WO2022267835A1 - Opc检测方法、计算机设备及计算机可读存储介质 - Google Patents
Opc检测方法、计算机设备及计算机可读存储介质 Download PDFInfo
- Publication number
- WO2022267835A1 WO2022267835A1 PCT/CN2022/095967 CN2022095967W WO2022267835A1 WO 2022267835 A1 WO2022267835 A1 WO 2022267835A1 CN 2022095967 W CN2022095967 W CN 2022095967W WO 2022267835 A1 WO2022267835 A1 WO 2022267835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- opc
- graphic
- edge line
- pattern
- rounded
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 56
- 238000003860 storage Methods 0.000 title claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000002347 injection Methods 0.000 claims description 51
- 239000007924 injection Substances 0.000 claims description 51
- 238000004088 simulation Methods 0.000 claims description 37
- 238000005259 measurement Methods 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 239000010703 silicon Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000001459 lithography Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
Definitions
- the invention belongs to the field of integrated circuit manufacturing, and relates to an OPC detection method, computer equipment and a computer-readable storage medium.
- the size of the photomask pattern is close to or even smaller than the wavelength of light that forms the photolithographic pattern. Due to light wave diffraction and interference, the photolithographic pattern and the photomask There is a phenomenon of deviation between graphics, that is, the optical proximity effect (Optical Proximity Effect, OPE). As a result, there are certain deformations and deviations between the lithographic pattern obtained on the actual silicon wafer and the photomask pattern, and this error in lithography directly affects the yield rate of finished products and circuit performance.
- OPE Optical Proximity Effect
- OPC Optical Proximity Correction
- OPC technology has been widely used in the deep submicron lithography process.
- the most widely used OPC method is the OPC correction method based on the model. That is, through the simulation calculation of the OPC model, the potential imaging error in the lithography process can be obtained, so that Correct the target graphics in advance to compensate the graphics distortion or deformation caused by OPE.
- the verification of the OPC corrected target layout has also become an important application of OPC detection.
- OPC corrected target layout By performing global simulation on the OPC corrected target layout and checking whether the simulation results meet the process mass production standards, it is possible to judge whether the OPC corrected results are At the same time, it can also check whether there are other layout design and OPC correction problems.
- the pattern accuracy requirements for the ion implantation layer become higher and higher.
- it also requires its enclosure rate (Enclosure) for the active layer (AA). ) also need to meet certain process requirements. Therefore, in the OPC detection of the injection layer, the inspection of the enclosing ratio of the active layer by the simulation graphics of the injection layer is introduced.
- the traditional enclosing rate inspection is to measure the distance between the outside of the active layer graph and the edge line inside the injection layer graph, and obtain and output the graph points whose distance is less than a certain specification, so as to find the relatively high enclosing rate of the injection layer to the active layer. poor graphics.
- the method of cutting the corners of the active layer is generally used to reduce the difference between the active layer pattern and the actual silicon wafer pattern.
- the traditional inspection method of corner cutting often leads to false reporting of inspection results, thereby reducing the accuracy of verification results.
- the object of the present invention is to provide an OPC detection method, computer equipment and computer-readable storage medium, which is used to solve the problem that in the prior art, there are many false positives in OPC detection, resulting in low accuracy.
- the problem is to provide an OPC detection method, computer equipment and computer-readable storage medium, which is used to solve the problem that in the prior art, there are many false positives in OPC detection, resulting in low accuracy.
- the present invention provides a method for OPC detection, comprising the following steps:
- the second simulated figure comprising the first edge line formed by the first simulated figure and the first edge line formed by the first simulated figure
- the second edge line formed by the second rounded figure is used to detect the distance between the edge lines of the second simulated figure to obtain the first error reporting position
- the step of performing rounding processing on the second target graphic to obtain the first rounded graphic includes:
- the second target graphic is rounded by the rounding radius to obtain the first rounded graphic.
- the edge line distance detection is performed on the second simulation graphic, and the step of obtaining the first error reporting position includes:
- the edge line spacing threshold ranges from 30nm to 80nm.
- a step of setting an inspection-free area is also included.
- the inspection-free area is the edge where the length of the line formed from the measurement point on the first edge line through the intersection point to the measurement point on the second edge line is less than 2 to 3 times The area of line spacing threshold.
- the first target pattern is an injection layer target pattern
- the second target pattern is an active layer target pattern
- the step of obtaining the second error reporting location is before the step of obtaining the first error reporting location.
- the present invention also provides a computer device, including a processor and a memory, the processor is suitable for implementing instructions, and the memory is suitable for storing a plurality of instructions, wherein the instructions are suitable for being loaded and executed by the processor
- a computer device including a processor and a memory
- the processor is suitable for implementing instructions
- the memory is suitable for storing a plurality of instructions, wherein the instructions are suitable for being loaded and executed by the processor
- OPC detection method described above including a processor and a memory, the processor is suitable for implementing instructions, and the memory is suitable for storing a plurality of instructions, wherein the instructions are suitable for being loaded and executed by the processor The OPC detection method described above.
