ratio of the reactants were as follows: in the first reactor, the polymerization temperature and hydrogen concentration were 80°C and 0.012 mol%; in the second reactor, the polymerization temperature, hydrogen concentration, ethylene and propylene The ratio of ethylene to the total of and was 80° C., 1.06 mol %, and 0.49 mol ratio, respectively. Also, the residence time distribution in the first stage and the second stage was adjusted so that the amount of the ethylene-propylene copolymer was 35% by mass.
  • the target copolymer 1 was obtained by the above method.
  • the obtained copolymer 1 is a polymerization mixture of component (a1), which is a propylene polymer constituting the continuous phase, and component (a2), which is an ethylene/propylene copolymer constituting the rubber phase, and It is a polypropylene resin (A).
  • component (a1) which is a propylene polymer constituting the continuous phase
  • component (a2) which is an ethylene/propylene copolymer constituting the rubber phase
  • It is a polypropylene resin (A).
  • molecular weight distribution Mw / Mn of component (a1), ethylene-derived unit content of component (a1), average pore diameter (Dn) of component (a1), mass ratio component (a2) / [component ( a1) + component (a2)], the ethylene-derived unit content of component (a2), the XSIV of component (a1) + component (a2), and the MFR of component (a1) + component (a2) are shown in Table 1. there were.
  • a solid catalyst supporting Ti and diisobutyl phthalate as an internal donor on MgCl 2 was prepared by the method described in paragraph 0032, lines 21-36 of JP-A-2004-27218. Specifically, it was carried out as follows. Under a nitrogen atmosphere at 120 ° C., 56.8 g of anhydrous magnesium chloride is completely dissolved in 100 g of anhydrous ethanol, 500 mL of petrolatum oil "CP15N” manufactured by Idemitsu Kosan Co., Ltd., and 500 mL of silicone oil "KF96” manufactured by Shin-Etsu Silicone Co., Ltd. did. This solution was stirred at 120° C.
  • the content of titanium in the obtained solid catalyst component was measured and found to be 2.36% by mass.
  • the residence time distribution in the first stage and the second stage was changed so that the mass ratio of component (a2) / [component (a1) + component (a2)] was the ratio shown in Table 1.
  • a copolymer r1 was obtained in the same production method as in the case of the copolymer 1.
  • the catalyst (X) obtained here after contact with TEAL and DCPMS was described as "Pht-2" in Table 1.
  • a solid catalyst was prepared by the following procedure according to the preparation method described in the example of JP-A-2011-500907.
  • 250 mL of TiCl4 was introduced at 0°C.
  • 10.0 g of microspherical MgCl 2 .1.8C 2 H 5 OH prepared according to the method described in Example 2 of USP-4,399,054, but running at 3000 rpm instead of 10000 rpm ), and 9.1 mmol of diethyl-2,3-(diisopropyl)succinate were added.
  • the temperature was increased to 100°C and held for 120 minutes.
  • the obtained prepolymer was introduced into the first-stage polymerization reactor of a polymerization apparatus equipped with two-stage polymerization reactors in series, and propylene was supplied to produce a propylene homopolymer. Subsequently, the propylene homopolymer, propylene and ethylene were supplied to the second-stage polymerization reactor to produce an ethylene-propylene copolymer.
  • temperature and pressure were controlled and hydrogen was used as a molecular weight regulator.
  • the polymerization temperature and the ratio of the reactants were as follows: in the first stage reactor, the polymerization temperature and hydrogen concentration were 80 ° C.
  • Copolymer 4 shown in Table 1 was obtained by the above method. Copolymers 2 to 4 and r1 to r6 obtained above were measured in the same manner as for copolymer 1, and the results are shown in Table 1.
  • ⁇ Mw/Mn of component (a1)> A 2.5 g sample obtained by collecting the component (a1) polymerized in the first stage reactor is used as a measurement sample, and the number average molecular weight (Mn) and weight average molecular weight (Mw) are measured as follows. The molecular weight distribution (Mw/Mn) was obtained by dividing (Mw) by the number average molecular weight (Mn).
  • PL GPC220 manufactured by Polymer Laboratories was used as an apparatus, 1,2,4-trichlorobenzene containing an antioxidant was used as a mobile phase, and UT-G (1) and UT-807 (1) manufactured by Showa Denko were used as columns.
  • UT-806M two connected in series
  • a differential refractometer was used as a detector.
  • the same solvent as the mobile phase was used for the sample solution, and the sample concentration was 1 mg/mL, and the solution was dissolved with shaking at a temperature of 150° C. for 2 hours to prepare a measurement sample.
  • 500 ⁇ L of the sample solution thus obtained was injected into the column and measured at a flow rate of 1.0 mL/min, a temperature of 145° C., and a data acquisition interval of 1 second.
  • a polystyrene standard sample (Shodex STANDARD, manufactured by Showa Denko) with a molecular weight of 5,800,000 to 7,450,000 was used for calibrating the column using a cubic approximation.
  • V is the sample volume, which corresponds to the volume of each particle (bulk volume) minus the pore volume.
  • ⁇ Total ethylene content of copolymer, ethylene-derived unit content of component (a1)> A copolymer sample dissolved in a mixed solvent of 1,2,4-trichlorobenzene/deuterated benzene was measured using a Bruker AVANCE III HD400 ( 13 C resonance frequency of 100 MHz) at a measurement temperature of 120° C. and a flip angle of 45°. A 13 C-NMR spectrum was obtained under the conditions of a pulse interval of 7 seconds, a sample rotation speed of 20 Hz, and an accumulation number of 5000 times.
  • the total ethylene content of the copolymer was determined by the method described in Kakugo, Y.Naito, K.Mizunuma and T.Miyatake, Macromolecules, 15, 1150-1152 (1982). (% by mass) was obtained.
  • the total ethylene content (% by mass) obtained by the above method is the ethylene unit content (% by mass) of component (a1).
  • ⁇ Ethylene unit content in component (a2)> The same as the total ethylene content except that the integrated intensity T' ⁇ obtained by the following formula was used instead of the integrated intensity of T ⁇ obtained when measuring the total ethylene content of the copolymer by the method described in the above document.
  • T′ ⁇ 0.98 ⁇ S ⁇ A/(1 ⁇ 0.98 ⁇ A)
  • A S ⁇ /(S ⁇ +S ⁇ ), which is calculated from S ⁇ and S ⁇ described in the above literature.
  • a xylene-soluble component of the copolymer was obtained by the following method, and the intrinsic viscosity (XSIV) of the xylene-soluble component was measured.
  • a 2.5 g sample of the copolymer is placed in a flask containing 250 mL of o-xylene (solvent), and is completely dissolved by stirring at 135° C. for 30 minutes using a hot plate and a reflux apparatus while purging with nitrogen. After that, it was cooled at 25° C. for 1 hour. The resulting solution was filtered using filter paper. 100 mL of the filtrate after filtration was collected, transferred to an aluminum cup or the like, evaporated to dryness at 140° C.
  • the intrinsic viscosity was measured in tetrahydronaphthalene at 135° C. using an automatic capillary viscometer (SS-780-H1, manufactured by Shibayama Scientific Instruments Co., Ltd.).
  • ⁇ MFR of Component (a1) + Component (a2)> After adding 0.05 g of H-BHT manufactured by Honshu Chemical Industry Co., Ltd. to 5 g of the copolymer sample and homogenizing by dry blending, according to JIS K7210-1, JIS K6921-2 at a temperature of 230 ° C. and a load of 2. Measured under the condition of 0.16 kg.
  • the component (A) is blended with the composition shown in Table 2, and the component (B) is 12 parts by mass or 15 parts by mass with respect to the total amount of 88 parts by mass or 85 parts by mass of the component (A).
  • 0.2 parts by mass of B225 and 0.05 parts by mass of calcium stearate manufactured by Tannan Kagaku Kogyo Co., Ltd. as a neutralizing agent were added, and the mixture was stirred and mixed for 1 minute with a Henschel mixer.
  • the mixture was melt-kneaded and extruded at a cylinder temperature of 230° C. using a co-rotating twin-screw extruder TEX-30 ⁇ manufactured by JSW Co., Ltd.
  • Example 1-2 After cooling the strand in water, it was cut with a pelletizer to obtain pellets of the polypropylene-based resin composition. The obtained pellets were supplied to a sheet molding machine described later to obtain a sheet molding. However, with respect to Example 1-2 and Comparative Example 1-2, talc was added as component (C) to a total of 100 parts by mass of component (A) and component (B) contained in the pellets described in Table 2.
  • Component (A) is copolymers 1 to 4 and copolymers r1 to r6 in Table 1.
  • Component (B) is high-density polyethylene Novatec HB431 manufactured by Nippon Polyethylene Co., Ltd. (density: 957 kg/m 3 , temperature: 190°C based on JIS K6922-2, MFR: 0.35 g/10 minutes under a load of 2.16 kg). .
  • Component (C) is an inorganic filler, specifically the following talc.
  • Talc Neo Talc UNI05 manufactured by Neolite Kosan Co., Ltd. Volume average particle size measured by laser diffraction method: 5 ⁇ m
  • Antioxidant B225 manufactured by BASF
  • Neutralizing agent Calcium stearate manufactured by Tannan Chemical Industry Co., Ltd.
  • the measurement results and evaluation results in Table 2 are values measured and evaluated by the following methods.
  • the MFR of the polypropylene resin composition was measured according to JIS K7210-1 and JIS K6921-2 at a temperature of 230° C. and a load of 2.16 kg.
  • ⁇ Sheet formability> Using a three-kind, three-layer, ⁇ 25 mm film/sheet molding machine manufactured by Thermoplastics Industry Co., Ltd., the temperature of the cylinder and the die was adjusted to 250°C, and the molten resin was extruded from the die using the pellets as the raw material, and the molding speed was 1.0 m/. A sheet having a thickness of 400 ⁇ m was obtained by cooling and solidifying with a cooling roll at 10 min. The molded sheet was used as a sample after conditioning for 48 hours or more in a 23° C. thermostatic chamber.
  • ⁇ Stiffness> Based on JIS P8125, for a sample cut from a sheet sample, using a V-5 stiffness tester (model 150-B) manufactured by Taber Instruments Corporation, a sheet-like sample piece with a measurement span length of 5 cm was measured with a warp angle of 15 °. The bending load was measured at Stiffness was determined from the observed load.
  • the sheets of Examples according to the present invention use a polypropylene-based resin composition having predetermined physical properties, they exhibit excellent impact resistance even at extremely low temperatures of minus 40°C. In addition, it satisfies the standards in each evaluation of stiffness, sheet peeling, sheet moldability, and sheet productivity. In order to improve the impact resistance under extremely low temperatures, the present inventors diligently studied the blending of the composition as a whole. The content of component (a2) in component (A) is increased or the content of ethylene-derived units in component (a2) is increased so that the rubber-like properties of the polypropylene resin composition can be exhibited even at extremely low temperatures.
  • Comparative Example 1-1 the content of the component (a2) was small, and it could not be formed into a sheet in the first place.
  • the component (B) of Comparative Example 1-1 was reduced and the component (C) was added. Despite some difficulties, the sheet was barely formed, but the impact resistance at extremely low temperatures was not improved, and the sheet peeling, sheet moldability, and sheet productivity were poor.
  • Comparative Example 2 the content of ethylene-derived units in component (a2) was small, the impact resistance at extremely low temperatures was poor, and component (A) was barely produced, but the production volume and fluff properties were poor.
  • Comparative Example 3 the content of ethylene-derived units in component (a2) was large, and component (A) could not be produced.
  • Comparative Example 4 the XSIV of component (A) was low, so the impact resistance at extremely low temperatures was poor.
  • Comparative Example 5 the XSIV of component (A) was too high, so the impact resistance at extremely low temperatures was poor, and component (A) was barely produced, but the production volume was poor. Moreover, the sheet formability was inferior.
  • Comparative Example 6 the fluidity of the component (A) was too high, so the sheet formability (drawdown resistance) and sheet productivity were extremely poor, and the sheet sample was used to evaluate stiffness and impact resistance at extremely low temperatures. could not get

