WO2022264733A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2022264733A1
WO2022264733A1 PCT/JP2022/020499 JP2022020499W WO2022264733A1 WO 2022264733 A1 WO2022264733 A1 WO 2022264733A1 JP 2022020499 W JP2022020499 W JP 2022020499W WO 2022264733 A1 WO2022264733 A1 WO 2022264733A1
Authority
WO
WIPO (PCT)
Prior art keywords
pad
semiconductor element
terminal
semiconductor
pads
Prior art date
Application number
PCT/JP2022/020499
Other languages
English (en)
French (fr)
Inventor
崇功 川島
知巳 奥村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280039938.7A priority Critical patent/CN117529812A/zh
Publication of WO2022264733A1 publication Critical patent/WO2022264733A1/ja
Priority to US18/507,421 priority patent/US20240079383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/4917Crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame

Definitions

  • the disclosure in this specification relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device including a plurality of semiconductor elements (switching elements) having main electrodes on both sides and a plurality of signal terminals (control terminals) electrically connected to the semiconductor elements via bonding wires. ing.
  • semiconductor elements switching elements
  • signal terminals control terminals
  • the semiconductor device of Patent Document 1 includes two semiconductor elements to which bonding wires are connected.
  • the two semiconductor elements are arranged side by side in a first direction, which is a predetermined direction.
  • a plurality of signal terminals connected to the two semiconductor elements are also arranged side by side in the first direction.
  • the first element and the second element, which are two semiconductor elements have a common structure, and the pads to which bonding wires are connected in the semiconductor elements are arranged in the same order in the first direction.
  • a signal terminal is connected to a circuit board on which a drive circuit for a semiconductor element is formed.
  • the connection portion of the signal terminal corresponding to the first element, the connection portion of the signal terminal corresponding to the second element, and the area between the connection portions are mounting prohibited areas, that is, dead spaces. It is difficult to reduce the dead space in the above configuration. Further improvements are desired in the semiconductor device from the viewpoints described above or from other viewpoints not mentioned.
  • One object of the disclosure is to provide a semiconductor device capable of reducing the dead space of the circuit board.
  • the semiconductor device disclosed herein is A semiconductor device connected to a circuit board, A first main electrode provided on one surface, a second main electrode provided on the back surface opposite to the one surface in the plate thickness direction, and a signal pad provided on the back surface at a position different from the second main electrode.
  • the plurality of semiconductor elements has a rectangular shape having four corners and four sides in plan view in the plate thickness direction,
  • the plurality of semiconductor elements includes a first element and a second element arranged side by side with the first element in a first direction orthogonal to the plate thickness direction,
  • the plurality of signal terminals includes a plurality of side-by-side terminals connected to at least one of the first element and the second element and arranged side by side in the first direction;
  • the plurality of parallel terminals are arranged side by side with the first element and the second element in a second direction perpendicular to the plate thickness direction and the first direction;
  • the first element and the second element have a structure common to each other, and in the first element and the second element, the pads are biased toward the periphery of the first corner, In the first
  • the first element and the second element arranged side by side in the first direction have a common structure.
  • the pads are biased around the first corner, which is one of the four corners.
  • the first element is arranged such that the first side, which is one of the four sides, faces the parallel terminals in the second direction, and the second side faces the second element in the first direction.
  • the second element is rotated 90 degrees with respect to the arrangement of the first element such that the second side faces the parallel terminals in the second direction and the first side faces the first element in the first direction.
  • FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment
  • FIG. FIG. 3 is a plan view seen from the Z1 direction of FIG. 2
  • 4 is a cross-sectional view taken along line IV-IV of FIG. 3
  • FIG. 4 is a cross-sectional view taken along line V-V of FIG. 3
  • FIG. 4 is a cross-sectional view taken along line VI-VI of FIG. 3
  • FIG. 4 is a cross-sectional view taken along line VII-VII of FIG. 3
  • FIG. FIG. 3 is a plan view showing a state in which a semiconductor element is mounted on a substrate
  • FIG. 4 is a plan view showing a circuit pattern of a substrate on the drain electrode side;
  • FIG. 4 is a plan view showing a circuit pattern of a substrate on the source electrode side;
  • FIG. 4 is a plan view showing the arrangement of a plurality of semiconductor elements connected in parallel;
  • 3 is a plan view showing a structure around semiconductor elements and signal terminals on the lower arm side;
  • FIG. 3 is a plan view showing a structure around semiconductor elements and signal terminals on the upper arm side;
  • FIG. 4 is a perspective view showing a bent state of a signal terminal;
  • FIG. FIG. 12 is a side view seen from the X1 direction in FIG. 11, showing the connection structure between the signal terminal and the circuit board; It is a top view which shows a reference example.
  • FIG. 10 is a plan view showing the structure around the semiconductor element and signal terminals on the lower arm side in the semiconductor device according to the second embodiment
  • 3 is a plan view showing a structure around semiconductor elements and signal terminals on the upper arm side
  • FIG. 12 is a plan view showing the structure around the semiconductor element and signal terminals on the lower arm side in the semiconductor device according to the third embodiment
  • 3 is a plan view showing a structure around semiconductor elements and signal terminals on the upper arm side
  • FIG. 26 is a plan view seen from the Z2 direction of FIG. 25;
  • FIG. 27 is a cross-sectional view along line XXVII-XXVII of FIG. 26;
  • 3 is a plan view showing a circuit pattern of a substrate arranged on the drain electrode side and a connection structure between a semiconductor element and a signal terminal;
  • FIG. 4 is a plan view showing a circuit pattern of a substrate arranged on the source electrode side;
  • FIG. It is a top view which shows another modification.
  • the semiconductor device of this embodiment is applied, for example, to a power conversion device for a moving body that uses a rotating electrical machine as a drive source.
  • Mobile objects include, for example, electric vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV), flying vehicles such as drones, ships, construction machinery, and agricultural machinery.
  • EV electric vehicles
  • HV hybrid vehicles
  • PSV plug-in hybrid vehicles
  • flying vehicles such as drones, ships, construction machinery, and agricultural machinery.
  • a vehicle drive system 1 includes a DC power supply 2 , a motor generator 3 , and a power conversion device 4 .
  • the DC power supply 2 is a DC voltage source composed of a rechargeable secondary battery. Secondary batteries are, for example, lithium ion batteries and nickel metal hydride batteries.
  • the motor generator 3 is a three-phase alternating-current rotating electric machine. The motor generator 3 functions as a vehicle drive source, that is, as an electric motor. The motor generator 3 functions as a generator during regeneration.
  • the power converter 4 performs power conversion between the DC power supply 2 and the motor generator 3 .
  • the power conversion device 4 includes a power conversion circuit.
  • the power conversion device 4 of this embodiment includes a smoothing capacitor 5 and an inverter 6 that is a power conversion circuit.
  • the smoothing capacitor 5 mainly smoothes the DC voltage supplied from the DC power supply 2 .
  • the smoothing capacitor 5 is connected to a P line 7 that is a power supply line on the high potential side and an N line 8 that is a power supply line on the low potential side.
  • the P line 7 is connected to the positive pole of the DC power supply 2 and the N line 8 is connected to the negative pole of the DC power supply 2 .
  • the positive terminal of smoothing capacitor 5 is connected to P line 7 between DC power supply 2 and inverter 6 .
  • the negative electrode of smoothing capacitor 5 is connected to N line 8 between DC power supply 2 and inverter 6 .
  • a smoothing capacitor 5 is connected in parallel with the DC power supply 2 .
  • the inverter 6 is a DC-AC conversion circuit. Inverter 6 converts the DC voltage into a three-phase AC voltage and outputs it to motor generator 3 according to switching control by a control circuit (not shown). Thereby, the motor generator 3 is driven to generate a predetermined torque. During regenerative braking of the vehicle, inverter 6 converts the three-phase AC voltage generated by motor generator 3 in response to the torque from the wheels into DC voltage according to switching control by the control circuit, and outputs the DC voltage to P line 7 . Thus, inverter 6 performs bidirectional power conversion between DC power supply 2 and motor generator 3 .
  • the inverter 6 is configured with upper and lower arm circuits 9 for three phases.
  • the upper and lower arm circuits 9 are sometimes called legs.
  • the upper and lower arm circuits 9 each have an upper arm 9H and a lower arm 9L.
  • the upper arm 9H and the lower arm 9L are connected in series between the P line 7 and the N line 8 with the upper arm 9H on the P line 7 side.
  • a connection point between the upper arm 9 ⁇ /b>H and the lower arm 9 ⁇ /b>L is connected to a corresponding phase winding 3 a in the motor generator 3 via an output line 10 .
  • Inverter 6 has six arms. Each arm is configured with a switching element. At least part of each of P line 7, N line 8 and output line 10 is formed of a conductive member such as a bus bar.
  • an n-channel MOSFET 11 is used as a switching element that configures each arm.
  • the number of switching elements forming each arm is not particularly limited. One or more may be used.
  • MOSFET is an abbreviation for Metal Oxide Semiconductor Field Effect Transistor.
  • each arm has two MOSFETs 11 in this embodiment.
  • Two MOSFETs 11 forming one arm are connected in parallel.
  • the drains of two MOSFETs 11 connected in parallel are connected to the P line 7 in the upper arm 9H.
  • the sources of two MOSFETs 11 connected in parallel are connected to the N line 8 in the lower arm 9L.
  • the sources of the two MOSFETs 11 connected in parallel on the upper arm 9H and the drains of the two MOSFETs 11 connected in parallel on the lower arm 9L are connected to each other.
  • the two MOSFETs 11 connected in parallel are turned on and off at the same timing by a common gate driving signal (driving voltage).
  • a freewheeling diode 12 is connected in antiparallel to each of the MOSFETs 11 .
  • the diode 12 may be a parasitic diode (body diode) of the MOSFET 11 or may be provided separately from the parasitic diode.
  • the anode of diode 12 is connected to the source of corresponding MOSFET 11, and the cathode is connected to the drain.
  • the upper and lower arm circuits 9 for one phase are provided by one semiconductor device 20 . Details of the semiconductor device 20 will be described later.
  • the power conversion device 4 of this embodiment further includes a circuit board 13 .
  • the circuit board 13 has a board in which wiring is arranged on an insulating base material such as resin, and electronic components mounted on the board. Wiring and electronic components make up a circuit.
  • the circuit board 13 includes at least a drive circuit for switching elements forming the inverter 6 and the like.
  • the drive circuit supplies a drive voltage to the gate of the MOSFET 11 of the corresponding arm based on the drive command from the control circuit.
  • the drive circuit drives the corresponding MOSFET 11 by applying a drive voltage, that is, turns it on and off.
  • a driving circuit is sometimes referred to as a driver.
  • the wiring electrically connecting the circuit board 13 and the gate of the MOSFET 11 is omitted.
  • the circuit board 13 may further include a control circuit for switching elements.
  • the control circuit may be provided separately from the circuit board 13 including the drive circuit.
  • the control circuit generates a drive command for operating the MOSFET 11 and outputs it to the drive circuit.
  • the control circuit generates a drive command based on, for example, a torque request input from a host ECU (not shown) and signals detected by various sensors.
  • ECU is an abbreviation for Electronic Control Unit.
  • Various sensors are, for example, current sensors, rotation angle sensors, and voltage sensors.
  • the current sensor detects a phase current flowing through each phase winding 3a.
  • the rotation angle sensor detects the rotation angle of the rotor of motor generator 3 .
  • a voltage sensor detects the voltage across the smoothing capacitor 5 .
  • the control circuit outputs, for example, a PWM signal as the drive command.
  • the control circuit comprises, for example, a processor and memory.
  • PWM is an abbreviation for Pulse Width Modulation.
  • the power conversion device 4 may further include a converter as a power conversion circuit.
  • a converter is a DC-DC conversion circuit that converts a DC voltage into DC voltages of different values.
  • the converter is provided between the DC power supply 2 and the smoothing capacitor 5 .
  • the converter includes, for example, a reactor and the upper and lower arm circuits 9 described above. According to this configuration, it is possible to step up and down.
  • the power conversion device 4 may include a filter capacitor that removes power noise from the DC power supply 2 .
  • a filter capacitor is provided between the DC power supply 2 and the converter.
  • FIG. 2 is a perspective view of the semiconductor device 20.
  • FIG. FIG. 3 is a plan view of FIG. 2 viewed from the Z1 direction.
  • FIG. 3 is a transparent view showing the internal structure.
  • 4 is a cross-sectional view taken along line IV-IV of FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG. 3.
  • FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 3.
  • FIG. FIG. 8 is a plan view showing a state in which the semiconductor element 40 is mounted on the substrate 50.
  • FIG. 8 is a diagram excluding the sealing body 30 and the substrate 60 from FIG. 9 is a plan view showing the circuit pattern of the surface metal body 52 on the substrate 50.
  • FIG. 10 is a plan view showing the circuit pattern of the surface metal body 62 on the substrate 60.
  • the plate thickness direction of the semiconductor element 40 is defined as the Z direction.
  • the direction in which the plurality of semiconductor elements 40 arranged side by side is perpendicular to the Z direction is defined as the X direction.
  • the direction in which the plurality of semiconductor elements 40 connected in parallel are arranged is the X direction.
  • a direction perpendicular to both the Z direction and the X direction is defined as the Y direction.
  • a planar shape is defined as a planar shape viewed from the Z direction, in other words, a planar shape along the XY plane defined by the X and Y directions.
  • a planar view from the Z direction may be simply referred to as a planar view.
  • the term “arrangement” is not limited to the mounting surface, and may be indicated as “arrangement” when there is an overlapping positional relationship in a plan view.
  • the X direction corresponds to the first direction
  • the Y direction corresponds to the second direction.
  • the semiconductor device 20 constitutes one of the upper and lower arm circuits 9 described above, that is, the upper and lower arm circuits 9 for one phase.
  • the semiconductor device 20 includes a sealing body 30 , a semiconductor element 40 , substrates 50 and 60 , conductive spacers 70 , arm connecting portions 80 and external connection terminals 90 .
  • the semiconductor device 20 is sometimes called a semiconductor module or power card.
  • the encapsulant 30 encloses part of other elements that constitute the semiconductor device 20 .
  • the rest of the other elements are exposed outside the encapsulant 30 .
  • Sealing body 30 is made of resin, for example.
  • An example of the resin is an epoxy resin.
  • the sealing body 30 is made of resin and is molded by, for example, a transfer molding method. Such a sealing body 30 is sometimes referred to as a sealing resin body, mold resin, or resin molded body.
  • Sealing body 30 may be formed using gel, for example. The gel is filled (arranged) in opposing regions of the pair of substrates 50 and 60, for example.
  • the sealing body 30 has a substantially rectangular planar shape.
  • the sealing body 30 has one surface 30a and a back surface 30b opposite to the one surface 30a in the Z direction as surfaces forming an outline.
  • One surface 30a and back surface 30b are, for example, flat surfaces. It also has side surfaces 30c, 30d, 30e, and 30f that connect the one surface 30a and the back surface 30b.
  • the side surface 30c is a surface from which the power supply terminal 91 and the signal terminal 93H of the external connection terminals 90 protrude.
  • the side surface 30d is a surface opposite to the side surface 30c in the Y direction.
  • the side surface 30d is a surface from which the output terminal 92 and the signal terminal 93L protrude.
  • the side surfaces 30e and 30f are surfaces from which the external connection terminals 90 do not protrude.
  • the side surface 30e is a surface opposite to the side surface 30f in the X direction.
  • the semiconductor element 40 is formed by forming a switching element on a semiconductor substrate made of silicon (Si), a wide bandgap semiconductor having a wider bandgap than silicon, or the like.
  • Wide bandgap semiconductors include, for example, silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), and diamond.
  • the semiconductor element 40 is sometimes called a power element or a semiconductor chip.
  • the semiconductor element 40 of this embodiment is formed by forming the n-channel MOSFET 11 on a semiconductor substrate made of SiC.
  • the MOSFET 11 has a vertical structure so that the main current flows in the plate thickness direction of the semiconductor element 40 (semiconductor substrate), that is, in the Z direction.
  • the semiconductor element 40 has main electrodes of switching elements on both sides in the Z direction, which is the thickness direction of the semiconductor element 40 .
  • a main electrode it has a drain electrode 40D on one surface and a source electrode 40S on the back surface opposite to the one surface in the Z direction. A main current flows between the drain electrode 40D and the source electrode 40S.
  • Diode 12 When the diode 12 is a parasitic diode, the source electrode 40S doubles as the anode electrode, and the drain electrode 40D doubles as the cathode electrode. Diode 12 may be configured on a separate chip from MOSFET 11 .
  • the drain electrode 40D is the main electrode on the high potential side, and the source electrode 40S is the main electrode on the low potential side.
  • the semiconductor element 40 has a substantially rectangular planar shape, for example, a square shape. As shown in FIGS. 3 and 8, the semiconductor element 40 has pads 40P, which are electrodes for signals, on its back surface. Pad 40P is electrically isolated from source electrode 40S. The pad 40P is formed at a position different from the source electrode 40S on the back surface. Pad 40P includes at least a gate electrode pad. The semiconductor element 40 of this embodiment has four pads 40P.
  • the source electrode 40S and pad 40P are exposed from a protective film (not shown) formed on the back surface of the semiconductor substrate.
  • the drain electrode 40D is formed over substantially the entire surface.
  • the source electrode 40S is formed on a portion of the back surface of the semiconductor element 40. As shown in FIG. In plan view, the drain electrode 40D has a larger area than the source electrode 40S.
  • the drain electrode 40D corresponds to the first main electrode, and the source electrode 40S corresponds to the second main electrode.
  • the semiconductor device 20 includes a plurality of semiconductor elements 40 configured as described above.
  • the plurality of semiconductor elements 40 includes a semiconductor element 40H forming the upper arm 9H and a semiconductor element 40L forming the lower arm 9L.
  • the semiconductor element 40H is sometimes called an upper arm element, and the semiconductor element 40L is sometimes called a lower arm element.
  • the semiconductor element 40 of this embodiment includes two semiconductor elements 40H and two semiconductor elements 40L.
  • the semiconductor element 40H includes a semiconductor element 41H as a first element and a semiconductor element 42H as a second element.
  • the two semiconductor elements 40H (41H, 42H) are arranged in the X direction.
  • Two semiconductor elements 40H arranged side by side in the X direction have a common structure.
  • the two semiconductor elements 40H are connected in parallel with each other.
  • the semiconductor element 40L includes a semiconductor element 41L as a first element and a semiconductor element 42L as a second element.
  • the two semiconductor elements 40L (41L, 42L) are arranged in the X direction.
  • the two semiconductor elements 40L arranged side by side in the X direction have a common structure.
  • the two semiconductor elements 40L are connected in parallel with each other.
  • all semiconductor elements 40 have a common structure.
  • the arrangement of the semiconductor elements 41H and 42H and the arrangement of the semiconductor elements 41L and 42L have two-fold symmetry around the axis along the Z direction.
  • the semiconductor element 40H and the semiconductor element 40L are arranged in the Y direction.
  • the semiconductor device 20 has two rows of semiconductor elements 40H and 40L along the Y direction.
  • the X direction is a first direction orthogonal to the plate thickness direction (Z direction) of the semiconductor element 40 .
  • the Y direction is a second direction orthogonal to the plate thickness direction and the first direction.
  • Each semiconductor element 40 is arranged at substantially the same position in the Z direction.
  • a drain electrode 40 ⁇ /b>D of each semiconductor element 40 faces the substrate 50 .
  • a source electrode 40 ⁇ /b>S of each semiconductor element 40 faces the substrate 60 . Details of the semiconductor element 40 including the pads 40P and their arrangement will be described later.
  • the substrates 50 and 60 are arranged so as to sandwich the plurality of semiconductor elements 40 in the Z direction.
  • the substrates 50 and 60 are arranged so that at least parts of them face each other in the Z direction.
  • the substrates 50, 60 include all of the plurality of semiconductor elements 40 (40H, 40L) in plan view.
  • the substrate 50 is arranged on the drain electrode 40D side with respect to the semiconductor element 40 .
  • the substrate 60 is arranged on the source electrode 40S side with respect to the semiconductor element 40 .
  • the substrate 50 is electrically connected to the drain electrode 40D and provides a wiring function, as will be described later.
  • substrate 60 is electrically connected to source electrode 40S and provides a wiring function. Therefore, the substrates 50 and 60 are sometimes referred to as wiring members or wiring substrates.
  • Substrate 50 is sometimes referred to as the drain substrate and substrate 60 is sometimes referred to as the source substrate.
  • the substrates 50 and 60 provide a heat dissipation function for dissipating heat generated by the semiconductor element 40 . For this reason, the substrates 50 and 60 are sometimes called heat dissipation members.
  • the substrate 50 corresponds to a wiring member electrically connected to the first main electrode.
  • the substrate 50 has a facing surface 50a facing the semiconductor element 40 and a back surface 50b opposite to the facing surface 50a.
  • the substrate 50 includes an insulating base material 51 , a front metal body 52 and a back metal body 53 .
  • the substrate 50 is a substrate in which an insulating base material 51 and metal bodies 52 and 53 are laminated.
  • the substrate 60 has a facing surface 60a facing the semiconductor element 40 and a back surface 60b opposite to the facing surface 60a.
  • the substrate 60 includes an insulating base material 61 , a front metal body 62 and a back metal body 63 .
  • the substrate 60 is a substrate in which an insulating base material 61 and metal bodies 62 and 63 are laminated.
  • the surface metal bodies 52 and 62 and the back metal bodies 53 and 63 may be simply referred to as metal bodies 52, 53, 62 and 63 below.
  • the insulating base material 51 electrically separates the front metal body 52 and the back metal body 53 .
  • the insulating base material 61 electrically isolates the front metal body 62 and the back metal body 63 .
  • the insulating base materials 51 and 61 are sometimes called insulating layers.
  • the insulating base materials 51 and 61 are made of resin or inorganic ceramic.
  • As the resin for example, an epoxy resin, a polyimide resin, or the like can be used.
  • As the ceramic for example, Al2O3 (alumina), Si3N4 (silicon nitride), or the like can be used.
  • the substrates 50 and 60 are sometimes called metal-resin substrates.
  • the substrates 50, 60 are sometimes referred to as metal-ceramic substrates.
  • an inorganic filler may be included in the resin in order to improve heat dissipation, insulation, and the like.
  • the coefficient of linear expansion may be adjusted by adding a filler.
  • fillers include Al2O3, SiO2 (silicon dioxide), AlN (aluminum nitride), and BN (boron nitride).
  • the insulating base materials 51 and 61 may contain only one type of filler, or may contain a plurality of types.
  • the thickness of each of the insulating bases 51 and 61 is preferably about 50 ⁇ m to 300 ⁇ m. In the case of ceramics, the thickness of the insulating bases 51 and 61 is preferably about 200 ⁇ m to 500 ⁇ m.
  • the front surfaces of the insulating bases 51 and 61 are inner surfaces, that is, surfaces on the semiconductor element 40 side, and the back surfaces opposite to the front surfaces in the Z direction are outer surfaces.
  • the insulating base materials 51 and 61 may have a common (same) material configuration, or may have different material configurations.
  • resin-based insulating base materials 51 and 61 are employed, and the material configuration is common.
  • the linear expansion coefficients of the insulating base materials 51 and 61 are adjusted to substantially the same value as that of the sealing body 30 by adding a filler to the resin.
  • the linear expansion coefficients of the insulating bases 51 and 61 and the sealing body 30 are close to those of the metal (Cu) forming the metal bodies 52 , 53 , 62 and 63 .
  • the metal bodies 52, 53, 62, 63 are provided as metal plates or metal foils, for example.
  • the metal bodies 52, 53, 62, and 63 are made of a metal such as Cu or Al that has good electrical and thermal conductivity.
  • the thickness of each of the metal bodies 52, 53, 62, 63 is, for example, approximately 0.1 mm to 3 mm.
  • the surface metal body 52 is arranged on the surface of the insulating base material 51 in the Z direction.
  • the back metal body 53 is arranged on the back surface of the insulating base material 51 .
  • the surface metal body 62 is arranged on the surface of the insulating base material 61 in the Z direction.
  • the back metal body 63 is arranged on the back surface of the insulating base material 61 .
  • the thickness relationship between the surface metal bodies 52, 62 and the back metal bodies 53, 63 is not particularly limited.
  • the thickness of the surface metal body 52 may be greater than that of the back metal body 53 or may be substantially equal to that of the back metal body 53 .
  • the thickness of the surface metal body 52 may be thinner than that of the back metal body 53 .
  • the thickness of the surface metal body 62 may be greater than that of the back metal body 63 or may be substantially equal to that of the back metal body 63 .
  • the thickness of the surface metal body 62 may be thinner than that of the back surface metal body 63 .
  • the relationship between the thicknesses of the surface metal bodies 52 and 62 is not particularly limited, and the relationship between the thicknesses of the backside metal bodies 53 and 63 is also not particularly limited.
  • the surface metal bodies 52, 62 are patterned.
  • the surface metallurgy 52, 62 provides wiring or circuitry.
  • the surface metal bodies 52 and 62 are sometimes referred to as circuit patterns, wiring layers, and circuit conductors.
  • the surface metal bodies 52 and 62 may have a plating film of Ni or Au on the metal surface.
  • the pattern of the surface metal bodies 52 and 62 may be referred to as a circuit pattern.
  • the surface of the surface metal body 52 and the non-arranged area of the surface metal body 52 on the surface of the insulating base material 51 form the facing surface 50a of the substrate 50 .
  • the surface of the surface metal body 62 and the non-arrangement area of the surface metal body 62 on the surface of the insulating base material 61 form the facing surface 60 a of the substrate 60 .
  • surface metal bodies 52 and 62 patterned into a predetermined shape by press working, etching, or the like are prepared and adhered to a laminate having a two-layer structure of insulating base materials 51 and 61 and back metal bodies 53 and 63 to form a substrate. 50, 60 may be formed.
  • the surface metal bodies 52 and 62 may be patterned by cutting or etching after forming a three-layer laminate of the surface metal bodies 52 and 62, the insulating substrates 51 and 61, and the back metal bodies 53 and 63.
  • the surface metal body 52 has a P wiring 54 and a relay wiring 55, as shown in FIGS.
  • the P wiring 54 and the relay wiring 55 are electrically separated by a predetermined interval (gap). This gap is filled with a sealing body 30 .
  • the P wiring 54 is connected to a P terminal 91P and a drain electrode 40D of the semiconductor element 40H, which will be described later.
  • the P wiring 54 electrically connects the P terminal 91P and the drain electrode 40D of the semiconductor element 40H.
  • the P wiring 54 electrically connects the drain electrode 40D of the semiconductor element 41H and the drain electrode 40D of the semiconductor element 42H.
  • the P wiring 54 is sometimes called a positive wiring or a high-potential power wiring.
  • the relay wiring 55 is connected to the drain electrode 40D of the semiconductor element 40L, the arm connecting portion 80, and the output terminal 92.
  • the relay wiring 55 electrically connects the arm connecting portion 80 and the drain electrode 40D of the semiconductor element 40L.
  • the relay wiring 55 electrically connects the output terminal 92 with the source electrode 40S of the semiconductor element 40H and the drain electrode of the semiconductor element 40L.
