WO2022264710A1 - インクジェット記録装置及びプログラム - Google Patents

インクジェット記録装置及びプログラム Download PDF

Info

Publication number
WO2022264710A1
WO2022264710A1 PCT/JP2022/019701 JP2022019701W WO2022264710A1 WO 2022264710 A1 WO2022264710 A1 WO 2022264710A1 JP 2022019701 W JP2022019701 W JP 2022019701W WO 2022264710 A1 WO2022264710 A1 WO 2022264710A1
Authority
WO
WIPO (PCT)
Prior art keywords
carriage
inkjet head
inkjet
speed
unit
Prior art date
Application number
PCT/JP2022/019701
Other languages
English (en)
French (fr)
Inventor
靖彦 末冨
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023529675A priority Critical patent/JPWO2022264710A1/ja
Priority to EP22824704.5A priority patent/EP4357137A1/en
Publication of WO2022264710A1 publication Critical patent/WO2022264710A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04503Control methods or devices therefor, e.g. driver circuits, control circuits aiming at compensating carriage speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements

Definitions

  • the present invention relates to an inkjet recording device and a program.
  • Ink supplied through an ink flow path is subjected to pressure fluctuations in pressure chambers located in the middle of the ink channel, and ink is ejected from a large number of nozzles communicating with the large number of pressure chambers. Therefore, there is an inkjet recording apparatus for recording images, thin films, wiring, three-dimensional structures, and the like.
  • a carriage mounted with an inkjet head drives the inkjet head while scanning on a transport shaft, thereby ejecting ink droplets and forming an image on a recording medium.
  • the driving cycle of the inkjet head is generated based on the output signal obtained from the linear encoder in synchronization with the scanning of the carriage.
  • Patent Document 1 describes an invention that dynamically changes the timing of the pulses that drive the print head based on the speed and acceleration of the carriage.
  • the inkjet head drive cycle and drive frequency change when the inkjet head transport speed is not constant.
  • a reverberation wave is generated, which affects the next and subsequent droplets to be ejected. Therefore, when the driving frequency of the inkjet head changes, the degree of influence of the reverberation wave also changes, and thus the ink droplet velocity also changes.
  • the speed of ink droplets changes, there is a problem that the landing positions of the droplets vary, resulting in density unevenness in the formed image.
  • FIG. 13 shows an example of the drive cycle of the inkjet head and the ink droplet speed when the transport speed of the inkjet head is not constant.
  • the horizontal axis is the time (s) from the start of driving the inkjet head
  • the vertical axis is the transport speed of the inkjet head (m/s: solid line)
  • the driving cycle of the inkjet head ⁇ s : dashed line
  • ink droplet velocity m/s: dashed line
  • An object of the present invention is to provide an inkjet recording apparatus and a program that can obtain more stable image quality in formed images.
  • the inkjet recording apparatus of the invention described in claim 1 comprises: inkjet head, a carriage on which the inkjet head is mounted; a setting unit that sets at least one of velocity and acceleration of the carriage for each position of the carriage; an acquisition unit that acquires drive cycle dependency information of the droplet velocity of ink ejected from the inkjet head; a correction unit that corrects a control parameter of the inkjet head during ink ejection based on at least one of the speed and acceleration of the carriage and the drive cycle dependency information of the droplet speed; Prepare.
  • inkjet head a carriage on which the inkjet head is mounted; a detection unit that detects at least one of velocity and acceleration of the carriage for each pixel of an image to be formed; an acquisition unit that acquires drive cycle dependency information of the droplet velocity of ink ejected from the inkjet head; a correction unit that corrects a control parameter of the inkjet head during ink ejection based on at least one of the speed and acceleration of the carriage and the drive cycle dependency information of the droplet speed; Prepare.
  • ink jet recording apparatus of the invention described in claim 3 inkjet head, a carriage on which the inkjet head is mounted; a setting unit that sets at least one of velocity and acceleration of the carriage for each position of the carriage; a detection unit that detects at least one of velocity and acceleration of the carriage for each pixel of an image to be formed; an acquisition unit that acquires drive cycle dependency information of the droplet velocity of ink ejected from the inkjet head; a correction unit that corrects a control parameter of the inkjet head during ink ejection based on at least one of the speed and acceleration of the carriage and the drive cycle dependency information of the droplet speed; Prepare.
  • the invention according to claim 4 is the ink jet recording apparatus according to claim 2 or 3,
  • the detection unit is provided in the inkjet head or the carriage.
  • the invention according to claim 5 is the inkjet recording apparatus according to any one of claims 1 to 4,
  • the correction unit corrects the control parameter when the speed of the carriage is not constant.
  • the invention according to claim 6 is the inkjet recording apparatus according to any one of claims 1 to 5, A three-dimensional object is assumed to be an object of image formation.
  • the invention according to claim 7 is the inkjet recording apparatus according to any one of claims 1 to 6,
  • the correction unit corrects image data as a control parameter.
  • the invention according to claim 8 is the inkjet recording apparatus according to any one of claims 1 to 6,
  • the corrector corrects the ejection signal as a control parameter.