- the present invention also provides a computer-readable storage medium, on which computer-executable instructions are stored, wherein, when the computer-executable instructions are executed, the above-mentioned OPC detection method is implemented.
- the OPC detection method, computer equipment and computer-readable storage medium of the present invention have the following beneficial effects:
- the obtained rounded graphics are closer to the actual silicon wafer graphics, which can reduce false alarms caused by differences from the actual silicon wafer graphics;
- the enclosing rate detection is performed, which can further reduce false positives in the enclosing rate check, thereby obtaining a more accurate OPC detection result graphic.
- FIG. 1 is a schematic diagram showing the enclosing ratio detection of an injection layer pattern on an active layer pattern in the prior art.
- Fig. 2 is a schematic process flow diagram of the OPC detection method in the embodiment of the present invention.
- FIG. 3 is a schematic diagram of an injection layer target pattern and an active layer target pattern provided in an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the OPC pattern of the injection layer and the first rounded pattern of the active layer in an embodiment of the present invention.
- FIG. 5 is a schematic diagram of obtaining the second rounded pattern of the active layer after selecting the first rounded pattern of the active layer intersecting with the OPC pattern of the injection layer in an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a first simulation pattern of the injection layer obtained after simulating the OPC pattern of the injection layer in an embodiment of the present invention.
- FIG. 7 is a schematic diagram of obtaining a second simulation pattern of the injection layer after logically negating the first simulation pattern of the injection layer and the second rounded pattern of the active layer in an embodiment of the present invention.
- FIG. 8 is a schematic diagram of the first error reporting position obtained after edge line distance detection is performed on the second simulation pattern of the injection layer in the embodiment of the present invention.
- FIG. 9 is a schematic diagram of a second error reporting position obtained after a logic negation operation is performed on the second circular pattern of the active layer and the first simulation pattern of the injection layer in an embodiment of the present invention.
- FIG. 10 is a schematic diagram of a result graph obtained by combining the first error reporting position and the second error reporting position in an embodiment of the present invention to obtain an OPC detection result.
- spatial relation terms such as “below”, “below”, “below”, “below”, “above”, “on” etc. may be used herein to describe an element or element shown in the drawings. The relationship of a feature to other components or features. It will be understood that these spatially relative terms are intended to encompass other orientations of the device in use or operation in addition to the orientation depicted in the figures.
- a layer when referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. As used herein, "between” means that both endpoints are inclusive.
- structures described as having a first feature "on top of" a second feature may include embodiments where the first and second features are formed in direct contact, as well as additional features formed between the first and second features. Embodiments between the second features such that the first and second features may not be in direct contact.
- Fig. 1 shows the enclosing rate detection diagram between the injection layer pattern 10 and the active layer pattern 20, that is, by measuring the distance E from the outside of the active layer pattern 20 to the inside of the injection layer pattern 10, the distance E is less than the edge and output the graph position of the line spacing threshold, so as to find the graph with poor enclosing ratio of the injection layer graph 10 to the active layer graph 20 .
- the present embodiment provides a kind of OPC detection method, comprises the following steps:
- the second simulated figure comprising the first edge line formed by the first simulated figure and the first edge line formed by the first simulated figure
- the second edge line formed by the second rounded figure is used to detect the distance between the edge lines of the second simulated figure to obtain the first error reporting position
- the edge line spacing detection can further reduce the false alarm of the edge line spacing inspection, thereby obtaining a more accurate result graphic of OPC detection .
- the first target pattern is the injection layer target pattern 100
- the second target pattern is the active layer target pattern 200, but not limited thereto, regarding the types of the first target pattern and the second target pattern Not overly restrictive here.
- the injection layer target pattern 100 and the active layer target pattern 200 are provided, wherein the injection layer target pattern 100 and the active layer target pattern 200 have overlapping regions.
- the specific shape, distribution and size of the injection layer target pattern 100 and the active layer target pattern 200 are not limited here.
- OPC processing is performed on the injection layer target pattern 100 to obtain an injection layer OPC pattern 101 .
- the processing method of the OPC no introduction is made here, and it can be carried out by referring to existing conventional technical means.
- rounding is performed on the active layer target pattern 200 to obtain a first rounded pattern 201 on the active layer.
- the step of rounding the active layer target pattern 200 to obtain the first rounded pattern 201 of the active layer includes:
- the active layer target pattern 200 is rounded by the rounding radius to obtain the first rounded pattern 201 of the active layer.
- the injection layer OPC graphics 101 are simulated to obtain the first simulation graphics 103 of the injection layer, that is, the injection layer OPC graphics 101 are simulated to obtain the corresponding rounding radius, and through the rounding The radius rounds the OPC pattern 101 of the injection layer to obtain the first simulation pattern 103 of the injection layer.
- the first simulation figure 103 of the injection layer and the second rounded figure 202 of the active layer are subjected to a logical NO operation to obtain the second simulation figure 104 of the injection layer
- the second simulation figure 104 of the injection layer is 104 includes a first edge line A formed by the first dummy pattern 103 of the injection layer and a second edge line B formed by the second rounded pattern 202 of the active layer.