  • the relay wiring 55 electrically connects the drain electrode 40D of the semiconductor element 41L and the drain electrode 40D of the semiconductor element 42L.
  • the P wiring 54 and the relay wiring 55 are arranged side by side in the Y direction.
  • the P wiring 54 is arranged on the power supply terminal 91 side
  • the relay wiring 55 is arranged on the output terminal 92 side.
  • the P wiring 54 is arranged on the side surface 30c side of the sealing body 30, and the relay wiring 55 is arranged on the side surface 30d side.
  • the P wiring 54 has a cutout 540 .
  • the notch 540 is open on one of four sides of a substantially rectangular plane having the X direction as the longitudinal direction.
  • the notch 540 is provided substantially in the center in the X direction on the side facing the side surface 30c.
  • the P wiring 54 has a base portion 541 and a pair of extension portions 542 .
  • a base 541 and a pair of extensions 542 define a notch 540 .
  • the P-wiring 54 has a substantially U-shaped (concave-shaped) plane shape.
  • the base portion 541 is a portion closer to the relay wiring 55 than the notch 540 and the extended portion 542 in the Y direction, and has a substantially rectangular planar shape.
  • the base 541 overlaps the semiconductor element 40H in plan view. That is, the two semiconductor elements 40H (41H, 42H) are arranged on the base portion 541. As shown in FIG. A drain electrode 40D of each semiconductor element 40H is connected to the base portion 541 .
  • the two extended portions 542 extend from the base portion 541 in the same direction, specifically the Y direction, toward the side surface 30c of the sealing body 30 .
  • One of the extended portions 542 is continuous with one end of the base portion 541 in the X direction, and the other is continuous with the other end of the base portion 541 .
  • Both ends of the U-shape of the P wiring 54, that is, the ends of the two extended portions 542 on the side opposite to the base portion 541 are substantially at the same position in the Y direction.
  • a pair of extending portions 542 sandwich the notch 540 in the X direction.
  • the base portion 541 is longer than the depth of the notch 540 and the extending portion 542 .
  • the relay wiring 55 also has a notch 550.
  • the notch 550 is open on one of the four sides of the substantially rectangular plane.
  • the notch 550 is provided substantially in the center in the X direction on the side facing the side surface 30d. That is, the surface metal body 52 has a notch 540 at one end in the Y direction and a notch 550 at the other end.
  • the relay wiring 55 has a base portion 551 and a pair of extension portions 552 .
  • a base 551 and a pair of extensions 552 define a notch 550 .
  • the relay wiring 55 has a substantially U-shaped (concave-shaped) plane shape.
  • the base portion 551 is a portion closer to the P wiring 54 than the notch 550 and the extended portion 552 in the Y direction, and has a substantially rectangular planar shape.
  • the base 551 overlaps the semiconductor element 40L in plan view. That is, the two semiconductor elements 40L (41L, 42L) are arranged on the base portion 551. As shown in FIG.
  • a drain electrode 40 ⁇ /b>D of each semiconductor element 40 ⁇ /b>L is connected to the base 551 .
  • the two extending portions 552 extend from the base portion 551 in the same direction, specifically the Y direction, toward the side surface 30 d of the sealing body 30 .
  • One of the extended portions 552 continues near one end of the base portion 551 in the X direction, and the other extends near the other end of the base portion 551 .
  • Both ends of the U-shape of the relay wiring 55 that is, the ends of the two extended portions 552 on the side opposite to the base portion 551 are substantially at the same position in the Y direction.
  • the pair of extensions 552 sandwich the notch 550 in the X direction.
  • the base portion 551 is longer than the depth of the notch 550 and the extending portion 552 .
  • the surface metal body 62 has an N wiring 64 and a relay wiring 65, as shown in FIGS.
  • the N wiring 64 and the relay wiring 65 are electrically separated by a predetermined interval (gap). This gap is filled with a sealing body 30 .
  • the N wiring 64 is connected to an N terminal 91N and a source electrode 40S of the semiconductor element 40L, which will be described later.
  • the N wiring 64 electrically connects the N terminal 91N and the source electrode 40S of the semiconductor element 40L.
  • the N wiring 64 electrically connects the source electrode 40S of the semiconductor element 41L and the source electrode 40S of the semiconductor element 42L.
  • the N wiring 64 is sometimes called a negative wiring or a low potential power supply wiring.
  • the relay wiring 65 is connected to the source electrode 40S and the arm connecting portion 80 of the semiconductor element 40H.
  • the relay wiring 65 electrically connects the source electrode 40S of the semiconductor element 40H and the arm connection portion 80 .
  • the relay wiring 65 electrically connects the source electrode 40S of the semiconductor element 41H and the source electrode 40S of the semiconductor element 42H.
  • the N wiring 64 also has a notch 640.
  • the notch 640 is open on one of the four sides of the substantially rectangular plane.
  • the notch 640 is provided substantially in the center in the X direction on the side facing the side surface 30c.
  • the N wiring 64 has a base portion 641 and a pair of extension portions 642 .
  • a base 641 and a pair of extensions 642 define a notch 640 .
  • the N-wiring 64 has a substantially U-shaped (concave-shaped) plane shape.
  • the base portion 641 is a portion closer to the side surface 30d than the notch 640 and the extension portion 642 in the Y direction.
  • the base portion 641 has a substantially rectangular planar shape whose longitudinal direction is the X direction.
  • the base 641 is arranged side by side with the relay wiring 65 in the Y direction.
  • the base 641 overlaps the semiconductor element 40L in plan view. That is, the two semiconductor elements 40L (41L, 42L) are arranged on the base portion 641. As shown in FIG.
  • the source electrode 40S of each semiconductor element 40L is connected to the base 641. As shown in FIG.
  • the two extending portions 642 extend from the base portion 641 in the same direction, specifically the Y direction, toward the side surface 30c of the sealing body 30 .
  • One of the extension portions 642 is connected to the vicinity of one end of the base portion 641 in the X direction, and the other is connected to the vicinity of the other end of the base portion 641 .
  • Both ends of the U-shape of the N wiring 64, that is, the ends of the two extended portions 642 on the side opposite to the base portion 641 are substantially at the same position in the Y direction.
  • the pair of extensions 642 form both ends of the surface metal body 62 in the X direction.
  • the pair of extensions 642 are arranged near the edge of the substrate 60 .
  • a part of each of the pair of extended portions 642 overlaps the P wiring 54 in plan view.
  • the extension portion 642 is longer than the base portion 641 in the Y direction.
  • the relay wiring 65 is arranged side by side with the N wiring 64, specifically the base 641, in the Y direction. In the Y direction, the relay wiring 65 is arranged at a position close to the side surface 30c of the sealing body 30, and the base portion 641 is arranged at a position close to the side surface 30d.
  • the relay wiring 65 is arranged between the pair of extension portions 642 in the X direction.
  • the relay wiring 65 is sandwiched between a pair of extension portions 642 .
  • the relay wiring 65 is arranged inside the notch 640 .
  • the relay wiring 65 is arranged with a predetermined interval (gap) from the N wiring 64 . A part of the relay wiring 65 overlaps the P wiring 54 and another part of the relay wiring 65 overlaps the relay wiring 55 in plan view.
  • the relay wiring 65 overlaps the semiconductor element 40H in plan view. That is, the two semiconductor elements 40H (41H, 42H) are arranged on the relay wiring 65. As shown in FIG. A source electrode 40S of each semiconductor element 40H is connected to a relay wiring 65 .
  • the back metal bodies 53 and 63 are electrically separated from the circuit including the semiconductor element 40 and the front metal bodies 52 and 62 by the insulating substrates 51 and 61 .
  • the back metal bodies 53 and 63 are sometimes referred to as metal base substrates. Heat generated by the semiconductor element 40 is transmitted to the back metal bodies 53 and 63 via the front metal bodies 52 and 62 and the insulating base materials 51 and 61 .
  • the back metal bodies 53, 63 provide a heat dissipation function.
  • the back metal bodies 53 and 63 of the present embodiment have a substantially rectangular planar shape, and the outer contour thereof substantially matches the outer contour of the front metal bodies 52 and 62 .
  • the back metal bodies 53 and 63 are so-called solid conductors that are arranged on almost the entire back surface of the insulating substrates 51 and 61 .
  • the back metal bodies 53 and 63 may be patterned so as to match the front metal bodies 52 and 62 in plan view.
  • the back metal bodies 53 and 63 of the present embodiment are arranged over substantially the entire back surface of the corresponding insulating bases 51 and 61 . At least one of the back metal bodies 53 and 63 may be exposed from the sealing body 30 in order to further enhance the heat dissipation effect.
  • the back metal body 53 is exposed from the one surface 30a of the sealing body 30, and the back metal body 63 is exposed from the back surface 30b.
  • the exposed surface of the back metal body 53 is substantially flush with the one surface 30a.
  • the exposed surface of the back metal body 63 is substantially flush with the back surface 30b.
  • Backside metal bodies 53 and 63 form backside surfaces 50b and 60b of substrates 50 and 60, respectively.
  • the conductive spacer 70 provides a spacer function to secure a predetermined distance between the semiconductor element 40 and the substrate 60.
  • conductive spacer 70 secures a height for electrically connecting corresponding signal terminal 93 to pad 40P of semiconductor element 40 .
  • the conductive spacer 70 is located in the middle of the electrical and thermal conduction path between the source electrode 40S of the semiconductor element 40 and the substrate 60, and provides wiring and heat dissipation functions.
  • the conductive spacer 70 contains a metal material such as Cu that has good electrical and thermal conductivity.
  • the conductive spacer 70 may have a plated film on its surface.
  • the conductive spacer 70 is sometimes called a terminal, terminal block, or metal block body.
  • the semiconductor device 20 includes the same number of conductive spacers 70 as the semiconductor elements 40 . Specifically, four conductive spacers 70 are provided. Conductive spacers 70 are individually connected to semiconductor elements 40 .
  • the conductive spacer 70 is a columnar body having approximately the same size as the source electrode 40S in plan view.
  • the arm connecting portion 80 electrically connects the relay wirings 55 and 65 . That is, the arm connecting portion 80 electrically connects the upper arm 9H and the lower arm 9L.
  • the arm connecting portion 80 is provided between the semiconductor element 40H and the semiconductor element 40L in the Y direction.
  • the arm connecting portion 80 is provided in an overlapping region between the relay wiring 55 and the relay wiring 65 in plan view.
  • the arm connecting portion 80 of the present embodiment includes a joint portion 81 and a bonding material 103 which will be described later.
  • the joint portion 81 is a metal columnar body provided separately from the surface metal bodies 52 and 62 . Such a joint portion 81 is sometimes called a joint terminal.
  • a bonding material 103 is interposed between one end of the joint portion 81 and the relay wiring 55 , and a bonding material 103 is interposed between the other end and the relay wiring 65 .
  • the joint portion 81 may be integrally connected to at least one of the surface metal bodies 52 and 62.
  • the joint portion 81 may be provided integrally with the surface metal bodies 52 and 62 as part of the substrates 50 and 60 .
  • joint portion 81 is a convex portion of surface metal body 62 (relay wiring 65).
  • the arm connecting portion 80 may be configured without the joint portion 81 .
  • the arm connecting portion 80 may be configured to include only the bonding material 103 .
  • the external connection terminal 90 is a terminal for electrically connecting the semiconductor device 20 to an external device.
  • the external connection terminal 90 is formed using a metal material with good conductivity such as copper.
  • the external connection terminal 90 is, for example, a plate material.
  • the external connection terminals 90 are sometimes called leads.
  • the external connection terminal 90 includes a power terminal 91 , an output terminal 92 and a signal terminal 93 .
  • the power terminal 91 has a P terminal 91P and an N terminal 91N.
  • P-terminal 91P, N-terminal 91N, and output terminal 92 are main terminals electrically connected to the main electrodes of semiconductor element 40 .
  • the signal terminals 93 include a signal terminal 93H on the upper arm 9H side and a signal terminal 93L on the lower arm 9L side.
  • the power terminal 91 is an external connection terminal 90 electrically connected to the power lines 7 and 8 described above.
  • P terminal 91P is electrically connected to the positive terminal of smoothing capacitor 5 .
  • the P terminal 91P is sometimes referred to as a positive electrode terminal and a high potential power supply terminal.
  • the P terminal 91P is connected to the P wiring 54 of the surface metal body 52 . In other words, the P terminal 91P is connected to the drain electrode 40D of the semiconductor element 40H forming the upper arm 9H.
  • the P terminal 91P is connected near one end of the P wiring 54 in the Y direction.
  • the P terminal 91P extends in the Y direction from a connection portion (joint portion) with the P wiring 54, and protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30c.
  • the semiconductor device 20 of this embodiment has two P terminals 91P. As shown in FIG. 8, one of the P terminals 91P is connected to one of the pair of extensions 542, and the other is connected to the other one of the pair of extensions 542. As shown in FIG.
  • the P terminal 91P is arranged at a position close to the notch 540 in each of the extended portions 542, that is, inward, so as to be adjacent to the N terminal 91N in plan view.
  • the two P terminals 91P are arranged side by side in the X direction.
  • the two P terminals 91P are arranged at substantially the same position in the Z direction.
  • the N terminal 91N is electrically connected to the negative terminal of the smoothing capacitor 5 .
  • the N terminal 91N is sometimes called a negative terminal or a low potential power supply terminal.
  • the N terminal 91N is connected to the N wiring 64 of the surface metal body 62 . In other words, the N terminal 91N is connected to the source electrode 40S of the semiconductor element 40L forming the lower arm 9L.
  • the N terminal 91N is connected near one end of the N wiring 64 in the Y direction.
  • the N terminal 91N extends in the Y direction from the junction with the N wiring 64, and protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30c.
  • the semiconductor device 20 has two N terminals 91N.
  • One of the N terminals 91N is connected to one of the pair of extension portions 642, and the other is connected to the other one of the pair of extension portions 642.
  • the two N terminals 91N are arranged side by side in the X direction.
  • the two N terminals 91N are arranged at substantially the same position in the Z direction.
  • the two N terminals 91N are arranged outside the two P terminals 91P in the X direction.
  • one of the N terminals 91N is arranged near one of the P terminals 91P, and the other one of the N terminals 91N is arranged near the other one of the P terminals 91P.
  • the N terminal 91N and the P terminal 91P which are adjacent in the X direction, face each other at a portion including a portion protruding from the sealing body 30 at their sides.
  • the output terminal 92 is electrically connected to the corresponding phase winding 3 a (stator coil) of the motor generator 3 .
  • the output terminal 92 is sometimes called an O terminal, an AC terminal, or the like.
  • the output terminal 92 is connected to the relay wiring 55 of the surface metal body 52 on the substrate 50 . That is, the output terminal 92 is connected to the connection point between the upper arm 9H and the lower arm 9L.
  • the output terminal 92 is connected near one end of the relay wiring 55 in the Y direction.
  • the output terminal 92 extends in the Y direction from the junction with the relay wiring 55 and protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30d.
  • the semiconductor device 20 has two output terminals 92 .
  • One of the output terminals 92 is connected to one of the pair of extensions 552 and the other is connected to the other one of the pair of extensions 552 .
  • the two output terminals 92 are arranged side by side in the X direction.
  • the two output terminals 92 are arranged at substantially the same position in the Z direction.
  • the signal terminal 93 is electrically connected to the circuit board 13 including the drive circuit.
  • the signal terminal 93H is electrically connected to the pad 40P of the semiconductor element 40H through a connecting member such as a bonding wire 110.
  • the signal terminal 93H includes a terminal for applying a driving voltage to the gate electrode of the semiconductor element 40H.
  • the semiconductor device 20 of this embodiment has two signal terminals 93H.
  • the signal terminal 93H is arranged at a position overlapping the notch 540 of the P wiring 54 in plan view. In the signal terminal 93 ⁇ /b>H, the joint with the bonding wire 110 faces the insulating base material 51 instead of the surface metal body 52 .
  • the two signal terminals 93H are arranged side by side in the X direction.
  • the signal terminal 93H extends in the Y direction from the joint with the bonding wire 110, and protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30c. At least part of the projecting portion of the signal terminal 93 ⁇ /b>H extends in the same direction as the power terminal 91 .
  • the signal terminal 93H is arranged between the two P terminals 91P in the X direction. That is, the external connection terminals 90 protruding from the side surface 30c are arranged in the order of the N terminal 91N, the P terminal 91P, the two signal terminals 93H, the P terminal 91P, and the N terminal 91N in the X direction.
  • the two signal terminals 93H are arranged in the space between the power terminals 91 .
  • the signal terminal 93L is electrically connected to the pad 40P of the semiconductor element 40L via a connecting member such as a bonding wire 110.
  • the signal terminal 93L includes a terminal for applying a driving voltage to the gate electrode of the semiconductor element 40L.
  • the semiconductor device 20 of this embodiment has four signal terminals 93L.
  • the signal terminal 93L is arranged at a position overlapping the notch 550 of the relay wiring 55 in plan view. In the signal terminal 93 ⁇ /b>L, the joint with the bonding wire 110 faces the insulating base material 51 instead of the surface metal body 52 .
  • the four signal terminals 93L are arranged side by side in the X direction.
  • the signal terminal 93L extends in the Y direction from the joint with the bonding wire 110, and protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30d. At least part of the projecting portion of the signal terminal 93L extends in the same direction as the output terminal 92 .
  • the signal terminal 93L is arranged between the two output terminals 92 in the X direction. That is, the external connection terminals 90 projecting from the side surface 30d are arranged in the order of the output terminal 92, the four signal terminals 93L, and the output terminal 92 in the X direction.
  • the four signal terminals 93L are arranged in the space between the output terminals 92. As shown in FIG. The details of the signal terminals 93 (93H, 93L) and the connection structure between the signal terminals 93 and the pads 40P will be described later.
  • the drain electrode 40D of the semiconductor element 40 is bonded to the surface metal body 52 via the bonding material 100.
  • a source electrode 40 ⁇ /b>S of the semiconductor element 40 is bonded to the conductive spacer 70 via a bonding material 101 .
  • the conductive spacer 70 is bonded to the surface metal body 62 via the bonding material 102 .
  • the joint portion 81 is joined to the surface metal bodies 52 and 62 via the joining material 103 .
  • the P terminal 91 P, the N terminal 91 N, and the output terminal 92 that are the main terminals are joined to the surface metal bodies 52 and 62 via the joining material 104 .
  • the bonding materials 100 to 104 are conductive bonding materials.
  • solder can be used as the bonding materials 100-104.
  • An example of solder is multicomponent lead-free solder containing Cu, Ni, etc., in addition to Sn.
  • a sintered bonding material such as sintered silver may be used instead of solder.
  • the P terminal 91P, the N terminal 91N, and the output terminal 92 may be directly joined to the corresponding surface metal bodies 52 and 62 without the joining material 104 interposed.
  • P terminal 91P, N terminal 91N, and output terminal 92 may be directly joined to surface metal bodies 52 and 62 by, for example, ultrasonic welding, friction stir welding, laser welding, or the like. If joint portion 81 is provided separately from substrates 50 and 60 , joint portion 81 may be directly bonded to surface metal bodies 52 and 62 .
  • the plurality of semiconductor elements 40 forming the upper and lower arm circuits 9 for one phase are sealed with the sealing body 30 .
  • the sealing body 30 integrally seals the plurality of semiconductor elements 40 , a portion of the substrate 50 , a portion of the substrate 60 , a plurality of conductive spacers 70 , arm connection portions 80 , and portions of the external connection terminals 90 . It is blocked (covered).
  • the sealing body 30 seals the insulating substrates 51 , 61 and the surface metal bodies 52 , 62 in the substrates 50 , 60 .
  • the semiconductor element 40 is arranged between the substrates 50 and 60 in the Z direction.
  • the semiconductor element 40 is sandwiched between the substrates 50 and 60 arranged opposite to each other. Thereby, the heat of the semiconductor element 40 can be dissipated to both sides in the Z direction.
  • the semiconductor device 20 has a double-sided heat dissipation structure.
  • the back surface 50 b of the substrate 50 is substantially flush with the one surface 30 a of the sealing body 30 .
  • the back surface 60 b of the substrate 60 is substantially flush with the back surface 30 b of the sealing body 30 . Since the back surfaces 50b and 60b are exposed surfaces, heat dissipation can be enhanced.
  • Two semiconductor elements 40H (41H, 42H) arranged side by side in the X direction are connected in parallel with each other by surface metal bodies 52, 62, conductive spacers 70, and bonding materials 100-102.
  • Two semiconductor elements 40L (41L, 42L) arranged side by side in the X direction are connected in parallel with each other by surface metal bodies 52, 62, conductive spacers 70, and bonding materials 100-102.
  • FIG. 11 is a plan view showing the arrangement of a plurality of semiconductor elements 40 arranged side by side in the X direction.
  • FIG. 11 shows the arrangement of the semiconductor element 40L on the lower arm 9L side as an example.
  • FIG. 12 shows the arrangement and wire connection structure of the signal terminals 93L and the semiconductor elements 40L (41L, 42L) on the lower arm 9L side.
  • FIG. 13 shows the arrangement and wire connection structure of the signal terminals 93H and the semiconductor elements 40H (41H, 42H) on the upper arm 9H side.
  • the X direction is sometimes referred to as the left-right direction.
  • the direction of the semiconductor element 42L viewed from the semiconductor element 41L may be referred to as the right direction, and the direction of the semiconductor element 41L viewed from the semiconductor element 42L may be referred to as the left direction.
  • the Y direction is sometimes referred to as the vertical direction.
  • the direction of the semiconductor element 40L viewed from the semiconductor element 40H may be referred to as the downward direction
  • the direction of the semiconductor element 40H viewed from the semiconductor element 40L may be referred to as the upward direction.
  • a semiconductor element 40 having a substantially rectangular planar shape has four corners C1, C2, C3 and C4 and four side portions 40a, 40b, 40c and 40d.
  • the corners C1 to C4 and the sides 40a to 40d define the contour of the semiconductor element 40 in plan view.
  • the corners C1 and C3 are diagonal to each other, and the corners C2 and C4 are diagonal to each other.
  • the side portion 40a is a side connecting the corner portions C1 and C4.
  • the side portion 40b is a side connecting the corner portions C1 and C2.
  • the side portion 40c is a side connecting the corner portions C2 and C3.
  • the side portion 40c is a side opposite to the side portion 40a.
  • the side portion 40d is a side connecting the corners C3 and C4.
  • the side portion 40d is a side opposite to the side portion 40b.
  • the source electrode 40S has a notch 43.
  • the source electrode 40S is notched in order to disproportionately provide the pad 40P around (near) the corner C1.
  • the notch 43 of this embodiment has a substantially rectangular plane shape.
  • the notch 43 is provided corresponding to the corner C1.
  • the notch 43 has the longitudinal direction in the X direction and the lateral direction in the Y direction.
  • the notch 43 has the X direction as the short side direction and the Y direction as the long side direction.
  • the source electrode 40S has a shape obtained by removing the notch 43 from a substantially rectangular shape in plan view, that is, a substantially L shape.
  • the conductive spacer 70 also has the same shape as the source electrode 40S in plan view.
  • the semiconductor element 40 has four pads 40P.
  • Pads 40P include gate pad GP, Kelvin source pad KSP, anode pad AP, and cathode pad KP.
  • a gate pad GP is a pad 40P for applying a drive voltage to the gate electrode of the MOSFET 11 . That is, the gate pad GP is a gate electrode pad 40P that controls the main current flowing between the drain electrode 40D and the source electrode 40S, which are the main electrodes.
  • the Kelvin source pad KSP is a pad 40P for detecting the source potential of the MOSFET 11, that is, the potential of the source electrode 40S.
  • the anode pad AP is a pad 40P for detecting the anode potential of a temperature sensitive diode (not shown) included in the semiconductor element 40 .
  • the cathode pad KP is a pad 40P for detecting the cathode potential of the temperature sensitive diode.
  • a Kelvin source pad KSP corresponds to a Kelvin pad for detecting the
  • the pad 40P is provided within a pad forming region including the region where the notch 43 is formed in plan view.
  • the pad formation region substantially coincides with the formation region of the notch 43, for example.
  • the pad forming region is provided so as to be biased toward the corner C1. In other words, the pads 40P are provided biased around (near) the corner C1.
  • the pad forming area has a substantially rectangular shape in plan view.
  • the plurality of pads 40P are arranged along the side portion 40a in the order of the gate pad GP, the Kelvin source pad KSP, the anode pad AP, and the cathode pad KP from the corner portion C1 side.
  • the corner C1 corresponds to the first corner.
  • the semiconductor element 41L which is the first element, has the side portion 40a facing the signal terminal 93L and the side portion 40b facing the signal terminal 93L. It is arranged so as to face the semiconductor element 42L.
  • the four pads 40P are arranged in the X direction.
  • the pads 40P are aligned with the source electrodes 40S in the Y direction.
  • the pads 40P are arranged biased toward the signal terminals 93L in the Y direction.
  • the pads 40P are arranged biased toward the side portion 40a.
  • the pad 40P is aligned with the source electrode 40S in the X direction.
  • the pads 40P are arranged biased toward the semiconductor element 42L in the X direction. In the X direction, the pads 40P are arranged so as to be biased toward the side portion 40b.
  • the semiconductor element 42L which is the second element, is rotated 90 degrees around the axis along the Z direction with respect to the layout of the semiconductor element 41L so that the pad 40P is closer to the semiconductor element 41L.
  • the semiconductor element 42L is arranged such that the side portion 40b faces the signal terminal 93L and the side portion 40a faces the semiconductor element 41L.
  • the four pads 40P are arranged in the Y direction.
  • the pads 40P are aligned with the source electrodes 40S in the Y direction.
  • the pads 40P are arranged biased toward the signal terminals 93L in the Y direction. In the Y direction, the pads 40P are arranged biased toward the side portion 40b.
  • the pad 40P is aligned with the source electrode 40S in the X direction.
  • the pads 40P are arranged biased toward the semiconductor element 41L in the X direction. In the X direction, the pads 40P are arranged biased toward the side portion 40a.
  • the side portion 40a corresponds to the first side portion
  • the side portion 40b corresponds to the second side portion.
  • the corner portion C1 is positioned at the lower right side of the semiconductor element 41L and is positioned at the lower left side of the semiconductor element 42L. That is, the corner C1 of the semiconductor element 41L and the corner C1 of the semiconductor element 42L face each other in the X direction. Therefore, as shown in FIG. 11, the width W1 of the arrangement region of the pads 40P in the two semiconductor elements 40L is short in the X direction. Width W1 is the distance (length ).
  • the pads 40P of the two semiconductor elements 40L are arranged biased toward the signal terminal 93L side, that is, toward the side surface 30d of the sealing body 30 in the Y direction.
  • the arrangement of the semiconductor elements 41H and 42H and the arrangement of the semiconductor elements 41L and 42L have two-fold symmetry around the axis along the Z direction.
  • the two semiconductor elements 40H substantially coincide with the arrangement in which the two semiconductor elements 40L are rotated 180 degrees around the axis along the Z direction, that is, inverted. Therefore, in the semiconductor element 40H and the semiconductor element 40L, the arrangement of the first element and the second element is opposite in the X direction (horizontal direction).
  • the semiconductor element 41H which is the first element, has a side portion 40a facing the signal terminal 93H and a side portion 40b facing the semiconductor element 42H. are placed facing each other.
  • the four pads 40P are arranged in the X direction.
  • the pads 40P are aligned with the source electrodes 40S in the Y direction.