  • the invention according to claim 9 is the inkjet recording apparatus according to any one of claims 1 to 6,
  • the correcting unit corrects by selecting a drive waveform as a control parameter.
  • the invention according to claim 10 is the inkjet recording apparatus according to any one of claims 1 to 9,
  • the correction unit corrects the distance between the inkjet head and the recording medium and the angle of the inkjet head with respect to the recording medium as control parameters.
  • the invention according to claim 11 is the ink jet recording apparatus according to claim 10,
  • the correcting unit corrects the distance between the inkjet head and the recording medium in a direction to widen the distance when the droplet speed is higher than a predetermined reference value, and corrects the distance in a direction in which the droplet speed is higher than the predetermined reference value. Correct the distance in the direction of narrowing if it is slow.
  • the invention according to claim 12 is the ink jet recording apparatus according to claim 10 or 11,
  • the correction unit corrects the angle of the inkjet head with respect to the recording medium so that the landing positions of the droplets ejected from the inkjet head become sparse when the droplet speed is higher than a predetermined reference value. and, when the droplet velocity is lower than a predetermined reference value, correction is made so that the landing positions of the droplets ejected from the inkjet head become dense.
  • the invention according to claim 13 is the ink jet recording apparatus according to any one of claims 1 to 12, Equipped with a robot arm,
  • the robot arm includes the carriage.
  • inkjet head a carriage on which the inkjet head is mounted; a computer of an inkjet recording device comprising a setting unit that sets at least one of velocity and acceleration of the carriage for each position of the carriage; an acquisition unit that acquires drive cycle dependency information of droplet velocity of ink ejected from the inkjet head; a correction unit that corrects control parameters of the inkjet head when ink is ejected, based on at least one of the speed and acceleration of the carriage and the drive cycle dependency information of the droplet speed; function as
  • FIG. 2 is a diagram showing an example of a robot arm equipped with a carriage on which the inkjet head of this embodiment is mounted;
  • 1 is a block diagram showing the functional configuration of an inkjet printing apparatus according to an embodiment;
  • FIG. 10 is a diagram showing an example of the drive cycle dependency of droplet velocity; 4 is a flowchart of control parameter correction processing according to the first embodiment;
  • FIG. 4 is a diagram showing an example of a grayscale profile;
  • FIG. 10 is a diagram showing an example of the amount of change in the distance between adjacent dots;
  • FIG. 11 is a flowchart of control parameter correction processing according to Modification 1 of the second embodiment;
  • FIG. FIG. 5 is a diagram showing an example of correction time of an ejection signal;
  • FIG. 11 is a flowchart of control parameter correction processing according to Modification 2 of the second embodiment;
  • FIG. It is a figure which shows an example of the waveform pattern of a drive waveform.
  • FIG. 11 is a flowchart of control parameter correction processing according to Modification 3 of the second embodiment;
  • FIG. FIG. 3 is a diagram showing an example of the transport speed/driving cycle of an inkjet head and ink droplet speed;
  • the inkjet recording apparatus 100 of the present embodiment is an inkjet recording apparatus that forms an image on, for example, a three-dimensional object (recording medium), and is a robot arm equipped with a carriage 111 on which an inkjet head 20 is mounted, as shown in FIG. A main body 11 is provided.
  • FIG. 2 is a block diagram showing the functional configuration of the inkjet recording apparatus 100 of this embodiment.
  • the inkjet recording apparatus 100 includes a robot arm unit 10, an inkjet head 20, a drive waveform signal generation unit 30, a control unit 40, a storage unit 50, a communication unit 60, an operation reception unit 71, and a display unit 72. , a power supply unit 80, and the like.
  • the robot arm section 10 includes a robot arm main body 11 having a carriage 111 and a robot arm drive control section 12 .
  • the robot arm body 11 is a 6-axis multi-joint robot. , the inkjet head 20 can be arranged. Further, the robot arm main body 11 is not limited to 6 axes, and an articulated robot having an appropriate number of axes such as 5 axes or 7 axes can be used. Since the articulated robot itself is known, detailed description thereof will be omitted.
  • the robot arm drive control unit 12 drives and controls the robot arm body 11 under the control of the control unit 40 .
  • the robot arm drive control section 12 also includes an encoder 121 .
  • the encoder 121 detects the rotation of the drive motor of the robot arm drive control unit 12 and outputs a signal corresponding to the direction of rotation for each rotation of a predetermined angle, thereby detecting the position of the carriage 111 .
  • the inkjet head 20 ejects ink onto a recording medium to record an image or the like.
  • the inkjet head 20 includes a plurality of recording elements 20a, a head driving section 24, and the like.
  • the recording elements 20a each have a nozzle 21, an ink flow path 22, a piezoelectric element 23, and the like.
  • the head drive unit 24 applies a drive signal (driving waveform) to the selected piezoelectric element 23 to deform the piezoelectric element 23 .