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、プロピレン重合体(a1)からなる連続相と、エチレンと炭素数3~10のαオレフィンとの共重合体(a2)からなるゴム相とを含むポリプロピレン系樹脂(A)、エチレンと炭素数2~10のαオレフィンとの重合体であるエチレン・αオレフィ共重合体(B)、及び、任意成分である無機充填剤(C)を含有し、温度230℃、荷重2.16kgでのMFRが0.1~3.0g/10分であるポリプロピレン系樹脂組成物を提供する。

Description

ポリプロピレン系樹脂組成物、シート成形体及び容器
 本発明は、ポリプロピレン系樹脂組成物、シート成形体及び容器に関する。本願は、2021年6月25日に、日本に出願された特願2021-105708号に基づき優先権を主張し、その内容をここに援用する。
 ポリプロピレンは、耐衝撃性、剛性、透明性、耐薬品性、耐熱性等の物性に優れることから、種々の用途に使用されている。例えば特許文献1には、剛性および耐衝撃性のバランスに優れ、外観が良好な射出成形体を得るのに好適なポリプロピレン系樹脂組成物が開示されている。
特開2019-189818号公報
 ポリプロピレン系樹脂組成物からシート成形体を得る場合、ポリプロピレン系樹脂組成物には、耐ドローダウン性が高く、シート成形性やシート生産性がよいことが求められる。
 一方、シート成形体を材料としてさらに成形された容器(例えば、カップ、皿、トレー、ボトル等)には、剛性や耐衝撃性等の機械特性が求められる。例えば、アイスクリーム容器には零下40℃程度の極低温下での優れた耐衝撃性が求められる。これは零下5℃付近の耐衝撃性とは次元の異なる物性であり、従来のポリプロピレン系樹脂組成物がその要求に応えることは相当に困難であった。
 本発明は、零下40℃の極低温下で優れた耐衝撃性を有するシート成形体及び容器、並びにそのシート成形体を形成可能なポリプロピレン系樹脂組成物を提供する。
 本発明は、以下の態様を有する。
[1] プロピレン重合体(a1)からなる連続相と、エチレンと炭素数3~10のαオレフィンとの共重合体(a2)からなるゴム相とを含むポリプロピレン系樹脂(A)、
 エチレンと炭素数2~10のαオレフィンとの重合体であるエチレン・αオレフィン重合体(B)、及び、
 任意成分である無機充填剤(C)を含有するポリプロピレン系樹脂組成物であって、
 前記ポリプロピレン系樹脂組成物の温度230℃、荷重2.16kgでのMFRが0.1~3.0g/10分であり、
 前記ポリプロピレン系樹脂組成物の総質量に対する、前記(A)、(B)、(C)の合計質量が70質量%以上であり、
 前記ポリプロピレン系樹脂組成物の総質量に対する、前記(A)、(B)の合計質量が50質量%以上であり、
 前記(A)、(B)の合計100質量部に対する、前記(A)の含有量は99質量部以下であり、前記(B)の含有量は1質量部以上であり、前記(C)の含有量は0~60質量部であり、
 前記プロピレン重合体(a1)中のエチレン由来単位含有量が、前記プロピレン重合体(a1)の総質量に対して0.5質量%以下であり、
 前記共重合体(a2)の含有量が、前記ポリプロピレン系樹脂(A)の総質量に対して27~45質量%であり、
 前記共重合体(a2)中のエチレン由来単位含有量が、前記共重合体(a2)の総質量に対して25~85質量%であり、
 前記ポリプロピレン系樹脂(A)のキシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が2.5~5.5dl/gである、ポリプロピレン系樹脂組成物。
[2]前記ポリプロピレン系樹脂(A)のDSC測定において、85~105℃に観察される結晶化ピークの発熱量が0.5~10J/gである[1]に記載のポリプロピレン系樹脂組成物。
[3] 前記プロピレン重合体(a1)の平均気孔直径が8~50μmである、[1]又は[2]に記載のポリプロピレン系樹脂組成物。
[4] [1]~[3]の何れか一項に記載のポリプロピレン系樹脂組成物を成形してなるシート成形体。
[5] 容器に成形される用途の[4]に記載のシート成形体。
[6] [4]又は[5]に記載のシート成形体から形成された、容器。
 本発明のポリプロピレン系樹脂組成物を使用すれば、零下40℃の極低温下で優れた耐衝撃性を有するシート成形体が得られる。このポリプロピレン系樹脂組成物又はシート成形体を材料として成形された容器は、零下40℃の極低温下において優れた耐衝撃性を発揮することができる。
 また、容器の用途以外にも、例えば、雑貨、日用品、家電部品、電機電子部品、自動車部品、筐体部材、玩具部材、家具部材、建材部材、包装部材、工業資材、物流資材、農業資材等の用途(プラスチック製段ボールの様態で用いられる場合を含む)に使用してもよい。
本発明の一例のシート成形体の斜視図である。 本発明の一例の容器の斜視図である。 実施例で製造したポリプロピレン系樹脂のペレットから採取したサンプルのDSCチャートの一例である。
<ポリプロピレン系樹脂組成物>
 本発明のポリプロピレン系樹脂組成物は、プロピレン重合体(以下、成分(a1)ともいう)からなる連続相と、エチレンと炭素数3~10のαオレフィンとの共重合体(以下、成分(a2)ともいう)からなるゴム相とを含むポリプロピレン系樹脂(A)(以下、成分(A)ともいう)、及びエチレンと炭素数2~10のαオレフィンとの重合体であるエチレン・αオレフィン重合体(B)(以下、成分(B)ともいう)を含有する。
 また、任意成分として、無機充填剤(C)(以下、成分(C)ともいう)を含有してもよいし、含有しなくてもよい。
 前記ポリプロピレン系樹脂組成物の総質量に対する、成分(A)、成分(B)、及び成分(C)の合計質量は70質量%以上であり、下限値として80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。また、上限値として100質量%未満が好ましい。
 前記範囲の下限値以上であれば、本発明のシート成形体の極低温下における耐衝撃性が高まる。前記範囲の上限値未満であれば、酸化防止剤や中和剤等の他の成分を含有する余地が得られる。
 前記ポリプロピレン系樹脂組成物の総質量に対する、成分(A)及び成分(B)の合計質量は50質量%以上であり、下限値として60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、95質量%以上が特に好ましい。また、上限値として100質量%未満が好ましい。
 前記範囲の下限値以上であれば、本発明のシート成形体の極低温下における耐衝撃性が高まる。前記範囲の上限値未満であれば、酸化防止剤や中和剤等の他の成分を含有する余地が得られる。
 成分(A)及び成分(B)の合計100質量部に対する、成分(A)の含有量は99質量部以下であり、下限値として70質量部以上が好ましく、80質量部以上がより好ましい。また、上限値として95質量部以下が好ましく、90質量部以下がより好ましい。つまり、70~99質量部、70~95質量部、70~90質量部、80~99質量部、80~95質量部、80~90質量部、等の範囲が例示できる。
 前記範囲の下限値以上であると、シート成形体の剛性が高まる。
 前記範囲の上限値以下であると、相対的に成分(B)の含有割合が高まり、本発明のシート成形体の極低温下における耐衝撃性が高まる。
 成分(A)及び成分(B)の合計100質量部に対する、成分(B)の含有量は1質量部以上であり、下限値として5質量部以上が好ましく、10質量部以上がより好ましい。また、上限値として30質量部以下が好ましく、20質量部以下がより好ましい。つまり、1~30質量部、1~20質量部、5~30質量部、5~20質量部、10~30質量部、10~20質量部、等の範囲が例示できる。
 前記範囲の下限値以上であると、シート成形体の極低温下における耐衝撃性が高まる。
 前記範囲の上限値以下であると、相対的に成分(A)の含有割合が高まり、本発明のシート成形体の剛性が高まる。
 成分(A)及び成分(B)の合計100質量部に対する、成分(C)の含有量は、0~60質量部であり、上限値として40質量部以下が好ましく、30質量部以下がより好ましい。
 前記範囲の上限値以下であると、本発明のポリプロピレン系樹脂組成物からシート成形体を成形したり、そのシート成形体から容器を成形したりすることが容易になる。図1、図2に本発明の一例として、シート成形体10と、シート成形体から形成されたカップ型の容器20を示す。
 また、成分(C)を含むことにより、シート成形体の剛性(スティフネス)が高まる。
 ポリプロピレン系樹脂組成物の温度230℃、荷重2.16kgでのMFRは、0.1~3.0g/10分であり、下限値として0.2g/10分以上が好ましく、0.3g/10分以上がより好ましい。また、上限値として2.5g/10分以下が好ましく、1.8g/10分以下がより好ましく、1.0g/10分以下がさらに好ましい。つまり、0.1~2.5g/10分、0.1~1.8g/10分、0.1~1.0g/10分、0.2~3.0g/10分、0.2~2.5g/10分、0.2~1.8g/10分、0.2~1.0g/10分、0.3~3.0g/10分、0.3~2.5g/10分、0.3~1.8g/10分、0.3~1.0g/10分、等の範囲が例示できる。ここで、前記MFRは後述する測定方法で測定された値である。
 前記範囲の下限値以上であると、シート成形性が優れる。また、0.1g/10分未満に調整して製造することは通常困難である。
 前記範囲の上限値以下であると、シート成形性(耐ドローダウン性)やシート生産性が高まり、シート成形体の極低温下における耐衝撃性が高まる。
[ポリプロピレン系樹脂(A)]
 本発明のポリプロピレン系樹脂組成物に含有されるポリプロピレン系樹脂(A)は、JIS K6921-1で規定される耐衝撃性ポリプロピレンポリマーの一態様であり、プロピレン重合体(成分(a1))の連続相と、その連続相の中に分散相として存在するエチレン・αオレフィン共重合体(成分(a2))のゴム相を含む二つ以上の相で構成される。
 ポリプロピレン系樹脂(A)は、成分(a1)と成分(a2)とが重合時に混合された混合樹脂であってもよいし、別々に得られた成分(a1)と成分(a2)とが、溶融混練によって混合された混合樹脂であってもよい。剛性と低温耐衝撃性と引張特性とのバランス(以下「機械物性バランス」ともいう。)に優れるものがより安価で得られることから、成分(a1)と成分(a2)とが重合時に混合されたもの(重合混合物)であることが好ましい。
 重合混合物では、成分(a1)と成分(a2)とがサブミクロンオーダーで混じり合うことが可能であるため、重合混合物をベースとしたポリプロピレン系樹脂組成物は、優れた機械物性バランスを示す。
 一方、別々に得られた成分(a1)と成分(a2)とを溶融混練して得た単なる機械混合物で同様な均一混合を実現して優れた機械物性バランスを得る場合には、貯蔵・保管・移送・計量・混合・溶融混練等の別工程を経る必要性から製造コストが高くなる。エネルギーコストの観点からも好ましくない。
 なお、前記重合混合物と機械混合物とが異なる物性を示す場合があるのは、成分(a1)中の成分(a2)の分散状態が異なっているためと推測されるが、成分(a2)の成分(a1)との界面の状態を含めた分子レベルでの分散状態を分析する現実的手段は現状知られていない。ポリプロピレン系樹脂(A)の製造方法については後で詳しく説明する。
 ポリプロピレン系樹脂(A)のキシレン可溶分の極限粘度(以下、「XSIV」ともいう。)は2.5~5.5dl/gであり、下限値として2.7dl/g以上が好ましい。また、上限値として4.5dl/g以下が好ましく、4.0dl/g以下がより好ましく、3.5dl/g以下がさらに好ましい。つまり、2.5~4.5dl/g、2.5~4.0dl/g、2.5~3.5dl/g、2.7~5.5dl/g、2.7~4.5dl/g、2.7~4.0dl/g、2.7~3.5dl/g、等の範囲が例示できる。ここで、XSIVは、後述する方法で測定された値である。
 前記範囲の下限値以上であると、シート成形体の極低温下における耐衝撃性が高まる。
 前記範囲の上限値以下であると、ポリプロピレン系樹脂(A)の生産性が高まる。また、シート成形性が高まり、シート成形体の極低温下における耐衝撃性が高まる。
 ポリプロピレン系樹脂(A)を構成するプロピレン重合体(成分(a1))の分子量分布の指標である重量平均分子量Mと数平均分子量Mとの比率(M/M)は、9以下が好ましく、8以下がより好ましく、7未満がさらに好ましい。上記好適な範囲であると、シート成形体の極低温下における耐衝撃性が高まる。
 上記比率の下限値は特に制限されず、目安として例えば3以上が挙げられる。
 ここで、プロピレン重合体の重量平均分子量M及び数平均分子量Mは、後述する方法で測定された値である。
 ポリプロピレン系樹脂(A)を構成するプロピレン重合体(成分(a1))中のエチレン由来単位含有量(以下、「C2」ともいう。)は、前記プロピレン重合体の総質量に対して0.5質量%以下であり、0.3質量%以下が好ましい。
 C2が前記上限値以下であると、シート成形体の剛性が高まる。
 C2の下限は特に限定されず、0質量%であってもよい。
 つまりプロピレン重合体は、プロピレン由来単位のみからなるポリプロピレンホモポリマーであってもよく、99.5質量%以上100質量%未満のプロピレン由来単位と0質量%超0.5質量%以下のエチレン由来単位とからなる共重合体であってもよい。C2は、13C-NMR法によって測定される。
 成分(a1)の平均気孔直径(Dn)は、8μm~50μmが好ましく、8~30μmがより好ましく、8~15μmがさらに好ましい。
 DnはJIS R1655に従い水銀圧入法により測定される気孔直径Dの平均値である。Dnがこの範囲にあることで、成分(a1)と成分(a2)からなるポリプロピレン系樹脂(A)の粉体流動性が向上する結果、生産性が向上する。このメカニズムは、明らかではないが、成分(a1)が前述の範囲のDnを有すると、成分(a1)中に成分(a2)が存在するために十分な気孔の大きさと気孔の表面積の総和を両立できる結果、成分(a2)が成分(a1)中に保持されやすくなるので重合体の粉体流動性が向上すると推測される。
 ポリプロピレン系樹脂(A)を構成するエチレン・αオレフィン共重合体(成分(a2))は、エチレン由来単位と炭素数3~10のαオレフィン由来単位を有する共重合体である。
 成分(a2)中のエチレン由来単位含有量は、成分(a2)の総質量に対して、25~85質量%であり、下限値として29質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上がさらに好ましい。また、上限値として70質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下がさらに好ましい。つまり、25~70質量%、25~60質量%、25~55質量%、29~85質量%、29~70質量%、29~60質量%、29~55質量%、40~85質量%、40~70質量%、40~60質量%、40~55質量%、45~85質量%、45~70質量%、45~60質量%、45~55質量%、等の範囲が例示できる。
 前記範囲の下限値以上であると、シート成形体の極低温下における耐衝撃性が高まる。
 前記範囲の上限値以下であると、ポリプロピレン系樹脂(A)製造時に粉体流動性悪化により生産設備上での流路が閉塞するリスクを低減できるので、ポリプロピレン系樹脂(A)を安定的に連続生産することができる。
 成分(a2)中のエチレン由来単位含有量は、13C-NMR法によって測定される。
 ポリプロピレン系樹脂(A)の総質量に対する、エチレン・αオレフィン共重合体(成分(a2))の含有量は、27~45質量%であり、下限値として29質量%以上が好ましく、32質量%以上がより好ましい。また、上限値として42質量%以下が好ましく、38質量%以下がより好ましい。つまり、27~42質量%、27~38質量%、29~45質量%、29~42質量%、29~38質量%、32~45質量%、32~42質量%、32~38質量%、等の範囲が例示できる。