  • the pads 40P are arranged biased toward the signal terminal 93H in the Y direction.
  • the pads 40P are arranged biased toward the side portion 40a.
  • the pad 40P is aligned with the source electrode 40S in the X direction.
  • the pads 40P are arranged biased toward the semiconductor element 42H in the X direction.
  • the pads 40P are arranged so as to be biased toward the side portion 40b.
  • the semiconductor element 42H which is the second element, is rotated by 90 degrees around the axis along the Z direction with respect to the arrangement of the semiconductor element 41H so that the pad 40P approaches the semiconductor element 41H.
  • the semiconductor element 42H is arranged such that the side portion 40b faces the signal terminal 93H and the side portion 40a faces the semiconductor element 41H.
  • the four pads 40P are arranged in the Y direction.
  • the pads 40P are aligned with the source electrodes 40S in the Y direction.
  • the pads 40P are arranged biased toward the signal terminal 93H in the Y direction. In the Y direction, the pads 40P are biased toward the side portion 40b.
  • the pad 40P is aligned with the source electrode 40S in the X direction.
  • the pads 40P are arranged biased toward the semiconductor element 41L in the X direction. In the X direction, the pads 40P are arranged so as to be biased toward the side portion 40a.
  • the side portion 40a corresponds to the first side portion
  • the side portion 40b corresponds to the second side portion.
  • the corner C1 is located at the upper left in the semiconductor element 41H and located at the upper right in the semiconductor element 42H. That is, the corner C1 of the semiconductor element 41H and the corner C1 of the semiconductor element 42H face each other in the X direction. Therefore, the width of the arrangement region of the pads 40P in the two semiconductor elements 40H is short in the X direction.
  • the width of the arrangement region of the pads 40P of the semiconductor element 40H is, for example, equal to the width W1 described above.
  • the pads 40P of the two semiconductor elements 40H are arranged biased toward the signal terminal 93H side, that is, toward the side surface 30c of the sealing body 30 in the Y direction.
  • the pads 40P of the semiconductor elements 40H and the pads 40P of the semiconductor elements 40L are not on the sides (side portions 40c and 40d) facing each other in the Y direction, which is the direction in which the semiconductor elements 40H and 40L are arranged, but on the sides opposite to the opposite sides. It is biased toward the sides (sides 40a and 40b).
  • the semiconductor device 20 includes, as the signal terminals 93, two signal terminals 93H and four signal terminals 93L.
  • the signal terminal 93H is arranged so as to sandwich the semiconductor element 40 with the signal terminal 93L in the Y direction.
  • the signal terminal 93H is arranged along with the four power supply terminals 91 (91P, 91N) in the X direction.
  • the signal terminal 93H is arranged between the power terminals 91 .
  • the signal terminal 93L and the two output terminals 92 are arranged side by side in the X direction.
  • the signal terminal 93L is arranged between the output terminals 92 .
  • Two signal terminals 93H and four signal terminals 93L are provided in order to suppress an increase in size in the X direction. As a result, the number of external connection terminals 90 is six on each of the side surfaces 30c and 30d.
  • the signal terminal 93L includes a gate terminal 93G, a Kelvin source terminal 93KS, an anode terminal 93A and a cathode terminal 93K.
  • the four signal terminals 93L are arranged in the order of gate terminal 93G, Kelvin source terminal 93KS, anode terminal 93A, and cathode terminal 93K in the direction from semiconductor element 42L to semiconductor element 41L.
  • the arrangement of the four signal terminals 93L corresponds to the arrangement of the pads 40P of the semiconductor element 41L, which is the first element.
  • the signal terminal 93L corresponds to a parallel terminal for the semiconductor element 40L.
  • the gate terminal 93G and the Kelvin source terminal 93KS have a first extension portion 931 and a second extension portion 932.
  • the first extending portion 931 extends in the Y direction in plan view.
  • the second extension 932 extends from the first extension 931 in the X direction to connect the bonding wires 110 . Since the bonding wire 110 can be connected to the second extended portion 932 extending in the X direction, the angle of the bonding wire 110 can be moderated with respect to the reference line substantially parallel to the Y direction.
  • the second elongated portion 932 of the present embodiment continues to the end of the first elongated portion 931 on the semiconductor element 40L side.
  • the gate terminal 93G and the Kelvin source terminal 93KS each form a substantially L-shaped plane.
  • the gate terminal 93G and the Kelvin source terminal 93KS are arranged so that their second extension portions 932 are aligned in the Y direction, that is, they face each other in the Y direction. In the Y direction, the second extension 932 of the gate terminal 93G is closer to the semiconductor element 40L than the second extension 932 of the Kelvin source terminal 93KS.
  • Each of the anode terminal 93A and the cathode terminal 93K extends in the Y direction in plan view. Neither the anode terminal 93A nor the cathode terminal 93K has the second extension 932 .
  • a portion of the signal terminal 93L is positioned between the side portion 40b of the semiconductor element 41L and the side portion 40a of the semiconductor element 42L arranged side by side in the X direction.
  • a portion of the gate terminal 93G, a portion of the Kelvin source terminal 93KS, and a portion of the anode terminal 93A are located between the semiconductor elements 41L and 42L in the X direction, that is, between the dashed-dotted lines shown in FIG. It is located in the element placement region.
  • the gate pad GP is connected through the bonding wire 110 to the gate terminal 93G.
  • Kelvin source pad KSP is connected via bonding wire 110 to Kelvin source terminal 93KS.
  • Anode pad AP is connected to anode terminal 93A via bonding wire 110 .
  • the cathode pad KP is connected via a bonding wire 110 to the cathode terminal 93K. All the bonding wires 110 connected to the semiconductor element 41L cross the side portion 40a in plan view.
  • the gate pad GP is connected through the bonding wire 110 to the gate terminal 93G.
  • Kelvin source pad KSP is connected via bonding wire 110 to Kelvin source terminal 93KS.
  • Anode pad AP is connected to adjacent Kelvin source pad KSP via bonding wire 110S.
  • No bonding wire 110 is connected to the cathode pad KP.
  • the anode of the temperature sensitive diode is connected to the Kelvin source pad KSP and fixed at the source potential. All the bonding wires 110 connected to the semiconductor element 42L cross the side portion 40b in plan view.
  • the bonding wire 110S may continue to the bonding wire 110 connecting the Kelvin source pad KSP and the Kelvin source terminal 93KS. That is, it may be part of the bonding wire 110 that connects the Kelvin source pad KSP and the Kelvin source terminal 93KS.
  • the bonding wire 110S may be provided separately from the bonding wire 110 connecting the Kelvin source pad KSP and the Kelvin source terminal 93KS.
  • both of the semiconductor elements 41L and 42L are connected to the second extended portions 932 of the corresponding gate terminals 93G via bonding wires 110.
  • both of the semiconductor elements 41L and 42L are connected via bonding wires 110 to the second extended portions 932 of the corresponding Kelvin source terminals 93KS.
  • the anode pad AP only the semiconductor element 41L is connected to the corresponding anode terminal 93A via the bonding wire 110.
  • the cathode pad KP only the semiconductor element 41L is connected to the corresponding cathode terminal 93K via the bonding wire 110.
  • the signal terminal 93H includes a gate terminal 93G and a Kelvin source terminal 93KS.
  • the two signal terminals 93H are arranged in the order of the gate terminal 93G and the Kelvin source terminal 93KS in the direction from the semiconductor element 41H to the semiconductor element 42H.
  • the signal terminal 93H does not include the anode terminal 93A and the cathode terminal 93K.
  • the signal terminal 93H corresponds to a parallel terminal for the semiconductor element 40H.
  • the gate terminal 93G and the Kelvin source terminal 93KS of the signal terminal 93H also have a first extension portion 931 and a second extension portion 932 .
  • Each of the gate terminal 93G and the Kelvin source terminal 93KS has a substantially L-shaped plane.
  • the gate terminal 93G and the Kelvin source terminal 93KS are arranged such that the second elongated portions 932 are aligned in the Y direction, that is, they face each other in the Y direction. In the Y direction, the second extension 932 of the gate terminal 93G is closer to the semiconductor element 40H than the second extension 932 of the Kelvin source terminal 93KS.
  • a portion of the signal terminal 93H is positioned between the side portion 40b of the semiconductor element 41H and the side portion 40a of the semiconductor element 42H arranged in the X direction.
  • a portion of the gate terminal 93G and a portion of the Kelvin source terminal 93KS are located between the semiconductor elements 41H and 42H in the X direction, that is, in the non-element arrangement region between the dashed-dotted lines shown in FIG. there is
  • the gate pad GP is connected through the bonding wire 110 to the gate terminal 93G.
  • Kelvin source pad KSP is connected via bonding wire 110 to Kelvin source terminal 93KS.
  • Anode pad AP is connected to Kelvin source terminal 93KS via bonding wire 110S.
  • No bonding wire 110 is connected to the cathode pad KP.
  • the anode of the temperature sensitive diode is connected to the Kelvin source terminal 93KS and fixed at the source potential. All the bonding wires 110 connected to the semiconductor element 41H intersect the side portion 40a in plan view.
  • the gate pad GP is connected through the bonding wire 110 to the gate terminal 93G.
  • Kelvin source pad KSP is connected via bonding wire 110 to Kelvin source terminal 93KS.
  • Anode pad AP is connected to Kelvin source pad KSP via bonding wire 110S.
  • No bonding wire 110 is connected to the cathode pad KP.
  • the anode of the temperature sensitive diode is connected to the Kelvin source pad KSP and fixed at the source potential. All the bonding wires 110 connected to the semiconductor element 42H intersect the side portion 40b in plan view.
  • both of the semiconductor elements 41H and 42H are connected to the second extended portions 932 of the corresponding gate terminals 93G via bonding wires 110.
  • both of the semiconductor elements 41H and 42H are connected via bonding wires 110 to the second extensions 932 of the corresponding Kelvin source terminals 93KS.
  • FIG. 14 shows the bent state of the signal terminal 93 .
  • FIG. 15 shows the connection structure between the signal terminal 93 and the circuit board 13. As shown in FIG. 15 is a side view of FIG. 14 viewed from the X1 direction.
  • the signal terminal 93 of this embodiment is bent for connection with the circuit board 13 .
  • the signal terminal 93 is bent by, for example, pressing. As shown in FIGS. 14 and 15, the signal terminal 93 is bent outside the sealing body 30 and extends in the Z direction.
  • the signal terminal 93 is bent at an angle of approximately 90 degrees. All of the signal terminals 93 extend toward the back surface 30 b of the one surface 30 a and the back surface 30 b of the sealing body 30 .
  • the signal terminal 93 has a portion extending in the Y direction and a portion extending in the Z direction.
  • All signal terminals 93 (93H, 93L) are connected to a common (single) circuit board 13.
  • the signal terminal 93 is inserted and mounted in a through hole (not shown) of the circuit board 13 .
  • the circuit board 13 is arranged with a predetermined distance from the semiconductor device 20 (sealing body 30).
  • the heat exchange units 121 of the cooler 120 are arranged on both sides of the semiconductor device 20 in the Z direction.
  • the heat exchange portion 121 sandwiches the semiconductor device 20 in the Z direction.
  • the cooler 120 cools the semiconductor device 20 by allowing the coolant to flow through the flow path of the heat exchange portion 121 .
  • a phase-change refrigerant such as water or ammonia
  • a phase-invariant refrigerant such as ethylene glycol
  • Semiconductor device 20 constitutes power module 130 together with circuit board 13 and cooler 120 .
  • the power module 130 may include semiconductor devices 20 for three phases arranged side by side in the X direction.
  • the circuit board 13 may be provided in common for the signal terminals 93 of the semiconductor devices 20 for three phases.
  • FIG. 16 is a plan view showing a reference example.
  • FIG. 16 corresponds to FIG.
  • the reference numerals of the respective elements are the reference numerals of the related elements of the semiconductor device 20 with r added to the end thereof.
  • FIG. 16 shows, as an example, the connection structure between the semiconductor element 41Lr and the semiconductor element 42Lr and the signal terminal 93L.
  • the semiconductor elements 41Lr and 42Lr four pads 40Pr are arranged in the X direction along the side portion 40ar.
  • the pads 40Pr are arranged in the order of the gate pad GPr, the Kelvin source pad KSPr, the anode pad APr, and the cathode pad KPr from the corner C1r side.
  • the pad 40Pr is not biased toward the corner portion C1r in the X direction, and is provided near the center of the side portion 40ar, that is, at an intermediate position between the corner portions C1r and C4r.
  • the semiconductor element 42Lr is not rotated by 90 degrees with respect to the semiconductor element 41Lr, and has the same arrangement as the semiconductor element 41Lr in plan view.
  • the positions of the semiconductor elements 41Lr and 42Lr in plan view are the same as the positions of the semiconductor elements 41L and 42L.
  • a signal terminal 93Lr is provided for each pad 40Pr.
  • the semiconductor element 41Lr Connected to the semiconductor element 41Lr are four signal terminals 93Lr, specifically a gate terminal 93Gr, a Kelvin source terminal 93KSr, an anode terminal 93Ar, and a cathode terminal 93Kr.
  • the four signal terminals 93Lr are connected to the semiconductor element 42Lr, similarly to the semiconductor element 41Lr.
  • the signal terminals 93Lr are connected to the corresponding pads 40Pr via bonding wires 110r.
  • the length of the bonding wire 110r is minimized and the angle of the bonding wire 110r is as gentle as possible. is provided.
  • the angle of the bonding wire 110r is the angle formed by the portion of the bonding wire 110r connecting the pad 40Pr and the signal terminal 93Lr with respect to the reference line substantially parallel to the Y direction, which is the extending direction of the pad 40P.
  • FIG. 17 shows the dead space of the circuit board 13 due to signal terminals.
  • the dead space DS by the semiconductor device 20 of this embodiment is indicated by a dashed line.
  • the dead space DSr according to the reference example shown in FIG. 16 is indicated by a dashed line.
  • the dead space is the connection portion of the signal terminal corresponding to the first element, the connection portion of the signal terminal corresponding to the second element, and the area between the connection portions on the circuit board 13 .
  • the dead space is sometimes called a mounting prohibited area.
  • the distance between the pads 40Pr of the semiconductor elements 41Lr and 42Lr is long, and the arrangement area of the pads 40Pr in the two semiconductor elements 41Lr and 42Lr is also large. Therefore, the area between the connection portion of the signal terminal 93Lr corresponding to the semiconductor element 41Lr and the connection portion of the signal terminal 93Lr corresponding to the semiconductor element 42Lr becomes longer.
  • FIG. 17 also shows the dead space DSr on the upper arm side.
  • the semiconductor elements 41L and 42L arranged side by side in the X direction have a common structure.
  • the pads 40P are provided unevenly around the corner C1.
  • the semiconductor element 41L is arranged such that the side portion 40a faces the signal terminal 93L in the Y direction and the side portion 40b faces the semiconductor element 42L in the X direction.
  • the semiconductor element 42L is arranged so that the side portion 40b faces the signal terminal 93L in the Y direction and the side portion 40a faces the semiconductor element 41L in the X direction. ing. Due to the arrangement of the semiconductor elements 41L and 42L described above, as shown in FIG. 11, the pad arrangement regions of the two semiconductor elements 41L and 42L are shortened in the X direction. Since the pad arrangement area is shortened, the arrangement area of the plurality of signal terminals 93L can be shortened in the X direction.
  • the semiconductor elements 41H and 42H arranged side by side in the X direction have a common structure.
  • the pads 40P are provided unevenly around the corner C1.
  • the semiconductor element 41H is arranged such that the side portion 40a faces the signal terminal 93H in the Y direction, and the side portion 40b faces the semiconductor element 42H in the X direction.
  • the semiconductor element 42H is rotated by 90 degrees with respect to the layout of the semiconductor element 41H so that the side portion 40b faces the signal terminal 93H in the Y direction and the side portion 40a faces the semiconductor element 41H in the X direction. ing. Due to the arrangement of the semiconductor elements 41H and 42H described above, the pad arrangement regions of the two semiconductor elements 41H and 42H are shortened in the X direction. Since the pad arrangement area is shortened, the arrangement area of the plurality of signal terminals 93H can be shortened in the X direction.
  • the semiconductor device 20 of the present embodiment it is possible to reduce the pad arrangement area, and thus the arrangement area of the signal terminals 93 on the circuit board 13, as compared with the reference example. Therefore, the dead space DS caused by the signal terminals 93 can be reduced in the circuit board 13 .
  • the signal terminal 93Lr includes one gate terminal 93Gr, one Kelvin source terminal 93KSr, one anode terminal 93Ar, and one cathode terminal 93Kr, like the signal terminal 93L of this embodiment.
  • the gate pads GPr of the semiconductor elements 41Lr and 42Lr are connected to a common gate terminal 93Gr via bonding wires 110r.
  • the Kelvin source pads KSPr of the semiconductor elements 41Lr and 42Lr are connected to a common Kelvin source terminal 93KSr via bonding wires 110r.
  • the anode pad APr of the semiconductor element 41Lr is connected to the anode terminal 93Ar via the bonding wire 110r, and the anode pad APr of the semiconductor element 42Lr is connected to the Kelvin source terminal 93KSr via the bonding wire 110r.
  • the cathode pad KPr of the semiconductor element 41Lr is connected to the cathode terminal 93Kr through the bonding wire 110r, and the cathode pad KPr of the semiconductor element 42Lr is not connected to the signal terminal 93Lr.
  • the arrangement of the pads 40Pr in the semiconductor elements 41Lr and 42Lr is the same as the configuration shown in this embodiment.
  • the pad 40Pr is provided so as to be biased toward the corner C1r.
  • the four pads 40Pr are arranged in the X direction along the side portion 40ar.
  • the pads 40Pr are arranged in order of the gate pad GPr, the Kelvin source pad KSPr, the anode pad APr, and the cathode pad KPr from the corner C1r side.
  • the semiconductor element 42Lr is not rotated by 90 degrees with respect to the semiconductor element 41Lr, and has the same arrangement as the semiconductor element 41Lr in plan view. Other configurations are the same as those of the semiconductor device 20 .
  • the signal terminal 93Lr also includes one gate terminal 93Gr, one Kelvin source terminal 93KSr, one anode terminal 93Ar, and one cathode terminal 93Kr.
  • the arrangement of the signal terminals 93Lr is simply reduced in order to reduce the dead space DSr. long enough.
  • the length of at least a portion of the bonding wire 110r is increased or the angle is increased.
  • variations in the lengths of the plurality of bonding wires 110r connected to the common signal terminal 93Lr increase.
  • two semiconductor elements 40 arranged side by side in the X direction have a common structure and pads 40P are provided biased toward the corner C1, and one semiconductor element 40 (42H, 42L) is arranged in another one.
  • the semiconductor elements 40 (41H, 41L) are arranged rotated by 90 degrees with respect to the arrangement.
  • the length (width W1) of the arrangement region of the pads 40P can be shortened as compared with the reference examples shown in FIGS. Therefore, it is possible to suppress a decrease in the reliability of the bonding wire 110 while reducing the dead space DS.
  • the gate pad GP is closer to the corner C1 than the other pads 40P.
  • the gate pad GP is closest to the corner C1.
  • the gate pads GP of the two semiconductor elements 40 arranged side by side in the X direction are brought closer to each other and arranged at substantially the same position in the Y direction. Therefore, the length of each bonding wire 110 connecting the two gate pads GP and the common gate terminal 93G can be shortened. Since the length is short, variations in length are also reduced, and it is possible to suppress the occurrence of a difference in application timing of the driving voltage. That is, it is possible to suppress the main current from flowing unevenly to one side of the semiconductor element 40 .
  • part of the signal terminals 93L which are a plurality of parallel terminals, are located between the side portion 40b of the semiconductor element 41L and the side portion 40a of the semiconductor element 42L in the X direction.
  • a portion of the signal terminal 93H which is a plurality of parallel terminals, is located between the side portion 40b of the semiconductor element 41H and the side portion 40a of the semiconductor element 42H in the X direction.
  • the arrangement area of the signal terminals 93 can be shortened, and the dead space DS in the circuit board 13 can be further reduced.
  • the angle of the bonding wire 110 connected to the signal terminal 93 located between the two semiconductor elements 40 can be gently (reduced). As a result, it is possible to prevent the bonding wire 110 from having a conduction failure such as disconnection.
  • an anode pad AP is provided next to the Kelvin source pad KSP.
  • the anode pad AP of the semiconductor element 42L is electrically connected to the adjacent cathode pad KP.
  • the connection structure can be simplified.
  • the semiconductor element 40H and the semiconductor element 40L are thermally connected via the substrates 50 and 60. Therefore, among the four semiconductor elements 40, only the semiconductor element 41L is connected to the anode terminal 93A and the cathode terminal 93K.
  • the anode pad AP of the semiconductor element 41H is electrically connected to the adjacent cathode pad KP.
  • the anode pad AP of the semiconductor element 42H is connected to the common Kelvin source terminal 93KS together with the adjacent Kelvin source pad KSP. That is, the anode pad AP is electrically connected to the Kelvin source pad KSP via the Kelvin source terminal 93KS.
  • the number of signal terminals 93H As a result, it is possible to reduce the number of signal terminals 93H and prevent the temperature-sensitive diodes from floating.
  • the number of signal terminals 93H which have a large number of main terminals arranged in parallel, can be made smaller than that of the signal terminals 93L. Accordingly, it is possible to suppress an increase in size of the semiconductor device 20 in the X direction.
  • anode pad AP is positioned next to the Kelvin source pad KSP
  • a cathode pad KP may be provided next to the Kelvin source pad KSP.
  • connection structure between the anode pad AP or cathode pad KP and the adjacent Kelvin source pad KSP is not limited to the above example.
  • Anode pad AP or cathode pad KP may be connected to Kelvin source pad KSP by bonding wire 110S, or may be connected to Kelvin source terminal 93KS by bonding wire 110S. In either case, the anode pad AP or cathode pad KP is electrically connected to the Kelvin source pad KSP. Since the Kelvin source pad KSP is positioned next to the anode pad AP or cathode pad KP, the connection structure can be simplified. For example, the electrical connection distance between the anode pad AP or cathode pad KP and the Kelvin source pad KSP can be shortened. Moreover, it is possible to prevent the bonding wires 110S from intersecting with the bonding wires 110 or coming into contact with each other.
  • the number of semiconductor elements 40 arranged side by side in the X direction and connected in parallel is not limited to two. Three or more semiconductor elements 40 may be arranged in the X direction and connected in parallel. In this case as well, the pads 40P are arranged biased toward the corner portion C1. For example, in a configuration in which three semiconductor elements 40 are arranged side by side, one of the two adjacent semiconductor elements 40 is rotated by 90 degrees with respect to the other arrangement so that the corners C1 face each other. be done. The remaining one semiconductor element 40 is arranged in the same arrangement as the adjacent semiconductor element 40 . For example, when one semiconductor element 40L is added to the configuration shown in FIG. The same arrangement as 41L is preferred.
  • This embodiment is a modification based on the preceding embodiment, and the description of the preceding embodiment can be used.
  • a plurality of pads 40P are arranged in a row along the side portion 40a.
  • the pads 40P may be arranged along the slope of the notch 43. As shown in FIG.
  • FIG. 20 shows the periphery of the semiconductor element 40L and signal terminals 93L in the semiconductor device 20 according to this embodiment.
  • FIG. 20 corresponds to FIG.
  • FIG. 21 shows the periphery of the semiconductor element 40H and signal terminals 93H in the semiconductor device 20. As shown in FIG. FIG. 21 corresponds to FIG.
  • the notch 43 of the source electrode 40S is provided corresponding to the corner C1.
  • the notch 43 has a substantially triangular planar shape.
  • the bottom side of the notch 43 connects the side portion 40a and the side portion 40b.
  • the bottom side of the notch 43 is an inclined side that is inclined with respect to each of the side portions 40a and 40b.
  • the source electrode 40S has a substantially rectangular planar shape with one of the four corners cut away.
  • the conductive spacer 70 also has a planar shape corresponding to the source electrode 40S.
  • the conductive spacer 70 has a chamfered portion 71 corresponding to the notch 43 .
  • the conductive spacer 70 has a substantially rectangular planar shape with one of the four corners chamfered.
  • the arrangement of the two semiconductor elements 40L (41L, 42L) arranged in the X direction is the same as the configuration described in the preceding embodiment (see FIG. 12).
  • the semiconductor element 42L is rotated by 90 degrees with respect to the arrangement of the semiconductor element 41L.
  • a side portion 40b of the semiconductor element 41L and a side portion 40a of the semiconductor element 42L face each other in the X direction.
  • the corners C1 face each other in the X direction.
  • the semiconductor element 40L has two pads 40P.
  • the pad 40P includes a gate pad GP and a Kelvin source pad KSP.
  • the two pads 40P are arranged along the inclined side of the notch 43. As shown in FIG.
  • the semiconductor device 20 has two signal terminals 93L.
  • the signal terminal 93L includes a gate terminal 93G and a Kelvin source terminal 93KS corresponding to the pad 40P.
  • the structure of the two signal terminals 93L (93G, 93KS) is the same as the structure described in the previous embodiment.
  • a portion of the signal terminal 93L is located between the side portion 40b of the semiconductor element 41L and the side portion 40a of the semiconductor element 42L in the X direction.
  • a gate pad GP of each semiconductor element 41L, 42L is connected to a gate terminal 93G via a bonding wire 110.
  • a Kelvin source pad KSP of each semiconductor element 41L, 42L is connected through a bonding wire 110 to a Kelvin source terminal 93KS.
  • All the bonding wires 110 connected to the semiconductor element 41L intersect the side portion 40a, which is the side facing the signal terminal 93L, in plan view. All the bonding wires 110 connected to the semiconductor element 42L intersect the side portion 40b, which is the opposite side to the signal terminal 93L, in plan view.
  • the arrangement of two semiconductor elements 40H (41H, 42H) arranged in the X direction is the same as the configuration described in the preceding embodiment (see FIG. 13).
  • the semiconductor element 42H is rotated by 90 degrees with respect to the arrangement of the semiconductor element 41H.
  • a side portion 40b of the semiconductor element 41H and a side portion 40a of the semiconductor element 42H face each other in the X direction.
  • the corners C1 face each other in the X direction.
  • pads 40P include gate pad GP and Kelvin source pad KSP.
  • the two pads 40P are arranged along the inclined side of the notch 43. As shown in FIG.
  • the semiconductor device 20 has two signal terminals 93H as in the preceding embodiment.
  • Signal terminals 93H include a gate terminal 93G and a Kelvin source terminal 93KS.
  • a portion of the signal terminal 93H is located between the side portion 40b of the semiconductor element 41H and the side portion 40a of the semiconductor element 42H in the X direction.
  • a gate pad GP of each semiconductor element 41H, 42H is connected through a bonding wire 110 to a gate terminal 93G.
  • a Kelvin source pad KSP of each semiconductor element 41H, 42H is connected through a bonding wire 110 to a Kelvin source terminal 93KS. All the bonding wires 110 connected to the semiconductor element 41H intersect the side portion 40a, which is the side facing the signal terminal 93H, in plan view. All the bonding wires 110 connected to the semiconductor element 42H intersect the side portion 40b, which is the side facing the signal terminal 93H, in plan view.
  • Other configurations of the semiconductor device 20 are the same as those described in the preced
  • the notch 43 is provided at a portion corresponding to the corner portion C1 among the four corners of the source electrode 40S.
  • the length (width W1) of the arrangement region of the pads 40P can be made shorter in the X direction. Therefore, the dead space DS of the circuit board 13 can be reduced.
  • the bonding wire 110 can be shortened.
  • variations in the length of the bonding wires 110 connecting the gate pads GP and the gate terminals 93G can be reduced.
  • the conductive spacer 70 has a chamfered portion 71 corresponding to the cutout shape of the source electrode 40S.
  • the dimensional accuracy of the conductive spacer 70 can be improved compared to the structure described in the previous embodiment. Therefore, it is possible to suppress variation in the size of the bonding surfaces of the conductive spacers 70 and, in turn, suppress variation in the thicknesses of the bonding materials 101 and 102 .
  • the pads 40P are arranged along the slope of the notch 43 .