  • Ink is sent to each nozzle 21 from a supply channel common to the plurality of nozzles 21 via an ink channel 22 communicating with each nozzle 21 .
  • Each ink channel 22 includes a pressure chamber, and the pressure of the ink in the pressure chamber changes due to a deformation action in response to application of a drive voltage to a piezoelectric element 23 located along the wall surface of the pressure chamber (or forming the wall surface itself). is given.
  • the piezoelectric element 23 applies pressure fluctuations to the ink supplied to the nozzles 21 in accordance with the drive waveform, ejects (discharges) ink droplets from the nozzles 21, and records an image.
  • the inkjet recording apparatus 100 is provided with the number of inkjet heads 20 corresponding to the number of colors and types of ink ejected in one image recording operation in the inkjet recording apparatus 100 .
  • the inkjet head 20 employs a multi-drop system in which a plurality of ink droplets are continuously ejected, joined in the middle, and landed as a single droplet in a corresponding pixel range (same pixel range). Ink can be discharged, and the density gradation of each pixel range can be determined according to the number of ink droplets.
  • the drive waveform signal generation section 30 generates a drive waveform that the head drive section 24 outputs to the recording element 20a.
  • the drive waveform signal generation unit 30 converts digital data indicating a predetermined drive waveform into analog data, and outputs a signal obtained by amplifying the voltage and current to the head drive unit 24 as a drive waveform, although not particularly limited thereto.
  • the generated drive waveforms include not only trapezoidal and rectangular waveforms for ejecting ink, but also drive waveforms (such as triangular waves) that cause pressure changes in ink more slowly.
  • half-value width (the width of the portion that is 50% or more of the amplitude; it may be a value other than 50%) may be included.
  • the control unit 40 is a processor that includes a CPU 41 (Central Processing Unit) and a RAM 42 (Random Access Memory) and controls various operations of the inkjet recording apparatus 100 .
  • the CPU 41 performs various kinds of arithmetic processing to execute control operations.
  • the RAM 42 provides a working memory space for the CPU 41 and stores temporary data.
  • the control unit 40 controls the output of driving waveforms related to the ink ejection operation of the inkjet head 20 to the recording elements 20a based on image data to be recorded, setting data related to image recording, and the like.
  • control unit 40 causes the storage unit 50 to store a carriage coordinate-carriage speed table or a carriage coordinate-carriage acceleration table, which will be described later, so that at least one of the speed and acceleration of the carriage 111 is determined for each position of the carriage 111. set. At this time, the control unit 40 functions as a setting unit. Further, the control unit 40 obtains from the storage unit 50 a droplet velocity-driving cycle characteristic table as driving cycle dependency information of the droplet velocity of the ink ejected from the inkjet head 20 . At this time, the control unit 40 functions as an acquisition unit.
  • control unit 40 corrects the control parameters of the inkjet head 20 when ejecting ink, based on at least one of the velocity and acceleration of the carriage 111 and the drive cycle dependence information of the droplet velocity.
  • control unit 40 functions as a correction unit.
  • control parameters are image data, ejection signals, and driving waveforms.
  • the storage unit 50 stores image data to be recorded, and also stores various programs and setting data.
  • the storage unit 50 has at least a nonvolatile memory and may also have a volatile memory (RAM). Image data may be stored in RAM.
  • the nonvolatile memory is, for example, a flash memory, and may additionally or alternatively have a HDD (Hard Disk Drive).
  • a part of the storage unit 50 may be held by the inkjet head 20 or the like.
  • Parameter information specific to the inkjet head 20, information on the initially abnormal nozzle, and the like can be stored in a non-volatile memory or the like included in the inkjet head 20. FIG. These pieces of information may be read by the control unit 40 during initial setting after the inkjet head 20 is installed in the inkjet recording apparatus 100, and stored and managed integrally in the storage unit 50 of the inkjet recording apparatus 100. .
  • the storage unit 50 also stores waveform setting data 51 .
  • the waveform setting data 51 stores waveform pattern data of driving waveforms to be output to the recording elements 20a.
  • the waveform pattern data stored here particularly includes information on the start timing, pulse width, and voltage amplitude of the driving waveform corresponding to each ink ejection when a plurality of ink ejections are continuously performed.
  • Information on the pulse width may be a parameter obtained from a non-volatile memory included in the inkjet head 20 . These may be used as digital data from which the drive waveform generated by the drive waveform signal generator 30 is based.
  • the storage unit 50 stores a carriage coordinate-carriage speed table that indicates a correspondence relationship in which the speed of the carriage 111 is set in advance in the carriage coordinates that indicate the predetermined position of the carriage 111 .
  • a carriage coordinate/carriage acceleration table may be stored that indicates a correspondence relationship in which the acceleration of the carriage 111 is set in advance in the carriage coordinates.
  • the storage unit 50 also stores a droplet velocity-driving cycle characteristic table in which the correspondence relationship between the droplet velocity of the ink ejected by the inkjet head 20 and the driving cycle of the inkjet head 20 is calculated by simulation.
  • FIG. 3 is a diagram showing an example of the dependence of the ink droplet speed on the driving cycle of the inkjet head 20.