 前記範囲の下限値以上であると、シート成形体の極低温下における耐衝撃性が高まる。
 前記範囲の上限値以下であると、ポリプロピレン系樹脂(A)製造時に粉体流動性悪化により生産設備上での流路が閉塞するリスクを低減できるので、ポリプロピレン系樹脂(A)を安定的に連続生産することができる。
 また、成分(a2)の含有量に応じて、ポリプロピレン系樹脂(A)の総質量に対する、成分(a1)の含有量は、55~73質量%が好ましい。この好適な範囲において、下限値として58質量%以上が好ましく、62質量%以上がより好ましく、上限値として71質量%以下が好ましく、68質量%以下がより好ましい。つまり、55~71質量%、55~68質量%、58~73質量%、58~71質量%、58~68質量%、62~73質量%、62~71質量%、62~68質量%、等の範囲が例示できる。
 前記エチレン・αオレフィン共重合体(成分(a2))を構成するαオレフィンとしては、プロピレン(1-プロペン)、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。
 具体的な成分(a2)としては、エチレン・プロピレン共重合体、エチレン・ブテン共重合体、エチレン・ペンテン共重合体、エチレン・ヘキセン共重合体、エチレン・オクテン共重合体等が挙げられる。
 これらの中でも、ポリプロピレン系樹脂(A)の生産性向上を考慮すると、エチレン・プロピレン共重合体が好ましい。
 ポリプロピレン系樹脂(A)の温度230℃、荷重2.16kgでのMFR、すなわち成分(a1)+成分(a2)のMFRは、下限値として0.1g/10分以上が好ましく、0.2g/10分以上がより好ましく、0.3g/10分以上がさらに好ましい。また、上限値として2.5g/10分以下が好ましく、1.8g/10分以下がより好ましく、1.0g/10分以下がさらに好ましい。つまり、0.1~2.5g/10分、0.1~1.8g/10分、0.1~1.0g/10分、0.2~2.5g/10分、0.2~1.8g/10分、0.2~1.0g/10分、0.3~2.5g/10分、0.3~1.8g/10分、0.3~1.0g/10分、等の範囲が例示できる。ここで、前記MFRは後述する測定方法で測定された値である。
 前記範囲の下限値以上であると、シート成形性が優れる。なお、0.1g/10分未満に調整して製造することは通常困難である。
 前記範囲の上限値以下であると、シート成形性(耐ドローダウン性)やシート生産性が高まり、シート成形体の極低温下における耐衝撃性が高まる。
 ポリプロピレン系樹脂(A)のDSC(示差走査熱量測定)において、85~105℃に結晶化ピークが観察されることが好ましい。この結晶化ピークは、ポリプロピレン系樹脂(A)を構成するエチレン・αオレフィン共重合体(成分(a2))のポリエチレン成分の結晶化に由来する。後述するように、一般的にチーグラー・ナッタ触媒を用いてエチレン・αオレフィン共重合体を重合すると、エチレン由来単位含有量の異なる成分が生成する(所謂組成分布が存在する)結果、成分(a2)中のエチレン由来単位含有量がある程度以上になると、結晶化可能な長いエチレン連鎖の成分(ポリエチレン成分)が発生する。ポリエチレン成分は特に低温での耐衝撃性に有効であり、ポリプロピレン系樹脂(A)を構成する成分(a2)がポリエチレン成分を含むと、本発明の極低温での耐衝撃性がより一層向上する。この理由から、ポリプロピレン系樹脂(A)に添加するエチレン・αオレフィン重合体(B)の添加量が少なくても、極低温での耐衝撃性が充分に発揮される。
 DSCにおいて85~105℃に観察される結晶化ピークの発熱量(ΔHc)は、ポリプロピレン系樹脂(A)が含有するポリエチレン成分量の指標であり、ポリプロピレン系樹脂(A)中の成分(a2)の含有量に依存する。また、成分(a2)のエチレン由来単位含有量以外に、ポリプロピレン系樹脂(A)の製造時の触媒や重合条件にも依存する。
 ポリプロピレン系樹脂(A)のDSCを後述の方法で行った場合、85~105℃に観察されるΔHcの下限は、極低温での耐衝撃性を高める観点から、0.5J/g以上であることが好ましく、1.0J/g以上であることがより好ましい。一方、ΔHcが10J/g以下であると、剛性が維持され、成分(a1)と成分(a2)の親和性が保たれ、剛性と耐衝撃性のバランスがより良好となる。ΔHcのより好ましい上限は8.0J/g以下である。つまり、0.5~10J/g、0.5~8.0J/g、1.0~10J/g、1.0~8.0J/g、等の範囲が例示できる。
[エチレン・αオレフィン重合体(B)]
 エチレン・αオレフィン重合体(B)は、エチレンと炭素数2~10のαオレフィンとの重合体である。αオレフィンとしては、エチレン、プロピレン(1-プロペン)、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等が挙げられる。
 具体的なエチレン・αオレフィン重合体(B)としては、ポリエチレン、エチレン・ブテン共重合体、エチレン・ペンテン共重合体、エチレン・ヘキセン共重合体、エチレン・オクテン共重合体等が挙げられる。
 これらの中でも、シート成形体の極低温下における耐衝撃性を高める観点から、ポリエチレンが好ましい。ポリエチレンは高密度ポリエチレン(HDPE)が好ましい。HDPEの密度は、JIS K6922-1:2018に準拠して23℃±2℃の条件下で測定され、940kg/mよりも大きく、954kg/mよりも大きいことが好ましい。HDPEの密度の上限値の目安として、990kg/mが挙げられる。
[無機充填剤(C)]
 無機充填剤(C)としては、例えば、タルク、カオリナイト、クレー、バイロフィライト、セリナイト、ウォラストナイト、マイカのような天然珪酸または珪酸塩;含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸のような合成珪酸または珪酸塩;沈降性炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウムのような炭酸塩;水酸化アルミニウム、水酸化マグネシウムのような水酸化物;酸化亜鉛、酸化マグネシウムのような酸化物が挙げられる。
 また、無機充填剤としては形状の観点から、例えば、以下のものが挙げられる。
 含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸のような合成珪酸または珪酸塩のような粉末状充填剤;タルク、カオリナイト、クレー、マイカのような板状充填剤;塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、セピオライト、PMF(Processed Mineral Filler)、ゾノトライト、チタン酸カリウム、およびエレスタダイトのようなウィスカー状充填剤;ガラスバルン、フライアッシュバルンのようなバルン状充填剤;ガラスファイバーのような繊維状充填剤。
 無機充填剤として1種を用いてもよいし、2種以上を併用してもよい。これらの充填剤の分散性を向上させるため、必要に応じて無機充填剤の表面処理を行ってもよい。本発明に用いる無機充填剤は限定されないが、シート成形体においてポリプロピレン結晶の配向を促進することにより機械物性バランスを高める観点から、板状無機充填剤が好ましい。
 板状無機充填剤としてはタルク、カオリナイト、クレー、マイカ等の公知のものを使用できるが、ポリプロピレン系樹脂との親和性や原料としての調達容易性や経済性等を考慮すると、好ましくはタルク、マイカであり、さらに好ましくはタルクである。
 無機充填剤(C)の体積平均粒子径は、好ましくは1~10μm、より好ましくは2~7μmである。体積平均粒子径が前記範囲内であれば、シート成形体の機械物性バランスが高くなる。前記体積平均粒子径は、レーザ回折法(JIS R1629に基づく)によって体積基準の積算分率における50%径として測定できる。
[その他の成分]
 本発明のポリプロピレン系樹脂組成物は、任意成分として、本発明の効果を損なわない範囲で、ポリプロピレン系樹脂(A)、エチレン・αオレフィン重合体(B)及び無機充填剤(C)以外に、ポリプロピレン系樹脂(A)およびエチレン・αオレフィン重合体(B)以外の合成樹脂又は合成ゴム、添加剤が含まれてもよい。
 前記添加剤としては、例えば、酸化防止剤、中和剤、核剤、耐候剤、顔料(有機または無機)、内部滑剤および外部滑剤、アンチブロッキング剤、帯電防止剤、塩素吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、スリップ剤、防曇剤、難燃剤、分散剤、銅害防止剤、可塑剤、発泡剤、気泡防止剤、架橋剤、過酸化物、油展等が挙げられる。これらの添加剤は1種のみでもよいし、2種以上でもよい。含有量は公知の量としてよい。
<ポリプロピレン系樹脂組成物の製造方法>
 本発明のポリプロピレン系樹脂組成物を製造する方法としては、ポリプロピレン系樹脂(A)と、エチレン・αオレフィン重合体(B)と、無機充填剤(C)とを混合した後、溶融混練する方法が挙げられる。
 混合方法としては、ヘンシェルミキサー、タンブラーおよびリボンミキサー等の混合機を使用してドライブレンドする方法が挙げられる。
 溶融混練方法としては、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ロールミル等の混合機を用いて溶融しながら混合する方法が挙げられる。溶融混練する場合の溶融温度は160~350℃であることが好ましく、170~260℃であることがより好ましい。溶融混練した後でさらにペレット化してもよい。
 成分(C)を配合する場合、成分(A)及び成分(B)のうち少なくとも一方を含むペレットに対して、成分(C)をドライブレンドしてもよい。ドライブレンドされた成分(C)は、ポリプロピレン系樹脂組成物を成形する際に溶融した成分(A)及び成分(B)に対して均一に混合される。また本発明においては、高濃度の成分(C)を樹脂成分と溶融混練した、いわゆるマスターバッチを、成分(A)及び成分(B)のうち少なくとも一方に添加して溶融混錬、あるいは成分(A)及び成分(B)のうち少なくとも一方を含むペレットとドライブレンドしてもよい。その際、マスターバッチに含まれる樹脂成分がポリプロピレン系樹脂組成物の物性に影響を及ぼさないように、マスターバッチに含まれる樹脂成分の割合とマスターバッチの添加量を調整する。
 マスターバッチに含まれる樹脂成分の含有量は、本態様のポリプロピレン系樹脂組成物の総質量に対して、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がさらに好ましい。上記の好適な範囲であると、マスターバッチに含まれる樹脂成分がポリプロピレン系樹脂組成物の物性に悪影響を及ぼすことを防止できる。樹脂成分の種類は限定されないが、組成物を構成するポリプロピレン系樹脂やエチレン・αオレフィン共重合体との親和性を考慮すると、オレフィン系樹脂が好ましい。
 マスターバッチの含有量は、成分(A)及び成分(B)の合計100質量部に対して、100質量部以下が好ましく、70質量部以下がより好ましく、50質量部以下がさらに好ましい。上記の好適な範囲であると、シート成形性やシートの極低温下における耐衝撃性を損なわずに、シートの剛性を高められる。
[ポリプロピレン系樹脂(A)の製造方法]
 ポリプロピレン系樹脂(A)は、プロピレン重合体(成分(a1))とエチレン・αオレフィン共重合体(成分(a2))とを重合時に混合して得てもよいし、別々に製造された成分(a1)と成分(a2)とを溶融混練によって混合して得てもよい。
 ポリプロピレン系樹脂(A)は、成分(a1)と成分(a2)とが重合時に混合された重合混合物であることが好ましい。
 このような重合混合物は、成分(a1)の存在下で、エチレン単量体及びαオレフィン単量体を重合することにより得られる。この方法によれば、生産性が高くなる上に、成分(a1)中の成分(a2)の分散性が高くなるため、これを用いて得たシート成形体の機械物性バランスが向上する。
 以下、αオレフィン単量体としてプロピレン単量体を使用する場合を説明するが、他のαオレフィン単量体を使用する場合にも同様にして製造することができる。
 前記重合混合物の製造方法としては、典型的には、多段重合法が用いられる。例えば、二段の重合反応器を備える重合装置の一段目の重合反応器にて、プロピレン単量体及び必要に応じてエチレン単量体を重合してプロピレン重合体を得て、得られたプロピレン重合体を二段目の重合反応器に供給すると共に、この二段目の重合反応器にてエチレン単量体及びプロピレン単量体を重合することで前記重合混合物を得ることができる。
 重合条件は、公知の重合条件と同様であってよい。例えば一段目の重合条件としては、プロピレンが液相でモノマー密度と生産性の高いスラリー重合法が挙げられる。二段目の重合条件としては、一般的にプロピレンへの溶解性が高い共重合体の製造が容易な気相重合法が挙げられる。
 重合温度は50~90℃が好ましく、60~90℃がより好ましく、70~90℃がさらに好ましい。該重合温度が上記範囲の下限値以上であると、生産性及び得られたポリプロピレンの立体規則性がより優れる。
 重合圧力は、液相中で行われる場合には25~60bar(2.5~6.0MPa)が好ましく、33~45bar(3.3~4.5MPa)がより好ましい。気相中で行われる場合には、5~30bar(0.5~3.0MPa)が好ましく、8~30bar(0.8~3.0MPa)がより好ましい。
 重合(プロピレン単量体の重合、エチレン単量体及びプロピレン単量体等の重合)は、通常、触媒を用いて行われる。重合の際、必要に応じて、分子量の調整のために、水素が添加されてもよい。プロピレン重合体やエチレン・プロピレン共重合体の分子量を調整することで、ポリプロピレン系樹脂(A)のMFR、ひいてはポリプロピレン系樹脂組成物のMFRを調整できる。
 一段目の重合反応器での重合の前に、その後の本重合の足がかりとなるポリマー鎖を固体触媒成分に形成させるために、プロピレンの予重合を行ってもよい。予重合は、通常は40℃以下、好ましくは30℃以下、より好ましくは20℃以下で行われる。
 触媒としては、公知のオレフィン重合触媒を用いることができる。
 前記プロピレン重合体の存在下でエチレン単量体及びプロピレン単量体を重合する際の触媒としては、立体特異性チーグラー・ナッタ触媒が好ましく、以下の成分(ア)と成分(イ)と成分(ウ)とを含む触媒(以下、「触媒(X)」ともいう。)が特に好ましい。
 (ア)マグネシウム、チタン、ハロゲン及び電子供与体化合物としてフタレート系化合物を必須成分として含有する固体触媒。
 (イ)有機アルミニウム化合物。
 (ウ)外部電子供与体化合物である有機ケイ素化合物。
 ポリプロピレン系樹脂(A)は、触媒(X)を用いて、前記プロピレン重合体の存在下で、エチレン単量体及びαオレフィン単量体(例えばプロピレン単量体)を重合して前記ポリプロピレン系樹脂を得る工程を有する方法で製造することが好ましい。触媒(X)を用いることで、各物性が前記範囲内であるポリプロピレン系樹脂(A)が容易に得られる。
 なお、使用する触媒(特に成分(ア)の電子供与体化合物)によって得られるプロピレン重合体の分子量や立体規則性の分布は異なり、その違いは結晶化挙動等に影響を与えるが、その関係性についての詳細が明らかになっていない。これを明らかにしようとする場合、分子構造として分子量分布と立体規則性分布を併せて解析する必要があるが、結晶化過程において分子量と立体規則性が異なる成分同士が影響を及ぼし合うため複雑であり、分子量や立体規則性の分布が結晶化挙動に及ぼす影響についての解釈をより困難にしている。さらに、実際のシート成形は溶融樹脂の流動状態にて実施されるので、たとえ高度な解析技術を用いてもその現象を把握することは容易ではない。よって、特定の触媒を用いて得られたポリプロピレン系樹脂組成物において、分子量や立体規則性の分布による結晶化挙動の違いを数値等で特定することはおよそ不可能である。分子量分布や立体規則性分布は、上述した触媒の種類以外に溶融混錬時の熱劣化や過酸化物処理等によっても変化する。