  • the pads 40P may be arranged along the side portions 40a and 40b.
  • FIG. 22 shows the periphery of the semiconductor element 40L and signal terminals 93L in the semiconductor device 20 according to this embodiment.
  • FIG. 22 corresponds to FIG.
  • FIG. 23 shows the periphery of the semiconductor element 40H and signal terminals 93H in the semiconductor device 20. As shown in FIG. FIG. 23 corresponds to FIG.
  • the notch 43 of the source electrode 40S is provided corresponding to the corner C1.
  • the bottom side of the notch 43 connects the side portion 40a and the side portion 40b.
  • the bottom side of the notch 43 includes an inclined side 430 that is inclined with respect to each of the side portions 40a and 40b. In this embodiment, part of the bottom side is the inclined side 430 .
  • both ends of the bottom side are substantially parallel to the sides 40a and 40b.
  • the end portion 431 on the side portion 40a side is substantially parallel to the side portion 40b.
  • An end portion 432 on the side portion 40b side is substantially parallel to the side portion 40a.
  • the conductive spacer 70 has a chamfered portion 71 corresponding to the inclined side 430 of the notch 43 as in the previous embodiment.
  • the arrangement of the two semiconductor elements 40L (41L, 42L) arranged in the X direction is the same as the configuration described in the preceding embodiment (see FIG. 12).
  • the semiconductor element 42L is rotated by 90 degrees with respect to the arrangement of the semiconductor element 41L.
  • a side portion 40b of the semiconductor element 41L and a side portion 40a of the semiconductor element 42L face each other in the X direction.
  • the corners C1 face each other in the X direction.
  • the semiconductor element 40L has four pads 40P.
  • the pad 40P includes a gate pad GP, a Kelvin source pad KSP, an anode pad AP, and a cathode pad KP, as in the first embodiment.
  • the Kelvin source pad KSP, the anode pad AP, and the cathode pad KP are arranged in this order from the corner C1 side in the X direction. These three pads 40P are arranged along the side portion 40a. In the Y direction, the Kelvin source pad KSP and the gate pad GP are arranged in this order from the corner C1 side. These two pads 40P are arranged along the side portion 40b. In this way, the four pads 40P are arranged in a substantially L-shaped plane with the Kelvin source pads KSP arranged at the corners.
  • the anode pad AP and the cathode pad KP form a substantially rectangular plane in which the length of the side substantially parallel to the side portion 40b is longer than the length of the side substantially parallel to the side portion 40a.
  • the gate pad GP and the Kelvin source pad KSP form a substantially square plane with one side substantially equal in length to the long side of the anode pad AP.
  • the semiconductor device 20 has four signal terminals 93L, similar to the configuration (FIG. 12) described in the preceding embodiment.
  • the signal terminals 93L include a gate terminal 93G, a Kelvin source terminal 93KS, an anode terminal 93A and a cathode terminal 93K.
  • the structure of each signal terminal 93L is the same as the structure shown in FIG.
  • a portion of the signal terminal 93L is located between the side portion 40b of the semiconductor element 41L and the side portion 40a of the semiconductor element 42L in the X direction.
  • a gate pad GP of each semiconductor element 41L, 42L is connected to a gate terminal 93G via a bonding wire 110.
  • a Kelvin source pad KSP of each semiconductor element 41L, 42L is connected through a bonding wire 110 to a Kelvin source terminal 93KS.
  • the anode pad AP is connected via the bonding wire 110 to the anode terminal 93A, and the cathode pad KP is connected via the bonding wire 110 to the cathode terminal 93K.
  • the anode pad AP is connected to the adjacent Kelvin source pad KSP via the bonding wire 110S.
  • No bonding wires 110, 110S are connected to the cathode pad KP.
  • a portion of the bonding wire 110 connected to the semiconductor element 41L intersects the side portion 40a, which is the opposite side to the signal terminal 93L, in plan view. All the bonding wires 110 connected to the semiconductor element 42L intersect the side portion 40b, which is the opposite side to the signal terminal 93L, in plan view.
  • the arrangement of two semiconductor elements 40H (41H, 42H) arranged in the X direction is the same as the configuration described in the previous embodiment (see FIG. 13).
  • the semiconductor element 42H is rotated by 90 degrees with respect to the arrangement of the semiconductor element 41H.
  • a side portion 40b of the semiconductor element 41H and a side portion 40a of the semiconductor element 42H face each other in the X direction.
  • the corners C1 face each other in the X direction.
  • Each semiconductor element 40H has four pads 40P like the semiconductor element 40L. The arrangement of the four pads 40P is the same as the pads 40P of the semiconductor element 40L.
  • the semiconductor device 20 has two signal terminals 93H as in the preceding embodiment.
  • Signal terminals 93H include a gate terminal 93G and a Kelvin source terminal 93KS.
  • a portion of the signal terminal 93H is located between the side portion 40b of the semiconductor element 41H and the side portion 40a of the semiconductor element 42H in the X direction.
  • a gate pad GP of each semiconductor element 41H, 42H is connected through a bonding wire 110 to a gate terminal 93G.
  • a Kelvin source pad KSP of each semiconductor element 41H, 42H is connected through a bonding wire 110 to a Kelvin source terminal 93KS.
  • the anode pad AP of the semiconductor element 41H is connected to the Kelvin source terminal 93KS through the bonding wire 110, and the anode pad AP of the semiconductor element 42H is connected to the Kelvin source pad KSP through the bonding wire 110S.
  • No bonding wires 110, 110S are connected to the cathode pad KP of each semiconductor element 40H. All the bonding wires 110 connected to the semiconductor element 41H intersect the side portion 40a, which is the side facing the signal terminal 93H, in plan view. All the bonding wires 110 connected to the semiconductor element 42H intersect the side portion 40b, which is the side facing the signal terminal 93H, in plan view.
  • Other configurations of the semiconductor device 20 are the same as those described in the preceding embodiments.
  • a plurality of pads 40P are arranged along side portions 40a and 40b and form a substantially L-shaped plane. As a result, more pads 40P can be arranged in the portion cut out by the cutout 43 including the inclined side 430 .
  • the gate pad GP and the Kelvin source pad KSP are connected to the signal terminal 93 via the bonding wire 110 in either of the two semiconductor elements 40L, for example.
  • anode pad AP and cathode pad KP only semiconductor element 41 L is connected to signal terminal 93 via bonding wire 110 .
  • Gate pad GP and Kelvin source pad KSP correspond to the first pad, and anode pad AP corresponds to the second pad.
  • the gate pad GP and Kelvin source pad KSP which are pads 40P connected to the signal terminal 93, are longer than the anode pad AP and cathode pad KP.
  • Gate pad GP and Kelvin source pad KSP are long along side portion 40a and long along side portion 40b. Specifically, it is long in both the X direction and the Y direction. Therefore, the bonding wire 110 can be easily connected even if it is rotated by 90 degrees. This configuration may be combined with configurations described in other embodiments.
  • the arrangement order of the four pads 40P is not limited to the above example.
  • gate pads GP may be arranged at corners. According to this, in the two semiconductor elements 40 arranged side by side, since the gate pads GP are close to each other, variations in the length of the bonding wires 110 can be reduced.
  • the temperature sensitive diode 44 may be provided in the vicinity of the inclined side 430 of the cutout 43 within the pad forming region including the cutout portion of the source electrode 40S.
  • the temperature sensitive diode 44 includes, for example, impurity-doped polysilicon and an aluminum-based wiring material, and is provided on the back surface of the semiconductor substrate. According to this, since the empty space between the inclined side 430 and the pad 40P arranged in a planar substantially L shape is used, the source electrode 40S, that is, the switching element region can be widened. Moreover, since the temperature sensitive diode 44 is provided at a position close to the element forming area, the temperature of the semiconductor element 40 can be detected with high accuracy even though it is provided in the pad forming area.
  • FIG. 25 is a perspective view of the semiconductor device 20.
  • FIG. FIG. 26 is a plan view of FIG. 25 viewed from the Z2 direction.
  • FIG. 26 is a transparent view showing the internal structure.
  • 27 is a cross-sectional view taken along line XXVII-XXVII of FIG. 26.
  • FIG. 28 shows the circuit pattern of the substrate 50 , the arrangement of the semiconductor element 40 , the arrangement of the signal terminals 93 , and the connection structure between the semiconductor element 40 and the signal terminals 93 .
  • FIG. 29 shows the circuit pattern of the substrate 60. As shown in FIG. In FIG. 29, the semiconductor element 40 and the joint portion 81 are indicated by dashed lines.
  • the semiconductor device 20 of this embodiment configures one of the upper and lower arm circuits 9, that is, the upper and lower arm circuits 9 for one phase, as in the previous embodiment.
  • the semiconductor device 20 has elements similar to those of the configuration described in the previous embodiment (see FIGS. 2 to 13).
  • the semiconductor device 20 includes a sealing body 30 , a semiconductor element 40 , substrates 50 and 60 , conductive spacers 70 , arm connecting portions 80 and external connection terminals 90 . In the following, mainly the parts that differ from the configuration described in the preceding embodiment will be described.
  • the encapsulant 30 encapsulates part of other elements that constitute the semiconductor device 20, as in the preceding embodiment.
  • the sealing body 30 has a substantially rectangular planar shape.
  • the sealing body 30 has one surface 30a and a back surface 30b in the Z direction.
  • the side surface connecting the one surface 30a and the back surface 30b includes two side surfaces 30g and 30h from which the external connection terminals 90 protrude.
  • the side surface 30h is a surface opposite to the side surface 30g in the Y direction.
  • the semiconductor element 40 includes one semiconductor element 40H forming the upper arm 9H and one semiconductor element 40L forming the lower arm 9L.
  • the semiconductor device 20 has two semiconductor elements 40 .
  • the configurations of the semiconductor elements 40H and 40L are common to each other. As shown in FIG. 26, the semiconductor elements 40H and 40L are arranged in the X direction, which is the first direction. Each semiconductor element 40 is arranged at substantially the same position in the Z direction.
  • a drain electrode 40 ⁇ /b>D of each semiconductor element 40 faces the substrate 50 .
  • a source electrode 40 ⁇ /b>S of each semiconductor element 40 faces the substrate 60 .
  • the substrates 50 and 60 are arranged so as to sandwich the plurality of semiconductor elements 40 in the Z direction.
  • the substrates 50 and 60 are arranged so that at least parts of them face each other in the Z direction.
  • the substrates 50, 60 include all of the plurality of semiconductor elements 40 (40H, 40L) in plan view.
  • the substrate 50 includes an insulating base material 51, a front metal body 52, and a back metal body 53, as in the previous embodiment.
  • the substrate 60 includes an insulating base material 61 , a front metal body 62 and a back metal body 63 .
  • the surface metal body 52 has a P wiring 54 and a relay wiring 55 .
  • the P wiring 54 and the relay wiring 55 are electrically separated by a predetermined interval (gap).
  • the P wiring 54 is connected to the P terminal 91P and the drain electrode 40D of the semiconductor element 40H.
  • the P wiring 54 electrically connects the P terminal 91P and the drain electrode 40D of the semiconductor element 40H.
  • the P wiring 54 has a substantially rectangular planar shape with the Y direction as the longitudinal direction.
  • the relay wiring 55 is connected to the drain electrode 40 ⁇ /b>D of the semiconductor element 40 ⁇ /b>L, the arm connecting portion 80 and the output terminal 92 .
  • the relay wiring 55 has a substantially rectangular planar shape.
  • the relay wiring 55 corresponds to the first conductor, and the P wiring 54 corresponds to the second conductor.
  • the P wiring 54 and the relay wiring 55 are arranged side by side in the X direction.
  • the semiconductor element 40 ⁇ /b>L is mounted biased toward one end side of the relay wiring 55 in the X direction, specifically, the side farther from the P wiring 54 .
  • the joint portion 81 constituting the arm connection portion 80 is mounted biased toward the other end side of the relay wiring 55 in the X direction, specifically, the side closer to the P wiring 54 .
  • the P terminal 91P is connected to the vicinity of one end of the P wiring 54 in the Y direction.
  • the output terminal 92 is connected near one end of the relay wiring 55 in the Y direction.
  • P terminal 91P and output terminal 92 are arranged on the same side of semiconductor element 40 in the Y direction.
  • the surface metal body 62 has an N wiring 64 and a relay wiring 65 .
  • the N wiring 64 and the relay wiring 65 are electrically separated by a predetermined interval (gap).
  • the N wiring 64 is connected to the N terminal 91N and the source electrode 40S of the semiconductor element 40L.
  • the relay wiring 65 is connected to the source electrode 40S and the arm connecting portion 80 of the semiconductor element 40H.
  • the N wiring 64 has a base portion 643 and an extension portion 644 .
  • the N wiring 64 has a substantially L-shaped plane.
  • the base 643 has a substantially rectangular shape in plan view.
  • the base 643 includes the semiconductor element 40L in plan view.
  • the extended portion 644 is connected to one side of a base portion 643 having a substantially rectangular planar shape. The extended portion 644 extends from the side of the base portion 643 facing the relay wiring 65 toward the base portion 653 in the X direction.
  • the relay wiring 65 has a base portion 653 and an extension portion 654 .
  • the relay wiring 65 has a substantially L-shaped plane.
  • the base portion 653 has a substantially rectangular planar shape.
  • the base 653 includes the semiconductor element 40H in plan view.
  • the extension part 654 continues to one side of the base part 653 which has a substantially rectangular planar shape.
  • the extended portion 654 extends from the side of the base portion 653 facing the N wiring 64 toward the base portion 643 in the X direction. At least a portion of the extended portion 654 overlaps the relay wiring 55 in plan view.
  • the N wiring 64 and the relay wiring 65 are arranged side by side in the X direction.
  • the bases 643 and 653 are arranged in the X direction.
  • a source electrode 40S of the semiconductor element 40L is electrically connected to the base portion 643 .
  • a source electrode 40S of the semiconductor element 40H is electrically connected to the base portion 653 .
  • the extensions 644 and 654 are arranged in the Y direction.
  • the N terminal 91N is connected to the extended portion 644 .
  • the joint portion 81 is connected to the extension portion 654 .
  • the conductive spacer 70 is interposed between the source electrode 40S of the semiconductor element 40 and the substrate 60.
  • the conductive spacers 70 are individually connected to the source electrodes 40S of the semiconductor elements 40 .
  • the arm connecting portion 80 electrically connects the relay wirings 55 and 65 .
  • the arm connecting portion 80 is provided between the semiconductor element 40H and the semiconductor element 40L in the X direction.
  • the arm connecting portion 80 is provided in an overlapping region between the relay wiring 55 and the relay wiring 65 (extended portion 654) in plan view.
  • the arm connecting portion 80 of this embodiment includes a joint portion 81 and a bonding material 103 as in the preceding embodiment.
  • the joint portion 81 is a metal columnar body. In the Z direction, a bonding material 103 is interposed between one end of the joint portion 81 and the relay wiring 55 , and a bonding material 103 is interposed between the other end and the relay wiring 65 .
  • the joint portion 81 may be integrally connected to at least one of the surface metal bodies 52 and 62 .
  • the arm connecting portion 80 may be configured without the joint portion 81 .
  • the external connection terminal 90 includes a power terminal 91 , an output terminal 92 and a signal terminal 93 .
  • the power terminal 91 has a P terminal 91P and an N terminal 91N.
  • the P terminal 91P, the N terminal 91N, and the output terminal 92 may be referred to as main terminals 91P, 91N, and 92, respectively.
  • the signal terminals 93 include a signal terminal 93H on the upper arm 9H side and a signal terminal 93L on the lower arm 9L side.
  • the P terminal 91P is connected near one end of the P wiring 54 in the Y direction.
  • the P terminal 91P extends outward in the Y direction from the connection with the P wiring 54 .
  • a portion of the P terminal 91P is covered with the sealing body 30, and the remaining part protrudes from the sealing body 30. As shown in FIG.
  • the P terminal 91P protrudes outside the sealing body 30 from the vicinity of the center in the Z direction on the side surface 30g.
  • the N terminal 91N is connected near one end of the N wiring 64 in the Y direction.
  • the N terminal 91N extends outward in the Y direction from the connection with the N wiring 64 .
  • a portion of the N terminal 91N is covered with the sealing body 30, and the remaining part protrudes from the sealing body 30. As shown in FIG.
  • the N terminal 91N protrudes outside the sealing body 30 from the vicinity of the center in the Z direction on the side surface 30g.
  • the output terminal 92 is connected near one end of the relay wiring 55 in the Y direction.
  • the output terminal 92 extends outward in the Y direction from the connection with the relay wiring 55 .
  • a portion of the output terminal 92 is covered with the encapsulant 30 and the remaining portion protrudes from the encapsulant 30 .
  • the output terminal 92 protrudes outside the sealing body 30 from near the center in the Z direction on the side surface 30g.
  • the three main terminals 91P, 91N, 92 are arranged side by side in the X direction.
  • the main terminals 91P, 91N, and 92 are arranged in the order of the P terminal 91P, the N terminal 91N, and the output terminal 92 in the X direction.
  • P-terminal 91P and N-terminal 91N which are power supply terminals 91, face each other at a portion including a portion protruding from sealing body 30 at their side surfaces.
  • the signal terminals 93 are electrically connected to the corresponding pads 40P of the semiconductor element 40 via connecting members such as bonding wires 110.
  • the signal terminal 93H is connected via a bonding wire 110 to a pad 40P of the semiconductor element 40H.
  • the signal terminal 93L is connected via a bonding wire 110 to a pad 40P of the semiconductor element 40L.
  • the signal terminal 93 extends outward in the Y direction and protrudes outside the sealing body 30 from the vicinity of the center in the Z direction on the side surface 30h.
  • the signal terminal 93 extends on the side opposite to the main terminals 91P, 91N, 92 in the Y direction.
  • a semiconductor element 40 is arranged between the main terminals 91P, 91N, 92 and the signal terminal 93 in the Y direction.
  • the semiconductor device 20 has two guide frames 94 .
  • One of the guide frames 94 is connected to the P terminal 91P.
  • Another one of the guide frames 94 is connected to the output terminal 92 .
  • These guide frames 94 are parts that connect the outer peripheral frame holding the signal terminals 93 and the main terminals 91P and 92 before removing the unnecessary parts of the lead frame.
  • a portion of the guide frame 94 connected to the P terminal 91P is connected to the P wiring 54.
  • a portion of the guide frame 94 connected to the output terminal 92 is connected to the relay wiring 55 .
  • the guide frame 94 can have a connection structure (joint structure) similar to that of the main terminals 91P, 91N, and 92.
  • the plurality of semiconductor elements 40 forming the upper and lower arm circuits 9 for one phase are sealed with the sealing body 30 .
  • the sealing body 30 integrally seals the plurality of semiconductor elements 40 , a portion of the substrate 50 , a portion of the substrate 60 , a plurality of conductive spacers 70 , arm connection portions 80 , and portions of the external connection terminals 90 . is stopping.
  • the sealing body 30 seals the insulating substrates 51 , 61 and the surface metal bodies 52 , 62 in the substrates 50 , 60 .
  • the semiconductor element 40 is arranged between the substrates 50 and 60 in the Z direction.
  • the semiconductor element 40 is sandwiched between the substrates 50 and 60 arranged opposite to each other. Thereby, the heat of the semiconductor element 40 can be dissipated to both sides in the Z direction.
  • the semiconductor device 20 has a double-sided heat dissipation structure.
  • the back surface 50 b of the substrate 50 is substantially flush with the one surface 30 a of the sealing body 30 .
  • the back surface 60 b of the substrate 60 is substantially flush with the back surface 30 b of the sealing body 30 . Since the back surfaces 50b and 60b are exposed surfaces, heat dissipation can be enhanced.
  • the notch 43 of the source electrode 40S is provided corresponding to the corner C1, similarly to the configuration described in the preceding embodiment (see FIG. 22).
  • the bottom side of the notch 43 includes an inclined side 430 that is inclined with respect to each of the side portions 40a and 40b.
  • the inclined side 430 is part of the base.
  • an end portion 431 on the side portion 40a side is substantially parallel to the side portion 40b.
  • An end portion 432 on the side portion 40b side is substantially parallel to the side portion 40a.
  • the conductive spacer 70 has a chamfered portion 71 corresponding to the inclined side 430 of the notch 43 as in the previous embodiment.
  • the arrangement of the two semiconductor elements 40 (40H, 40L) arranged in the X direction is the same as the configuration described in the preceding embodiment (see FIG. 22).
  • the semiconductor element 40H is rotated by 90 degrees with respect to the arrangement of the semiconductor element 40L.
  • a side portion 40b of the semiconductor element 40L and a side portion 40a of the semiconductor element 40H face each other in the X direction.
  • the corners C1 face each other in the X direction.
  • the side portion 40a of the semiconductor element 40L and the side portion 40b of the semiconductor element 40H are opposite sides to the signal terminals 93 arranged in parallel.
  • the semiconductor element 40L corresponds to the first element
  • the semiconductor element 40H corresponds to the second element.
  • the pad 40P has the same configuration as that shown in the third embodiment. That is, each semiconductor element 40 has four pads 40P.
  • Pad 40P includes gate pad GP, Kelvin source pad KSP, anode pad AP, and cathode pad KP. In the X direction, the Kelvin source pad KSP, the anode pad AP, and the cathode pad KP are arranged in this order from the corner C1 side. These three pads 40P are arranged along the side portion 40a. In the Y direction, the Kelvin source pad KSP and the gate pad GP are arranged in this order from the corner C1 side. These two pads 40P are arranged along the side portion 40b.
  • the four pads 40P are arranged in a substantially L-shaped plane with the Kelvin source pads KSP arranged at the corners.
  • the anode pad AP and the cathode pad KP form a substantially rectangular plane in which the length of the side substantially parallel to the side portion 40b is longer than the length of the side substantially parallel to the side portion 40a.
  • the gate pad GP and the Kelvin source pad KSP form a substantially square plane with one side substantially equal in length to the long side of the anode pad AP.
  • the semiconductor device 20 has four signal terminals 93L and two signal terminals 93H.
  • the signal terminals 93L include a gate terminal 93G, a Kelvin source terminal 93KS, an anode terminal 93A and a cathode terminal 93K.
  • Signal terminals 93H include a gate terminal 93G and a Kelvin source terminal 93KS.
  • the six signal terminals 93 are arranged side by side in the X direction.
  • the gate terminal 93G of the signal terminal 93H, the Kelvin source terminal 93KS of the signal terminal 93H, the gate terminal 93G of the signal terminal 93L, the Kelvin source terminal 93KS of the signal terminal 93L, the anode terminal 93A of the signal terminal 93L, and the signal terminal 93L are arranged in the order of the cathode terminal 93K.
  • the six signal terminals 93 correspond to parallel terminals.
  • the signal terminal 93L corresponds to the first terminal connected to the first element
  • the signal terminal 93H corresponds to the second terminal connected to the second element.
  • a portion of the signal terminal 93 is located between the side portion 40b of the semiconductor element 40L and the side portion 40a of the semiconductor element 40H in the X direction.
  • the gate pad GP is connected to the corresponding gate terminal 93G through the bonding wire 110.
  • Kelvin source pads KSP are connected via bonding wires 110 to corresponding Kelvin source terminals 93KS.
  • Anode pad AP is connected to anode terminal 93A via bonding wire 110 .
  • the cathode pad KP is connected via a bonding wire 110 to the cathode terminal 93K. All the bonding wires 110 connected to the semiconductor element 40L intersect the side portion 40a, which is the side facing the signal terminal 93, in plan view.
  • the gate pad GP is connected to the corresponding gate terminal 93G via the bonding wire 110.
  • Kelvin source pads KSP are connected via bonding wires 110 to corresponding Kelvin source terminals 93KS.
  • Anode pad AP is connected to adjacent Kelvin source pad KSP via bonding wire 110S.
  • No bonding wires 110, 110S are connected to the cathode pad KP. All the bonding wires 110 connected to the semiconductor element 40H intersect the side portion 40b, which is the side facing the signal terminal 93, in plan view.
  • the semiconductor elements 40H and 40L arranged side by side in the X direction have a common structure.
  • the pads 40P are provided unevenly around the corner C1.
  • the semiconductor element 40L is arranged such that the side portion 40a faces the signal terminal 93 in the Y direction and the side portion 40b faces the semiconductor element 40H in the X direction.
  • the semiconductor element 40H is arranged so that the side portion 40b faces the signal terminal 93 in the Y direction and the side portion 40a faces the semiconductor element 40L in the X direction, and is rotated by 90 degrees with respect to the arrangement of the semiconductor element 40L. ing.
  • the pad arrangement regions of the two semiconductor elements 40H and 40L are shortened in the X direction. Since the pad arrangement area is shortened, the arrangement area of the plurality of signal terminals 93 can be shortened in the X direction. Therefore, the dead space DS caused by the signal terminals 93 can be reduced in the circuit board 13 . While reducing the dead space DS, it is possible to suppress deterioration in the reliability of the bonding wire 110 .
  • the same or similar configuration as that of the preceding embodiment can achieve the same effect as the effect described in the preceding embodiment.
  • the signal terminals 93H and 93L are arranged side by side. Thereby, for example, the signal terminals 93H and 93L can be connected to the circuit board 13 without bending.
  • spatially relative terms “inside”, “outside”, “behind”, “below”, “low”, “above”, “high”, etc. refer to an element or feature as illustrated. It is used here to facilitate the description describing its relationship to other elements or features. Spatially-relative terms can be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings. For example, when the device in the figures is turned over, elements described as “below” or “beneath” other elements or features are oriented “above” the other elements or features. Thus, the term “bottom” can encompass both an orientation of up and down. The device may be oriented in other directions (rotated 90 degrees or other orientations) and the spatially relative descriptors used herein interpreted accordingly. .
  • the vehicle drive system 1 is not limited to the configuration described above.
  • the example provided with one motor generator 3 was shown, it is not limited to this.
  • a plurality of motor generators may be provided.
  • the power conversion device 4 includes the inverter 6 as a power conversion circuit is shown, the present invention is not limited to this.
  • the configuration may include a plurality of inverters. At least one inverter and a converter may be provided. Only a converter may be provided.
  • IGBT Insulated Gate Bipolar Transistor
  • the semiconductor device 20 includes the conductive spacers 70
  • the surface metal body 62 may be provided with a convex portion.
  • the substrate 50 is shown as a wiring member connected to the drain electrode 40D, it is not limited to this.
  • a metal plate (lead frame) may be employed instead of the substrate 50.
  • FIG. Although an example of the substrate 60 is shown as a wiring member connected to the source electrode 40S, the wiring member is not limited to this.
  • a metal plate (lead frame) may be employed instead of the substrate 60.
  • FIG. In the case of metal plates, a first metal plate to which the drain electrode 40D of the semiconductor element 40H is connected and a second metal plate to which the drain electrode 40D of the semiconductor element 40L is connected are arranged on the drain electrode 40D side. A third metal plate to which the source electrode 40S of the semiconductor element 40H is connected and a fourth metal plate to which the source electrode 40S of the semiconductor element 40L is connected are arranged on the source electrode 40S side.
  • FIG. 30 Although an example of a double-sided heat dissipation structure has been shown as the semiconductor device 20, it is not limited to this. It can also be applied to a single-sided heat dissipation structure as shown in FIG.
  • two semiconductor elements 40 (41, 42) are arranged side by side in the X direction on the metal plate that is the wiring member 50X.
  • the two semiconductor elements 40 are connected in parallel with each other.
  • the pad 40P is arranged biased toward the corner C1.
  • the semiconductor element 42 is rotated by 90 degrees with respect to the arrangement of the semiconductor element 41 .
  • the side portion 40a of the semiconductor element 41 and the side portion 40b of the semiconductor element 42 face the signal terminals 93 arranged in parallel.
  • the main terminal 90D is connected to the wiring member 50X.
  • the main terminal 90S is connected to source electrodes (not shown) of the two semiconductor elements 40 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Wire Bonding (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