  • the drive period of the inkjet head 20 is relatively short (for example, 40 to 80 us), the ink droplet velocity is unstable.
  • the communication unit 60 executes and controls communication with external devices.
  • the communication unit 60 is connected to an external computer based on a communication standard such as TCP/IP, acquires job data including image data to be recorded, and obtains the status of the image recording operation based on the job data. can be output.
  • the communication unit 60 may be directly connected to a peripheral device via a USB (Universal Serial Bus) or the like to transmit and receive data.
  • USB Universal Serial Bus
  • the operation reception unit 71 receives an input operation by a user or the like, and outputs the received content to the control unit 40 as an input signal.
  • the operation reception unit 71 includes, for example, a touch panel and push button switches.
  • the touch panel may be positioned so as to overlap the display screen of the display unit 72, and the operation content may be specified in synchronization with the display content on the display screen.
  • the display unit 72 displays statuses, selection menus, etc. to the user.
  • the display unit 72 has, for example, a display screen and an indicator (lamp).
  • the display unit 72 has, for example, a liquid crystal display, and can display various characters and graphics on the display screen in a dot matrix.
  • the indicator may be used, for example, to indicate the presence or absence of power supply or the presence or absence of an operational abnormality using an LED lamp or the like.
  • the power supply unit 80 supplies power with a voltage corresponding to each unit of the inkjet recording apparatus 100 .
  • a voltage corresponding to the peak voltage of each drive waveform is output to the drive substrate of the inkjet head 20 .
  • control parameter correction processing for the inkjet head 20 in the inkjet recording apparatus 100 of this embodiment will be described.
  • the control unit 40 performs the control parameter correction process of this embodiment before image formation by the inkjet head 20 .
  • FIG. 4 is a flowchart showing the flow of control parameter correction processing.
  • the control unit 40 acquires a carriage coordinate-carriage speed table from the storage unit 50 (step S1).
  • the control unit 40 acquires the droplet velocity-drive cycle characteristic table from the storage unit 50 (step S2).
  • the control unit 40 uses the carriage coordinate/carriage speed table obtained in step S1 and the droplet speed/drive cycle characteristics table obtained in step S2 to determine the carriage coordinates and the ink droplet speed corresponding relationship.
  • a coordinate-droplet velocity table is calculated (step S3).
  • the control unit 40 calculates a density profile indicating the correspondence relationship between the carriage coordinates and the density of the image to be formed, as shown in FIG. 5A, based on the carriage coordinates-droplet velocity table calculated in step S3. (Step S4).
  • control unit 40 calculates a density correction profile shown in FIG. 5B that cancels out the density unevenness in the density profile calculated in step S4 (step S5).
  • the example shown in FIGS. 5A and 5B is a case of so-called solid printing in which ink is discharged in all pixels.
  • the control unit 40 corrects the density of the image data (control parameter) to be recorded based on the density correction profile calculated in step S5 (step S6), and ends the process.
  • the control unit 40 may use the carriage coordinate-carriage acceleration table to execute the control parameter correction process.
  • the carriage 111 has a detection section 111a.
  • the detection unit 111 a is a sensor that detects at least one of the speed and acceleration of the carriage 111 and outputs a detection signal to the control unit 40 .
  • the detection unit 111 a may be provided in the inkjet head 20 .
  • control parameter correction processing for the inkjet head 20 in the inkjet recording apparatus 100 of this embodiment will be described.
  • the control unit 40 performs the control parameter correction process of this embodiment while the inkjet head 20 is forming an image.
  • FIG. 6 is a flowchart showing the flow of control parameter correction processing according to this embodiment.
  • the control unit 40 acquires current position information of the carriage 111 from the encoder 121 (step S11).
  • the control unit 40 acquires the average value VHN of the velocity of the carriage 111 at the pixel corresponding to the current position of the carriage 111 acquired in step S11 from the detection unit 111a (step S12).
  • the average value of the speed of the carriage 111 at the pixel corresponding to the current position is, for example, the speed when the inkjet head 20 passes from the (N ⁇ 1)-th pixel where ejection is performed to the N-th pixel where ejection is performed next.
  • step S14 is the average value of Next, based on the average value VHN of the velocity of the carriage 111 at the pixels corresponding to the current position obtained in step S12, the control unit 40 controls the pixels corresponding to the current position (for example, the N-1th pixel to the Nth pixel).
  • second) is calculated from the following equation (1) (step S13 ).
  • TN dN / VHN ... Formula (1)
  • dN is the distance from the ( N -1)th pixel to the Nth pixel on the input image data.
  • the control unit 40 acquires the droplet speed-driving cycle characteristic table from the storage unit 50 (step S14).
  • the control unit 40 determines the driving cycle T N for the pixel corresponding to the current position calculated in step S13 and the droplet speed-driving cycle characteristic table acquired in step S14 to determine the droplet speed for the pixel corresponding to the current position.
  • a speed DV N is obtained (step S15).