 成分(ア)は、例えば、チタン化合物、マグネシウム化合物及び電子供与体化合物を用いて調製される。
 成分(ア)に用いられるチタン化合物として、一般式:Ti(OR)4-g(Rは炭化水素基、Xはハロゲン、0≦g≦4)で表される4価のチタン化合物が好適である。
 炭化水素基としては、メチル、エチル、プロピル、ブチル等が挙げられ、ハロゲンとしては、Cl、Br等が挙げられる。
 より具体的なチタン化合物としては、TiCl、TiBr、TiIのようなテトラハロゲン化チタン;Ti(OCH)Cl、Ti(OC)Cl、Ti(O-C)Cl、Ti(OC)Br、Ti(O-isoC)Brのようなトリハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O-CCl、Ti(OCBrのようなジハロゲン化アルコキシチタン;Ti(OCHCl、Ti(OCCl、Ti(O-CCl、Ti(OCBrなどのモノハロゲン化トリアルコキシチタン;Ti(OCH、Ti(OC、Ti(O-Cのようなテトラアルコキシチタン等が挙げられる。これらチタン化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
 上記チタン化合物の中で好ましいものはハロゲン含有チタン化合物であり、より好ましくはテトラハロゲン化チタンであり、特に好ましくは四塩化チタン(TiCl)である。
 成分(ア)に用いられるマグネシウム化合物として、マグネシウム-炭素結合やマグネシウム-水素結合を有するマグネシウム化合物、例えばジメチルマグネシウム、ジエチルマグネシウム、ジプロピルマグネシウム、ジブチルマグネシウム、ジアミルマグネシウム、ジヘキシルマグネシウム、ジデシルマグネシウム、エチル塩化マグネシウム、プロピル塩化マグネシウム、ブチル塩化マグネシウム、ヘキシル塩化マグネシウム、アミル塩化マグネシウム、ブチルエトキシマグネシウム、エチルブチルマグネシウム、ブチルマグネシウムハイドライド等が挙げられる。これらのマグネシウム化合物は、例えば有機アルミニウム等との錯化合物の形で用いることもでき、また、液状であっても固体状であってもよい。さらに好適なマグネシウム化合物として、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、フッ化マグネシウムのようなハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネシウムのようなアルコキシマグネシウムハライド;フェノキシ塩化マグネシウム、メチルフェノキシ塩化マグネシウムのようなアリロキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、n-オクトキシマグネシウム、2-エチルヘキソキシマグネシウムのようなアルコキシマグネシウム;ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウムのようなジアルコキシマグネシウム;エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム、フェノキシマグネシウム、ジメチルフェノキシマグネシウムのようなアリロキシマグネシウム等を挙げることができる。これらマグネシウム化合物は1種を単独で使用してもよいし、2種以上を併用してもよい。
 成分(ア)に用いられる電子供与体化合物は、フタレート系化合物を必須成分として含有することが好ましい。フタレート系化合物を電子供与体として含む触媒(X)を用いると、プロピレン重合体のM/Mが前記範囲内であるポリプロピレン系樹脂が容易に得られる。また、一般的にチーグラー・ナッタ触媒を用いてエチレン・αオレフィン共重合体を重合すると、エチレン由来単位含有量の異なる成分が生成する(所謂組成分布が存在する)が、フタレート系化合物を電子供与体として含む触媒(X)を用いると、組成分布の広い共重合体が得られる結果、低温での耐衝撃性に有効なエチレン由来単位含有量が共重合体の平均値と比較して特に多い成分、およびプロピレン重合体との界面の親和性に有効なエチレン由来単位含有量が共重合体の平均値と比較して特に少ない成分、の両方が生成し易いと考えられる。この結果、フタレート系化合物を電子供与体として含む触媒(X)を用いることにより、極低温での耐衝撃性を向上するためにエチレン由来単位含有量が比較的多いエチレン・αオレフィン共重合体を重合した場合においても、プロピレン重合体との界面の親和性が保たれる結果、剛性と耐衝撃のバランスを維持することが可能である。
 フタレート系化合物としては、例えば、モノエチルフタレート、ジメチルフタレート、メチルエチルフタレート、モノイソブチルフタレート、モノノルマルブチルフタレート、ジエチルフタレート、エチルイソブチルフタレート、エチルノルマルブチルフタレート、ジn-プロピルフタレート、ジイソプロピルフタレート、ジn-ブチルフタレート、ジイソブチルフタレート、ジn-ヘプチルフタレート、ジ-2-エチルヘキシルフタレート、ジn-オクチルフタレート、ジネオペンチルフタレート、ジデシルフタレート、ベンジルブチルフタレート、ジフェニルフタレート等が挙げられる。中でもジイソブチルフタレートが特に好ましい。
 フタレート系化合物以外の前記固体触媒中の電子供与体化合物としては、スクシネート系化合物、ジエーテル系化合物等が挙げられる。
 スクシネート系化合物は、コハク酸のエステルであってもよく、コハク酸の1位又は2位にアルキル基等の置換基を持つ置換コハク酸のエステルであってもよい。具体例としては、ジエチルスクシネート、ジブチルスクシネート、ジエチルメチルスクシネート、ジエチルジイソプロピルスクシネート、ジアリルエチルスクシネート等が挙げられる。
 ジエーテル系化合物としては、例えば、2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2-イソプロピル-1,3-ジメトキシプロパン、2-ブチル-1,3-ジメトキシプロパン、2-sec-ブチル-1,3-ジメトキシプロパン、2-シクロヘキシル-1,3-ジメトキシプロパン、2-フェニル-1,3-ジメトキシプロパン、2-tert-ブチル-1,3-ジメトキシプロパン、2-クミル-1,3-ジメトキシプロパン、2-(2-フェニルエチル)-1,3-ジメトキシプロパン、2-(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-(p-クロロフェニル)-1,3-ジメトキシプロパン、2-(ジフェニルメチル)-1,3-ジメトキシプロパン、2-(1-ナフチル)-1,3-ジメトキシプロパン、2-(p-フルオロフェニル)-1,3-ジメトキシプロパン、2-(1-デカヒドロナフチル)-1,3-ジメトキシプロパン、2-(p-tert-ブチルフェニル)-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ジエチル-1,3-ジメトキシプロパン、2,2-ジプロピル-1,3-ジメトキシプロパン、2,2-ジブチル-1,3-ジメトキシプロパン、2,2-ジエチル-1,3-ジエトキシプロパン、2,2-ジシクロペンチル-1,3-ジメトキシプロパン、2,2-ジプロピル-1,3-ジエトキシプロパン、2,2-ジブチル-1,3-ジエトキシプロパン、2-メチル-2-エチル-1,3-ジメトキシプロパン、2-メチル-2-プロピル-1,3-ジメトキシプロパン、2-プロピル-2-ペンチル-1,3-ジエトキシプロパン、2-メチル-2-ベンジル-1,3-ジメトキシプロパン、2-メチル-2-フェニル-1,3-ジメトキシプロパン、2-メチル-2-シクロヘキシル-1,3-ジメトキシプロパン、2-メチル-2-メチルシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(p-クロロフェニル)-1,3-ジメトキシプロパン、2,2-ビス(2-フェニルエチル)-1,3-ジメトキシプロパン、2,2-ビス(2-シクロヘキシルエチル)-1,3-ジメトキシプロパン、2-メチル-2-イソブチル-1,3-ジメトキシプロパン、2-メチル-2-(2-エチルヘキシル)-1,3-ジメトキシプロパン、2,2-ビス(2-エチルヘキシル)-1,3-ジメトキシプロパン、2,2-ビス(p-メチルフェニル)-1,3-ジメトキシプロパン、2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2,2-ジフェニル-1,3-ジメトキシプロパン、2,2-ジベンジル-1,3-ジメトキシプロパン、2-イソプロピル-2-シクロペンチル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジエトキシプロパン、2,2-ジイソブチル-1,3-ジブトキシプロパン、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジ-sec-ブチル-1,3-ジメトキシプロパン、2,2-ジ-tert-ブチル-1,3-ジメトキシプロパン、2,2-ジネオペンチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、2-フェニル-2-ベンジル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-シクロヘキシルメチル-1,3-ジメトキシプロパン等の1,3-ジエーテルが挙げられる。
 また、1,3-ジエーテル系化合物のさらなる具体例としては、以下が挙げられる。
1,1-ビス(メトキシメチル)-シクロペンタジエン;1,1-ビス(メトキシメチル)-2,3,4,5-テトラメチルシクロペンタジエン;1,1-ビス(メトキシメチル)-2,3,4,5-テトラフェニルシクロペンタジエン;
1,1-ビス(メトキシメチル)-2,3,4,5-テトラフルオロシクロペンタジエン;
1,1-ビス(メトキシメチル)-3,4-ジシクロペンチルシクロペンタジエン;1,1-ビス(メトキシメチル)インデン;
1,1-ビス(メトキシメチル)-2,3-ジメチルインデン;1,1-ビス(メトキシメチル)-4,5,6,7-テトラヒドロインデン;1,1-ビス(メトキシメチル)-2,3,6,7-テトラフルオロインデン;1,1-ビス(メトキシメチル)-4,7-ジメチルインデン;1,1-ビス(メトキシメチル)-3,6-ジメチルインデン;1,1-ビス(メトキシメチル)-4-フェニルインデン;1,1-ビス(メトキシメチル)-4-フェニル-2-メチルインデン;1,1-ビス(メトキシメチル)-4-シクロヘキシルインデン;1,1-ビス(メトキシメチル)-7-(3,3,3-トリフルオロプロピル)インデン;
1,1-ビス(メトキシメチル)-7-トリメチルシリルインデン;1,1-ビス(メトキシメチル)-7-トリフルオロメチルインデン;1,1-ビス(メトキシメチル)-4,7-ジメチル-4,5,6,7-テトラヒドロインデン;
1,1-ビス(メトキシメチル)-7-メチルインデン;1,1-ビス(メトキシメチル)-7-シクロペンチルインデン;1,1-ビス(メトキシメチル)-7-イソプロピルインデン;1,1-ビス(メトキシメチル)-7-シクロヘキシルインデン;1,1-ビス(メトキシメチル)-7-tert-ブチルインデン;1,1-ビス(メトキシメチル)-7-tert-ブチル-2-メチルインデン;1,1-ビス(メトキシメチル)-7-フェニルインデン;1,1-ビス(メトキシメチル)-2-フェニルインデン;1,1-ビス(メトキシメチル)-1H-ベンズインデン;1,1-ビス(メトキシメチル)-1H-2-メチルベンズインデン;9,9-ビス(メトキシメチル)フルオレン;
9,9-ビス(メトキシメチル)-2,3,6,7-テトラメチルフルオレン;9,9-ビス(メトキシメチル)-2,3,4,5,6,7-ヘキサフルオロフルオレン;
9,9-ビス(メトキシメチル)-2,3-ベンゾフルオレン;9,9-ビス(メトキシメチル)-2,3,6,7-ジベンゾフルオレン;9,9-ビス(メトキシメチル)-2,7-ジイソプロピルフルオレン;9,9-ビス(メトキシメチル)-1,8-ジクロロフルオレン;9,9-ビス(メトキシメチル)-2,7-ジシクロペンチルフルオレン;9,9-ビス(メトキシメチル)-1,8-ジフルオロフルオレン;9,9-ビス(メトキシメチル)-1,2,3,4-テトラヒドロフルオレン;9,9-ビス(メトキシメチル)-1,2,3,4,5,6,7,8-オクタヒドロフルオレン;
9,9-ビス(メトキシメチル)-4-tert-ブチルフルオレン。
 成分(ア)を構成するハロゲン原子としては、フッ素、塩素、臭素、ヨウ素又はこれらの混合物が挙げられ、特に塩素が好ましい。
 成分(イ)の有機アルミニウム化合物としては、例えば、トリエチルアルミニウム、トリブチルアルミニウムのようなトリアルキルアルミニウム、トリイソプレニルアルミニウムのようなトリアルケニルアルミニウム、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドのようなジアルキルアルミニウムアルコキシド、エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドのようなアルキルアルミニウムセスキアルコキシド、R 2.5Al(OR0.5(R,Rは、各々異なってもよいし同じでもよい炭化水素基である。)で表される平均組成を有する、部分的にアルコキシ化されたアルキルアルミニウム、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミドのようなジアルキルアルミニウムハロゲニド、エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドのようなアルキルアルミニウムセスキハロゲニド、エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドのようなアルキルアルミニウムジハロゲニド等が部分的にハロゲン化されたアルキルアルミニウム、ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドのようなジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドのようなアルキルアルミニウムジヒドリドなどの部分的に水素化されたアルキルアルミニウム、エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドのような部分的にアルコキシ化及びハロゲン化されたアルキルアルミニウム等が挙げられる。上記成分(イ)は1種を単独で使用してもよいし、2種以上を併用してもよい。
 成分(ウ)の外部電子供与体化合物としては、有機ケイ素化合物が用いられる。