両面に主電極を有する半導体素子(41L、42L)が、X方向に並んで配置されている。半導体素子(41L、42L)は平面矩形状をなし、4つの角部(C1~C4)と4つの辺部(40a~40d)を有する。半導体素子(41L、42L)は互いに共通の構造を有し、パッド(40P)は角部(C1)の周辺に偏っている。半導体素子(41L)において、辺部(40a)がY方向において信号端子(93L)と対向し、辺部(40b)がX方向において半導体素子(42L)と対向している。半導体素子(42L)は、半導体素子(41L)の配置に対して90度回転して配置されている。半導体素子(42L)において、辺部(40b)がY方向において信号端子(93L)と対向し、辺部(40a)がX方向において半導体素子(41L)と対向している。

Description

半導体装置 関連出願の相互参照
 この出願は、2021年6月16日に日本に出願された特許出願第2021-100437号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、半導体装置に関する。
 特許文献1は、両面に主電極を有する複数の半導体素子(スイッチング素子)と、ボンディングワイヤを介して半導体素子と電気的に接続された複数の信号端子(制御端子)を備える半導体装置を開示している。先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。
特開2019-176058号公報
 特許文献1の半導体装置は、ボンディングワイヤが接続される2つの半導体素子を備えている。2つの半導体素子は、所定方向である第1方向に並んで配置されている。2つの半導体素子に接続される複数の信号端子も、第1方向に並んで配置されている。このような構成では、2つの半導体素子である第1素子および第2素子が互いに共通の構造を有し、半導体素子においてボンディングワイヤが接続されるパッドは第1方向に同じ順で並ぶ。
 信号端子は、半導体素子の駆動回路が形成された回路基板に接続される。回路基板において、第1素子に対応する信号端子の接続部位、第2素子に対応する信号端子の接続部位、および接続部位間の領域は、実装禁止領域、つまりデッドスペースとなる。上記した構成では、デッドスペースを低減するのが困難である。上記した観点において、または言及されていない他の観点において、半導体装置にはさらなる改良が求められている。
 開示されるひとつの目的は、回路基板のデッドスペースを低減できる半導体装置を提供することにある。
 ここに開示された半導体装置は、
 回路基板に接続される半導体装置であって、
 一面に設けられた第1主電極と、一面とは板厚方向において反対の裏面に設けられた第2主電極と、裏面において第2主電極とは異なる位置に設けられた信号用のパッドと、を有する複数の半導体素子と、
 第1主電極に電気的に接続された配線部材と、
 回路基板に接続される複数の信号端子と、
 複数の半導体素子のパッドと複数の信号端子とを電気的に接続するボンディングワイヤと、を備え、
 複数の半導体素子のそれぞれは、板厚方向の平面視において4つの角部と4つの辺部を有する矩形状をなしており、
 複数の半導体素子は、第1素子と、板厚方向に直交する第1方向において第1素子と並んで配置された第2素子と、を含み、
 複数の信号端子は、第1素子および第2素子の少なくとも一方に接続され、第1方向に並んで配置された複数の並設端子を含み、
 複数の並設端子は、板厚方向および第1方向に直交する第2方向において第1素子および第2素子と並んで配置され、
 第1素子および第2素子は互いに共通の構造を有し、第1素子および第2素子において、パッドは第1角部の周辺に偏って設けられ、
 第1素子において、第1角部に連なる第1辺部が第2方向において並設端子と対向し、第1角部に連なる第2辺部が第1方向において第2素子と対向し、
 第2素子は、第1素子の配置に対して90度回転して配置されており、
 第2素子において、第1角部に連なる第2辺部が第2方向において並設端子と対向し、第1角部に連なる第1辺部が第1方向において第1素子と対向している。
 開示された半導体装置によれば、第1方向に並んで配置される第1素子と第2素子とが互いに共通の構造を有している。共通構造において、パッドは、4つの角部のうちのひとつである第1角部の周辺に偏って設けられている。第1素子は、4つの辺部のうちのひとつである第1辺部が第2方向において並設端子と対向し、第2辺部が第1方向において第2素子と対向するように配置されている。第2素子は、第2辺部が第2方向において並設端子と対向し、第1辺部が第1方向において第1素子と対向するように、第1素子の配置に対して90度回転して配置されている。これにより、第1素子のパッドと第2素子のパッドを含むパッドの配置領域が、第1方向において短くなる。この結果、信号端子が接続される回路基板において、デッドスペースを低減することができる。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
第1実施形態に係る半導体装置が適用される電力変換装置の回路構成を示す図である。 第1実施形態に係る半導体装置を示す斜視図である。 図2のZ1方向から見た平面図である。 図3のIV-IV線に沿う断面図である。 図3のV-V線に沿う断面図である。 図3のVI-VI線に沿う断面図である。 図3のVII-VII線に沿う断面図である。 基板に半導体素子が実装された状態を示す平面図である。 ドレイン電極側の基板の回路パターンを示す平面図である。 ソース電極側の基板の回路パターンを示す平面図である。 並列接続された複数の半導体素子の配置を示す平面図である。 下アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 上アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 信号端子の屈曲状態を示す斜視図である。 信号端子と回路基板との接続構造を示す、図11のX1方向から見た側面図である。 参考例を示す平面図である。 回路基板のデッドスペースを示す図である。 参考例を示す平面図である。 参考例を示す平面図である。 第2実施形態に係る半導体装置において、下アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 上アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 第3実施形態に係る半導体装置において、下アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 上アーム側の半導体素子および信号端子の周辺の構造を示す平面図である。 半導体素子の変形例を示す平面図である。 第4実施形態に係る半導体装置を示す斜視図である。 図25のZ2方向から見た平面図である。 図26のXXVII-XXVII線に沿う断面図である。 ドレイン電極側に配置された基板の回路パターンおよび半導体素子と信号端子との接続構造を示す平面図である。 ソース電極側に配置された基板の回路パターンを示す平面図である。 その他変形例を示す平面図である。
 以下、図面に基づいて複数の実施形態を説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
 本実施形態の半導体装置は、たとえば、回転電機を駆動源とする移動体の電力変換装置に適用される。移動体は、たとえば、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)などの電動車両、ドローンなどの飛行体、船舶、建設機械、農業機械である。以下では、車両に適用される例について説明する。
 (第1実施形態)
 まず、図1に基づき、車両の駆動システム1の概略構成について説明する。
 <車両の駆動システム>
 図1に示すように、車両の駆動システム1は、直流電源2と、モータジェネレータ3と、電力変換装置4を備えている。
 直流電源2は、充放電可能な二次電池で構成された直流電圧源である。二次電池は、たとえばリチウムイオン電池、ニッケル水素電池である。モータジェネレータ3は、三相交流方式の回転電機である。モータジェネレータ3は、車両の走行駆動源、つまり電動機として機能する。モータジェネレータ3は、回生時に発電機として機能する。電力変換装置4は、直流電源2とモータジェネレータ3との間で電力変換を行う。
 <電力変換装置>
 次に、図1に基づき、電力変換装置4の回路構成について説明する。電力変換装置4は、電力変換回路を備えている。本実施形態の電力変換装置4は、平滑コンデンサ5と、電力変換回路であるインバータ6を備えている。
 平滑コンデンサ5は、主として、直流電源2から供給される直流電圧を平滑化する。平滑コンデンサ5は、高電位側の電源ラインであるPライン7と低電位側の電源ラインであるNライン8とに接続されている。Pライン7は直流電源2の正極に接続され、Nライン8は直流電源2の負極に接続されている。平滑コンデンサ5の正極は、直流電源2とインバータ6との間において、Pライン7に接続されている。平滑コンデンサ5の負極は、直流電源2とインバータ6との間において、Nライン8に接続されている。平滑コンデンサ5は、直流電源2に並列に接続されている。
 インバータ6は、DC-AC変換回路である。インバータ6は、図示しない制御回路によるスイッチング制御にしたがって、直流電圧を三相交流電圧に変換し、モータジェネレータ3へ出力する。これにより、モータジェネレータ3は、所定のトルクを発生するように駆動する。インバータ6は、車両の回生制動時、車輪からの回転力を受けてモータジェネレータ3が発電した三相交流電圧を、制御回路によるスイッチング制御にしたがって直流電圧に変換し、Pライン7へ出力する。このように、インバータ6は、直流電源2とモータジェネレータ3との間で双方向の電力変換を行う。
 インバータ6は、三相分の上下アーム回路9を備えて構成されている。上下アーム回路9は、レグと称されることがある。上下アーム回路9は、上アーム9Hと、下アーム9Lをそれぞれ有している。上アーム9Hおよび下アーム9Lは、上アーム9HをPライン7側として、Pライン7とNライン8との間で直列接続されている。上アーム9Hと下アーム9Lとの接続点は、出力ライン10を介して、モータジェネレータ3における対応する相の巻線3aに接続されている。インバータ6は、6つのアームを有している。各アームは、スイッチング素子を備えて構成されている。Pライン7、Nライン8、および出力ライン10それぞれの少なくとも一部は、たとえばバスバーなどの導電部材により構成される。
 本実施形態では、各アームを構成するスイッチング素子として、nチャネル型のMOSFET11を採用している。各アームを構成するスイッチング素子の数は特に限定されない。ひとつでもよいし、複数でもよい。MOSFETは、Metal Oxide Semiconductor Field Effect Transistorの略称である。
 一例として、本実施形態では、各アームが2つのMOSFET11を有している。ひとつのアームを構成する2つのMOSFET11は、並列接続されている。上アーム9Hにおいて、並列接続された2つのMOSFET11のドレインが、Pライン7に接続されている。下アーム9Lにおいて、並列接続された2つのMOSFET11のソースが、Nライン8に接続されている。上アーム9Hにおいて並列接続された2つのMOSFET11のソースと、下アーム9Lにおいて並列接続された2つのMOSFET11のドレインが、相互に接続されている。並列接続された2つのMOSFET11は、共通のゲート駆動信号(駆動電圧)により、同じタイミングでオン駆動、オフ駆動する。
 MOSFET11のそれぞれには、還流用のダイオード12が逆並列に接続されている。ダイオード12は、MOSFET11の寄生ダイオード(ボディダイオード)でもよいし、寄生ダイオードとは別に設けたものでもよい。ダイオード12のアノードは対応するMOSFET11のソースに接続され、カソードはドレインに接続されている。一相分の上下アーム回路9は、ひとつの半導体装置20により提供される。半導体装置20の詳細については後述する。
 本実施形態の電力変換装置4は、回路基板13をさらに備えている。回路基板13は、樹脂などの絶縁基材に配線が配置されてなる基板と、基板に実装された電子部品を有する。配線および電子部品は、回路を構成する。回路基板13は、インバータ6などを構成するスイッチング素子の駆動回路を少なくとも含む。駆動回路は、制御回路の駆動指令に基づいて、対応するアームのMOSFET11のゲートに駆動電圧を供給する。駆動回路は、駆動電圧の印加により、対応するMOSFET11を駆動、つまりオン駆動、オフ駆動させる。駆動回路は、ドライバと称されることがある。便宜上、図1では、回路基板13とMOSFET11のゲートとを電気的に接続する配線を省略している。
 回路基板13は、スイッチング素子の制御回路をさらに含んでもよい。制御回路は、駆動回路を含む回路基板13とは別に設けられてもよい。制御回路は、MOSFET11を動作させるための駆動指令を生成し、駆動回路に出力する。制御回路は、たとえば図示しない上位ECUから入力されるトルク要求、各種センサにて検出された信号に基づいて、駆動指令を生成する。ECUは、Electronic Control Unitの略称である。
 各種センサは、たとえば電流センサ、回転角センサ、電圧センサである。電流センサは、各相の巻線3aに流れる相電流を検出する。回転角センサは、モータジェネレータ3の回転子の回転角を検出する。電圧センサは、平滑コンデンサ5の両端電圧を検出する。制御回路は、駆動指令として、たとえばPWM信号を出力する。制御回路は、たとえばプロセッサおよびメモリを備えて構成されている。PWMは、Pulse Width Modulationの略称である。
 電力変換装置4は、電力変換回路として、コンバータをさらに備えてもよい。コンバータは、直流電圧を異なる値の直流電圧に変換するDC-DC変換回路である。コンバータは、直流電源2と平滑コンデンサ5との間に設けられる。コンバータは、たとえばリアクトルと、上記した上下アーム回路9を備えて構成される。この構成によれば、昇降圧が可能である。電力変換装置4は、直流電源2からの電源ノイズを除去するフィルタコンデンサを備えてもよい。フィルタコンデンサは、直流電源2とコンバータとの間に設けられる。
 <半導体装置>
 次に、図2~図10に基づき、半導体装置について説明する。図2は、半導体装置20の斜視図である。図3は、図2をZ1方向から見た平面図である。図3は、内部構造を示す透過図である。図4は、図3のIV-IV線に沿う断面図である。図5は、図3のV-V線に沿う断面図である。図6は、図3のVI-VI線に沿う断面図である。図7は、図3のVII-VII線に沿う断面図である。図8は、基板50に半導体素子40が実装された状態を示す平面図である。図8は、図3から封止体30および基板60を除外した図である。図9は、基板50において表面金属体52の回路パターンを示す平面図である。図10は、基板60において表面金属体62の回路パターンを示す平面図である。
 以下において、半導体素子40(半導体基板)の板厚方向をZ方向とする。Z方向に直交し、互いに並んで配置される複数の半導体素子40の並び方向をX方向とする。本実施形態では、並列接続される複数の半導体素子40の並び方向をX方向とする。Z方向およびX方向の両方向に直交する方向をY方向とする。特に断わりのない限り、Z方向から平面視した形状、換言すればX方向およびY方向により規定されるXY面に沿う形状を平面形状とする。Z方向からの平面視を、単に平面視と示すことがある。また、配置とは搭載面に限定されず、平面視において重なる位置関係にある場合に、配置と示すことがある。X方向が第1方向に相当し、Y方向が第2方向に相当する。
 図2~図10に示すように、半導体装置20は、上記した上下アーム回路9のひとつ、つまり一相分の上下アーム回路9を構成する。半導体装置20は、封止体30と、半導体素子40と、基板50、60と、導電スペーサ70と、アーム接続部80と、外部接続端子90を備えている。半導体装置20は、半導体モジュール、パワーカードと称されることがある。
 封止体30は、半導体装置20を構成する他の要素の一部を封止している。他の要素の残りの部分は、封止体30の外に露出している。封止体30は、たとえば樹脂を材料とする。樹脂の一例は、エポキシ系樹脂である。封止体30は、樹脂を材料として、たとえばトランスファモールド法により成形されている。このような封止体30は、封止樹脂体、モールド樹脂、樹脂成形体と称されることがある。封止体30は、たとえばゲルを用いて形成されてもよい。ゲルは、たとえば一対の基板50、60の対向領域に充填(配置)される。
 図2~図4に示すように、封止体30は平面略矩形状をなしている。封止体30は、外郭をなす表面として、一面30aと、Z方向において一面30aとは反対の面である裏面30bを有している。一面30aおよび裏面30bは、たとえば平坦面である。また、一面30aと裏面30bとをつなぐ面である側面30c、30d、30e、30fを有している。側面30cは、外部接続端子90のうち、電源端子91と信号端子93Hが突出する面である。側面30dは、Y方向において側面30cとは反対の面である。側面30dは、出力端子92および信号端子93Lが突出する面である。側面30e、30fは、外部接続端子90が突出していない面である。側面30eは、X方向において側面30fとは反対の面である。
 半導体素子40は、シリコン(Si)、シリコンよりもバンドギャップが広いワイドバンドギャップ半導体などを材料とする半導体基板に、スイッチング素子が形成されてなる。ワイドバンドギャップ半導体としては、たとえばシリコンカーバイド(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンドがある。半導体素子40は、パワー素子、半導体チップと称されることがある。
 本実施形態の半導体素子40は、SiCを材料とする半導体基板に、上記したnチャネル型のMOSFET11が形成されてなる。MOSFET11は、半導体素子40(半導体基板)の板厚方向、つまりZ方向に主電流が流れるように縦型構造をなしている。半導体素子40は、自身の板厚方向であるZ方向の両面に、スイッチング素子の主電極を有している。具体的には、主電極として、一面にドレイン電極40Dを有し、一面とはZ方向において反対の面である裏面にソース電極40Sを有している。主電流は、ドレイン電極40Dとソース電極40Sとの間に流れる。
 ダイオード12が寄生ダイオードの場合、ソース電極40Sがアノード電極を兼ね、ドレイン電極40Dがカソード電極を兼ねる。ダイオード12は、MOSFET11とは別チップに構成されてもよい。ドレイン電極40Dは高電位側の主電極であり、ソース電極40Sは低電位側の主電極である。
 半導体素子40は、平面略矩形状、たとえば正方形をなしている。図3および図8に示すように、半導体素子40は、裏面に、信号用の電極であるパッド40Pを有している。パッド40Pは、ソース電極40Sと電気的に分離されている。パッド40Pは、裏面においてソース電極40Sとは異なる位置に形成されている。パッド40Pは、少なくともゲート電極用のパッドを含む。本実施形態の半導体素子40は、4つのパッド40Pを有している。
 ソース電極40Sおよびパッド40Pは、半導体基板の裏面上に形成された図示しない保護膜から露出している。ドレイン電極40Dは、一面のほぼ全面に形成されている。ソース電極40Sは、半導体素子40の裏面の一部分に形成されている。平面視において、ドレイン電極40Dは、ソース電極40Sよりも面積が大きい。ドレイン電極40Dが第1主電極に相当し、ソース電極40Sが第2主電極に相当する。
 半導体装置20は、上記構成の半導体素子40を複数備えている。複数の半導体素子40は、上アーム9Hを構成する半導体素子40Hと、下アーム9Lを構成する半導体素子40Lを含んでいる。半導体素子40Hは上アーム素子、半導体素子40Lは下アーム素子と称されることがある。本実施形態の半導体素子40は、2つの半導体素子40Hと、2つの半導体素子40Lを含んでいる。
 半導体素子40Hは、第1素子である半導体素子41Hと、第2素子である半導体素子42Hを含んでいる。2つの半導体素子40H(41H、42H)は、X方向に並んでいる。X方向に並んで配置された2つの半導体素子40Hは、互いに共通の構造を有している。2つの半導体素子40Hは、互いに並列接続されている。
 半導体素子40Lは、第1素子である半導体素子41Lと、第2素子である半導体素子42Lを含んでいる。2つの半導体素子40L(41L、42L)は、X方向に並んでいる。X方向に並んで配置された2つの半導体素子40Lは、互いに共通の構造を有している。2つの半導体素子40Lは、互いに並列接続されている。
 本実施形態では、すべての半導体素子40が、互いに共通の構造を有している。半導体素子41H、42Hの配置と、半導体素子41L、42Lの配置とは、Z方向に沿う軸周りに2回対称性を有している。半導体素子40Hと半導体素子40Lは、Y方向に並んでいる。半導体装置20は、半導体素子40Hと半導体素子40LとによるY方向に沿う列を、2列有している。X方向は、半導体素子40の板厚方向(Z方向)に直交する第1方向である。Y方向は、板厚方向および第1方向に直交する第2方向である。
 各半導体素子40は、Z方向において互いにほぼ同じ位置に配置されている。各半導体素子40のドレイン電極40Dは、基板50に対向している。各半導体素子40のソース電極40Sは、基板60に対向している。パッド40Pを含む半導体素子40およびその配置の詳細については後述する。
 基板50、60は、Z方向において、複数の半導体素子40を挟むように配置されている。基板50、60は、Z方向において互いに少なくとも一部が対向するように配置されている。基板50、60は、平面視において複数の半導体素子40(40H、40L)のすべてを内包している。
 基板50は、半導体素子40に対して、ドレイン電極40D側に配置されている。基板60は、半導体素子40に対して、ソース電極40S側に配置されている。基板50は、後述するようにドレイン電極40Dと電気的に接続され、配線機能を提供する。同様に、基板60は、ソース電極40Sに電気的に接続され、配線機能を提供する。このため、基板50、60は、配線部材、配線基板と称されることがある。基板50はドレイン基板と称され、基板60はソース基板と称されることがある。基板50、60は、半導体素子40の生じた熱を放熱する放熱機能を提供する。このため、基板50、60は、放熱部材と称されることがある。基板50は、第1主電極に電気的に接続された配線部材に相当する。
 基板50は、半導体素子40に対向する対向面50aと、対向面50aとは反対の面である裏面50bを有している。基板50は、絶縁基材51と、表面金属体52と、裏面金属体53を備えている。基板50は、絶縁基材51と金属体52、53とが積層された基板である。基板60は、半導体素子40に対向する対向面60aと、対向面60aとは反対の面である裏面60bを有している。基板60は、絶縁基材61と、表面金属体62と、裏面金属体63を備えている。基板60は、絶縁基材61と金属体62、63とが積層された基板である。以下において、表面金属体52、62、裏面金属体53、63を、単に金属体52、53、62、63と示すことがある。
 絶縁基材51は、表面金属体52と裏面金属体53とを電気的に分離する。同様に、絶縁基材61は、表面金属体62と裏面金属体63とを電気的に分離する。絶縁基材51、61は、絶縁層と称されることがある。絶縁基材51、61の材料は、樹脂、または、無機材料のセラミックである。樹脂としては、たとえばエポキシ系樹脂、ポリイミド系樹脂などを用いることができる。セラミックとしては、たとえばAl2O3(alumina)、Si3N4(silicon nitride)などを用いることができる。絶縁基材51、61が樹脂の場合、基板50、60は、金属樹脂基板と称されることがある。絶縁基材51、61がセラミックの場合、基板50、60は、金属セラミック基板と称されることがある。
 樹脂材料を用いた絶縁基材51、61の場合、放熱性、絶縁性などを向上させるために、樹脂内に無機系のフィラー(無機系充填材)を含んでもよい。フィラーの添加により、線膨張係数を調整してもよい。フィラーとしては、たとえばAl2O3、SiO2(silicon dioxide)、AlN(aluminum nitride)、BN(boron nitride)などを用いることができる。絶縁基材51、61は、フィラーを1種類のみ含んでもよいし、複数種類含んでもよい。
 放熱性や絶縁性を考慮すると、樹脂系の場合、絶縁基材51、61それぞれの厚み、つまりZ方向の長さは、50μm~300μm程度が好ましい。セラミック系の場合、絶縁基材51、61の厚みは、200μm~500μm程度が好ましい。Z方向において、絶縁基材51、61の表面は内面、つまり半導体素子40側の面であり、Z方向において表面と反対の面である裏面は外面である。絶縁基材51、61は、材料構成を共通(同一)としてもよいし、互いに異ならせてもよい。本実施形態では、樹脂系の絶縁基材51、61を採用しており、材料構成は共通である。絶縁基材51、61の線膨張係数は、樹脂にフィラーを添加することで、封止体30とほぼ同じ値に調整されている。樹脂にフィラーを添加することで、絶縁基材51、61および封止体30の線膨張係数は、金属体52、53、62、63を構成する金属(Cu)に近い値となっている。
 金属体52、53、62、63は、たとえば、金属板または金属箔として提供される。金属体52、53、62、63は、CuやAlなどの導電性、熱伝導性が良好な金属を材料として形成されている。金属体52、53、62、63それぞれの厚みは、たとえば0.1mm~3mm程度である。表面金属体52は、Z方向において、絶縁基材51の表面に配置されている。裏面金属体53は、絶縁基材51の裏面に配置されている。同様に、表面金属体62は、Z方向において、絶縁基材61の表面に配置されている。裏面金属体63は、絶縁基材61の裏面に配置されている。
 表面金属体52、62と裏面金属体53、63との厚みの関係は特に限定されない。表面金属体52の厚みを、裏面金属体53より厚くしてもよいし、裏面金属体53とほぼ等しくしてもよい。表面金属体52の厚みを、裏面金属体53より薄くしてもよい。同様に、表面金属体62の厚みを、裏面金属体63より厚くしてもよいし、裏面金属体63とほぼ等しくしてもよい。表面金属体62の厚みを、裏面金属体63より薄くしてもよい。表面金属体52、62の厚みの関係も特に限定されないし、裏面金属体53、63の厚みの関係も特に限定されない。
 表面金属体52、62は、パターニングされている。表面金属体52、62は、配線、つまり回路を提供する。このため、表面金属体52、62は、回路パターン、配線層、回路導体と称されることがある。表面金属体52、62は、金属表面に、Ni系やAuなどのめっき膜を備えてもよい。以下では、表面金属体52、62のパターンを、回路パターンと示すことがある。表面金属体52の表面と、絶縁基材51の表面における表面金属体52の非配置領域とが、基板50の対向面50aをなしている。同様に、表面金属体62の表面と、絶縁基材61の表面における表面金属体62の非配置領域とが、基板60の対向面60aをなしている。
 たとえば、プレス加工やエッチングなどにより所定形状にパターニングした表面金属体52、62を準備し、絶縁基材51、61と裏面金属体53、63との二層構造の積層体に密着させて、基板50、60を形成してもよい。表面金属体52、62、絶縁基材51、61、裏面金属体53、63の三層構造の積層体を形成した後、切削やエッチングにより、表面金属体52、62をパターニングしてもよい。
 表面金属体52は、図8、図9などに示すように、P配線54と、中継配線55を有している。P配線54と中継配線55は、所定の間隔(ギャップ)により、電気的に分離されている。このギャップには、封止体30が充填されている。
 P配線54は、後述するP端子91Pおよび半導体素子40Hのドレイン電極40Dに接続されている。P配線54は、P端子91Pと半導体素子40Hのドレイン電極40Dとを電気的に接続している。P配線54は、半導体素子41Hのドレイン電極40Dと半導体素子42Hのドレイン電極40Dとを電気的に接続している。P配線54は、正極配線、高電位電源配線と称されることがある。
 中継配線55は、半導体素子40Lのドレイン電極40D、アーム接続部80、および出力端子92に接続されている。中継配線55は、アーム接続部80と半導体素子40Lのドレイン電極40Dとを電気的に接続している。中継配線55は、半導体素子40Hのソース電極40Sおよび半導体素子40Lのドレイン電極と出力端子92とを電気的に接続している。中継配線55は、半導体素子41Lのドレイン電極40Dと半導体素子42Lのドレイン電極40Dとを電気的に接続している。
 P配線54と中継配線55は、Y方向に並んで配置されている。Y方向において、P配線54は電源端子91側に配置され、中継配線55は出力端子92側に配置されている。換言すると、P配線54は封止体30の側面30c側に配置され、中継配線55は側面30d側に配置されている。
 P配線54は、切り欠き540を有している。切り欠き540は、X方向を長手方向とする平面略矩形状の4辺のひとつに開口している。切り欠き540は、側面30cと対向する辺において、X方向における略中央に設けられている。P配線54は、基部541と、一対の延設部542を有している。基部541および一対の延設部542が、切り欠き540を規定している。P配線54は、平面略U字状(凹字状)をなしている。
 基部541は、Y方向において、切り欠き540および延設部542よりも中継配線55側の部分であり、平面略矩形状をなしている。基部541は、平面視において半導体素子40Hに重なっている。つまり、2つの半導体素子40H(41H,42H)は、基部541に配置されている。半導体素子40Hそれぞれのドレイン電極40Dは、基部541に接続されている。
 2つの延設部542は、基部541から、互いに同じ方向、具体的にはY方向であって封止体30の側面30c側に延びている。延設部542のひとつは基部541におけるX方向の一端付近に連なっており、他のひとつは、基部541の他端付近に連なっている。P配線54のU字の両端部、つまり、2つの延設部542における基部541とは反対側の端部は、Y方向において互いにほぼ同じ位置である。一対の延設部542は、X方向において切り欠き540を挟んでいる。Y方向の長さは、基部541のほうが、切り欠き540の深さおよび延設部542よりも長い。
 中継配線55も、切り欠き550を有している。切り欠き550は、平面略矩形状の4辺のひとつに開口している。切り欠き550は、側面30dと対向する辺において、X方向における略中央に設けられている。つまり、表面金属体52において、Y方向の端部のひとつに切り欠き540が設けられ、端部の他のひとつに切り欠き550が設けられている。
 中継配線55は、基部551と、一対の延設部552を有している。基部551および一対の延設部552が、切り欠き550を規定している。中継配線55は、平面略U字状(凹字状)をなしている。基部551は、Y方向において、切り欠き550および延設部552よりもP配線54側の部分であり、平面略矩形状をなしている。基部551は、平面視において半導体素子40Lに重なっている。つまり、2つの半導体素子40L(41L、42L)は、基部551に配置されている。半導体素子40Lそれぞれのドレイン電極40Dは、基部551に接続されている。
 2つの延設部552は、基部551から、互いに同じ方向、具体的にはY方向であって封止体30の側面30d側に延びている。延設部552のひとつは基部551におけるX方向の一端付近に連なっており、他のひとつは、基部551の他端付近に連なっている。中継配線55のU字の両端部、つまり、2つの延設部552における基部551とは反対側の端部は、Y方向において互いにほぼ同じ位置である。一対の延設部552は、X方向において切り欠き550を挟んでいる。Y方向の長さは、基部551のほうが、切り欠き550の深さおよび延設部552よりも長い。
 一方、表面金属体62は、図3および図10などに示すように、N配線64と、中継配線65を有している。N配線64と中継配線65は、所定の間隔(ギャップ)により、電気的に分離されている。このギャップには、封止体30が充填されている。
 N配線64は、後述するN端子91Nおよび半導体素子40Lのソース電極40Sに接続されている。N配線64は、N端子91Nと半導体素子40Lのソース電極40Sとを電気的に接続している。N配線64は、半導体素子41Lのソース電極40Sと半導体素子42Lのソース電極40Sとを電気的に接続している。N配線64は、負極配線、低電位電源配線と称されることがある。
 中継配線65は、半導体素子40Hのソース電極40Sおよびアーム接続部80に接続されている。中継配線65は、半導体素子40Hのソース電極40Sとアーム接続部80とを電気的に接続している。中継配線65は、半導体素子41Hのソース電極40Sと半導体素子42Hのソース電極40Sとを電気的に接続している。
 N配線64も、切り欠き640を有している。切り欠き640は、平面略矩形状の4辺のひとつに開口している。切り欠き640は、側面30cと対向する辺において、X方向における略中央に設けられている。N配線64は、基部641と、一対の延設部642を有している。基部641および一対の延設部642が、切り欠き640を規定している。N配線64は、平面略U字状(凹字状)をなしている。
 基部641は、Y方向において、切り欠き640および延設部642よりも側面30d側の部分である。基部641は、X方向を長手方向とする平面略矩形状をなしている。基部641は、Y方向において中継配線65と並んで配置されている。基部641は、平面視において半導体素子40Lに重なっている。つまり、2つの半導体素子40L(41L、42L)は、基部641に配置されている。半導体素子40Lそれぞれのソース電極40Sは、基部641に接続されている。
 2つの延設部642は、基部641から、互いに同じ方向、具体的にはY方向であって封止体30の側面30c側に延びている。延設部642のひとつは基部641におけるX方向の一端付近に連なっており、他のひとつは、基部641の他端付近に連なっている。N配線64のU字の両端部、つまり、2つの延設部642における基部641とは反対側の端部は、Y方向において互いにほぼ同じ位置である。
 一対の延設部642は、X方向において表面金属体62の両端をなしている。一対の延設部642は、基板60の端部付近に配置されている。平面視において、一対の延設部642のそれぞれの一部が、P配線54に重なっている。Y方向において、延設部642の長さは、基部641よりも長い。
 中継配線65は、上記したように、N配線64、具体的には基部641とY方向に並んで配置されている。Y方向において、中継配線65は、封止体30の側面30cに対して近い位置に配置され、基部641は側面30dに対して近い位置に配置されている。中継配線65は、X方向において一対の延設部642の間に配置されている。中継配線65は、一対の延設部642により挟まれている。中継配線65は、切り欠き640内に配置されている。中継配線65は、N配線64との間に所定の間隔(ギャップ)を有して配置されている。平面視において、中継配線65の一部はP配線54に重なり、他の一部は中継配線55に重なっている。
 中継配線65は、平面視において半導体素子40Hに重なっている。つまり、2つの半導体素子40H(41H、42H)は、中継配線65に配置されている。半導体素子40Hそれぞれのソース電極40Sは、中継配線65に接続されている。
 裏面金属体53、63は、絶縁基材51、61により、半導体素子40および表面金属体52、62を含む回路とは電気的に分離されている。裏面金属体53、63は、金属ベース基板と称されることがある。半導体素子40の生じた熱は、表面金属体52、62および絶縁基材51、61を介して、裏面金属体53、63に伝わる。裏面金属体53、63は、放熱機能を提供する。
 本実施形態の裏面金属体53、63は、平面略矩形状をなしており、その外形輪郭が表面金属体52、62の外形輪郭にほぼ一致している。裏面金属体53、63は、絶縁基材51、61の裏面のほぼ全域に配置された、いわゆるベタ導体である。上記したように、フィラーの添加により絶縁基材51、61の線膨張係数を調整しているため、表裏でパターンを変えても反りを抑制することができる。もちろん、裏面金属体53、63を、平面視において表面金属体52、62と一致するように、パターニングしてもよい。
 本実施形態の裏面金属体53、63は、対応する絶縁基材51、61の裏面のほぼ全域に配置されている。放熱効果をさらに高めるために、裏面金属体53、63の少なくともひとつは、封止体30から露出してもよい。本実施形態では、裏面金属体53が封止体30の一面30aから露出し、裏面金属体63が裏面30bから露出している。裏面金属体53の露出面は、一面30aと略面一である。裏面金属体63の露出面は、裏面30bと略面一である。裏面金属体53、63が、基板50、60の裏面50b、60bをなしている。
 導電スペーサ70は、半導体素子40と基板60との間に、所定の間隔を確保するスペーサ機能を提供する。たとえば導電スペーサ70は、半導体素子40のパッド40Pに、対応する信号端子93を電気的に接続するための高さを確保する。導電スペーサ70は、半導体素子40のソース電極40Sと基板60との電気伝導、熱伝導経路の途中に位置し、配線機能および放熱機能を提供する。導電スペーサ70は、Cuなどの導電性、熱伝導性が良好な金属材料を含んでいる。導電スペーサ70は、表面にめっき膜を備えてもよい。
 導電スペーサ70は、ターミナル、ターミナルブロック、金属ブロック体と称されることがある。半導体装置20は、半導体素子40と同数の導電スペーサ70を備えている。具体的には、4つの導電スペーサ70を備えている。導電スペーサ70は、半導体素子40に個別に接続されている。導電スペーサ70は、平面視においてソース電極40Sとほぼ同じ大きさを有する柱状体である。
 アーム接続部80は、中継配線55、65を電気的に接続する。つまり、アーム接続部80は、上アーム9Hと下アーム9Lとを電気的に接続する。アーム接続部80は、Y方向において、半導体素子40Hと半導体素子40Lの間に設けられている。アーム接続部80は、平面視において中継配線55と中継配線65との重なり領域に設けられている。本実施形態のアーム接続部80は、継手部81と、後述する接合材103を備えて構成される。
 継手部81は、表面金属体52、62とは別に設けられた金属柱状体である。このような継手部81は、継手ターミナルと称されることがある。Z方向において、継手部81の端部のひとつと中継配線55との間に接合材103が介在し、端部の他のひとつと中継配線65との間に接合材103が介在している。
 これに代えて、継手部81は、表面金属体52、62の少なくともひとつに一体的に連なるものでもよい。つまり、継手部81は、基板50、60の一部として表面金属体52、62と一体的に設けたものでもよい。たとえば継手部81は、表面金属体62(中継配線65)の凸部である。アーム接続部80は、継手部81を備えない構成としてもよい。つまり、アーム接続部80が、接合材103のみを備える構成としてもよい。
 外部接続端子90は、半導体装置20を外部機器と電気的に接続するための端子である。外部接続端子90は、銅などの導電性が良好な金属材料を用いて形成されている。外部接続端子90は、たとえば板材である。外部接続端子90は、リードと称されることがある。外部接続端子90は、電源端子91と、出力端子92と、信号端子93を備えている。電源端子91は、P端子91Pと、N端子91Nを備えている。P端子91P、N端子91N、および出力端子92は、半導体素子40の主電極に電気的に接続される主端子である。信号端子93は、上アーム9H側の信号端子93Hと、下アーム9L側の信号端子93Lを備えている。
 電源端子91は、上記した電源ライン7、8に電気的に接続される外部接続端子90である。P端子91Pは、平滑コンデンサ5の正極端子に電気的に接続される。P端子91Pは、正極端子、高電位電源端子と称されることがある。P端子91Pは、表面金属体52のP配線54に接続されている。つまり、P端子91Pは、上アーム9Hを構成する半導体素子40Hのドレイン電極40Dに接続されている。