- edge line distance detection is performed on the second simulation pattern 104 of the injection layer to obtain a first error reporting position T1 .
- the edge line distance detection is performed on the second simulation pattern 104 of the injection layer, and the step of obtaining the first error reporting position T1 includes:
- the edge line spacing threshold ranges from 30nm to 80nm, such as 50nm, 60nm, 70nm, etc., which is not overly limited here and can be selected according to needs to further reduce the error.
- a step of setting an inspection-free area Q is also included.
- the area with the tip is set as the inspection-free area Q, which can further improve the accuracy.
- the inspection-free area Q is preferably such that the length of the line formed by the measurement point on the first edge line A passing through the intersection point to the measurement point on the second edge line B is less than 2 to 3 times.
- the area of the edge line spacing threshold such as 2.5 times the edge line spacing threshold, or 2.6 times the edge line spacing threshold, etc., is not overly limited here, and can be set as required. Referring to FIG. 8 , in this embodiment, after removing the inspection-free area Q, the number of the first error reporting position T1 is one.
- a logical NO operation is performed on the second rounded pattern 202 of the active layer and the first simulation pattern 103 of the injection layer to obtain a second error reporting position T2.
- the second rounded pattern 202 of the active layer can be added beyond the injection layer.
- a portion of the first simulation pattern 103 of the layer is detected to obtain the second error reporting position T2.
- one second error reporting location T2 is obtained in this embodiment.
- the first error reporting position T1 and the second error reporting position T2 are combined to obtain the result graph of the OPC detection.
- the detection result pattern of the active layer target pattern 200 can be obtained in the injection layer OPC pattern 101 .
- the step of obtaining the second error reporting location T2 may also be performed before the step of obtaining the first error reporting location T1.
- the step of obtaining the second error reporting position T2 can also be obtained after obtaining the first error reporting position
- the step at position T1 is performed before, and no excessive limitation is made here.
- the OPC detection method in this embodiment can obtain a total The actual number of errors reported is 2, and the number of false reports is 0, thus improving the accuracy of OPC detection.
- This embodiment also provides a computer device, the computer device includes a processor and a memory, the processor is suitable for implementing instructions, the memory is suitable for storing a plurality of instructions, and the instructions are suitable for being executed by the processing
- the device loads and executes the steps of the OPC detection method described in any one of the above embodiments. Wherein, the steps related to the OPC detection method have been described in detail above, and will not be repeated here.