 好ましい有機ケイ素化合物として、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-アミルメチルジエトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジエトキシシラン、ビスo-トリルジメトキシシラン、ビスm-トリルジメトキシシラン、ビスp-トリルジメトキシシラン、ビスp-トリルジエトキシシラン、ビスエチルフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、メチルトリメトキシシラン、n-プロピルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、γ-クロルプロピルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、t-ブチルトリエトキシシラン、テキシルトリメトキシシラン、n-ブチルトリエトキシシラン、iso-ブチルトリエトキシシラン、フェニルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、クロルトリエトキシシラン、エチルトリイソプロポキシシラン、ビニルトリブトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、2-ノルボルナントリメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、ケイ酸エチル、ケイ酸ブチル、トリメチルフエノキシシラン、メチルトリアリルオキシシラン、ビニルトリス(β-メトキシエトキシシラン)、ビニルトリアセトキシシラン、ジメチルテトラエトキシジシロキサン、メチル(3,3,3-トリフルオロ-n-プロピル)ジメトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロペンチル-t-ブトキシジメトキシシラン、ジイソブチルジメトキシシラン、イソブチルイソプロピルジメトキシシラン、n-プロピルトリメトキシシラン、ジ-n-プロピルジメトキシシラン、t-ブチルエチルジメトキシシラン、t-ブチルプロピルジメトキシシラン、t-ブチル-t-ブトキシジメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルイソブチルジメトキシシラン、ジ-sec-ブチルジメトキシシラン、イソブチルメチルジメトキシシラン、ビス(デカヒドロイソキノリン-2-イル)ジメトキシシラン、ジエチルアミノトリエトキシシラン、ジシクロペンチル-ビス(エチルアミノ)シラン、テトラエトキシシラン、テトラメトキシシラン、イソブチルトリエトキシシラン、t-ブチルトリメトキシシラン、i-ブチルトリメトキシシラン、i-ブチルセク-ブチルジメトキシシラン、エチル(パーヒドロイソキノリン2-イル)ジメトキシシラン、トリ(イソプロペニロキシ)フェニルシラン、i-ブチルi-プロピルジメトキシシラン、シクロヘキシルi-ブチルジメトキシシラン、シクロペンチルi-ブチルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、フェニルトリエトキシラン、p-トリルメチルジメトキシシラン等が挙げられる。
 これらの中でも、エチルトリエトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリメトキシシラン、t-ブチルトリエトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルメチルジエトキシシラン、t-ブチルエチルジメトキシシラン、t-ブチルプロピルジメトキシシラン、t-ブチルt-ブトキシジメトキシシラン、t-ブチルトリメトキシシラン、i-ブチルトリメトキシシラン、イソブチルメチルジメトキシシラン、i-ブチルセク-ブチルジメトキシシラン、エチル(パーヒドロイソキノリン2-イル)ジメトキシシラン、ビス(デカヒドロイソキノリン-2-イル)ジメトキシシラン、トリ(イソプロペニロキシ)フェニルシラン、テキシルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリブトキシシラン、ジフェニルジメトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、i-ブチルi-プロピルジメトキシシラン、シクロペンチルt-ブトキシジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルi-ブチルジメトキシシラン、シクロペンチルi-ブチルジメトキシシラン、シクロペンチルイソプロピルジメトキシシラン、ジ-sec-ブチルジメトキシシラン、ジエチルアミノトリエトキシシラン、テトラエトキシシラン、テトラメトキシシラン、イソブチルトリエトキシシラン、フェニルメチルジメトキシシラン、フェニルトリエトキシラン、ビスp-トリルジメトキシシラン、p-トリルメチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルエチルジメトキシシラン、2-ノルボルナントリエトキシシラン、2-ノルボルナンメチルジメトキシシラン、ジフェニルジエトキシシラン、メチル(3、3、3-トリフルオロ-n-プロピル)ジメトキシシラン、ケイ酸エチル等が好ましい。
 上記成分(ウ)は1種を単独で使用してもよいし、2種以上を併用してもよい。
 有機ケイ素化合物は、特にキシレン不溶分の量を調整するのに重要な役割を果たす。他の触媒成分が同じ場合、キシレン不溶分の量は、有機ケイ素化合物の種類と量および重合温度に依存するが、適切な有機ケイ素化合物を用いた場合においても、通常ジエーテル系触媒を除き、有機ケイ素化合物の量が特定の値以下になると大きく低下する。このため、重合温度が75℃の場合、有機ケイ素化合物と有機アルミニウム化合物とのモル比(有機ケイ素化合物/有機アルミニウム)の下限は0.015が好ましく、0.018がより好ましい。当該比の上限は、0.30が好ましく、0.20がより好ましく、0.10がさらに好ましい。つまり、0.015~0.30、0.015~0.20、0.015~0.10、0.018~0.30、0.018~0.20、0.018~0.10、等の範囲が例示できる。
 内部電子供与体化合物としてフタレート系化合物を用いる場合は、重合温度を上げるとキシレン不溶分が増加するので、好ましい有機ケイ素化合物と有機アルミニウム化合物とのモル比(有機ケイ素化合物/有機アルミニウム)の下限および上限が低下する。具体的には、フタレート系化合物を用いて80℃で重合する場合の前記モル比の下限は、0.010が好ましく、0.015がより好ましく、0.018がさらに好ましい。前記モル比の上限は、0.20が好ましく、0.14がより好ましく、0.08がさらに好ましい。つまり、0.010~0.20、0.010~0.14、0.010~0.08、0.015~0.20、0.015~0.14、0.015~0.08、0.018~0.20、0.018~0.14、0.018~0.08、等の範囲が例示できる。
 触媒(X)としては、成分(イ)が、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウムであり、成分(ウ)が、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジイソプロピルジメトキシシラン等の有機ケイ素化合物であるものが好ましい。
 なお、多段重合法により前記重合混合物を得る方法は上記の方法に限定されず、プロピレン重合体(成分(a1))を複数の重合反応器にて重合してもよいし、エチレン・αオレフィン共重合体(成分(a2))を複数の重合反応器にて重合してもよい。
 前記重合混合物を得る方法として、単量体濃度や重合条件の勾配を有する重合器を用いて行う方法も挙げられる。このような重合器では、例えば、少なくとも2つの重合領域が接合されたものを使用し、気相重合でモノマーを重合することができる。
 具体的には、触媒の存在下、上昇管からなる重合領域にてモノマーを供給して重合し、上昇管に接続された下降管にてモノマーを供給して重合し、上昇管と下降管とを循環しながら、重合生成物を回収する。この方法では、上昇管中に存在する気体混合物が下降管に入るのを全面的又は部分的に防止する手段を備える。また、上昇管中に存在する気体混合物とは異なる組成を有する気体及び/又は液体混合物を下降管中に導入する。この重合方法は、例えば、特表2002-520426号公報に記載された方法を適用することができる。
<シート成形体>
 本発明のシート成形体は、本発明のポリプロピレン系樹脂組成物を成形してなるものである。図1に本発明の一例としてシート成形体10のロールを示す。
 本発明のシート成形体は例えば、キャスト成形法により製造することができる。
 成形温度は例えば150~350℃、好ましくは170~250℃で実施される。
 本発明のシート成形体の厚さは、例えば0.1mm超~2.0mm、好ましくは0.1mm超~1.0mm、より好ましくは0.1mm超~0.5mm、さらに好ましくは0.1mm超~0.4mmとすることができる。
 シート成形体の厚さは、ベータ線膜厚計等の公知方法で測定される。
 本発明のシート成形体は極低温下における耐衝撃性に優れるので、例えば、-50℃~-10℃、好ましくは-45℃~-20℃、より好ましくは-40℃~-30℃の低温環境下で使用することができる。
 本発明のシート成形体の-40℃におけるハイレートインパクト(単位:J)は、後述する試験方法で測定したとき、20超(>20)が好ましく、高い程より好ましい。
 本発明のシート成形体の「シート剥離」は、後述する「〇」以上が好ましい。
 本発明のシート成形体の剛性(スティフネス)は、500MPa以上が好ましく、700MPa以上がより好ましく、900MPa以上がさらに好ましく、高い程好ましい。ここで、剛性は後述する試験方法で測定された値である。
 以下に実施例及び比較例を示すが、本発明は以下の実施例だけに限定されない。
<共重合体1の作製>
 MgCl上にTiClと内部ドナーとしてのジイソブチルフタレートを担持させた固体触媒を、欧州特許第728769号公報の実施例5の46~53行に記載された方法により調製した。具体的には下記のように行った。
 微小長球形MgCl・2.1COHを、次のようにして製造した。タービン撹拌機および吸引パイプを備えた2Lオートクレーブ中に、不活性ガス中、常温で、無水MgCl 48g、無水COH 77g、および灯油830mLを入れた。内容物を撹拌しながら120℃に加熱することにより、MgClとアルコールの間の付加物が生じたが、この付加物を融解し、分散剤と混合した。オートクレーブ内の窒素圧を15気圧に維持した。オートクレーブの吸引パイプを、加熱ジャケットを用いて外部から120℃に加熱した。吸引パイプは内径が1mmで、加熱ジャケットの一端から他端までの長さが3mであった。このパイプを通して混合物を7m/secの速度で流した。パイプの出口にて、灯油2.5Lを含み、初期温度を-40℃に維持したジャケットで外部から冷却されている5Lフラスコ中に、分散液を撹拌しながら採取した。分散液の最終温度は0℃であった。エマルションの分散相を構成する球状固体生成物を沈降させ、濾過して分離し、ヘプタンで洗浄して乾燥した。これらの操作はすべて不活性ガス雰囲気中で行った。最大直径が50μm以下の固体球状粒子形のMgCl・3COHを得た。収量は130gであった。こうして得られた生成物から、MgCl 1モルあたりのアルコール含有量が2.1モルに減少するまで、窒素気流中で温度を50℃から100℃に徐々に上昇してアルコールを除去した。
 濾過バリヤーを備えた500mL円筒形ガラス製反応器に0℃で、TiCl 225mLを入れ、さらに上記のようにして得た微小長球形MgCl・2.1COH 10.1g(54mmol)を、内容物を撹拌しながら15分間かけて入れた。その後、温度を40℃に上げフタル酸ジイソブチル9mmolを入れた。温度を1時間かけて100℃に上げ、撹拌をさらに2時間続行した。次いで、TiClを濾過により除去し、120℃でさらに1時間撹拌しながらTiCl 200mLを加えた。最後に、内容物を濾過し、濾液から塩素イオンが完全に消失するまで60℃のn-ヘプタンで洗浄した。このようにして得た触媒成分は、Ti=3.3質量%、フタル酸ジイソブチル=8.2質量%を含んでいた。
 次いで、上記固体触媒と、有機アルミニウム化合物としてトリエチルアルミニウム(TEAL)と、外部電子供与体化合物としてジシクロペンチルジメトキシシラン(DCPMS)を用い、固体触媒に対するTEALの質量比が20、TEAL/DCPMSの質量比が10(上述した有機ケイ素化合物/有機アルミニウムのモル比に換算すると0.05)となるような量で、12℃において24分間接触させ、触媒(X)を得た。
 上記で得た触媒(X)を、液体プロピレン中において懸濁状態で20℃にて5分間保持することによって予重合を行った。
 得られた予重合物を、二段の重合反応器を直列に備える重合装置の一段目の重合反応器に導入し、プロピレンを供給してプロピレン単独重合体を製造した。続いて、二段目の重合反応器に、プロピレン単独重合体、プロピレン及びエチレンを供給してエチレン-プロピレン共重合体を製造した。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。
 重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ80℃、0.012モル%、二段目の反応器では、重合温度、水素濃度、エチレンとプロピレンとの合計に対するエチレンの割合が、それぞれ80℃、1.06モル%、0.49モル比であった。また、エチレン-プロピレン共重合体の量が35質量%となるように一段目と二段目の滞留時間分布を調整した。以上の方法により、目的の共重合体1を得た。
 得られた共重合体1は、連続相を構成するプロピレン重合体である成分(a1)とゴム相を構成するエチレン・プロピレン共重合体である成分(a2)との重合混合物であり、前述のポリプロピレン系樹脂(A)である。
 共重合体1について、成分(a1)の分子量分布 Mw/Mn、成分(a1)のエチレン由来単位含有量、成分(a1)の平均気孔直径(Dn)、質量比 成分(a2)/[成分(a1)+成分(a2)]、成分(a2)のエチレン由来単位含有量、成分(a1)+成分(a2)のXSIV、成分(a1)+成分(a2)のMFRは表1に示すものであった。
 表1中、フタレート系化合物を成分(ア)として含む触媒(X)を「Pht」と表し、スクシネート系化合物を成分(ア)として含む触媒(X)を「Suc」と表す。上記の方法で得た触媒(X)を表1では「Pht-1」と記載した。
<共重合体2~3の作製>
 成分(a2)のエチレン由来単位含有量が表1に記載の割合となるように、二段目の反応器のエチレンとプロピレンとの合計に対するエチレンの割合を変更した。それ以外は、共重合体1の場合と同様の製造方法にて、共重合体2~3を得た。
<共重合体r1の作製>
 MgCl上にTiと内部ドナーとしてのジイソブチルフタレートを担持した固体触媒を、特開2004-27218公報の段落0032の21~36行に記載された方法により調製した。具体的には下記のように行った。
 窒素雰囲気下、120℃にて、無水塩化マグネシウム56.8gを、無水エタノール100g、出光興産株式会社製のワセリンオイル「CP15N」500mLおよび信越シリコーン株式会社製のシリコーン油「KF96」500mLに完全に溶解した。この溶液を、特殊機化工業株式会社製のTKホモミキサーを用いて120℃、5000回転/分で2分間撹拌した。撹拌を保持しながら、2Lの無水ヘプタン中に0℃を越えないようにして注いだ。得られた白色固体を無水ヘプタンで十分に洗浄し室温下で真空乾燥し、さらに窒素気流下で部分的に脱エタノール化し、MgCl・1.2COHの球状固体30gを得た。
 上記球状固体30gを無水ヘプタン200mL中に懸濁した。0℃で撹拌しながら、四塩化チタン500mLを1時間かけて滴下した。次に、加熱を始めて40℃になったところで、フタル酸ジイソブチル4.96gを加えて、100℃まで約1時間で昇温した。100℃で2時間反応した後、熱時濾過にて固体部分を採取した。その後、この反応物に四塩化チタン500mLを加え撹拌した後、120℃で1時間反応を行った。反応終了後、再度、熱時濾過にて固体部分を採取し、60℃のヘキサン1.0Lで7回、室温のヘキサン1.0Lで3回洗浄して固体触媒を得た。得られた固体触媒成分中のチタン含有率を測定したところ、2.36質量%であった。
 上記固体触媒を用い、成分(a2)/[成分(a1)+成分(a2)]の質量比が表1に記載の割合となるように、一段目と二段目の滞留時間分布を変更した。それ以外は、共重合体1の場合と同様の製造方法にて、共重合体r1を得た。
 ここで得たTEALおよびDCPMSとの接触後の触媒(X)を表1では「Pht-2」と記載した。
<共重合体r2~r3>
 成分(a2)のエチレン由来単位含有量が表1に記載の割合となるように、二段目の反応器のエチレンとプロピレンとの合計に対するエチレンの割合を変更した。それ以外は、共重合体1の場合と同様の製造方法にて、共重合体r2を得た。共重合体r3については、成分(a2)のエチレン由来単位含有量が多く、製造が困難であったので、目的の共重合体が得られなかった(前記ΔHcを除く表1の値は目標値)。