  • the control unit 40 determines the droplet flight time t in the pixel corresponding to the current position from the droplet speed DV N obtained in step S15 and the distance Gap from the nozzle surface of the inkjet head 20 to the image forming surface of the recording medium.
  • N is calculated from the following formula (2) (step S16).
  • tN Gap/ DVN ... Formula (2)
  • the influence of air resistance on ink droplets may be taken into account when calculating the droplet flight time tN .
  • the control unit 40 determines that the ink droplets will land on the image forming surface based on the droplet flying time tN calculated in step S16 and the average value VHN of the velocity of the carriage 111 at the pixel corresponding to the current position.
  • the distance DN between adjacent dots in the pixel corresponding to the current position is calculated from the following equation (3) (step S17).
  • D N VH N t N - VH N-1 t N-1 + d N Equation (3)
  • FIG. 7 shows an example of the amount of change in the distance DN between adjacent dots.
  • the horizontal axis is the position (mm) of the carriage 111
  • the vertical axis is the variation (um) of the distance DN between adjacent dots.
  • the control unit 40 determines that the distance D N between adjacent dots calculated in step S17 is the distance d N from the (N ⁇ 1)-th pixel to the N-th pixel on the input image data (target value with no density unevenness). is calculated (step S18). Specifically, when the distance DN between adjacent dots is smaller than the distance dN , the correction is made to decrease the density, and when it is greater, the correction is made to increase the density. Next, the control unit 40 corrects the density of the image data (control parameter) to be recorded based on the density correction value calculated in step S18 (step S19), and ends the process.
  • FIG. 8 is a flowchart showing the control parameter correction process of this modified example.
  • the control unit 40 performs the control parameter correction process of this modified example while the inkjet head 20 is forming an image.
  • the following description focuses on differences from the second embodiment.
  • the configuration of the inkjet recording apparatus 100 of this modification is the same as that of the inkjet recording apparatus 100 of the second embodiment.
  • control unit 40 first performs steps S21 to S27, which are the same as steps S11 to S17 of the control parameter correction process of the second embodiment.
  • the control unit 40 determines that the distance D N between adjacent dots calculated in step S27 is the distance d N from the (N ⁇ 1)-th pixel to the N-th pixel on the input image data (the target value in which there is no density unevenness).
  • the ink ejection signal is corrected so that it becomes equal to .
  • the control unit 40 calculates the correction time ⁇ taN of the ejection signal by the following formula (5) so as to satisfy the following formula (4) (step S28).
  • VH N ⁇ ⁇ ta N is the average value VH N of the speed at which the inkjet head 20 passes the N-th pixel to be ejected next, and the droplet by signal correction when the inkjet head 20 is moving. is the amount of deviation of the impact position of
  • the control unit 40 corrects the ejection signal (control parameter) based on the ejection signal correction time ⁇ ta N calculated in step S28 (step S29), and ends the process.
  • FIG. 9 shows an example of the correction time ⁇ taN of the ejection signal.
  • the horizontal axis is the position (mm) of the carriage 111
  • the vertical axis is the ejection signal correction time ⁇ ta N (us).
  • the time for applying the ejection signal is subtracted (the driving frequency is speed).
  • the time for applying the ejection signal is corrected to be positive (in the direction of slowing down the drive frequency).
  • the examples shown in FIGS. 7 and 9 are cases of so-called solid printing in which ink is discharged in all pixels. In the case of intermittent discharge, as shown in FIGS. 7 and 9, the discharge is not continuous but discontinuous.
  • control unit 40 executes the control parameter correction process while the inkjet head 20 is forming an image, but the present invention is not limited to this. All pixels may be corrected before image formation. When the correction is performed during image formation, the correction is performed based on the amount of deviation of the landing position of the droplet from the (N ⁇ 1)th pixel to the Nth pixel with the (N ⁇ 1)th pixel as the reference. However, if all pixels are corrected before image formation, for example, the 0th pixel may be used as a reference, and the correction may be made based on the amount of deviation of the landing position of the liquid droplet from the 0th pixel.
  • FIG. 10 is a flowchart showing the control parameter correction process of this modified example.
  • the control unit 40 performs the control parameter correction process of this modified example while the inkjet head 20 is forming an image.
  • the following description focuses on differences from the second embodiment.
  • the configuration of the inkjet recording apparatus 100 of this modification is the same as that of the inkjet recording apparatus 100 of the second embodiment.
  • control unit 40 performs steps S31 to S35 similar to steps S11 to S15 of the control parameter correction process of the second embodiment.
  • control unit 40 selects waveform pattern data (control parameters) of the driving waveform to be output to each recording element 20a from the waveform setting data 51 based on the droplet velocity acquired in step S35 (step S36), End the process.
  • the control unit 40 selects the waveform A with a low voltage value when the droplet speed is lower than the target value in which there is no density unevenness.
  • the control unit 40 selects the waveform C with a high voltage value.
  • the control unit 40 selects the waveform B whose voltage value is intermediate between the waveforms A and C when the droplet velocity is appropriate for the target value.