 P端子91Pは、P配線54におけるY方向の一端付近に接続されている。P端子91Pは、P配線54との接続部(接合部)からY方向に延び、側面30cにおいてZ方向の中央付近から封止体30の外に突出している。本実施形態の半導体装置20は、2本のP端子91Pを備えている。図8に示すように、P端子91Pのひとつは一対の延設部542のひとつに接続され、他のひとつは一対の延設部542の他のひとつに接続されている。P端子91Pは、平面視においてN端子91Nと隣り合うように、延設部542のそれぞれにおいて切り欠き540に近い位置、つまり内寄りに配置されている。2つのP端子91Pは、X方向に並んで配置されている。2つのP端子91Pは、Z方向においてほぼ同じ位置に配置されている。
 N端子91Nは、平滑コンデンサ5の負極端子に電気的に接続される。N端子91Nは負極端子、低電位電源端子と称されることがある。N端子91Nは、表面金属体62のN配線64に接続されている。つまり、N端子91Nは、下アーム9Lを構成する半導体素子40Lのソース電極40Sに接続されている。
 N端子91Nは、N配線64におけるY方向の一端付近に接続されている。N端子91Nは、N配線64との接合部からY方向に延び、側面30cにおいてZ方向の中央付近から封止体30の外に突出している。半導体装置20は、2本のN端子91Nを備えている。N端子91Nのひとつは一対の延設部642のひとつに接続され、他のひとつは一対の延設部642の他のひとつに接続されている。2つのN端子91Nは、X方向に並んで配置されている。2つのN端子91Nは、Z方向においてほぼ同じ位置に配置されている。
 2つのN端子91Nは、X方向において2つのP端子91Pの外側に配置されている。平面視において、N端子91NのひとつはP端子91Pのひとつの近傍に配置され、N端子91Nの他のひとつはP端子91Pの他のひとつの近傍に配置されている。X方向において隣り合うN端子91NとP端子91Pは、封止体30から突出した部分を含む一部分において、互いに側面が対向している。
 出力端子92は、モータジェネレータ3の対応する相の巻線3a(固定子コイル)に電気的に接続される。出力端子92は、O端子、交流端子などと称されることがある。図3および図8に示すように、出力端子92は、基板50における表面金属体52の中継配線55に接続されている。つまり、出力端子92は、上アーム9Hと下アーム9Lとの接続点に接続されている。
 出力端子92は、中継配線55におけるY方向の一端付近に接続されている。出力端子92は、中継配線55との接合部からY方向に延び、側面30dにおいてZ方向の中央付近から封止体30の外に突出している。半導体装置20は、2本の出力端子92を備えている。出力端子92のひとつは一対の延設部552のひとつに接続され、他のひとつは一対の延設部552の他のひとつに接続されている。2つの出力端子92は、X方向に並んで配置されている。2つの出力端子92は、Z方向においてほぼ同じ位置に配置されている。
 信号端子93は、駆動回路を含む回路基板13に電気的に接続される。信号端子93Hは、ボンディングワイヤ110などの接続部材を介して、半導体素子40Hのパッド40Pに電気的に接続されている。信号端子93Hは、半導体素子40Hのゲート電極に駆動電圧を印加するための端子を含む。本実施形態の半導体装置20は、2本の信号端子93Hを備えている。信号端子93Hは、平面視においてP配線54の切り欠き540に重なる位置に配置されている。信号端子93Hにおいて、ボンディングワイヤ110との接合部は、表面金属体52ではなく、絶縁基材51と対向している。2本の信号端子93Hは、X方向に横並びで配置されている。
 信号端子93Hは、ボンディングワイヤ110との接合部からY方向に延び、側面30cにおいてZ方向の中央付近から封止体30の外に突出している。信号端子93Hの突出部の少なくとも一部は、電源端子91と同方向に延びている。信号端子93Hは、X方向において、2つのP端子91Pの間に配置されている。つまり、側面30cから突出する外部接続端子90は、X方向において、N端子91N、P端子91P、2本の信号端子93H、P端子91P、N端子91Nの順に配置されている。2本の信号端子93Hは、電源端子91の間のスペースに配置されている。
 信号端子93Lは、ボンディングワイヤ110などの接続部材を介して、半導体素子40Lのパッド40Pに電気的に接続されている。信号端子93Lは、半導体素子40Lのゲート電極に駆動電圧を印加するための端子を含む。本実施形態の半導体装置20は、4本の信号端子93Lを備えている。信号端子93Lは、平面視において中継配線55の切り欠き550に重なる位置に配置されている。信号端子93Lにおいて、ボンディングワイヤ110との接合部は、表面金属体52ではなく、絶縁基材51と対向している。4本の信号端子93Lは、X方向に横並びで配置されている。
 信号端子93Lは、ボンディングワイヤ110との接合部からY方向に延び、側面30dにおいてZ方向の中央付近から封止体30の外に突出している。信号端子93Lの突出部の少なくとも一部は、出力端子92と同方向に延びている。信号端子93Lは、X方向において、2つの出力端子92の間に配置されている。つまり、側面30dから突出する外部接続端子90は、X方向において、出力端子92、4本の信号端子93L、出力端子92の順に配置されている。4本の信号端子93Lは、出力端子92の間のスペースに配置されている。信号端子93(93H、93L)、および、信号端子93とパッド40Pとの接続構造の詳細ついては、後述する。
 半導体素子40のドレイン電極40Dは、接合材100を介して表面金属体52に接合されている。半導体素子40のソース電極40Sは、接合材101を介して導電スペーサ70に接合されている。導電スペーサ70は、接合材102を介して表面金属体62に接合されている。継手部81は、接合材103を介して表面金属体52、62に接合されている。外部接続端子90のうち、主端子であるP端子91P、N端子91N、および出力端子92は、接合材104を介して表面金属体52、62に接合されている。
 接合材100~104は、導電性を有する接合材である。たとえば、接合材100~104として、はんだを採用することができる。はんだの一例は、Snの他に、Cu、Niなどを含む多元系の鉛フリーはんだである。はんだに代えて、焼結銀などのシンター系の接合材を用いてもよい。
 P端子91P、N端子91N、および出力端子92は、接合材104を介さずに、対応する表面金属体52、62に直接的に接合されてもよい。P端子91P、N端子91N、および出力端子92は、たとえば超音波接合、摩擦撹拌接合、レーザ溶接などにより、表面金属体52、62に直接接合されてもよい。継手部81が基板50、60とは別に設けられる場合、継手部81は、表面金属体52、62に直接接合されてもよい。
 上記したように、半導体装置20では、封止体30によって一相分の上下アーム回路9を構成する複数の半導体素子40が封止されている。封止体30は、複数の半導体素子40、基板50の一部、基板60の一部、複数の導電スペーサ70、アーム接続部80、および外部接続端子90それぞれの一部を、一体的に封止(被覆)している。封止体30は、基板50、60において、絶縁基材51、61および表面金属体52、62を封止している。
 半導体素子40は、Z方向において、基板50、60の間に配置されている。半導体素子40は、対向配置された基板50、60によって挟まれている。これにより、半導体素子40の熱を、Z方向において両側に放熱することができる。半導体装置20は、両面放熱構造をなしている。基板50の裏面50bは、封止体30の一面30aと略面一となっている。基板60の裏面60bは、封止体30の裏面30bと略面一となっている。裏面50b、60bが露出面であるため、放熱性を高めることができる。
 X方向に並んで配置された2つの半導体素子40H(41H、42H)は、表面金属体52、62、導電スペーサ70、および接合材100~102により、互いに並列接続されている。X方向に並んで配置された2つの半導体素子40L(41L、42L)は、表面金属体52、62、導電スペーサ70、および接合材100~102により、互いに並列接続されている。
 <半導体素子およびその配置>
 次に、図11~図13に基づき、半導体素子40およびその配置について説明する。図11は、X方向に並んで配置された複数の半導体素子40の配置を示す平面図である。図11では、一例として、下アーム9L側の半導体素子40Lの配置を示している。図12は、下アーム9L側の信号端子93Lおよび半導体素子40L(41L、42L)の配置とワイヤ接続構造を示している。図13は、上アーム9H側の信号端子93Hおよび半導体素子40H(41H、42H)の配置とワイヤ接続構造を示している。
 以下において、X方向を左右方向と示すことがある。具体的には、半導体素子41Lから見た半導体素子42Lの方向を右方向、半導体素子42Lから見た半導体素子41Lの方向を左方向と示すことがある。また、Y方向を上下方向と示すことがある。具体的には、半導体素子40Hから見た半導体素子40Lの方向を下方向、半導体素子40Lから見た半導体素子40Hの方向を上方向と示すことがある。
 図11に示すように、平面略矩形状をなす半導体素子40は、4つの角部C1、C2、C3、C4と、4つの辺部40a、40b、40c、40dをそれぞれ有している。角部C1~C4および辺部40a~40dは、平面視において半導体素子40の外形輪郭を規定している。角部C1、C3は互いに対角の位置にあり、角部C2、C4は互いに対角の位置にある。辺部40aは、角部C1、C4をつなぐ辺である。辺部40bは、角部C1、C2をつなぐ辺である。辺部40cは、角部C2、C3をつなぐ辺である。辺部40cは、辺部40aとは反対の辺である。辺部40dは、角部C3、C4をつなぐ辺である。辺部40dは、辺部40bとは反対の辺である。
 ソース電極40Sは、切り欠き43を有している。ソース電極40Sは、パッド40Pを角部C1の周辺(近傍)に偏って設けるために、切り欠かれている。本実施形態の切り欠き43は、平面略長方形状をなしている。切り欠き43は、角部C1に対応して設けられている。たとえば半導体素子41Lにおいて、切り欠き43は、X方向を長手方向、Y方向を短手方向とする。半導体素子42Lにおいて、切り欠き43は、X方向を短手方向、Y方向を長手方向とする。ソース電極40Sは、平面略矩形状から切り欠き43を除いた形状、つまり略L字状をなしている。導電スペーサ70も、平面視においてソース電極40Sと同様の形状をなしている。
 半導体素子40は、4つのパッド40Pを有している。パッド40Pは、ゲートパッドGP、ケルビンソースパッドKSP、アノードパッドAP、およびカソードパッドKPを含んでいる。ゲートパッドGPは、MOSFET11のゲート電極に駆動電圧を印加するためのパッド40Pである。つまりゲートパッドGPは、主電極であるドレイン電極40Dとソース電極40Sとの間に流れる主電流を制御するゲート電極用のパッド40Pである。ケルビンソースパッドKSPは、MOSFET11のソース電位、つまりソース電極40Sの電位を検出するためのパッド40Pである。アノードパッドAPは、半導体素子40が備える図示しない感温ダイオードのアノード電位を検出するためのパッド40Pである。カソードパッドKPは、感温ダイオードのカソード電位を検出するためのパッド40Pである。ケルビンソースパッドKSPが、第2主電極の電位を検出するためのケルビンパッドに相当する。
 パッド40Pは、平面視において切り欠き43の形成された領域を含むパッド形成領域内に設けられている。パッド形成領域は、たとえば切り欠き43の形成領域と略一致している。パッド形成領域は、角部C1に偏って設けられている。つまり、パッド40Pは、角部C1の周辺(近傍)に偏って設けられている。パッド形成領域は、平面略矩形状をなしている。複数のパッド40Pは、辺部40aに沿って、角部C1側から、ゲートパッドGP、ケルビンソースパッドKSP、アノードパッドAP、カソードパッドKPの順に並んでいる。角部C1が、第1角部に相当する。
 図11および図12に示すように、X方向に並んで配置された2つの半導体素子40Lにおいて、第1素子である半導体素子41Lは、辺部40aが信号端子93Lに対向し、辺部40bが半導体素子42Lに対向するように配置されている。4つのパッド40Pは、X方向に並んでいる。パッド40Pは、Y方向においてソース電極40Sと並んでいる。パッド40Pは、Y方向において、信号端子93L側に偏って配置されている。Y方向において、パッド40Pは、辺部40a側に偏って配置されている。パッド40Pは、X方向においてソース電極40Sと並んでいる。パッド40Pは、X方向において、半導体素子42L側に偏って配置されている。X方向において、パッド40Pは、辺部40b側に偏って配置されている。
 第2素子である半導体素子42Lは、パッド40Pが半導体素子41Lに近づくように、半導体素子41Lの配置に対してZ方向に沿う軸周りに90度回転して配置されている。半導体素子42Lは、辺部40bが信号端子93Lに対向し、辺部40aが半導体素子41Lに対向するように配置されている。4つのパッド40Pは、Y方向に並んでいる。パッド40Pは、Y方向においてソース電極40Sと並んでいる。パッド40Pは、Y方向において、信号端子93L側に偏って配置されている。Y方向において、パッド40Pは、辺部40b側に偏って配置されている。パッド40Pは、X方向においてソース電極40Sと並んでいる。パッド40Pは、X方向において、半導体素子41L側に偏って配置されている。X方向において、パッド40Pは、辺部40a側に偏って配置されている。半導体素子41L、42Lにおいて、辺部40aが第1辺部に相当し、辺部40bが第2辺部に相当する。
 90度回転配置により、角部C1は、半導体素子41Lにおいて右下に位置し、半導体素子42Lにおいて左下に位置している。つまり、半導体素子41Lの角部C1と半導体素子42Lの角部C1とが、X方向において対向している。よって、図11に示すように、X方向において、2つの半導体素子40Lにおけるパッド40Pの配置領域の幅W1が短い。幅W1は、並び方向であるX方向において、半導体素子41Lのパッド40Pにおいて半導体素子42Lから最も離れた部分と、半導体素子42Lのパッド40Pにおいて半導体素子41Lから最も離れた部分との距離(長さ)である。2つの半導体素子40Lのパッド40Pは、Y方向において信号端子93L側、つまり封止体30の側面30d側に偏って配置されている。
 上記したように、半導体素子41H、42Hの配置と、半導体素子41L、42Lの配置とは、Z方向に沿う軸周りに2回対称性を有している。2つの半導体素子40Hは、2つの半導体素子40Lを、Z方向に沿う軸周りに180度回転、つまり反転した配置に略一致する。このため、半導体素子40Hと半導体素子40Lとにおいて、第1素子および第2素子の配置は、X方向(左右方向)において逆である。
 図13に示すように、X方向に並んで配置された2つの半導体素子40Hにおいて、第1素子である半導体素子41Hは、辺部40aが信号端子93Hに対向し、辺部40bが半導体素子42Hに対向するように配置されている。4つのパッド40Pは、X方向に並んでいる。パッド40Pは、Y方向においてソース電極40Sと並んでいる。パッド40Pは、Y方向において、信号端子93H側に偏って配置されている。Y方向において、パッド40Pは、辺部40a側に偏って配置されている。パッド40Pは、X方向においてソース電極40Sと並んでいる。パッド40Pは、X方向において、半導体素子42H側に偏って配置されている。X方向において、パッド40Pは、辺部40b側に偏って配置されている。
 第2素子である半導体素子42Hは、パッド40Pが半導体素子41Hに近づくように、半導体素子41Hの配置に対してZ方向に沿う軸周りに90度回転して配置されている。半導体素子42Hは、辺部40bが信号端子93Hに対向し、辺部40aが半導体素子41Hに対向するように配置されている。4つのパッド40Pは、Y方向に並んでいる。パッド40Pは、Y方向においてソース電極40Sと並んでいる。パッド40Pは、Y方向において、信号端子93H側に偏って配置されている。Y方向において、パッド40Pは辺部40b側に偏っている。パッド40Pは、X方向においてソース電極40Sと並んでいる。パッド40Pは、X方向において、半導体素子41L側に偏って配置されている。X方向において、パッド40Pは辺部40a側に偏って配置されている。半導体素子41H、42Hにおいて、辺部40aが第1辺部に相当し、辺部40bが第2辺部に相当する。
 90度回転配置により、角部C1は、半導体素子41Hにおいて左上に位置し、半導体素子42Hにおいて右上に位置している。つまり、半導体素子41Hの角部C1と半導体素子42Hの角部C1が、X方向において対向している。よって、X方向において、2つの半導体素子40Hにおけるパッド40Pの配置領域の幅が短い。半導体素子40Hのパッド40Pの配置領域の幅は、たとえば上記した幅W1と同等である。2つの半導体素子40Hのパッド40Pは、Y方向において信号端子93H側、つまり封止体30の側面30c側に偏って配置されている。
 半導体素子40Hのパッド40Pと、半導体素子40Lのパッド40Pは、半導体素子40H、40Lの並び方向であるY方向において、互いに対向する辺(辺部40c、40d)ではなく、対向辺とは反対の辺(辺部40a、40b)側に偏っている。
 <信号端子の配置および信号端子とパッドとの接続構造>
 次に、図12および図13に基づき、信号端子93の配置、および、信号端子93とパッド40Pとの接続構造について説明する。
 上記したように、半導体装置20は、信号端子93として、2本の信号端子93Hと、4本の信号端子93Lを備えている。信号端子93Hは、Y方向において、信号端子93Lとの間に半導体素子40を挟むように配置されている。信号端子93Hは、4本の電源端子91(91P、91N)とともにX方向に並んで配置されている。信号端子93Hは、電源端子91の間に配置されている。信号端子93Lは、2本の出力端子92とともにX方向に並んで配置されている。信号端子93Lは、出力端子92の間に配置されている。X方向において体格の増大を抑制するために、信号端子93Hを2本とし、信号端子93Lを4本としている。これにより、外部接続端子90の本数を、側面30c側と側面30d側のそれぞれにおいて6本としている。
 図12に示すように、信号端子93Lは、ゲート端子93Gと、ケルビンソース端子93KSと、アノード端子93Aと、カソード端子93Kを含んでいる。4本の信号端子93Lは、半導体素子42Lから半導体素子41Lに向かう方向において、ゲート端子93G、ケルビンソース端子93KS、アノード端子93A、カソード端子93Kの順に並んでいる。4本の信号端子93Lの配置は、第1素子である半導体素子41Lのパッド40Pの配置に対応している。信号端子93Lが、半導体素子40Lに対する並設端子に相当する。
 4本の信号端子93Lのうち、ゲート端子93Gおよびケルビンソース端子93KSは、第1延設部931と、第2延設部932を有している。第1延設部931は、平面視においてY方向に延びている。第2延設部932は、複数のボンディングワイヤ110を接続するために、第1延設部931からX方向に延びている。X方向に延びる第2延設部932に対してボンディングワイヤ110を接続できるため、Y方向に略平行な基準線に対して、ボンディングワイヤ110の角度を緩やかにすることができる。本実施形態の第2延設部932は、第1延設部931における半導体素子40L側の端部に連なっている。これにより、ゲート端子93Gおよびケルビンソース端子93KSのそれぞれは、平面略L字状をなしている。
 ゲート端子93Gおよびケルビンソース端子93KSは、お互いの第2延設部932がY方向に並ぶ、つまりY方向において対向するように配置されている。Y方向において、ゲート端子93Gの第2延設部932のほうが、ケルビンソース端子93KSの第2延設部932よりも半導体素子40Lに近い。アノード端子93Aおよびカソード端子93Kのそれぞれは、平面視においてY方向に延びている。アノード端子93Aおよびカソード端子93Kのそれぞれは、第2延設部932を有していない。
 信号端子93Lの一部は、X方向に並んで配置された半導体素子41Lの辺部40bと半導体素子42Lの辺部40aの間に位置している。具体的には、ゲート端子93Gの一部、ケルビンソース端子93KSの一部、およびアノード端子93Aの一部が、X方向において半導体素子41L、42Lの間、つまり図12に示す一点鎖線間の非素子配置領域に位置している。
 半導体素子41Lにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して、ゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して、ケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110を介して、アノード端子93Aに接続されている。カソードパッドKPは、ボンディングワイヤ110を介して、カソード端子93Kに接続されている。半導体素子41Lに接続されたすべてのボンディングワイヤ110は、平面視において辺部40aと交差している。
 半導体素子42Lにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して、ゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して、ケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110Sを介して、隣に位置するケルビンソースパッドKSPに接続されている。カソードパッドKPには、ボンディングワイヤ110が接続されていない。感温ダイオードのアノードは、ケルビンソースパッドKSPに接続されて、ソース電位に固定されている。半導体素子42Lに接続されたすべてのボンディングワイヤ110は、平面視において辺部40bと交差している。
 ボンディングワイヤ110Sは、ケルビンソースパッドKSPとケルビンソース端子93KSとをつなぐボンディングワイヤ110に連なってもよい。つまり、ケルビンソースパッドKSPとケルビンソース端子93KSとをつなぐボンディングワイヤ110の一部でもよい。ボンディングワイヤ110Sは、ケルビンソースパッドKSPとケルビンソース端子93KSとをつなぐボンディングワイヤ110とは別に設けられてもよい。
 ゲートパッドGPについては、半導体素子41L、42Lのいずれも、ボンディングワイヤ110を介して対応するゲート端子93Gの第2延設部932に接続されている。ケルビンソースパッドKSPについては、半導体素子41L、42Lのいずれも、ボンディングワイヤ110を介して対応するケルビンソース端子93KSの第2延設部932に接続されている。アノードパッドAPについては、半導体素子41Lのみが、ボンディングワイヤ110を介して対応するアノード端子93Aに接続されている。カソードパッドKPについては、半導体素子41Lのみが、ボンディングワイヤ110を介して対応するカソード端子93Kに接続されている。
 図13に示すように、信号端子93Hは、ゲート端子93Gと、ケルビンソース端子93KSを含んでいる。2本の信号端子93Hは、半導体素子41Hから半導体素子42Hに向かう方向において、ゲート端子93G、ケルビンソース端子93KSの順に並んでいる。信号端子93Hは、アノード端子93Aと、カソード端子93Kを含んでいない。信号端子93Hが、半導体素子40Hに対する並設端子に相当する。
 信号端子93Hのゲート端子93Gおよびケルビンソース端子93KSも、第1延設部931と、第2延設部932を有している。ゲート端子93Gおよびケルビンソース端子93KSのそれぞれは、平面略L字状をなしている。ゲート端子93Gおよびケルビンソース端子93KSは、お互いの第2延設部932がY方向に並ぶ、つまりY方向において対向するように配置されている。Y方向において、ゲート端子93Gの第2延設部932のほうが、ケルビンソース端子93KSの第2延設部932よりも半導体素子40Hの近い。
 信号端子93Hの一部は、X方向に並んで配置された半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとの間に位置している。具体的には、ゲート端子93Gの一部、およびケルビンソース端子93KSの一部が、X方向において半導体素子41H、42Hの間、つまり図13に示す一点鎖線間の非素子配置領域に位置している。
 半導体素子41Hにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して、ゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して、ケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110Sを介して、ケルビンソース端子93KSに接続されている。カソードパッドKPには、ボンディングワイヤ110が接続されていない。感温ダイオードのアノードは、ケルビンソース端子93KSに接続されて、ソース電位に固定されている。半導体素子41Hに接続されたすべてのボンディングワイヤ110は、平面視において辺部40aと交差している。
 半導体素子42Hにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して、ゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して、ケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110Sを介して、ケルビンソースパッドKSPに接続されている。カソードパッドKPには、ボンディングワイヤ110が接続されていない。感温ダイオードのアノードは、ケルビンソースパッドKSPに接続されて、ソース電位に固定されている。半導体素子42Hに接続されたすべてのボンディングワイヤ110は、平面視において辺部40bと交差している。
 ゲートパッドGPについては、半導体素子41H、42Hのいずれも、ボンディングワイヤ110を介して対応するゲート端子93Gの第2延設部932に接続されている。ケルビンソースパッドKSPについては、半導体素子41H、42Hのいずれも、ボンディングワイヤ110を介して対応するケルビンソース端子93KSの第2延設部932に接続されている。
 <信号端子と回路基板との接続構造>
 次に、図14および図15に基づき、半導体装置20の信号端子93と回路基板13との接続構造について説明する。図14は、信号端子93の屈曲状態を示している。図15は、信号端子93と回路基板13との接続構造を示している。図15は、図14をX1方向から見た側面図である。
 本実施形態の信号端子93は、回路基板13との接続のために折り曲げられる。信号端子93は、たとえばプレス加工等により折り曲げられる。図14および図15に示すように、信号端子93は、封止体30の外で屈曲し、Z方向に延びている。信号端子93は、略90度の角度で屈曲している。すべての信号端子93は、封止体30の一面30aおよび裏面30bのうち、裏面30b側に延びている。信号端子93は、Y方向に延びる部分と、Z方向に延びる部分を有している。
 すべての信号端子93(93H、93L)は、共通(単一)の回路基板13に接続されている。図15に示す例では、信号端子93が、回路基板13の図示しないスルーホールに挿入実装されている。回路基板13は、半導体装置20(封止体30)との間に、所定の距離を有して配置されている。
 図15に示す例では、Z方向において、半導体装置20の両側に、冷却器120の熱交換部121が配置されている。熱交換部121は、Z方向において半導体装置20を挟んでいる。冷却器120は、熱交換部121の流路内に冷媒が流通することで、半導体装置20を冷却する。流路に流す冷媒としては、たとえば水やアンモニアなどの相変化する冷媒や、エチレングリコール系などの相変化しない冷媒を用いることができる。封止体30の裏面30b上の熱交換部121は、回路基板13と半導体装置20との間の隙間に配置されている。半導体装置20は、回路基板13、および冷却器120とともに、パワーモジュール130を構成している。パワーモジュール130は、X方向に並んで配置された三相分の半導体装置20を備えてもよい。回路基板13は、三相分の半導体装置20の信号端子93に対して共通に設けてもよい。
 <第1実施形態のまとめ>
 図16は、参考例を示す平面図である。図16は、図12に対応している。参考例を示す図では、各要素の符号を、半導体装置20の関連する要素の符号の末尾にrを付加したものとしている。
 図16では、一例として、半導体素子41Lrおよび半導体素子42Lrと信号端子93Lとの接続構造を示している。半導体素子41Lr、42Lrにおいて、4つのパッド40Prが辺部40arに沿ってX方向に並んでいる。パッド40Prは、本実施形態同様、角部C1r側から、ゲートパッドGPr、ケルビンソースパッドKSPr、アノードパッドAPr、カソードパッドKPrの順に並んでいる。パッド40Prは、X方向において角部C1rに偏っておらず、辺部40arの中央付近、つまり角部C1r、C4rの中間位置に設けられている。半導体素子42Lrは、半導体素子41Lrに対して90度回転しておらず、平面視において半導体素子41Lrと同じ配置となっている。平面視における半導体素子41Lr、42Lrの位置は、半導体素子41L、42Lの位置と同じとしている。
 信号端子93Lrは、パッド40Prごとに設けられている。半導体素子41Lrには、4本の信号端子93Lr、具体的にはゲート端子93Gr、ケルビンソース端子93KSr、アノード端子93Ar、およびカソード端子93Krが接続されている。半導体素子42Lrには、半導体素子41Lr同様、4本の信号端子93Lrが接続されている。信号端子93Lrは、ボンディングワイヤ110rを介して対応するパッド40Prに接続されている。
 上記したように、参考例では、ボンディングワイヤ110rの長さができる限り短くなり、ボンディングワイヤ110rの角度ができる限り緩やかとなるように、半導体素子41Lr、42Lrごとにパッド40Prと同数の信号端子93Lrを設けている。なお、ボンディングワイヤ110rの角度とは、パッド40Pの延設方向であるY方向に略平行な基準線に対する、ボンディングワイヤ110rにおいてパッド40Prと信号端子93Lrとを結ぶ部分がなす角度である。
 図17は、信号端子による回路基板13のデッドスペースを示している。図17では、本実施形態の半導体装置20によるデッドスペースDSを一点鎖線で示している。参考線として、図16に示した参考例によるデッドスペースDSrを破線で示している。
 デッドスペースは、回路基板13において、第1素子に対応する信号端子の接続部位、第2素子に対応する信号端子の接続部位、および接続部位間の領域である。デッドスペースは、実装禁止領域と称されることがある。図16に示したように参考例の場合、たとえば半導体素子41Lr、42Lrのパッド40Pr間の距離が長く、2つの半導体素子41Lr、42Lrにおいてパッド40Prの配置領域も大きい。このため、半導体素子41Lrに対応する信号端子93Lrの接続部位と、半導体素子42Lrに対応する信号端子93Lrの接続部位との間の領域が長くなる。また、2つの半導体素子41Lr、42Lrに対応する信号端子93Lrの配置領域も長くなる。よって、図17に示すように、デッドスペースDSrが大きくなる。図17では、上アーム側のデッドスペースDSrについても図示している。
 これに対し、本実施形態の半導体装置20によれば、X方向に並んで配置される半導体素子41L、42Lが互いに共通の構造を有している。共通構造において、パッド40Pは、角部C1の周辺に偏って設けられている。半導体素子41Lは、辺部40aがY方向において信号端子93Lと対向し、辺部40bがX方向において半導体素子42Lと対向するように配置されている。半導体素子42Lは、辺部40bがY方向において信号端子93Lと対向し、辺部40aがX方向において半導体素子41Lと対向するように、半導体素子41Lの配置に対して90度回転して配置されている。上記した半導体素子41L、42Lの配置により、図11に示したように、2つの半導体素子41L、42Lのパッド配置領域が、X方向において短くなる。パッド配置領域が短くなるため、複数の信号端子93Lの配置領域を、X方向において短くすることができる。
 同様に、X方向に並んで配置される半導体素子41H、42Hが互いに共通の構造を有している。共通構造において、パッド40Pは、角部C1の周辺に偏って設けられている。半導体素子41Hは、辺部40aがY方向において信号端子93Hと対向し、辺部40bがX方向において半導体素子42Hと対向するように配置されている。半導体素子42Hは、辺部40bがY方向において信号端子93Hと対向し、辺部40aがX方向において半導体素子41Hと対向するように、半導体素子41Hの配置に対して90度回転して配置されている。上記した半導体素子41H、42Hの配置により、2つの半導体素子41H、42Hのパッド配置領域がX方向において短くなる。パッド配置領域が短くなるため、複数の信号端子93Hの配置領域を、X方向において短くすることができる。
 以上より、本実施形態の半導体装置20によれば、パッド配置領域、ひいては回路基板13における信号端子93の配置領域を、参考例に較べて小さくすることができる。よって、回路基板13において、信号端子93起因のデッドスペースDSを低減することができる。
 図18および図19は、図16とは別の参考例における信号端子とパッドとの接続構造を示している。図18および図19も、図12に対応している。図18に示す参考例において、パッド40Prの配置および半導体素子41Lr、42Lrの配置は、図16に示した構成と同様である。その他の構成については半導体装置20と同様である。図18に示す参考例において、信号端子93Lrは、本実施形態の信号端子93Lと同様に、ゲート端子93Gr、ケルビンソース端子93KSr、アノード端子93Ar、およびカソード端子93Krをそれぞれ1本ずつ含んでいる。
 図18に示すように、半導体素子41Lr、42LrのゲートパッドGPrは、ボンディングワイヤ110rを介して共通のゲート端子93Grに接続されている。半導体素子41Lr、42LrのケルビンソースパッドKSPrは、ボンディングワイヤ110rを介して共通のケルビンソース端子93KSrに接続されている。半導体素子41LrのアノードパッドAPrはボンディングワイヤ110rを介してアノード端子93Arに接続され、半導体素子42LrのアノードパッドAPrはボンディングワイヤ110rを介して、ケルビンソース端子93KSrに接続されている。半導体素子41LrのカソードパッドKPrはボンディングワイヤ110rを介してカソード端子93Krに接続され、半導体素子42LrのカソードパッドKPrは信号端子93Lrに接続されていない。
 図12との対比より、図18に示す複数のボンディングワイヤ110rの少なくとも一部において、ワイヤ長さが本実施形態のボンディングワイヤ110より長いことが明らかである。また、複数のボンディングワイヤ110rの少なくとも一部において、角度が本実施形態のボンディングワイヤ110より急峻(大きい)ことが明らかである。
 図19に示す参考例において、半導体素子41Lr、42Lrにおけるパッド40Prの配置は、本実施形態に示した構成と同様である。パッド40Prは、角部C1rに偏って設けられている。4つのパッド40Prは、辺部40arに沿ってX方向に並んでいる。パッド40Prは、角部C1r側から、ゲートパッドGPr、ケルビンソースパッドKSPr、アノードパッドAPr、カソードパッドKPrの順に並んでいる。半導体素子42Lrは、半導体素子41Lrに対して90度回転して配置されておらず、平面視において半導体素子41Lrと同じ配置となっている。その他の構成については半導体装置20と同様である。図19に示す参考例においても、信号端子93Lrは、ゲート端子93Gr、ケルビンソース端子93KSr、アノード端子93Ar、およびカソード端子93Krをそれぞれ1本ずつ含んでいる。
 図12との対比より、図19に示す複数のボンディングワイヤ110rの少なくとも一部において、ワイヤ長さが本実施形態のボンディングワイヤ110より長いことが明らかである。また、複数のボンディングワイヤ110rの少なくとも一部において、角度が本実施形態のボンディングワイヤ110より急峻(大きい)ことが明らかである。さらに、ボンディングワイヤ110rの一部は、平面視において他のボンディングワイヤ110rと交差している。
 図18および図19に示した例では、デッドスペースDSrを小さくすべく単に配置領域が小さくなる信号端子93Lrの配置を採用しているため、パッド40Prの配置領域が信号端子93Lrの配置領域に較べて十分に長い。このため、ボンディングワイヤ110rの少なくとも一部の長さが長くなったり、角度が大きくなってしまう。ボンディングワイヤ110rが長くなると、共通の信号端子93Lrに接続された複数のボンディングワイヤ110rの長さのばらつきが大きくなる。特に、ゲートパッドGPrとゲート端子93Grとを接続するボンディングワイヤ110rの長さのばらつきが大きいと、半導体素子41Lr、42Lrに対する駆動電圧の印加タイミングに差が生じ、一方が他方に先んじてオンする虞がある。つまり、半導体素子41Lr、42Lrの一方に電流が集中する虞がある。また、ボンディングワイヤ110rが長いと、封止体30の成形時にワイヤ流れが生じる、つまり短絡や断線が生じる虞がある。ボンディングワイヤ110rの角度が大きいと、ボンディングワイヤ110rにおいて、パッド40Prとの接続部から信号端子93Lrに引き出すネック部分(屈曲部分)が薄くなり、断線などの導通不良が生じる虞がある。
 本実施形態では、X方向に並設される2つの半導体素子40を共通構造にしてパッド40Pを角部C1に偏って設けるとともに、ひとつの半導体素子40(42H、42L)を、他のひとつの半導体素子40(41H、41L)の配置に対して90度回転して配置している。これにより、図18および図19に示した参考例に較べて、パッド40Pの配置領域の長さ(幅W1)を短くすることができる。したがって、デッドスペースDSを低減しつつ、ボンディングワイヤ110に関する信頼性の低下を抑制することができる。
 特に本実施形態では、図12および図13に示すように、ゲートパッドGPが、他のパッド40Pよりも角部C1に近い。複数のパッド40Pのうち、ゲートパッドGPが角部C1にもっとも近い。これにより、X方向に並設される2つの半導体素子40においてゲートパッドGPが互いに近づき、且つ、Y方向においてほぼ同じ位置に配置される。よって、2つのゲートパッドGPと共通のゲート端子93Gを接続するボンディングワイヤ110それぞれの長さを短くすることができる。長さが短いことで長さのばらつきも小さくなり、駆動電圧の印加タイミングに差が生じるのを抑制することができる。つまり、主電流が半導体素子40の一方に偏って流れるのを抑制することができる。
 本実施形態では、複数の並設端子である信号端子93Lの一部が、X方向において半導体素子41Lの辺部40bと半導体素子42Lの辺部40aとの間に位置している。同様に、複数の並設端子である信号端子93Hの一部が、X方向において半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとの間に位置している。これにより、信号端子93の配置領域を短くし、回路基板13におけるデッドスペースDSをさらに低減することができる。また、2つの半導体素子40の間に位置する信号端子93に接続されたボンディングワイヤ110の角度を緩やかに(小さく)することができる。これにより、ボンディングワイヤ110に断線などの導通不良が生じるのを抑制することができる。
 複数の半導体素子40が並んで配置され、並設された半導体素子40が互いに熱的に接続された構成では、一部の半導体素子40の感温ダイオードのみを使用して複数の半導体素子40の過熱状態を保証することも可能である。よって、複数の半導体素子40のうちの一部のみをアノード端子93Aおよびカソード端子93Kに接続してもよい。この場合、信号端子93の本数を低減することができる。しかしながら、アノード端子93Aおよびカソード端子93Kに接続されない感温ダイオードを電位的に浮いた所謂フローティング状態にしておくと、半導体素子40に不具合が生じる虞がある。