- This embodiment also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed, the OPC detection method as described above is realized The steps of the OPC detection method have been described in detail above, and will not be repeated here.
- the embodiments of the present invention may be provided as methods, systems, or computer program products.
- the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects, although in many cases the former will be the preferred embodiment.
- the part of the technical solution of the present invention that contributes to the prior art can be embodied in the form of computer software products, and the computer software products are stored in a computer-readable storage medium, and the computer-readable storage medium includes But not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
- the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
- first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
- the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
- the OPC detection method, computer equipment and computer-readable storage medium of the present invention after rounding the second target figure, the rounded figure obtained is closer to the figure of the actual silicon chip, which can reduce the The false alarm caused by the difference between the slice graphics; after the logical negation operation between the first simulation graphics and the second rounded graphics, the encirclement rate detection can further reduce the false alarm error of the encirclement rate check, so as to obtain More accurate results graphics of OPC detection.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
一种OPC检测方法、计算机设备及计算机可读存储介质,其中,通过对第二目标图形进行圆化处理后,得到的圆化图形更加接近实际硅片的图形,可以减少由于与实际硅片图形间的差异所引起的误报错;通过第一仿真图形与第二圆化图形之间的逻辑否运算后,进行围住率检测,可进一步的减少围住率检查的误报错,从而得到更为准确的OPC检测的结果图形。
Description
本发明属于集成电路制造领域,涉及一种OPC检测方法、计算机设备及计算机可读存储介质。
随着微电子技术的快速发展,集成电路设计和制造已进入纳米阶段,光掩膜图形的尺寸接近甚至小于形成光刻图形的光线波长,由于光波衍射、干涉而使光刻图形与光掩膜图形之间产生偏差现象,即光学临近效应(Optical Proximity Effect,OPE)。由此导致实际硅片上得到的光刻图形与光掩膜图形之间存在一定的变形和偏差,光刻中的这种误差直接影响了生产成品良率和电路性能。
在半导体制造掩模板过程中,为了消除OPE所造成的误差,须对光掩膜图形进行预先的光学临近修正(Optical Proximity Correction,简称OPC),来弥补光学系统有限分辨率的不足。OPC技术已经广泛应用于深亚微米微影工艺中,目前应用最为广泛的OPC方法是基于模型的OPC修正方法,即通过OPC模型的仿真计算,可以得到微影工艺中潜在的成像误差,从而可对目标图形进行预先修正,以补偿OPE造成的图形失真或变形。
随着技术节点的往前推进,半导体制造的特征尺寸在不断缩小,对微影成像的精度要求也越来越高,这就要求OPC的修正精度必须随之提高,以达到工艺制程的量产需求。因此,对OPC修正后的目标版图的结果验证也成为OPC检测的重要应用,通过对OPC修正后的目标版图进行全局仿真并检查仿真结果是否符合工艺量产标准,以此来判断OPC修正结果是否达标,同时还可以检查是否存在其它版图设计与OPC修正问题。
当半导体制造进入28nm技术节点以下后,对离子注入层的图形精度要求变得越来越高,除了要求仿真结果达到目标尺寸以外,也要求其对有源层(AA)的围住率(Enclosure)也需达到一定的工艺要求。因此,在对注入层的OPC检测中,引入了注入层仿真图形对有源层的围住率的检查。传统的围住率检查是通过量测有源层图形外部到注入层图形内部的边缘线的距离,得到距离小于一定规格的图形点并输出,以找到注入层对有源层的围住率较差的图形。
在做围住率检查时,一般采用对有源层的转角处进行切角的方法来处理,此举是为了减少有源层图形与其实际硅片图形的差异。但是当注入层图形与有源层图形之间存在违反设计规则时,切角的传统检查方法也经常导致检查结果误报错,从而降低了验证结果的准确性。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种OPC检测方法、计算机设备及计算机可读存储介质,用于解决现有技术中OPC检测误报错较多,导致准确率较低的问题。
为实现上述目的及其他相关目的,本发明提供一种OPC检测方法,包括以下步骤:
提供第一目标图形及第二目标图形,所述第一目标图形与所述第二目标图形具有交叠区;
对所述第一目标图形进行OPC处理,获得第一OPC图形;