<共重合体r4~r5>
 成分(a1)+成分(a2)のXSIVが表1に記載の値となるように、二段目の反応器の水素濃度を変更するとともに、成分(a1)+成分(a2)のMFRを表1に示す値にするために、一段目の水素濃度を調整した。それ以外は、共重合体1の場合と同様の製造方法にて、共重合体r4~r5を得た。
<共重合体r6の作製>
 成分(a1)+成分(a2)のMFRを表1に示す値に変更するために、一段目の水素濃度を調整した。それ以外は、共重合体1の場合と同様の製造方法にて、共重合体r6を得た。
<共重合体4の作製>
 特表2011-500907号公報の実施例に記載の調製法に従い、固体触媒を以下の手順で調製した。
 窒素でパージした500mLの4つ口丸底フラスコ中に、250mLのTiClを0℃において導入した。撹拌しながら、10.0gの微細球状MgCl・1.8COH(USP-4,399,054の実施例2に記載の方法にしたがって、ただし10000rpmに代えて3000rpmで運転して製造した)、及び9.1ミリモルのジエチル-2,3-(ジイソプロピル)スクシネートを加えた。温度を100℃に上昇させ、120分間保持した。次に、撹拌を停止し、固体生成物を沈降させ、上澄み液を吸い出した。次に、以下の操作を2回繰り返した:250mLの新しいTiClを加え、混合物を120℃において60分間反応させ、上澄み液を吸い出した。固体を、60℃において無水ヘキサン(6×100mL)で6回洗浄した。
 上記固体触媒と、TEAL及びDCPMSを、固体触媒に対するTEALの質量比が18であり、TEAL/DCPMSの質量比が10となるような量で、室温において5分間接触させた。得られた触媒(X)を、液体プロピレン中において懸濁状態で20℃において5分間保持することによって予重合を行った。
 得られた予重合物を、二段の重合反応器を直列に備える重合装置の一段目の重合反応器に導入し、プロピレンを供給してプロピレン単独重合体を製造した。続いて、二段目の重合反応器に、プロピレン単独重合体、プロピレン及びエチレンを供給してエチレン-プロピレン共重合体を製造した。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。
 重合温度と反応物の比率は、一段目の反応器では、重合温度、水素濃度が、それぞれ80℃、0.030モル%、二段目の反応器では、重合温度、水素濃度、エチレンとプロピレンとの合計に対するエチレンの割合が、それぞれ80℃、1.06モル%、0.44モル比であった。また、質量比 成分(a2)/[成分(a1)+成分(a2)]が35質量%となるように一段目と二段目の滞留時間分布を調整した。以上の方法により、表1に示す共重合体4を得た。
 以上で得た共重合体2~4、r1~r6について、共重合体1と同様に測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の各測定値は下記の方法によって測定した。
<成分(a1)のMw/Mn>
 一段目の反応器で重合した成分(a1)を採取した試料2.5gを測定試料とし、以下のように、数平均分子量(Mn)と重量平均分子量(Mw)の測定を行い、重量平均分子量(Mw)を数平均分子量(Mn)で除して分子量分布(Mw/Mn)を求めた。
 装置としてポリマーラボラトリーズ社製PL GPC220を使用し、酸化防止剤を含む1,2,4-トリクロロベンゼンを移動相とし、カラムとして昭和電工社製UT-G(1本)、UT-807(1本)、UT-806M(2本)を直列に接続したものを使用し、検出器として示差屈折率計を使用した。また、試料溶液の溶媒としては移動相と同じものを使用し、1mg/mLの試料濃度で、150℃の温度で振とうさせながら2時間溶解して測定試料を調製した。これにより得た試料溶液500μLをカラムに注入し、流速1.0mL/分、温度145℃、データ取り込み間隔1秒で測定した。カラムの較正には、分子量580~745万のポリスチレン標準試料(Shodex STANDARD、昭和電工社製)を使用し、三次式近似で行った。Mark-Houwink-Sakuradaの係数は、ポリスチレン標準試料に関しては、K=1.21×10-4、α=0.707、ポリプロピレン単独重合体、プロピレンランダム共重合体、およびポリプロピレン系重合体に関しては、K=1.37×10-4、α=0.75を使用した。
<成分(a1)の平均気孔直径>
 一段目の反応器で重合した成分(a1)を採取した試料2.5gを測定試料とし、Quanta Chrome社製全自動細孔分布測定機装置Pore Master 6 0-GTを用いて、JIS R1655で規定される水銀圧入法により気孔直径Dの分布を1μm~100μmの範囲で計測し、次式により平均気孔直径Dnを算出した。
 Dn=∫(-dV/dlogD)dlogD/∫(1/D)(-dV/dlogD)dlogD
 ここで、Vは試料容積であり、各粒子の体積(嵩容積)から気孔容積を引いたものに相当する。
<共重合体の総エチレン量、成分(a1)のエチレン由来単位含有量>
 1,2,4-トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解した共重合体試料について、Bruker社製AVANCEIII HD400(13C共鳴周波数100MHz)を用い、測定温度120℃、フリップ角45度、パルス間隔7秒、試料回転数20Hz、積算回数5000回の条件で13C-NMRのスペクトルを得た。
 上記で得られたスペクトルを用いて、Kakugo,Y.Naito,K.Mizunuma and T.Miyatake,Macromolecules,15,1150-1152(1982)の文献に記載された方法により、共重合体の総エチレン量(質量%)を求めた。
 なお、成分(a1)を試料として測定する場合、上記方法により得られる総エチレン量(質量%)は、成分(a1)のエチレン単位含有量(質量%)となる。
<成分(a2)中のエチレン単位含有量>
 上記文献に記載された方法で共重合体の総エチレン量を測定するに際して求めたTββの積分強度の替わりに、下記式で求めた積分強度T’ββを使用した以外は、総エチレン量と同様の方法で計算を行い、成分(a2)のエチレン単位含有量(質量%)を求めた。
 T’ββ=0.98×Sαγ×A/(1-0.98×A)
 ここで、A=Sαγ/(Sαγ+Sαδ)であり、上記文献に記載のSαγ及びSαδより算出される。
<質量比 成分(a2)/[成分(a1)+成分(a2)]>
 下記式により求めた。
 成分(a2)/[成分(a1)+成分(a2)](単位:質量%)=共重合体の総エチレン量/(成分(a2)中のエチレン単位含有量/100)
<成分(a1)+成分(a2)のXSIV>
 以下の方法によって共重合体のキシレン可溶分を得て、キシレン可溶分の極限粘度(XSIV)を測定した。
 共重合体のサンプル2.5gを、o-キシレン(溶媒)を250mL入れたフラスコに入れ、ホットプレート及び還流装置を用いて、135℃で、窒素パージを行いながら、30分間撹拌し完全溶解させた後、25℃で1時間、冷却した。これにより得られた溶液を、濾紙を用いて濾過した。濾過後の濾液を100mL採取し、アルミニウムカップ等に移し、窒素パージを行いながら、140℃で蒸発乾固を行い、室温で30分間静置して、キシレン可溶分を得た。
 極限粘度は、テトラヒドロナフタレン中、135℃において毛細管自動粘度測定装置(SS-780-H1、株式会社柴山科学器械製作所製)を用いて測定した。
<成分(a1)+成分(a2)のMFR>
 共重合体の試料5gに対し本州化学工業株式会社製H-BHTを0.05g添加し、ドライブレンドにより均一化した後、JIS K7210-1に従い、JIS K6921-2に基づき温度230℃および荷重2.16kgの条件で測定した。
<ポリプロピレン系樹脂(A)のDSC>
[85~105℃の結晶化ピークの発熱量(ΔHc)]
 熱履歴の影響を規格化するため、表1の各共重合体であるポリプロピレン系樹脂(A)のペレットから直接約5mgをサンプリングし、電子天秤で秤量した後、ISO 11357-1およびISO 11357-3に則り、TA Instruments社製 Q-200を用いて示差走査熱量測定(DSC)を実施した。具体的には、得られた上記サンプルを230℃まで加熱して5分間保持した後、降温速度5℃/分で30℃まで冷却して、降温時の示差走査熱量測定を実施した。この測定結果における結晶化を示す発熱ピークの内、85~105℃に存在する発熱ピークについて、ベースライン(ISO 11357-1:2016(en) 3.7.3に記載されたvirtual baseline)と発熱ピークの間で囲まれた面積に基づき、結晶化ピークの発熱量ΔHc(J/g)を求めた。解析に供したDSCチャートの一例を図3に示す。
[実施例、比較例]
 表2に示す組成で成分(A)を配合し、成分(A)の総量88質量部又は85質量部に対し、成分(B)を12質量部又は15質量部、酸化防止剤としてBASF社製B225を0.2質量部、中和剤として淡南化学工業株式会社製カルシウムステアレート を0.05質量部加え、ヘンシェルミキサーで1分間撹拌、混合した。当該混合物を、株式会社JSW製同方向2軸押出機TEX-30αを用いて、シリンダ温度230℃で溶融混練して押出した。ストランドを水中で冷却した後、ペレタイザーでカットし、ポリプロピレン系樹脂組成物のペレットを得た。
 得られたペレットを後述のシート成形機に供し、シート成形体を得た。
 ただし、実施例1-2及び比較例1-2に関しては、上記のペレットに含まれる成分(A)と成分(B)の合計100質量部に対し、さらに成分(C)としてタルクを表2に記載の量でポリオレフィン系マスターバッチ(タルク含有率50wt%、温度230℃、荷重2.16kgでのMFRが0.4g/10分)として配合したうえで、溶融混練してポリプロピレン系樹脂組成物のペレットを得た後、後述のシート成形機に供し、シート成形体を得た。
 得られた各例のシート成形体について各種物性を評価した。
Figure JPOXMLDOC01-appb-T000002
 表2の各成分は次の通りである。
 成分(A)は、表1の共重合体1~4、共重合体r1~r6である。
 成分(B)は、高密度ポリエチレン 日本ポリエチレン株式会社製ノバテックHB431(密度957kg/m、JIS K6922-2に基づく温度190℃、荷重2.16kgでのMFRが0.35g/10分)である。
 成分(C)は、無機充填剤であり、具体的には次のタルクである。
 タルク:ネオライト興産株式会社製、ネオタルクUNI05、レーザ回折法によって測定した体積平均粒子径:5μm
 他の成分は、次の添加剤である。
 酸化防止剤:BASF社製B225
 中和剤:淡南化学工業株式会社製カルシウムステアレート
 表2の測定結果及び評価結果は下記の方法によって測定及び評価された値である。
<PP工場生産性>
 前述の方法で成分(A)を製造した際の容易さの程度を下記の4段階で評価した。
 「◎」:優=全く問題なく製造できた。
 「○」:良=問題なく製造できた。
 「△」:可=辛うじて製造できたが、生産量および/またはフラフ(パウダー)性状がやや劣る。
 「×」:不可=製造中に問題が生じ、製造できなかった。
<流動性 MFR>
 ポリプロピレン系樹脂組成物のMFRは、JIS K7210-1に従い、JIS K6921-2に基づき温度230℃および荷重2.16kgの条件で測定した。
<シート成形性>
 サーモプラステイックス工業社製3種3層φ25mmフィルム・シート成形装置を用い、シリンダ~ダイス温度を250℃に温調し、前記ペレットを原料として、ダイスより押し出した溶融樹脂を成形速度1.0m/分にて冷却ロールで冷却・固化しながら引取り、厚さ400μmのシートを得た。
 成形されたシートは23℃恒温室で48時間以上状態調節した後、サンプルとして用いた。
<剛性 スティフネス>
 JIS P8125に基づき、シートサンプルから切り出した試料について、テーバーインスツルメントコーポレーション製のV-5スティフネステスター(型式150-B)を用い、測定スパンの長さ5cmのシート状サンプル片を反り角度15°で曲げ荷重を測定した。観察された荷重から、スティフネスを求めた。
<ハイレートインパクト>
 JIS K7211-2に基づき、シートサンプルから切り出した試料を、株式会社島津製作所製のパンクチャー衝撃試験機(ハイドロショットHITS-P10)を用い、-40℃の雰囲気下で、油圧で制御されたストライカーを等速で試験片表面中央に衝突させ、得られた衝撃力-変位線図からパンクチャー衝撃試験エネルギーを測定した。
<シート剥離>
 得られたシートの中央部分に関し、株式会社日本ミクロトーム研究所製ロータリーミクロトーム(型式:RU-S)を用いて表面に垂直な面方向に厚さ20μmの切片をスライスし、これをオリンパス株式会社製偏光顕微鏡(BX-50)で観察し、プロピレン重合体(a1)、αオレフィンとの共重合体(a2)、エチレン・αオレフィン重合体(B)、無機充填剤(C)間の界面の剥離状態を下記の4段階で評価した。
 「◎」:優:剥離が全くない。
 「〇」:良:剥離が僅かに見られる。
 「△」:可:剥離が部分的に見られる。
 「×」:不可:剥離が全体的に見られる。
<シート成形性>
 上記の成形方法により得たシートを下記の3段階で評価した。
 「〇」:良:形状や厚さ等に問題のない良品が得られた。
 「△」:可:一部不良品がでた。
 「×」:不可:良品が得られなかった。
<シート生産性>
 上記のシート成形を実施するに当たり、成形時の破断の発生等の問題によるシート生産性の程度を下記の3段階で評価した。
 「〇」:良:問題はなく、生産は容易であった。
 「△」:可:問題が生じ、生産はやや困難であった。
 「×」:不可:問題が生じ、シートを生産し難かった。
≪作用効果≫
 本発明に係る実施例のシートは、所定の物性を有するポリプロピレン系樹脂組成物を用いているので、零下40℃の極低温下でも優れた耐衝撃性を示している。また、剛性(スティフネス)、シート剥離、シート成形性、及びシート生産性の各評価において基準を満たしている。
 極低温下での耐衝撃性を高めるために、本発明者らは組成物全体の配合を鋭意検討した。ポリプロピレン系樹脂組成物のゴム的性質が極低温下でも発揮されるように、成分(A)中の成分(a2)の含有量を高めたり、成分(a2)中のエチレン由来単位含有量を高めたりすることが考えられるが、これらの含有量を不用意に高めると、ポリプロピレン系樹脂の製造が困難になる(比較例3)。本発明にあっては製造可能な範囲で剛性も充分に得られる配合を検討した。また、単にゴム的性質が発揮されるだけでは足りず、シートに成形可能であることが必要であるため、成分(a1)+成分(a2)のXSIV値やMFR等の他のパラメータを調整することにより、本発明を完成した。
 比較例1-1は、成分(a2)の含有量が少なく、そもそもシートに成形することができなかった。
 比較例1-2は、比較例1-1の成分(B)を減量するとともに成分(C)を添加したものである。困難を伴いながらも辛うじてシートを成形できたが、極低温下における耐衝撃性は向上せず、シート剥離、シート成形性、シート生産性が悪かった。
 比較例2は、成分(a2)のエチレン由来単位含有量が少なく、極低温下における耐衝撃性が劣っており、成分(A)を辛うじて製造できるが、生産量とフラフ性状が劣っていた。
 比較例3は、成分(a2)のエチレン由来単位含有量が多く、成分(A)を製造できなかった。
 比較例4は、成分(A)のXSIVが低いため、極低温下における耐衝撃性が劣っていた。
 比較例5は、成分(A)のXSIVが高過ぎるため、極低温下における耐衝撃性が悪く、成分(A)を辛うじて製造できるが、生産量が劣っていた。また、シート成形性が劣っていた。
 比較例6は、成分(A)の流動性が高過ぎるため、シート成形性(耐ドローダウン性)及びシート生産性が極めて悪く、スティフネスおよび極低温下における耐衝撃性を評価するためのシートサンプルを得ることができなかった。