 本実施形態では、ケルビンソースパッドKSPの隣に、アノードパッドAPを設けている。そして、並設した2つの半導体素子40Lのうち、半導体素子42LのアノードパッドAPを、隣に位置するカソードパッドKPに電気的に接続している。これにより、信号端子93Lの本数を低減しつつ、感温ダイオードがフローティング状態となるのを抑制することができる。ケルビンソースパッドKSPの隣にアノードパッドAPが位置するため、接続構造を簡素化できる。
 特に本実施形態では、半導体素子40Hと半導体素子40Lとが、基板50、60を介して熱的に接続されている。このため、4つの半導体素子40のうち、半導体素子41Lのみをアノード端子93Aおよびカソード端子93Kに接続している。並設した2つの半導体素子40Hについては、半導体素子41HのアノードパッドAPを、隣に位置するカソードパッドKPに電気的に接続している。また、半導体素子42HのアノードパッドAPを、隣に位置するケルビンソースパッドKSPとともに、共通のケルビンソース端子93KSに接続している。つまり、アノードパッドAPを、ケルビンソース端子93KSを介してケルビンソースパッドKSPに電気的に接続している。これにより、信号端子93Hの本数を低減しつつ、感温ダイオードがフローティング状態となるのを抑制することができる。特に、並設される主端子の本数が多い信号端子93Hの本数を、信号端子93Lよりも少なくすることができる。これにより、X方向において、半導体装置20の体格増大を抑制することができる。
 ケルビンソースパッドKSPの隣にアノードパッドAPが位置する例を示したが、これに限定されない。ケルビンソースパッドKSPの隣にカソードパッドKPを設けてもよい。カソードパッドKPを、ケルビンソースパッドKSPに電気的に接続することで、信号端子93の本数を低減しつつ、感温ダイオードがフローティング状態となるのを抑制することができる。
 アノードパッドAPまたはカソードパッドKPと、隣に位置するケルビンソースパッドKSPとの接続構造は、上記した例に限定されない。アノードパッドAPまたはカソードパッドKPを、ボンディングワイヤ110SによりケルビンソースパッドKSPに接続してもよいし、ボンディングワイヤ110Sによりケルビンソース端子93KSに接続してもよい。いずれの場合も、アノードパッドAPまたはカソードパッドKPは、ケルビンソースパッドKSPに電気的に接続される。アノードパッドAPまたはカソードパッドKPの隣にケルビンソースパッドKSPが位置するため、接続構造を簡素化できる。たとえば、アノードパッドAPまたはカソードパッドKPとケルビンソースパッドKSPとの電気的な接続距離を短くすることができる。また、ボンディングワイヤ110Sがボンディングワイヤ110と交差したり、接触などが生じるのを抑制することができる。
 X方向に並んで配置され、互いに並列接続される半導体素子40の個数は、2つに限定されない。3つ以上の半導体素子40がX方向に並び、且つ、並列に接続されてもよい。この場合にも、パッド40Pは角部C1に偏って配置される。たとえば3つの半導体素子40が並んで配置される構成では、角部C1同士が対向するように、隣り合う2つの半導体素子40のひとつが、他のひとつの配置に対して90度回転して配置される。残りのひとつの半導体素子40は、隣り合う半導体素子40と同じ配置とされる。たとえば図12に示した構成において半導体素子40Lをひとつ追加する場合、半導体素子42Lの隣に配置する場合には半導体素子42Lと同じ配置が好ましく、半導体素子41Lの隣に配置する場合には半導体素子41Lと同じ配置が好ましい。
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、複数のパッド40Pを辺部40aに沿って一列に並ぶように設けていた。これに代えて、パッド40Pを切り欠き43の傾斜面に沿って並ぶように設けてもよい。
 図20は、本実施形態に係る半導体装置20において、半導体素子40Lおよび信号端子93Lの周辺を示している。図20は、図12に対応している。図21は、半導体装置20において、半導体素子40Hおよび信号端子93Hの周辺を示している。図21は、図13に対応している。
 図20および図21に示すように、ソース電極40Sの切り欠き43は、角部C1に対応して設けられている。切り欠き43は、平面略三角形をなしている。切り欠き43の底辺は、辺部40aと辺部40bとをつないでいる。切り欠き43の底辺は、辺部40a、40bそれぞれに対して傾斜する傾斜辺である。ソース電極40Sは、平面略矩形状の四隅のひとつを切り欠いた形状をなしている。導電スペーサ70もソース電極40Sに対応する平面形状を有している。導電スペーサ70は、切り欠き43に対応する面取り部71を有している。導電スペーサ70は、平面略矩形状の四隅のひとつを面取りした形状をなしている。
 図20に示すように、X方向に並ぶ2つの半導体素子40L(41L、42L)の配置は、先行実施形態に記載の構成(図12参照)と同じである。半導体素子42Lは、半導体素子41Lの配置に対して90度回転して配置されている。半導体素子41Lの辺部40bと半導体素子42Lの辺部40aとが、X方向において対向している。また、角部C1がX方向において互いに対向している。半導体素子40Lは、2つのパッド40Pを有している。具体的には、各半導体素子40Lにおいて、パッド40Pは、ゲートパッドGPと、ケルビンソースパッドKSPを含んでいる。2つのパッド40Pは、切り欠き43の傾斜辺に沿って並んでいる。
 半導体装置20は、2本の信号端子93Lを備えている。信号端子93Lは、パッド40Pに対応して、ゲート端子93Gと、ケルビンソース端子93KSを含んでいる。2本の信号端子93L(93G、93KS)の構造は、先行実施形態に記載の構成と同様である。X方向において、信号端子93Lの一部は、半導体素子41Lの辺部40bと半導体素子42Lの辺部40aとの間に位置している。各半導体素子41L、42LのゲートパッドGPが、ボンディングワイヤ110を介してゲート端子93Gに接続されている。各半導体素子41L、42LのケルビンソースパッドKSPが、ボンディングワイヤ110を介してケルビンソース端子93KSに接続されている。半導体素子41Lに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Lとの対向辺である辺部40aと交差している。半導体素子42Lに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Lとの対向辺である辺部40bと交差している。
 図21に示すように、X方向に並ぶ2つの半導体素子40H(41H、42H)の配置は、先行実施形態に記載の構成(図13参照)と同じである。半導体素子42Hは、半導体素子41Hの配置に対して90度回転して配置されている。半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとが、X方向において対向している。また、角部C1がX方向において互いに対向している。各半導体素子40Hにおいて、パッド40Pは、ゲートパッドGPと、ケルビンソースパッドKSPを含んでいる。2つのパッド40Pは、切り欠き43の傾斜辺に沿って並んでいる。
 半導体装置20は、先行実施形態同様、2本の信号端子93Hを備えている。信号端子93Hは、ゲート端子93Gと、ケルビンソース端子93KSを含んでいる。X方向において、信号端子93Hの一部は、半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとの間に位置している。各半導体素子41H、42HのゲートパッドGPが、ボンディングワイヤ110を介してゲート端子93Gに接続されている。各半導体素子41H、42HのケルビンソースパッドKSPが、ボンディングワイヤ110を介してケルビンソース端子93KSに接続されている。半導体素子41Hに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Hとの対向辺である辺部40aと交差している。半導体素子42Hに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Hとの対向辺である辺部40bと交差している。半導体装置20の他の構成については、先行実施形態に記載の構成と同様である。
 <第2実施形態のまとめ>
 本実施形態では、切り欠き43をソース電極40Sの四隅のうち角部C1に対応する部分に設けている。これにより、X方向において、パッド40Pの配置領域の長さ(幅W1)をより短くすることができる。したがって、回路基板13のデッドスペースDSを低減することができる。
 本実施形態では、ソース電極40Sの切り欠き43の傾斜辺に沿って並んでいる。これによれば、90度回転した配置においても、パッド40PがY方向において信号端子93から遠ざかるのを抑制することができる。したがって、ボンディングワイヤ110の長さを短くすることができる。特に半導体素子40の並列接続構造において、ゲートパッドGPとゲート端子93Gとを接続するボンディングワイヤ110の長さのばらつきを小さくすることができる。
 本実施形態では、ソース電極40Sの切り欠き形状に対応して、導電スペーサ70が面取り部71を有している。面取り構造を採用することで、先行実施形態に記載の構造に較べて、導電スペーサ70の寸法精度を高めることができる。よって、導電スペーサ70の接合面の大きさのばらつきを抑制し、ひいては接合材101、102の厚みがばらつくのを抑制することができる。
 (第3実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、パッド40Pを切り欠き43の傾斜面に沿って並ぶように設けていた。これに代えて、パッド40Pを辺部40aおよび辺部40bに沿って並ぶように設けてもよい。
 図22は、本実施形態に係る半導体装置20において、半導体素子40Lおよび信号端子93Lの周辺を示している。図22は、図12に対応している。図23は、半導体装置20において、半導体素子40Hおよび信号端子93Hの周辺を示している。図23は、図13に対応している。
 本実施形態においても、先行実施形態に記載の構成(図20および図21参照)と同様に、ソース電極40Sの切り欠き43は、角部C1に対応して設けられている。切り欠き43の底辺は、辺部40aと辺部40bとをつないでいる。切り欠き43の底辺は、辺部40a、40bそれぞれに対して傾斜する傾斜辺430を含んでいる。本実施形態では、底辺の一部が傾斜辺430となっている。ソース電極40Sの面積を稼ぐために、底辺の両端部分は、辺部40a、40bに略平行となっている。具体的には、辺部40a側の端部431は、辺部40bに略平行である。辺部40b側の端部432は、辺部40aに略平行である。導電スペーサ70は、先行実施形態同様、切り欠き43の傾斜辺430に対応する面取り部71を有している。
 図22に示すように、X方向に並ぶ2つの半導体素子40L(41L、42L)の配置は、先行実施形態に記載の構成(図12参照)と同じである。半導体素子42Lは、半導体素子41Lの配置に対して90度回転して配置されている。半導体素子41Lの辺部40bと半導体素子42Lの辺部40aとが、X方向において対向している。また、角部C1がX方向において互いに対向している。半導体素子40Lは、4つのパッド40Pを有している。具体的には、各半導体素子40Lにおいて、パッド40Pは、第1実施形態同様、ゲートパッドGPと、ケルビンソースパッドKSPと、アノードパッドAPと、カソードパッドKPを含んでいる。
 本実施形態では、X方向において、角部C1側からケルビンソースパッドKSP、アノードパッドAP、カソードパッドKPの順に並んでいる。これら3つのパッド40Pは、辺部40aに沿って並んでいる。また、Y方向において、角部C1側からケルビンソースパッドKSP、ゲートパッドGPの順に並んでいる。これら2つのパッド40Pは、辺部40bに沿って並んでいる。このように、4つのパッド40Pは、ケルビンソースパッドKSPをコーナー部に配置した平面略L字状の配置となっている。アノードパッドAPおよびカソードパッドKPは、辺部40bに略平行な辺の長さが辺部40aに略平行な辺の長さよりも長い平面略長方形をなしている。ゲートパッドGPおよびケルビンソースパッドKSPは、一辺の長さがアノードパッドAPの長辺と略等しい平面略正方形をなしている。
 半導体装置20は、先行実施形態に記載した構成(図12)と同様に、4本の信号端子93Lを備えている。信号端子93Lは、ゲート端子93Gと、ケルビンソース端子93KSと、アノード端子93Aと、カソード端子93Kを含んでいる。各信号端子93Lの構造は、図12に記載の構成と同様である。X方向において、信号端子93Lの一部は、半導体素子41Lの辺部40bと半導体素子42Lの辺部40aとの間に位置している。各半導体素子41L、42LのゲートパッドGPが、ボンディングワイヤ110を介してゲート端子93Gに接続されている。各半導体素子41L、42LのケルビンソースパッドKSPが、ボンディングワイヤ110を介してケルビンソース端子93KSに接続されている。
 半導体素子41Lにおいて、アノードパッドAPがボンディングワイヤ110を介してアノード端子93Aに接続され、カソードパッドKPがボンディングワイヤ110を介してカソード端子93Kに接続されている。半導体素子42Lにおいて、アノードパッドAPは、ボンディングワイヤ110Sを介して隣に位置するケルビンソースパッドKSPに接続されている。カソードパッドKPにはボンディングワイヤ110、110Sが接続されていない。半導体素子41Lに接続されたボンディングワイヤ110の一部は、平面視において、信号端子93Lとの対向辺である辺部40aと交差している。半導体素子42Lに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Lとの対向辺である辺部40bと交差している。
 図23に示すように、X方向に並ぶ2つの半導体素子40H(41H、42H)の配置は、先行実施形態に記載の構成(図13参照)と同じである。半導体素子42Hは、半導体素子41Hの配置に対して90度回転して配置されている。半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとが、X方向において対向している。また、角部C1がX方向において互いに対向している。各半導体素子40Hは、半導体素子40L同様、4つのパッド40Pを有している。4つのパッド40Pの配置は、半導体素子40Lのパッド40Pと同じである。
 半導体装置20は、先行実施形態同様、2本の信号端子93Hを備えている。信号端子93Hは、ゲート端子93Gと、ケルビンソース端子93KSを含んでいる。X方向において、信号端子93Hの一部は、半導体素子41Hの辺部40bと半導体素子42Hの辺部40aとの間に位置している。各半導体素子41H、42HのゲートパッドGPが、ボンディングワイヤ110を介してゲート端子93Gに接続されている。各半導体素子41H、42HのケルビンソースパッドKSPが、ボンディングワイヤ110を介してケルビンソース端子93KSに接続されている。
 半導体素子41HのアノードパッドAPはボンディングワイヤ110を介してケルビンソース端子93KSに接続され、半導体素子42HのアノードパッドAPはボンディングワイヤ110Sを介してケルビンソースパッドKSPに接続されている。各半導体素子40HのカソードパッドKPにはボンディングワイヤ110、110Sが接続されていない。半導体素子41Hに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Hとの対向辺である辺部40aと交差している。半導体素子42Hに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93Hとの対向辺である辺部40bと交差している。半導体装置20の他の構成については、先行実施形態に記載の構成と同様である。
 <第3実施形態のまとめ>
 本実施形態では、複数のパッド40Pが、辺部40a、40bに沿って並び、平面略L字状をなしている。これにより、傾斜辺430を含む切り欠き43によって切り欠かれた部分に、より多くのパッド40Pを配置することができる。
 本実施形態では、4つのパッド40Pのうち、ゲートパッドGPおよびケルビンソースパッドKSPについては、たとえば2つの半導体素子40Lのいずれにおいても、ボンディングワイヤ110を介して信号端子93に接続される。アノードパッドAPおよびカソードパッドKPについては、半導体素子41Lのみがボンディングワイヤ110を介して信号端子93に接続される。ゲートパッドGPおよびケルビンソースパッドKSPが第1パッドに相当し、アノードパッドAPが第2パッドに相当する。
 そして、半導体素子40のいずれにおいても信号端子93に接続されるパッド40PであるゲートパッドGPおよびケルビンソースパッドKSPの長さを、アノードパッドAPおよびカソードパッドKPよりも長くしている。ゲートパッドGPおよびケルビンソースパッドKSPは、辺部40aに沿う長さ、辺部40bに沿う長さがいずれも長い。具体的には、X方向、Y方向のいずれにおいても長い。よって、90度回転して配置しても、ボンディングワイヤ110を接続しやすい。本構成を、他の実施形態に記載の構成と組み合わせてもよい。
 <変形例>
 4つのパッド40Pの並び順は、上記した例に限定されない。たとえば図24に示すように、コーナー部にゲートパッドGPを配置してもよい。これによれば、並んで配置された2つの半導体素子40において、ゲートパッドGPが互いに近づくため、ボンディングワイヤ110の長さのばらつきを低減することができる。
 また、図24に示すように、ソース電極40Sが切り欠かれた部分を含むパッド形成領域内であって、切り欠き43の傾斜辺430の近傍に、感温ダイオード44を設けてもよい。感温ダイオード44は、たとえば不純物がドープされたポリシリコンとアルミ系の配線材を含んで構成され、半導体基板の裏面上に設けられている。これによれば、傾斜辺430と平面略L字状に配置したパッド40Pとの空きスペースを利用するため、ソース電極40S、つまりスイッチング素子の領域を広くとることができる。また、感温ダイオード44を素子形成領域に近い位置に設けるため、パッド形成領域に設けながらも、半導体素子40の温度を精度よく検出することができる。
 (第4実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、並列接続される第1素子および第2素子において、第2素子を第1素子に対して90度回転配置した。これに代えて、並列接続されない第1素子および第2素子において、第2素子を第1素子に対して90度回転配置してもよい。複数の半導体素子40に代えて、ひとつの半導体素子40により各アームを構成してもよい。半導体素子40を挟むように信号端子93H、93Lを配置する構成に代えて、信号端子93Hと信号端子93Lとを並んで配置してもよい。
 <半導体装置>
 図25~図29に基づき、本実施形態の半導体装置20について説明する。図25は、半導体装置20の斜視図である。図26は、図25をZ2方向から見た平面図である。図26は、内部構造を示す透過図である。図27は、図26のXXVII-XXVII線に沿う断面図である。図28は、基板50の回路パターンを示すとともに、半導体素子40の配置、信号端子93の配置、および半導体素子40と信号端子93との接続構造を示している。図29は、基板60の回路パターンを示している。図29では、半導体素子40および継手部81を破線で示している。
 本実施形態の半導体装置20は、先行実施形態同様、上下アーム回路9のひとつ、つまり一相分の上下アーム回路9を構成する。半導体装置20は、先行実施形態に記載の構成(図2~図13参照)と同様の要素を備えている。半導体装置20は、封止体30と、半導体素子40と、基板50、60と、導電スペーサ70と、アーム接続部80と、外部接続端子90を備えている。以下では、主に、先行実施形態に記載の構成とは異なる部分について説明する。
 封止体30は、先行実施形態同様、半導体装置20を構成する他の要素の一部を封止している。図25に示すように、封止体30は平面略矩形状をなしている。封止体30は、Z方向において、一面30aと裏面30bを有している。一面30aと裏面30bをつなぐ側面は、外部接続端子90が突出する2つの側面30g、30hを含んでいる。側面30hは、Y方向において側面30gとは反対の面である。
 半導体素子40は、上アーム9Hを構成するひとつの半導体素子40Hと、下アーム9Lを構成するひとつの半導体素子40Lを含む。半導体装置20は、2つの半導体素子40を備えている。半導体素子40H、40Lの構成は、互いに共通である。図26に示すように、半導体素子40H、40Lは、第1方向であるX方向に並んでいる。各半導体素子40は、Z方向において互いにほぼ同じ位置に配置されている。各半導体素子40のドレイン電極40Dは、基板50に対向している。各半導体素子40のソース電極40Sは、基板60に対向している。
 基板50、60は、Z方向において、複数の半導体素子40を挟むように配置されている。基板50、60は、Z方向において互いに少なくとも一部が対向するように配置されている。基板50、60は、平面視において複数の半導体素子40(40H、40L)のすべてを内包している。
 先行実施形態同様、基板50は、絶縁基材51と、表面金属体52と、裏面金属体53を備えている。基板60は、絶縁基材61と、表面金属体62と、裏面金属体63を備えている。表面金属体52は、P配線54と、中継配線55を有している。P配線54と中継配線55は、所定の間隔(ギャップ)により、電気的に分離されている。
 P配線54は、P端子91Pおよび半導体素子40Hのドレイン電極40Dに接続されている。P配線54は、P端子91Pと半導体素子40Hのドレイン電極40Dとを電気的に接続している。P配線54は、Y方向を長手方向とする平面略矩形状をなしている。中継配線55は、半導体素子40Lのドレイン電極40D、アーム接続部80、および出力端子92に接続されている。中継配線55は、平面略矩形状をなしている。中継配線55が第1導体に相当し、P配線54が第2導体に相当する。
 P配線54と中継配線55は、X方向に並んで配置されている。半導体素子40Lは、中継配線55においてX方向の一端側、具体的にはP配線54に遠い側に偏って実装されている。アーム接続部80を構成する継手部81は、中継配線55においてX方向の他端側、具体的にはP配線54に近い側に偏って実装されている。P端子91Pは、P配線54においてY方向の一端付近に接続されている。出力端子92は、中継配線55においてY方向の一端付近に接続されている。P端子91Pおよび出力端子92は、半導体素子40に対してY方向の同じ側に配置されている。
 表面金属体62は、N配線64と、中継配線65を有している。N配線64と中継配線65は、所定の間隔(ギャップ)により、電気的に分離されている。N配線64は、N端子91Nおよび半導体素子40Lのソース電極40Sに接続されている。中継配線65は、半導体素子40Hのソース電極40Sおよびアーム接続部80に接続されている。
 N配線64は、基部643と、延設部644を有している。N配線64は、平面略L字状をなしている。基部643は、平面略矩形状をなしている。基部643は、平面視において半導体素子40Lを内包している。延設部644は、平面略矩形状をなす基部643のひとつの辺に連なっている。延設部644は、基部643における中継配線65との対向辺からX方向において基部653側に延びている。
 中継配線65は、基部653と、延設部654を有している。中継配線65は、平面略L字状をなしている。基部653は、平面略矩形状をなしている。基部653は、平面視において半導体素子40Hを内包している。延設部654は、平面略矩形状をなす基部653のひとつの辺に連なっている。延設部654は、基部653におけるN配線64との対向辺から、X方向において基部643側に延びている。延設部654の少なくとも一部は、平面視において中継配線55と重なっている。
 N配線64と中継配線65は、X方向に並んで配置されている。基部643、653は、X方向に並んでいる。半導体素子40Lのソース電極40Sは、基部643に電気的に接続されている。半導体素子40Hのソース電極40Sは、基部653に電気的に接続されている。延設部644、654は、Y方向に並んでいる。N端子91Nは、延設部644に接続されている。継手部81は、延設部654に接続されている。
 導電スペーサ70は、半導体素子40のソース電極40Sと基板60との間に介在する。導電スペーサ70は、半導体素子40のソース電極40Sに個別に接続されている。
 アーム接続部80は、中継配線55、65を電気的に接続する。アーム接続部80は、X方向において、半導体素子40Hと半導体素子40Lの間に設けられている。アーム接続部80は、平面視において中継配線55と中継配線65(延設部654)との重なり領域に設けられている。本実施形態のアーム接続部80は、先行実施形態同様、継手部81と、接合材103を備えて構成される。継手部81は、金属柱状体である。Z方向において、継手部81の端部のひとつと中継配線55との間に接合材103が介在し、端部の他のひとつと中継配線65との間に接合材103が介在している。これに代えて、継手部81は、表面金属体52、62の少なくともひとつに一体的に連なるものでもよい。アーム接続部80は、継手部81を備えない構成としてもよい。
 外部接続端子90は、電源端子91と、出力端子92と、信号端子93を備えている。電源端子91は、P端子91Pと、N端子91Nを備えている。以下では、P端子91P、N端子91N、および出力端子92を主端子91P、91N、92と示すことがある。信号端子93は、上アーム9H側の信号端子93Hと、下アーム9L側の信号端子93Lを備えている。
 P端子91Pは、P配線54におけるY方向の一端付近に接続されている。P端子91Pは、P配線54との接続部からY方向の外側に延びている。P端子91Pの一部分が封止体30により覆われ、残りの部分が封止体30から突出している。P端子91Pは、側面30gにおいてZ方向の中央付近から封止体30の外に突出している。
 N端子91Nは、N配線64におけるY方向の一端付近に接続されている。N端子91Nは、N配線64との接続部からY方向の外側に延びている。N端子91Nの一部分が封止体30により覆われ、残りの部分が封止体30から突出している。N端子91Nは、側面30gにおいてZ方向の中央付近から封止体30の外に突出している。
 出力端子92は、中継配線55におけるY方向の一端付近に接続されている。出力端子92は、中継配線55との接続部からY方向の外側に延びている。出力端子92の一部分が封止体30により覆われ、残りの部分が封止体30から突出している。出力端子92は、側面30gにおいてZ方向の中央付近から封止体30の外に突出している。
 3本の主端子91P、91N、92は、X方向に並んで配置されている。主端子91P、91N、92は、X方向においてP端子91P、N端子91N、出力端子92の順に配置されている。電源端子91であるP端子91PとN端子91Nは、封止体30から突出した部分を含む一部分において、側面が互いに対向している。
 信号端子93は、ボンディングワイヤ110などの接続部材を介して、対応する半導体素子40のパッド40Pに電気的に接続されている。信号端子93Hは、ボンディングワイヤ110を介して半導体素子40Hのパッド40Pに接続されている。信号端子93Lは、ボンディングワイヤ110を介して半導体素子40Lのパッド40Pに接続されている。信号端子93は、Y方向であって外側に延び、側面30hにおいてZ方向の中央付近から封止体30の外に突出している。信号端子93は、Y方向において主端子91P、91N、92とは反対側に延びている。Y方向において、主端子91P、91N、92と信号端子93との間に、半導体素子40が配置されている。
 半導体装置20は、2つのガイドフレーム94を備えている。ガイドフレーム94のひとつは、P端子91Pに連なっている。ガイドフレーム94の他のひとつは、出力端子92に連なっている。これらガイドフレーム94は、リードフレームの不要部分を除去する前の状態で、信号端子93を保持する外周フレームと、主端子91P、92とをつなぐ部分である。P端子91Pに連なるガイドフレーム94の一部分は、P配線54に接続されている。出力端子92に連なるガイドフレーム94の一部分は、中継配線55に接続されている。ガイドフレーム94は、主端子91P、91N、92と同様の接続構造(接合構造)が可能である。
 上記したように、本実施形態の半導体装置20では、封止体30によって一相分の上下アーム回路9を構成する複数の半導体素子40が封止されている。封止体30は、複数の半導体素子40、基板50の一部、基板60の一部、複数の導電スペーサ70、アーム接続部80、および外部接続端子90それぞれの一部を、一体的に封止している。封止体30は、基板50、60において、絶縁基材51、61および表面金属体52、62を封止している。
 半導体素子40は、Z方向において、基板50、60の間に配置されている。半導体素子40は、対向配置された基板50、60によって挟まれている。これにより、半導体素子40の熱を、Z方向において両側に放熱することができる。半導体装置20は、両面放熱構造をなしている。基板50の裏面50bは、封止体30の一面30aと略面一となっている。基板60の裏面60bは、封止体30の裏面30bと略面一となっている。裏面50b、60bが露出面であるため、放熱性を高めることができる。
 <パッドの配置>
 次に、図28に基づき、パッド40Pの配置、信号端子93の配置、および半導体素子40と信号端子93の接続構造について説明する。
 図28に示すように、ソース電極40Sの切り欠き43は、先行実施形態に記載の構成(図22参照)と同様に、角部C1に対応して設けられている。切り欠き43の底辺は辺部40a、40bそれぞれに対して傾斜する傾斜辺430を含んでいる。本実施形態において、傾斜辺430は底辺の一部である。底辺において、辺部40a側の端部431は、辺部40bに略平行である。辺部40b側の端部432は、辺部40aに略平行である。導電スペーサ70は、先行実施形態同様、切り欠き43の傾斜辺430に対応する面取り部71を有している。
 X方向に並ぶ2つの半導体素子40(40H、40L)の配置は、先行実施形態に記載の構成(図22参照)と同じである。半導体素子40Hは、半導体素子40Lの配置に対して90度回転して配置されている。半導体素子40Lの辺部40bと半導体素子40Hの辺部40aとが、X方向において対向している。また、角部C1がX方向において互いに対向している。第2方向であるY方向において、半導体素子40Lの辺部40aおよび半導体素子40Hの辺部40bが、並設された信号端子93との対向辺である。並んで配置された2つの半導体素子40において、半導体素子40Lが第1素子に相当し、半導体素子40Hが第2素子に相当する。
 パッド40Pは、第3実施形態に示した構成と同様である。つまり、各半導体素子40は、4つのパッド40Pを有している。パッド40Pは、ゲートパッドGPと、ケルビンソースパッドKSPと、アノードパッドAPと、カソードパッドKPを含んでいる。X方向において、角部C1側からケルビンソースパッドKSP、アノードパッドAP、カソードパッドKPの順に並んでいる。これら3つのパッド40Pは、辺部40aに沿って並んでいる。また、Y方向において、角部C1側からケルビンソースパッドKSP、ゲートパッドGPの順に並んでいる。これら2つのパッド40Pは、辺部40bに沿って並んでいる。
 4つのパッド40Pは、ケルビンソースパッドKSPをコーナー部に配置した平面略L字状の配置となっている。アノードパッドAPおよびカソードパッドKPは、辺部40bに略平行な辺の長さが辺部40aに略平行な辺の長さよりも長い平面略長方形をなしている。ゲートパッドGPおよびケルビンソースパッドKSPは、一辺の長さがアノードパッドAPの長辺と略等しい平面略正方形をなしている。
 半導体装置20は、4本の信号端子93Lと、2本の信号端子93Hを備えている。信号端子93Lは、ゲート端子93Gと、ケルビンソース端子93KSと、アノード端子93Aと、カソード端子93Kを含んでいる。信号端子93Hは、ゲート端子93Gと、ケルビンソース端子93KSを含んでいる。6本の信号端子93は、X方向に並んで配置されている。具体的には、信号端子93Hのゲート端子93G、信号端子93Hのケルビンソース端子93KS、信号端子93Lのゲート端子93G、信号端子93Lのケルビンソース端子93KS、信号端子93Lのアノード端子93A、信号端子93Lのカソード端子93Kの順に並んでいる。6本の信号端子93が、並設端子に相当する。信号端子93Lが第1素子に接続された第1端子に相当し、信号端子93Hが第2素子に接続された第2端子に相当する。
 X方向において、信号端子93の一部は、半導体素子40Lの辺部40bと半導体素子40Hの辺部40aとの間に位置している。半導体素子40Lにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して対応するゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して対応するケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110を介してアノード端子93Aに接続されている。カソードパッドKPは、ボンディングワイヤ110を介してカソード端子93Kに接続されている。半導体素子40Lに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93との対向辺である辺部40aと交差している。
 半導体素子40Hにおいて、ゲートパッドGPは、ボンディングワイヤ110を介して対応するゲート端子93Gに接続されている。ケルビンソースパッドKSPは、ボンディングワイヤ110を介して対応するケルビンソース端子93KSに接続されている。アノードパッドAPは、ボンディングワイヤ110Sを介して隣に位置するケルビンソースパッドKSPに接続されている。カソードパッドKPにはボンディングワイヤ110、110Sが接続されていない。半導体素子40Hに接続されたすべてのボンディングワイヤ110は、平面視において、信号端子93との対向辺である辺部40bと交差している。
 <第4実施形態のまとめ>
 本実施形態によれば、X方向に並んで配置される半導体素子40H、40Lが互いに共通の構造を有している。共通構造において、パッド40Pは、角部C1の周辺に偏って設けられている。半導体素子40Lは、辺部40aがY方向において信号端子93と対向し、辺部40bがX方向において半導体素子40Hと対向するように配置されている。半導体素子40Hは、辺部40bがY方向において信号端子93と対向し、辺部40aがX方向において半導体素子40Lと対向するように、半導体素子40Lの配置に対して90度回転して配置されている。上記した半導体素子40H、40Lの配置により、2つの半導体素子40H、40Lのパッド配置領域が、X方向において短くなる。パッド配置領域が短くなるため、複数の信号端子93の配置領域を、X方向において短くすることができる。よって、回路基板13において、信号端子93起因のデッドスペースDSを低減することができる。デッドスペースDSを低減しつつ、ボンディングワイヤ110に関する信頼性の低下を抑制することができる。その他、記載を省略するが、先行実施形態と同一または類似の構成について、先行実施形態に記載した効果と同等の効果を奏することができる。
 本実施形態によれば、信号端子93H、93Lを並設している。これにより、たとえば信号端子93H、93Lを折曲しなくても、回路基板13に接続することができる。
 パッド40Pの配置を第3実施形態に記載した構成とする例を示したが、これに限定されない。第1実施形態、第2実施形態、変形例に示した構成との組み合わせも可能である。
 (他の実施形態)
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。たとえば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものと解されるべきである。
 明細書および図面等における開示は、請求の範囲の記載によって限定されない。明細書および図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書および図面等の開示から、多様な技術的思想を抽出することができる。
 ある要素または層が「上にある」、「連結されている」、「接続されている」または「結合されている」と言及されている場合、それは、他の要素、または他の層に対して、直接的に上に、連結され、接続され、または結合されていることがあり、さらに、介在要素または介在層が存在していることがある。対照的に、ある要素が別の要素または層に「直接的に上に」、「直接的に連結されている」、「直接的に接続されている」または「直接的に結合されている」と言及されている場合、介在要素または介在層は存在しない。要素間の関係を説明するために使用される他の言葉は、同様のやり方で(例えば、「間に」対「直接的に間に」、「隣接する」対「直接的に隣接する」など)解釈されるべきである。この明細書で使用される場合、用語「および/または」は、関連する列挙されたひとつまたは複数の項目に関する任意の組み合わせ、およびすべての組み合わせを含む。
 空間的に相対的な用語「内」、「外」、「裏」、「下」、「低」、「上」、「高」などは、図示されているような、ひとつの要素または特徴の他の要素または特徴に対する関係を説明する記載を容易にするためにここでは利用されている。空間的に相対的な用語は、図面に描かれている向きに加えて、使用または操作中の装置の異なる向きを包含することを意図することができる。例えば、図中の装置をひっくり返すと、他の要素または特徴の「下」または「真下」として説明されている要素は、他の要素または特徴の「上」に向けられる。したがって、用語「下」は、上と下の両方の向きを包含することができる。この装置は、他の方向に向いていてもよく(90度または他の向きに回転されてもよい)、この明細書で使用される空間的に相対的な記述子はそれに応じて解釈される。
 車両の駆動システム1は、上記した構成に限定されない。たとえば、モータジェネレータ3をひとつ備える例を示したが、これに限定されない。複数のモータジェネレータを備えてもよい。電力変換装置4が、電力変換回路としてインバータ6を備える例を示したが、これに限定されない。たとえば、複数のインバータを備える構成としてもよい。少なくともひとつのインバータと、コンバータを備える構成としてもよい。コンバータのみを備えてもよい。
 半導体素子40が、スイッチング素子としてMOSFET11を有する例を示したが、これに限定されない。たとえば、IGBTを採用することもできる。IGBTは、Insulated Gate Bipolar Transistorの略称である。
 半導体装置20が導電スペーサ70を備える例を示したが、これに限定されない。導電スペーサ70に代えて、表面金属体62に凸部を設けてもよい。
 ドレイン電極40Dに接続される配線部材として基板50の例を示したがこれに限定されない。基板50に限定されない構成においては、基板50に代えて、金属板(リードフレーム)を採用してもよい。ソース電極40Sに接続される配線部材として基板60の例を示したがこれに限定されない。基板60に限定されない構成においては、基板60に代えて、金属板(リードフレーム)を採用してもよい。金属板の場合、ドレイン電極40D側に、半導体素子40Hのドレイン電極40Dが接続される第1金属板と、半導体素子40Lのドレイン電極40Dが接続される第2金属板が配置される。ソース電極40S側に、半導体素子40Hのソース電極40Sが接続される第3金属板と、半導体素子40Lのソース電極40Sが接続される第4金属板が配置される。
 半導体装置20として、両面放熱構造の例を示したが、これに限定されない。図30に示すように片面放熱構造にも適用することができる。図30に示す例では、配線部材50Xである金属板上に、2つの半導体素子40(41、42)がX方向に並んで配置されている。2つの半導体素子40は、互いに並列接続されている。各半導体素子41,42において、パッド40Pは角部C1に偏って配置されている。半導体素子42は、半導体素子41の配置に対して90度回転して配置されている。半導体素子41の辺部40aと半導体素子42の辺部40bが、並設された信号端子93と対向している。主端子90Dは、配線部材50Xに接続されている。主端子90Sは、2つの半導体素子40の図示しないソース電極に接続されている。