对所述第二目标图形进行圆化处理,获得第一圆化图形;
选择与所述第一OPC图形相交的所述第一圆化图形,获得第二圆化图形;
对所述第一OPC图形进行仿真,获得第一仿真图形;
将所述第一仿真图形与所述第二圆化图形进行逻辑否运算,获得第二仿真图形,所述第二仿真图形包括由所述第一仿真图形构成的第一边缘线及由所述第二圆化图形构成的第二边缘线,对所述第二仿真图形进行边缘线间距检测,获得第一报错位置;
将所述第二圆化图形与所述第一仿真图形进行逻辑否运算,获得第二报错位置;
合并所述第一报错位置及所述第二报错位置,获得所述OPC检测的结果图形。
可选地,对所述第二目标图形进行圆化处理获得第一圆化图形的步骤包括:
对所述第二目标图形进行OPC处理,获得第二OPC图形;
对所述第二OPC图形进行仿真,得到圆化半径;
通过所述圆化半径对所述第二目标图形进行圆化处理,获得所述第一圆化图形。
可选地,对所述第二仿真图形进行边缘线间距检测,获得第一报错位置的步骤包括:
设定边缘线间距阈值;
量测所述第二仿真图形中所述第一边缘线及所述第二边缘线的间距,当所述间距小于所述边缘线间距阈值时,记作所述第一报错位置。
可选地,所述边缘线间距阈值的范围为30nm~80nm。
可选地,当所述第一边缘线与所述第二边缘线之间具有交点时,还包括设置免检区的步骤。
可选地,所述免检区为所述第一边缘线上的量测点经所述交点至所述第二边缘线的量测点所构成的线长小于2倍~3倍的所述边缘线间距阈值的区域。
可选地,所述第一目标图形为注入层目标图形,所述第二目标图形为有源层目标图形。
可选地,获得所述第二报错位置的步骤在获得所述第一报错位置的步骤之前。
本发明还提供一种计算机设备,包括处理器以及存储器,所述处理器适于实现各指令, 所述存储器适于存储多条指令,其中,所述指令适于由所述处理器加载并执行上述的OPC检测方法。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机可执行的指令,其中,当所述计算机可执行的指令被执行时实现如上述的OPC检测方法。
如上所述,本发明的OPC检测方法、计算机设备及计算机可读存储介质,具有以下有益效果:
通过对第二目标图形进行圆化处理后,得到的圆化图形更加接近实际硅片的图形,可以减少由于与实际硅片图形间的差异所引起的误报错;
通过第一仿真图形与第二圆化图形之间的逻辑否运算后,进行围住率检测,可进一步的减少围住率检查的误报错,从而得到更为准确的OPC检测的结果图形。
图1显示为现有技术中注入层图形对有源层图形的围住率检测示意图。
图2显示为本发明实施例中OPC检测方法的工艺流程示意图。
图3显示为本发明实施例中提供的注入层目标图形与有源层目标图形的示意图。
图4显示为本发明实施例中注入层OPC图形及有源层第一圆化图形的示意图。
图5显示为本发明实施例中选择与注入层OPC图形相交的有源层第一圆化图形后获得有源层第二圆化图形的示意图。
图6显示为本发明实施例中对注入层OPC图形进行仿真后获得注入层第一仿真图形的示意图。
图7显示为本发明实施例中将注入层第一仿真图形与有源层第二圆化图形进行逻辑否运算后获得注入层第二仿真图形的示意图。
图8显示为本发明实施例中对注入层第二仿真图形进行边缘线间距检测后获得第一报错位置的示意图。
图9显示为本发明实施例中将有源层第二圆化图形与注入层第一仿真图形进行逻辑否运算后获得第二报错位置的示意图。
图10显示为本发明实施例中合并第一报错位置及第二报错位置,获得OPC检测的结果图形的示意图。
元件标号说明
10 注入层图形
20 有源层图形
100 注入层目标图形
200 有源层目标图形
101 注入层OPC图形
201 有源层第一圆化图形
202 有源层第二圆化图形
103 注入层第一仿真图形
104 注入层第二仿真图形
A 第一边缘线
B 第二边缘线
Q 免检区
E 距离
T1 第一报错位置
T2 第二报错位置
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。本文使用的“介于……之间”表示包括两端点值。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例, 这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,其组件布局型态也可能更为复杂。
随着半导体技术的发展,刻蚀特征尺寸逐渐减小,对离子注入层的图形精度要求变得越来越高,尤其是对有源层(AA)的围住率(Enclosure)也需达到一定的工艺要求。如图1,示意了注入层图形10与有源层图形20之间的围住率检测图,即通过量测有源层图形20外部到注入层图形10内部的距离E,得到距离E小于边缘线间距阈值的图形位置并输出,以找到注入层图形10对有源层图形20的围住率较差的图形。
以下对比例及实施例中,关于OPC检测仅以注入层图形及有源层图形进行示意,但并非局限于此,此处不作过分限制。
实施例
如图2,本实施例提供一种OPC检测方法,包括以下步骤:
提供第一目标图形及第二目标图形,所述第一目标图形与所述第二目标图形具有交叠区;
对所述第一目标图形进行OPC处理,获得第一OPC图形;
对所述第二目标图形进行圆化处理,获得第一圆化图形;
选择与所述第一OPC图形相交的所述第一圆化图形,获得第二圆化图形;
对所述第一OPC图形进行仿真,获得第一仿真图形;
将所述第一仿真图形与所述第二圆化图形进行逻辑否运算,获得第二仿真图形,所述第二仿真图形包括由所述第一仿真图形构成的第一边缘线及由所述第二圆化图形构成的第二边缘线,对所述第二仿真图形进行边缘线间距检测,获得第一报错位置;
将所述第二圆化图形与所述第一仿真图形进行逻辑否运算,获得第二报错位置;
合并所述第一报错位置及第二报错位置,获得所述OPC检测的结果图形。
本实施例,通过对所述第二目标图形进行圆化处理后,得到的圆化图形更加接近实际硅片的图形,可以减少由于与实际硅片图形间的差异所引起的误报错;通过所述第一仿真图形与所述第二圆化图形之间的逻辑否运算后,进行边缘线间距检测,可进一步的减少边缘线间距检查的误报错,从而得到更为准确的OPC检测的结果图形。
参阅图3~图10,以下结合附图对本实施例进行进一步的介绍。
作为示例,所述第一目标图形为注入层目标图形100,所述第二目标图形为有源层目标图形200,但并非局限于此,关于所述第一目标图形及第二目标图形的种类此处不作过分限 制。
首先,参阅图3,提供所述注入层目标图形100与所述有源层目标图形200,其中,所述注入层目标图形100与所述有源层目标图形200具有交叠区。有关所述注入层目标图形100与所述有源层目标图形200的具体形貌、分布及尺寸等此处不作过分限制。
接着,参阅图4,对所述注入层目标图形100进行OPC处理,获得注入层OPC图形101。有关所述OPC的处理方法,此处不作介绍,可参阅现有常规技术手段进行。
接着,参阅图4,对所述有源层目标图形200进行圆化处理,获得有源层第一圆化图形201。
作为示例,对所述有源层目标图形200进行圆化处理获得所述有源层第一圆化图形201的步骤包括:
对所述有源层目标图形200进行OPC处理,获得有源层OPC图形;
对所述有源层OPC图形进行仿真,得到圆化半径;