  • step S36 of the control parameter correction process of Modification 2 of the second embodiment the voltage value of the driving waveform is changed by selecting the waveform pattern data of the driving waveform based on the droplet velocity. Not exclusively.
  • the pulse width of the driving waveform and the slope time may be changed.
  • a complex waveform other than the waveform of a single pulse may be used.
  • the number of waveform pattern data of the drive waveform stored in the waveform setting data 51 is determined from the maximum frequency of the image forming job, the input image data transfer speed, the number of gradations of the ink volume, and the like.
  • FIG. 12 is a flowchart showing the control parameter correction process of this modified example.
  • the control unit 40 performs the control parameter correction process of this modified example while the inkjet head 20 is forming an image.
  • the following description focuses on differences from the second embodiment.
  • the configuration of the inkjet recording apparatus 100 of this modification is the same as that of the inkjet recording apparatus 100 of the second embodiment.
  • control unit 40 performs steps S41 to S45 similar to steps S11 to S15 of the control parameter correction process of the second embodiment.
  • control unit 40 controls the robot arm drive control unit 12 based on the droplet velocity acquired in step S45, and changes at least one of the position and angle of the carriage 111 (step S46), End the process.
  • the control unit 40 adjusts the distance (control parameter) between the carriage 111 and the print medium. Shrink.
  • the control unit 40 widens the distance (control parameter) between the carriage 111 and the recording medium.
  • the control unit 40 corrects the angle (control parameter) of the carriage 111 so that the droplet landing positions become dense. Further, when the droplet speed is higher than the target value, the control unit 40 corrects the angle (control parameter) of the carriage 111 so that the droplet landing positions become sparse.
  • the control unit 40 acquires the acceleration of the carriage 111 at the pixel corresponding to the current position of the carriage 111 from the detection unit 111a, and based on the acceleration of the carriage 111, A control parameter correction process may be executed.
  • the inkjet recording apparatus 100 of the present embodiment sets the inkjet head 20, the carriage 111 on which the inkjet head 20 is mounted, and at least one of the velocity and acceleration of the carriage 111 for each position of the carriage 111.
  • the inkjet recording apparatus 100 of the present embodiment also includes the inkjet head 20, the carriage 111 on which the inkjet head 20 is mounted, and a detection unit that detects at least one of the velocity and acceleration of the carriage 111 for each pixel of the image to be formed.
  • 111a an acquisition unit (control unit 40) that acquires drive cycle dependency information of the droplet speed of ink ejected from the inkjet head 20, at least one of the speed and acceleration of the carriage 111, and the droplet speed.
  • a correction unit (control unit 40) that corrects control parameters during ink ejection from the inkjet head 20 based on the drive cycle dependence information. Therefore, more stable image quality can be obtained in the formed image.
  • the inkjet recording apparatus 100 of the present embodiment also includes the inkjet head 20, the carriage 111 on which the inkjet head 20 is mounted, and a setting unit (controller) that sets at least one of the carriage speed and acceleration for each position of the carriage 111. 40), a detection unit 111a that detects at least one of the speed and acceleration of the carriage 111 for each pixel of an image to be formed, and drive cycle dependency information of the speed of ink droplets ejected from the inkjet head 20. Based on the acquisition unit (control unit 40) to acquire, at least one of the velocity and acceleration of the carriage 111, and the drive cycle dependency information of the droplet velocity, the control parameters during ink ejection of the inkjet head 20 are corrected. and a correction unit (control unit 40). Therefore, more stable image quality can be obtained in the formed image.
  • the inkjet recording apparatus 100 of the present embodiment includes the detection unit 111a in the inkjet head 20 or the carriage 111. As shown in FIG. Therefore, the velocity and acceleration of the inkjet head 20 can be detected more accurately than when the detection section 111a is provided in a portion of the robot arm body 11 other than the carriage 111.
  • FIG. 1 the detection unit 111a in the inkjet head 20 or the carriage 111.
  • the correction unit corrects the control parameters when the speed of the carriage 111 is not constant. Therefore, even if the speed of the carriage 111 is not constant, it is possible to obtain a more stable image quality in the formed image.
  • the inkjet recording apparatus 100 of the present embodiment forms an image on a three-dimensional object. Therefore, even when the recording medium is a three-dimensional object, it is possible to obtain a more stable image quality in the formed image.
  • the correction section corrects image data as a control parameter. Therefore, by correcting the image data, a more stable image quality can be obtained in the formed image.
  • the correcting section corrects the ejection signal as a control parameter. Therefore, by correcting the ejection signal, it is possible to obtain a more stable image quality in the formed image.
  • the correcting section performs correction by selecting a drive waveform as a control parameter. Therefore, more stable image quality can be obtained in the formed image by correcting by selecting the drive waveform.
  • the correction unit corrects the distance between the inkjet head 20 and the recording medium and the angle of the inkjet head 20 with respect to the recording medium as control parameters. Therefore, by correcting the distance and angle of the inkjet head 20 with respect to the recording medium, more stable image quality can be obtained in the formed image.