Claims (7)

  1.  プロピレン重合体(a1)からなる連続相と、エチレンと炭素数3~10のαオレフィンとの共重合体(a2)からなるゴム相とを含むポリプロピレン系樹脂(A)、
     エチレンと炭素数2~10のαオレフィンとの重合体であるエチレン・αオレフィン重合体(B)、及び、
     任意成分である無機充填剤(C)を含有するポリプロピレン系樹脂組成物であって、
     前記ポリプロピレン系樹脂組成物の温度230℃、荷重2.16kgでのMFRが0.1~3.0g/10分であり、
     前記ポリプロピレン系樹脂組成物の総質量に対する、前記(A)、(B)、(C)の合計質量が70質量%以上であり、
     前記ポリプロピレン系樹脂組成物の総質量に対する、前記(A)、(B)の合計質量が50質量%以上であり、
     前記(A)、(B)の合計100質量部に対する、前記(A)の含有量は99質量部以下であり、前記(B)の含有量は1質量部以上であり、前記(C)の含有量は0~60質量部であり、
     前記プロピレン重合体(a1)中のエチレン由来単位含有量が、前記プロピレン重合体(a1)の総質量に対して0.5質量%以下であり、
     前記共重合体(a2)の含有量が、前記ポリプロピレン系樹脂(A)の総質量に対して27~45質量%であり、
     前記共重合体(a2)中のエチレン由来単位含有量が、前記共重合体(a2)の総質量に対して25~85質量%であり、
     前記ポリプロピレン系樹脂(A)のキシレン可溶分の、135℃のテトラヒドロナフタレン中での極限粘度が2.5~5.5dl/gである、ポリプロピレン系樹脂組成物。
  2.  前記ポリプロピレン系樹脂(A)のDSC測定において、85~105℃に観察される結晶化ピークの発熱量が0.5~10J/gである、請求項1に記載のポリプロピレン系樹脂組成物。
  3.  前記プロピレン重合体(a1)の平均気孔直径が8~50μmである、請求項1に記載のポリプロピレン系樹脂組成物。
  4.  前記プロピレン重合体(a1)の平均気孔直径が8~50μmである、請求項2に記載のポリプロピレン系樹脂組成物。
  5.  請求項1に記載のポリプロピレン系樹脂組成物を成形してなるシート成形体。
  6.  容器に成形される用途の請求項5に記載のシート成形体。
  7.  請求項5に記載のシート成形体から形成された、容器。
PCT/JP2022/025362 2021-06-25 2022-06-24 ポリプロピレン系樹脂組成物、シート成形体及び容器 WO2022270629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023530146A JPWO2022270629A1 (ja) 2021-06-25 2022-06-24
EP22828545.8A EP4361212A1 (en) 2021-06-25 2022-06-24 Polypropylene resin composition, sheet molded body, and container
CN202280042367.2A CN117730120A (zh) 2021-06-25 2022-06-24 聚丙烯基树脂组合物、片材模塑品和容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021105708 2021-06-25
JP2021-105708 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270629A1 true WO2022270629A1 (ja) 2022-12-29