通过所述圆化半径对所述有源层目标图形200进行圆化处理,获得所述有源层第一圆化图形201。
接着,参阅图5,选择与所述注入层OPC图形101相交的所述有源层第一圆化图形201,获得有源层第二圆化图形202,即在所述有源层第一圆化图形201中与所述注入层OPC图形101存在交叠部分的所述有源层第一圆化图形201。
接着,参阅图6,对所述注入层OPC图形101进行仿真,获得注入层第一仿真图形103,即对所述注入层OPC图形101进行仿真,得到对应的圆化半径,并通过该圆化半径对所述注入层OPC图形101进行圆化处理,获得所述注入层第一仿真图形103。
接着,参阅图7,将所述注入层第一仿真图形103与所述有源层第二圆化图形202进行逻辑否运算,获得注入层第二仿真图形104,所述注入层第二仿真图形104包括由所述注入层第一仿真图形103构成的第一边缘线A及由所述有源层第二圆化图形202构成的第二边缘线B。
接着,参阅图8,对所述注入层第二仿真图形104进行边缘线间距检测,获得第一报错位置T1。
作为示例,对所述注入层第二仿真图形104进行边缘线间距检测,获得所述第一报错位置T1的步骤包括:
设定边缘线间距阈值;
量测所述注入层第二仿真图形104中所述第一边缘线A及所述第二边缘线B的间距,当 所述间距小于所述边缘线间距阈值时,记作所述第一报错位置T1。
其中,优选所述边缘线间距阈值的范围为30nm~80nm,如50nm、60nm、70nm等,此处不作过分限制,可根据需要进行选择,以进一步的缩小误差。
进一步的,当所述第一边缘线A及所述第二边缘线B之间具有交点时,还包括设置免检区Q的步骤。
具体的,如图7及图8,由于所述第一边缘线A及所述第二边缘线B之间具有所述交点,从而形成了一个具有尖端的区域,而该区域会造成OPC检测的误报错,因此,本实施例中,在将所述注入层第一仿真图形103与所述有源层第二圆化图形202进行逻辑否运算后,为进一步的提高OPC检测的准确度,将具有所述尖端的区域设定为所述免检区Q,可进一步的提高准确性。
其中,所述免检区Q优选为所述第一边缘线A上的量测点经所述交点至所述第二边缘线B的量测点所构成的线长在小于2倍~3倍的所述边缘线间距阈值的区域,如2.5倍所述边缘线间距阈值,或2.6倍所述边缘线间距阈值等,此处不作过分限制,可根据需要进行设置。参阅图8,本实施例在去除所述免检区Q后,所述第一报错位置T1的数量为1个。
接着,参阅图9,将所述有源层第二圆化图形202与所述注入层第一仿真图形103进行逻辑否运算,获得第二报错位置T2。
具体的,通过将所述有源层第二圆化图形202与所述注入层第一仿真图形103进行逻辑否运算后,可将所述有源层第二圆化图形202中超出所述注入层第一仿真图形103的部分检测出来,以获得所述第二报错位置T2。如图9中,本实施例中获得1个所述第二报错位置T2。
接着,参阅图10,合并所述第一报错位置T1及所述第二报错位置T2,获得所述OPC检测的结果图形。
具体的,在将获得的所述第一报错位置T1及所述第二报错位置T2合并后,可在所述注入层OPC图形101中获得与所述有源层目标图形200的检测结果图形。
作为示例,获得所述第二报错位置T2的步骤也可在获得所述第一报错位置T1的步骤之前执行。
具体的,本实施例中,仅示意了先获得所述第一报错位置T1的情形,但并非局限于此,根据需要获得所述第二报错位置T2的步骤也可在获得所述第一报错位置T1的步骤之前执行,此处不作过分限制。
本实施例中,经过所述OPC检测后,在将获得的所述检测结果图形与对比例中的检测结 果图形进行比对后,可知,本实施例中的所述OPC检测方法可获得总的实际报错数为2个,且误报错数目为0,因而提高了OPC检测的准确性。
本实施例还提供了一种计算机设备,所述计算机设备包括处理器以及存储器,所述处理器适于实现各指令,所述存储器适于存储多条指令,所述指令适于由所述处理器加载并执行上述任一实施方式所述的OPC检测方法的步骤。其中,有关所述OPC检测方法的步骤上文已经详述,此处不再赘述。
本实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机可执行的指令,当所述计算机可执行的指令被执行时实现如上文所述的OPC检测方法的步骤,关于所述OPC检测方法的步骤上文已经详述,此处不再赘述。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外,需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
通过以上实施方式的描述,本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,但很多情况下,前者是更佳的实施方式。基于这样的理解,本发明的技术方案对现有技术做出贡献的部分能以计算机软件产品的形式体现出来,所述计算机软件产品存储在计算机可读存储介质,所述计算机可读存储介质包括但不限于磁盘存储器、CD-ROM、光学存储器等。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
综上,本发明的OPC检测方法、计算机设备及计算机可读存储介质,通过对第二目标图形进行圆化处理后,得到的圆化图形更加接近实际硅片的图形,可以减少由于与实际硅片图形间的差异所引起的误报错;通过第一仿真图形与第二圆化图形之间的逻辑否运算后,进行围住率检测,可进一步的减少围住率检查的误报错,从而得到更为准确的OPC检测的结果图形。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (10)
- 一种OPC检测方法,其特征在于,包括以下步骤:提供第一目标图形及第二目标图形,所述第一目标图形与所述第二目标图形具有交叠区;对所述第一目标图形进行OPC处理,获得第一OPC图形;对所述第二目标图形进行圆化处理,获得第一圆化图形;选择与所述第一OPC图形相交的所述第一圆化图形,获得第二圆化图形;对所述第一OPC图形进行仿真,获得第一仿真图形;将所述第一仿真图形与所述第二圆化图形进行逻辑否运算,获得第二仿真图形,所述第二仿真图形包括由所述第一仿真图形构成的第一边缘线及由所述第二圆化图形构成的第二边缘线,对所述第二仿真图形进行边缘线间距检测,获得第一报错位置;将所述第二圆化图形与所述第一仿真图形进行逻辑否运算,获得第二报错位置;合并所述第一报错位置及所述第二报错位置,获得所述OPC检测的结果图形。
- 根据权利要求1所述的OPC检测方法,其特征在于:对所述第二目标图形进行圆化处理获得第一圆化图形的步骤包括:对所述第二目标图形进行OPC处理,获得第二OPC图形;对所述第二OPC图形进行仿真,得到圆化半径;通过所述圆化半径对所述第二目标图形进行圆化处理,获得所述第一圆化图形。
- 根据权利要求1所述的OPC检测方法,其特征在于:对所述第二仿真图形进行边缘线间距检测,获得第一报错位置的步骤包括:设定边缘线间距阈值;量测所述第二仿真图形中所述第一边缘线及所述第二边缘线的间距,当所述间距小于所述边缘线间距阈值时,记作所述第一报错位置。
- 根据权利要求3所述的OPC检测方法,其特征在于:所述边缘线间距阈值的范围为30nm~80nm。
- 根据权利要求3所述的OPC检测方法,其特征在于:当所述第一边缘线与所述第二边缘线之间具有交点时,还包括设置免检区的步骤。