  • the correction unit corrects the distance between the inkjet head 20 and the recording medium in the direction of widening the droplet velocity when the droplet velocity is higher than a predetermined reference value.
  • the distance is corrected in the narrowing direction. Therefore, by correcting the distance of the inkjet head 20 with respect to the recording medium based on the droplet velocity, it is possible to obtain more stable image quality in the formed image.
  • the correction unit adjusts the angle of the inkjet head 20 with respect to the recording medium to the impact of the droplets ejected from the inkjet head 20 when the droplet speed is faster than a predetermined reference value. Correction is made so that the positions become sparse, and correction is made so that the landing positions of the droplets ejected from the inkjet head 20 become dense when the droplet velocity is lower than a predetermined reference value. Therefore, by correcting the angle of the inkjet head 20 with respect to the recording medium based on the droplet velocity, it is possible to obtain more stable image quality in the formed image.
  • the inkjet recording apparatus 100 of this embodiment includes a robot arm (robot arm main body 11 ), and the robot arm includes a carriage 111 . Therefore, even if the carriage 111 is provided on the robot arm and the speed of the carriage 111 is not constant, it is possible to obtain more stable image quality in the formed image.
  • the inkjet recording apparatus 100 includes the robot arm main body 11 on which the inkjet head 20 is mounted, but the present invention is not limited to this.
  • control parameters during ink ejection of the inkjet head 20 are corrected when image formation is performed when the moving speed of the carriage is not constant.
  • the speed and acceleration of the carriage 111 are detected by the inkjet head 20 or the detection unit provided in the carriage 111, but the present invention is not limited to this. It may be detected based on the output signal of the encoder 121 of the robot arm drive control section 12 .
  • control unit 40 may also correct the control parameters during ink ejection from the inkjet head 20 in the control parameter correction processing of the first embodiment and the second embodiment.
  • This invention can be used for inkjet recording devices and programs.
  • Inkjet recording apparatus 10
  • Robot arm unit 11
  • Robot arm body 11
  • Carriage 111a
  • Detection unit 12
  • Robot arm drive control unit 20
  • Inkjet head 20a
  • Recording element 21
  • Nozzle 22
  • Ink flow path 23
  • Piezoelectric element 24
  • Head drive unit 30
  • Drive waveform signal generation unit 40
  • Control Part 41
  • CPU 42
  • RAMs 50
  • storage unit 51 waveform setting data
  • communication unit 71
  • operation reception unit 72
  • display unit 80 power supply unit

Landscapes

  • Ink Jet (AREA)

Abstract

形成した画像においてより安定した画質が得られるインクジェット記録装置及びプログラムを提供する。 インクジェット記録装置100は、インクジェットヘッド20と、インクジェットヘッド20を搭載するキャリッジ111と、キャリッジ111の位置ごとにキャリッジ111の速度及び加速度のうち少なくとも一つを設定する設定部(制御部40)と、インクジェットヘッド20から吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部(制御部40)と、キャリッジの速度及び加速度のうち少なくとも一つ、及び液滴速度の駆動周期依存性情報に基づいて、インクジェットヘッド20のインク吐出時の制御パラメーターを補正する補正部(制御部40)と、を備える。

Description

インクジェット記録装置及びプログラム
 この発明は、インクジェット記録装置及びプログラムに関する。
 インク流路(インクチャネル)を経て供給されるインクに対して当該インクチャネルの途中に位置する圧力室で圧力変動を付与して、多数の圧力室にそれぞれ連通する多数のノズルからインクを吐出することで、画像、薄膜、配線や立体構造などの記録を行うインクジェット記録装置がある。