Family

ID=84545511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025362 WO2022270629A1 (ja) 2021-06-25 2022-06-24 ポリプロピレン系樹脂組成物、シート成形体及び容器

Country Status (4)

Country Link
EP (1) EP4361212A1 (ja)
JP (1) JPWO2022270629A1 (ja)
CN (1) CN117730120A (ja)
WO (1) WO2022270629A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
JPH06240068A (ja) * 1993-02-19 1994-08-30 Tokuyama Soda Co Ltd ポリプロピレン組成物
EP0728769A1 (en) 1995-02-21 1996-08-28 Montell North America Inc. Components and catalysts for the polymerization of olefins
JP2000204175A (ja) * 1999-01-13 2000-07-25 Chisso Corp プロピレン系樹脂シ―トおよびそれを用いた成形体
JP2002520426A (ja) 1998-07-08 2002-07-09 モンテル テクノロジー カンパニー ビーブイ 気相重合用の方法及び装置
JP2004027218A (ja) 2002-05-10 2004-01-29 Sunallomer Ltd ポリプロピレン樹脂組成物からなるフィルム
JP2008506825A (ja) * 2004-07-22 2008-03-06 バーゼル・ポリオレフィン・ゲーエムベーハー フラクション化可能な1−ブテンポリマー類の製造法
JP2011500907A (ja) 2007-10-15 2011-01-06 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 高流動性プロピレンポリマーの製造方法
US20110207883A1 (en) * 2010-02-24 2011-08-25 Doufas Antonios K Polypropylene impact copolymer compositions
JP2017136702A (ja) * 2016-02-01 2017-08-10 サンアロマー株式会社 ポリプロピレン系樹脂発泡シート及びその製造方法
JP2019137848A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその製造方法
JP2019189818A (ja) 2018-04-27 2019-10-31 サンアロマー株式会社 ポリプロピレン組成物および成形体
JP2021105708A (ja) 2019-12-04 2021-07-26 サウンドハウンド,インコーポレイテッド ニューラル・スピーチ・ツー・ミーニング

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
JPH06240068A (ja) * 1993-02-19 1994-08-30 Tokuyama Soda Co Ltd ポリプロピレン組成物
EP0728769A1 (en) 1995-02-21 1996-08-28 Montell North America Inc. Components and catalysts for the polymerization of olefins
JP2002520426A (ja) 1998-07-08 2002-07-09 モンテル テクノロジー カンパニー ビーブイ 気相重合用の方法及び装置
JP2000204175A (ja) * 1999-01-13 2000-07-25 Chisso Corp プロピレン系樹脂シ―トおよびそれを用いた成形体
JP2004027218A (ja) 2002-05-10 2004-01-29 Sunallomer Ltd ポリプロピレン樹脂組成物からなるフィルム
JP2008506825A (ja) * 2004-07-22 2008-03-06 バーゼル・ポリオレフィン・ゲーエムベーハー フラクション化可能な1−ブテンポリマー類の製造法
JP2011500907A (ja) 2007-10-15 2011-01-06 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 高流動性プロピレンポリマーの製造方法
US20110207883A1 (en) * 2010-02-24 2011-08-25 Doufas Antonios K Polypropylene impact copolymer compositions
JP2017136702A (ja) * 2016-02-01 2017-08-10 サンアロマー株式会社 ポリプロピレン系樹脂発泡シート及びその製造方法
JP2019137848A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその製造方法
JP2019189818A (ja) 2018-04-27 2019-10-31 サンアロマー株式会社 ポリプロピレン組成物および成形体
JP2021105708A (ja) 2019-12-04 2021-07-26 サウンドハウンド,インコーポレイテッド ニューラル・スピーチ・ツー・ミーニング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAKUGO, Y.NAITO, K. MIZUNUMAT. MIYATAKE, MACROMOLECULES, vol. 15, 1982, pages 1150 - 1152

Also Published As

Publication number Publication date
EP4361212A1 (en) 2024-05-01
JPWO2022270629A1 (ja) 2022-12-29
CN117730120A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
EP3784734B1 (en) Polypropylene composition and molded article
KR102231819B1 (ko) 마스터배치 조성물
WO2022270630A1 (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びにシート成形体及び容器
JP6831218B2 (ja) マスターバッチ組成物およびこれを含むポリプロピレン樹脂組成物
JP2022149485A (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びに射出成形体
JP7502889B2 (ja) 自動車内装部品用ポリプロピレン系樹脂組成物、その製造方法及び自動車内装部品用成形体
WO2022270629A1 (ja) ポリプロピレン系樹脂組成物、シート成形体及び容器
JP2022102090A (ja) 自動車内装部品用ポリプロピレン系樹脂組成物、その製造方法及び自動車内装部品用成形体
JP2019044122A (ja) ポリプロピレン組成物
KR20220084367A (ko) 폴리프로필렌 조성물 및 성형 물품
US20240239942A1 (en) Polypropylene resin composition, method for producing same, sheet molded body and container
JP7461519B1 (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びに射出成形品
WO2022270625A1 (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びにフィルム成形体、食品に接する包装体、食品に接する容器及びレトルト用パウチ
JP7487002B2 (ja) 自動車内装部品用ポリプロピレン系樹脂組成物、その製造方法及び自動車内装部品用成形体
JP6860326B2 (ja) ポリプロピレン組成物およびこれを成形してなるマット調フィルム
JP6588286B2 (ja) インフレーションフィルム用ポリプロピレン樹脂組成物
JP2019157084A (ja) ポリプロピレン組成物および成形品
JP2022095293A (ja) 射出成形用ポリプロピレン系樹脂組成物及び射出成形体
JP2022095294A (ja) 射出成形用ポリプロピレン系樹脂組成物及び射出成形体
JP2024090864A (ja) ポリプロピレン系樹脂組成物、フィルム成形体、食品に接する包装体、食品に接する容器、及びレトルト用パウチ
JP2024044572A (ja) ポリプロピレン系樹脂組成物及びその製造方法
JP2024090862A (ja) ポリプロピレン系樹脂組成物及びその製造方法、インフレーションフィルム及びその製造方法、並びに袋体及びその製造方法
JP2023164158A (ja) バイオマス由来ポリプロピレンを含む組成物および成形体
JP2019157083A (ja) ポリプロピレン組成物および成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280042367.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022828545

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022828545

Country of ref document: EP

Effective date: 20240125