- 根据权利要求3所述的OPC检测方法,其特征在于:所述免检区为所述第一边缘线上的量测点经所述交点至所述第二边缘线的量测点所构成的线长小于2倍~3倍的所述边缘线间距阈值的区域。
- 根据权利要求1所述的OPC检测方法,其特征在于:所述第一目标图形为注入层目标图形,所述第二目标图形为有源层目标图形。
- 根据权利要求1所述的OPC检测方法,其特征在于:获得所述第二报错位置的步骤在获得所述第一报错位置的步骤之前。
- 一种计算机设备,其特征在于:包括处理器以及存储器,所述处理器适于实现各指令,所述存储器适于存储多条指令,其中,所述指令适于由所述处理器加载并执行如权利要求1~8中任一所述的OPC检测方法。
- 一种计算机可读存储介质,其特征在于:所述计算机可读存储介质上存储有计算机可执行的指令,其中,当所述计算机可执行的指令被执行时实现如权利要求1~8中任一所述的OPC检测方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110691403.5A CN113376954B (zh) | 2021-06-22 | 2021-06-22 | Opc检测方法、计算机设备及计算机可读存储介质 |
CN202110691403.5 | 2021-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022267835A1 true WO2022267835A1 (zh) | 2022-12-29 |
Family
ID=77578280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095967 WO2022267835A1 (zh) | 2021-06-22 | 2022-05-30 | Opc检测方法、计算机设备及计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113376954B (zh) |
WO (1) | WO2022267835A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113376954B (zh) * | 2021-06-22 | 2022-03-22 | 上海积塔半导体有限公司 | Opc检测方法、计算机设备及计算机可读存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030134205A1 (en) * | 2002-01-15 | 2003-07-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical proximity correction common process window maximization over varying feature pitch |
CN103885282A (zh) * | 2014-03-20 | 2014-06-25 | 上海华力微电子有限公司 | 一种减少opc修正后验证误报错的方法 |
CN104865788A (zh) * | 2015-06-07 | 2015-08-26 | 上海华虹宏力半导体制造有限公司 | 一种光刻版图opc方法 |
CN105353586A (zh) * | 2014-08-18 | 2016-02-24 | 中芯国际集成电路制造(上海)有限公司 | 降低光学邻近修正的边缘定位误差的方法 |
CN108681205A (zh) * | 2018-06-13 | 2018-10-19 | 上海华力微电子有限公司 | 栅极区域的opc验证方法 |
CN108803233A (zh) * | 2018-08-31 | 2018-11-13 | 上海华力微电子有限公司 | 一种掩模版的制备方法 |
CN111338180A (zh) * | 2020-02-20 | 2020-06-26 | 上海华力微电子有限公司 | 过曝图形漏报错的检查方法、计算机设备及存储介质 |
CN113376954A (zh) * | 2021-06-22 | 2021-09-10 | 上海积塔半导体有限公司 | Opc检测方法、计算机设备及计算机可读存储介质 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6311319B1 (en) * | 1998-05-22 | 2001-10-30 | Taiwan Semiconductor Manufacturing Company | Solving line-end shortening and corner rounding problems by using a simple checking rule |
US7376260B2 (en) * | 2002-05-22 | 2008-05-20 | Lsi Logic Corporation | Method for post-OPC multi layer overlay quality inspection |
US7096452B2 (en) * | 2003-06-24 | 2006-08-22 | Micron Technology, Inc. | Method and device for checking lithography data |
JP4068531B2 (ja) * | 2003-08-20 | 2008-03-26 | 株式会社東芝 | Opcを用いたパターン寸法の補正方法及び検証方法、マスクの作成方法及び半導体装置の製造方法、並びに該補正方法を実行するシステム及びプログラム |
US8010915B2 (en) * | 2008-07-10 | 2011-08-30 | GlobalFoundries, Inc. | Grid-based fragmentation for optical proximity correction in photolithography mask applications |
CN102411259A (zh) * | 2011-11-28 | 2012-04-11 | 上海华力微电子有限公司 | 对光掩膜设计版图进行光学临近修正的方法和装置 |
CN107844033B (zh) * | 2017-09-30 | 2020-02-21 | 上海华力微电子有限公司 | 一种校正全局金属层工艺热点的方法 |
CN111399334B (zh) * | 2019-01-03 | 2021-12-21 | 无锡华润上华科技有限公司 | 掩模版制作方法和掩模版 |
CN112946994B (zh) * | 2019-12-10 | 2022-12-16 | 中芯国际集成电路制造(北京)有限公司 | 光学邻近修正方法及掩膜版的制作方法 |
CN111708255B (zh) * | 2020-06-19 | 2023-03-07 | 上海华虹宏力半导体制造有限公司 | Opc的ssa表的形成方法 |