Claims (12)

  1.  回路基板(13)に接続される半導体装置であって、
     一面に設けられた第1主電極(40D)と、前記一面とは板厚方向において反対の裏面に設けられた第2主電極(40S)と、前記裏面において前記第2主電極とは異なる位置に設けられた信号用のパッド(40P)と、を有する複数の半導体素子(40)と、
     前記第1主電極に電気的に接続された配線部材(50、50X)と、
     前記回路基板に接続される複数の信号端子(93)と、
     複数の前記半導体素子の前記パッドと複数の前記信号端子とを電気的に接続するボンディングワイヤ(110)と、を備え、
     複数の前記半導体素子のそれぞれは、前記板厚方向の平面視において4つの角部(C1~C4)と4つの辺部(40a~40d)を有する矩形状をなしており、
     複数の前記半導体素子は、第1素子(41、41H、41L)と、前記板厚方向に直交する第1方向において前記第1素子と並んで配置された第2素子(42、42H、42L)と、を含み、
     複数の前記信号端子は、前記第1素子および前記第2素子の少なくとも一方に接続され、前記第1方向に並んで配置された複数の並設端子(93H、93L)を含み、
     複数の前記並設端子は、前記板厚方向および前記第1方向に直交する第2方向において前記第1素子および前記第2素子と並んで配置され、
     前記第1素子および前記第2素子は互いに共通の構造を有し、前記第1素子および前記第2素子において、前記パッドは第1角部(C1)の周辺に偏って設けられ、
     前記第1素子において、前記第1角部に連なる第1辺部(40a)が前記第2方向において前記並設端子と対向し、前記第1角部に連なる第2辺部(40b)が前記第1方向において前記第2素子と対向し、
     前記第2素子は、前記第1素子の配置に対して90度回転して配置されており、
     前記第2素子において、前記第1角部に連なる第2辺部(40b)が前記第2方向において前記並設端子と対向し、前記第1角部に連なる第1辺部(40a)が前記第1方向において前記第1素子と対向している、半導体装置。
  2.  前記平面視において、
     前記第1素子に接続された前記ボンディングワイヤの少なくとも一部は、前記第1素子の第1辺部と交差し、
     前記第2素子に接続された前記ボンディングワイヤの少なくとも一部は、前記第2素子の第2辺部と交差している、請求項1に記載の半導体装置。
  3.  複数の前記並設端子の少なくとも一部は、前記第1方向において、前記第1素子の第2辺部と前記第2素子の第1辺部との間に位置している、請求項1または請求項2に記載の半導体装置。
  4.  前記第1素子の前記第1主電極と前記第2素子の前記第1主電極は、前記配線部材における共通の導体に接続され、
     前記第1素子と前記第2素子とが並列接続されている、請求項1~3いずれか1項に記載の半導体装置。
  5.  複数の前記半導体素子のそれぞれは、前記パッドを複数有し、
     前記パッドは、前記第1主電極と前記第2主電極との間を流れる主電流を制御するゲート電極用のゲートパッド(GP)を含み、
     前記ゲートパッドは、前記第1素子および前記第2素子のそれぞれにおいて、他の前記パッドよりも前記第1角部に近い、請求項4に記載の半導体装置。
  6.  前記配線部材は、第1導体(55)と、前記第1導体とは電気的に分離された第2導体(54)と、を有し、
     前記第1素子の前記第1主電極は前記第1導体に接続され、前記第2素子の前記第1主電極は前記第2導体に接続され、
     前記並設端子は、前記第1素子に接続された前記信号端子である第1端子(93L)と、前記第2素子に接続された前記信号端子である第2端子(93H)を含む、請求項1~3いずれか1項に記載の半導体装置。
  7.  前記第2主電極は、前記第1角部に対応して設けられ、前記第1辺部および前記第2辺部に対して傾斜する傾斜辺を含む切り欠き(43)を有し、
     前記第1素子および前記第2素子のそれぞれにおいて、前記パッドは、前記第2主電極が切り欠かれた部分を含むパッド形成領域に設けられている、請求項1~6いずれか1項に記載の半導体装置。
  8.  複数の前記半導体素子のそれぞれは、前記パッドを複数有し、
     前記第1素子および前記第2素子のそれぞれにおいて、複数の前記パッドは、前記切り欠きの傾斜辺に沿って並んでいる、請求項7に記載の半導体装置。
  9.  前記第1素子および前記第2素子のそれぞれにおいて、複数の前記パッドは、前記第1辺部および第2辺部に沿って並んでいる、請求項7に記載の半導体装置。
  10.  前記半導体素子は、該半導体素子の温度を検出する感温ダイオード(44)を有し、
     前記平面視において、前記感温ダイオードは、前記パッドの形成領域内であって、前記切り欠きの傾斜辺の近傍に設けられている、請求項9に記載の半導体装置。
  11.  複数の前記半導体素子のそれぞれは、前記パッドを複数有し、
     複数の前記パッドは、前記第1素子および前記第2素子のいずれにおいても前記ボンディングワイヤを介して前記信号端子に接続される第1パッド(GP、KSP)と、前記第1素子および前記第2素子のいずれかにおいて前記ボンディングワイヤを介して前記信号端子に接続される第2パッド(AP、KP)と、を含み、
     前記第1パッドは、前記第1方向および前記第2方向の一方において前記第2パッドと長さが等しく、他方において前記第2パッドよりも長い、請求項1~10いずれか1項に記載の半導体装置。
  12.  複数の前記半導体素子のそれぞれは、前記パッドを複数有し、
     複数の前記パッドは、前記第2主電極の電位を検出するケルビンパッド(KSP)と、前記半導体素子に設けられた感温ダイオードのアノードの電位を検出するアノードパッド(AP)と、前記感温ダイオードのカソードの電位を検出するカソードパッド(KP)と、を含み、
     前記ケルビンパッドは、前記アノードパッドまたは前記カソードパッドの隣に配置され、
     前記第1素子および前記第2素子の少なくとも一方において、前記ケルビンパッドの隣に位置する前記アノードパッドまたは前記カソードパッドが、前記ケルビンパッドと電気的に接続されている、請求項1~11いずれか1項に記載の半導体装置。
PCT/JP2022/020499 2021-06-16 2022-05-17 半導体装置 WO2022264733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280039938.7A CN117529812A (zh) 2021-06-16 2022-05-17 半导体装置
US18/507,421 US20240079383A1 (en) 2021-06-16 2023-11-13 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-100437 2021-06-16
JP2021100437A JP7472859B2 (ja) 2021-06-16 2021-06-16 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/507,421 Continuation US20240079383A1 (en) 2021-06-16 2023-11-13 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2022264733A1 true WO2022264733A1 (ja) 2022-12-22

Family

ID=84526184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020499 WO2022264733A1 (ja) 2021-06-16 2022-05-17 半導体装置

Country Status (4)

Country Link
US (1) US20240079383A1 (ja)
JP (1) JP7472859B2 (ja)
CN (1) CN117529812A (ja)
WO (1) WO2022264733A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128975A1 (ja) * 2014-02-26 2015-09-03 株式会社日立製作所 パワーモジュールおよび電力変換装置
US20170154868A1 (en) * 2015-12-01 2017-06-01 SK Hynix Inc. Semiconductor packages
JP2019145776A (ja) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 半導体装置
JP2020038885A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 半導体装置
JP2020145285A (ja) * 2019-03-05 2020-09-10 トヨタ自動車株式会社 半導体モジュールとそれを備えた半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128975A1 (ja) * 2014-02-26 2015-09-03 株式会社日立製作所 パワーモジュールおよび電力変換装置
US20170154868A1 (en) * 2015-12-01 2017-06-01 SK Hynix Inc. Semiconductor packages
JP2019145776A (ja) * 2018-02-16 2019-08-29 トヨタ自動車株式会社 半導体装置
JP2020038885A (ja) * 2018-09-03 2020-03-12 トヨタ自動車株式会社 半導体装置
JP2020145285A (ja) * 2019-03-05 2020-09-10 トヨタ自動車株式会社 半導体モジュールとそれを備えた半導体装置

Also Published As

Publication number Publication date
CN117529812A (zh) 2024-02-06
US20240079383A1 (en) 2024-03-07
JP7472859B2 (ja) 2024-04-23
JP2022191918A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
US11380656B2 (en) Semiconductor device
US11456238B2 (en) Semiconductor device including a semiconductor chip connected with a plurality of main terminals
WO2017199723A1 (ja) 半導体装置
US20210407875A1 (en) Semiconductor device
JP7338278B2 (ja) パワーモジュール及び電力変換装置
US11996344B2 (en) Semiconductor device
WO2022024567A1 (ja) 半導体装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
WO2022264733A1 (ja) 半導体装置
JP2022152703A (ja) 半導体装置
WO2023047881A1 (ja) 半導体装置およびその製造方法
WO2023166952A1 (ja) 半導体装置
WO2024062845A1 (ja) 半導体装置
JP7392557B2 (ja) 半導体装置
JP2014192976A (ja) 半導体装置
WO2023058381A1 (ja) 電力変換装置
US20240145349A1 (en) Semiconductor device
JP2023170769A (ja) 半導体装置
JP2023183160A (ja) 半導体装置およびその製造方法
JP2023078915A (ja) 半導体装置およびその製造方法
JP2024000845A (ja) 半導体装置
JP2023013642A (ja) 半導体装置
JP2022156034A (ja) 半導体装置
JP2024006354A (ja) 半導体装置
JP2023040345A (ja) 半導体モジュール及び半導体モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280039938.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824727

Country of ref document: EP

Kind code of ref document: A1