CN111752088B (zh) * | 2020-06-22 | 2023-04-07 | 上海华力微电子有限公司 | 一种网格图形统一尺寸的方法、存储介质及计算机设备 |
CN112230508B (zh) * | 2020-10-30 | 2024-05-17 | 上海华力微电子有限公司 | 光学邻近修正方法 |
-
2021
- 2021-06-22 CN CN202110691403.5A patent/CN113376954B/zh active Active
-
2022
- 2022-05-30 WO PCT/CN2022/095967 patent/WO2022267835A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030134205A1 (en) * | 2002-01-15 | 2003-07-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical proximity correction common process window maximization over varying feature pitch |
CN103885282A (zh) * | 2014-03-20 | 2014-06-25 | 上海华力微电子有限公司 | 一种减少opc修正后验证误报错的方法 |
CN105353586A (zh) * | 2014-08-18 | 2016-02-24 | 中芯国际集成电路制造(上海)有限公司 | 降低光学邻近修正的边缘定位误差的方法 |
CN104865788A (zh) * | 2015-06-07 | 2015-08-26 | 上海华虹宏力半导体制造有限公司 | 一种光刻版图opc方法 |
CN108681205A (zh) * | 2018-06-13 | 2018-10-19 | 上海华力微电子有限公司 | 栅极区域的opc验证方法 |
CN108803233A (zh) * | 2018-08-31 | 2018-11-13 | 上海华力微电子有限公司 | 一种掩模版的制备方法 |
CN111338180A (zh) * | 2020-02-20 | 2020-06-26 | 上海华力微电子有限公司 | 过曝图形漏报错的检查方法、计算机设备及存储介质 |
CN113376954A (zh) * | 2021-06-22 | 2021-09-10 | 上海积塔半导体有限公司 | Opc检测方法、计算机设备及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113376954B (zh) | 2022-03-22 |
CN113376954A (zh) | 2021-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11120182B2 (en) | Methodology of incorporating wafer physical measurement with digital simulation for improving semiconductor device fabrication | |
TWI411055B (zh) | 設計及使用重疊量測中的微靶材之方法及設備 | |
US7549142B2 (en) | Method and device for checking lithography data | |
JP2000003028A (ja) | マスクパタ―ン補正システムとその補正方法 | |
US20110202892A1 (en) | Retarget process modeling method, method of fabricating mask using the retarget process modeling method, computer readable storage medium, and imaging system | |
US10755016B2 (en) | Hot spot and process window monitoring | |
CN110058485B (zh) | Opc修正方法及opc修正系统 | |
WO2022267835A1 (zh) | Opc检测方法、计算机设备及计算机可读存储介质 | |
US10061209B2 (en) | Method for verifying a pattern of features printed by a lithography process | |
CN113326601A (zh) | 预处理方法及系统、掩膜版的制造方法、设备、存储介质 | |
CN102944983A (zh) | 改善待测图案之关键尺寸量测的方法 | |
CN111505899A (zh) | 光掩模的光学邻近校正方法、制造方法和半导体器件的制作方法 | |
JP2004302263A (ja) | マスクパターン補正方法およびフォトマスク | |
CN107045259B (zh) | 包含有监测图形的掩膜版以及监测方法 | |
US7974457B2 (en) | Method and program for correcting and testing mask pattern for optical proximity effect | |
US7254804B2 (en) | Method of verifying corrected photomask-pattern results and device for the same | |
KR101970685B1 (ko) | 패터닝 방법, 그 패터닝 방법을 이용한 반도체 소자 제조방법, 및 반도체 소자 제조장치 | |
JPH0934097A (ja) | マスクパターンの補正方法および補正装置 | |
CN108681205B (zh) | 栅极区域的opc验证方法 | |
JP2004101654A (ja) | マスク欠陥検査方法、半導体装置の製造方法、マスク欠陥検査装置、欠陥影響度マップ作成方法およびプログラム | |
CN109522618B (zh) | 改善基底反射导致离子注入层光刻缺陷的方法 | |
JP2009251500A (ja) | パターンの検証方法、パターンの形成方法、半導体装置の製造方法及びプログラム | |
CN113990777A (zh) | 良率晶圆图的形成方法及装置、可读存储介质、终端 | |
CN111338180A (zh) | 过曝图形漏报错的检查方法、计算机设备及存储介质 | |
JP2006100619A (ja) | 半導体装置の製造方法および半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22827332 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22827332 Country of ref document: EP Kind code of ref document: A1 |