 このインクジェット記録装置は、インクジェットヘッドを搭載したキャリッジが搬送軸上をスキャンしながらインクジェットヘッドを駆動することによりインクの液滴を吐出し、画像を記録媒体上に形成する。インクジェットヘッドの駆動周期は、キャリッジのスキャンに同期してリニアエンコーダーから得られる出力信号に基づいて、生成される。
 これに関連して、特許文献1には、キャリッジの速度及び加速度に基づいて、印字ヘッドを駆動するパルスのタイミングを動的に変更する発明が記載されている。
特開2002-002046号公報
 上記のように、キャリッジの位置情報に基づいて、インクジェットの駆動周期が決定されるため、インクジェットヘッドの搬送速度が等速でない場合、インクジェットヘッドの駆動周期及び駆動周波数が変化する。また、インクジェットヘッドの圧力室内では液滴を吐出した後、残響波が発生し次以降に吐出される液滴に影響を及ぼす。したがって、インクジェットヘッドの駆動周波数が変化すると、この残響波による影響度も変化するため、インクの液滴速度も変化する。そして、インクの液滴速度が変化すると、液滴の着弾位置がばらついて、形成した画像において濃度ムラが発生してしまうという問題があった。
 図13にインクジェットヘッドの搬送速度が等速でない場合のインクジェットヘッドの駆動周期、及びインクの液滴速度の例を示す。図13に示す例において、横軸はインクジェットヘッドの駆動を開始してからの時間(s)であり、縦軸がインクジェットヘッドの搬送速度(m/s:実線)、インクジェットヘッドの駆動周期(μs:破線)、及びインクの液滴速度(m/s:一点鎖線)である。インクジェットヘッドの駆動を開始してからインクジェットヘッドの搬送速度が加速している期間において、インクジェットヘッドの駆動周期は、徐々に小さくなる。また、インクの液滴速度は、安定せず周期的に変動して、徐々に振幅が大きくなる。
 特許文献1に記載の発明では、インクジェットヘッドの駆動周波数(周期)が変化することによる液滴の着弾位置のばらつきについては補償されておらず、上記問題については解決されなかった。
 この発明の目的は、形成した画像においてより安定した画質が得られるインクジェット記録装置及びプログラムを提供することにある。
 上記目的を達成するため、請求項1に記載の発明のインクジェット記録装置は、
 インクジェットヘッドと、
 前記インクジェットヘッドを搭載するキャリッジと、
 前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部と、
 前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
 前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
 を備える。
 また、請求項2に記載の発明のインクジェット記録装置は、
 インクジェットヘッドと、
 前記インクジェットヘッドを搭載するキャリッジと、
 形成する画像の画素ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを検知する検知部と、
 前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
 前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
 を備える。
 また、請求項3に記載の発明のインクジェット記録装置は、
 インクジェットヘッドと、
 前記インクジェットヘッドを搭載するキャリッジと、
 前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部と、
 形成する画像の画素ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを検知する検知部と、
 前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
 前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
 を備える。
 また、請求項4に記載の発明は、請求項2または3に記載のインクジェット記録装置において、
 前記検知部を前記インクジェットヘッド、あるいは前記キャリッジに備える。
 また、請求項5に記載の発明は、請求項1から4のいずれか一項に記載のインクジェット記録装置において、
 前記補正部は、前記キャリッジの速度が等速でない場合に前記制御パラメーターを補正する。
 また、請求項6に記載の発明は、請求項1から5のいずれか一項に記載のインクジェット記録装置において、
 立体物を画像形成対象とする。
 また、請求項7に記載の発明は、請求項1から6のいずれか一項に記載のインクジェッ
ト記録装置において、
 前記補正部は、制御パラメーターとして画像データを補正する。
 また、請求項8に記載の発明は、請求項1から6のいずれか一項に記載のインクジェット記録装置において、
 前記補正部は、制御パラメーターとして吐出信号を補正する。
 また、請求項9に記載の発明は、請求項1から6のいずれか一項に記載のインクジェット記録装置において、
 前記補正部は、制御パラメーターとして駆動波形の選択により補正する。
 また、請求項10に記載の発明は、請求項1から9のいずれか一項に記載のインクジェット記録装置において、
 前記補正部は、制御パラメーターとして前記インクジェットヘッドと記録媒体との距離及び前記記録媒体に対する前記インクジェットヘッドの角度を補正する。
 また、請求項11に記載の発明は、請求項10に記載のインクジェット記録装置において、
 前記補正部は、前記インクジェットヘッドと前記記録媒体との距離を、前記液滴速度が所定の基準値よりも速い場合に広げる方向に距離を補正し、前記液滴速度が所定の基準値よりも遅い場合に狭くする方向に距離を補正する。
 また、請求項12に記載の発明は、請求項10または11に記載のインクジェット記録装置において、
 前記補正部は、前記記録媒体に対する前記インクジェットヘッドの角度を、前記液滴速度が所定の基準値よりも速い場合に前記インクジェットヘッドから吐出される液滴の着弾位置が疎になるように補正し、前記液滴速度が所定の基準値よりも遅い場合に前記インクジェットヘッドから吐出される液滴の着弾位置が密になるように補正する。
 また、請求項13に記載の発明は、請求項1から12のいずれか一項に記載のインクジェット記録装置において、
 ロボットアームを備え、
 前記ロボットアームは、前記キャリッジを備える。
 また、請求項14に記載の発明のプログラムは、
 インクジェットヘッドと、
 前記インクジェットヘッドを搭載するキャリッジと、
 を備えるインクジェット記録装置のコンピューターを、
 前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部、
 前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部、
 前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部、
 として機能させる。
 本発明に従うと、形成した画像においてより安定した画質を得ることができる。
本実施形態のインクジェットヘッドを搭載したキャリッジを備えるロボットアームの例を示す図である。 本実施形態のインクジェット記録装置の機能構成を示すブロック図である。 液滴速度の駆動周期依存性の一例を示す図である。 第1実施形態に係る制御パラメーター補正処理のフローチャートである。 濃淡プロファイルの一例を示す図である。 濃度補正プロファイルの一例を示す図である。 第2実施形態に係る制御パラメーター補正処理のフローチャートである。 隣接ドット間距離の変化量の一例を示す図である。 第2実施形態の変形例1に係る制御パラメーター補正処理のフローチャートである。 吐出信号の補正時間の一例を示す図である。 第2実施形態の変形例2に係る制御パラメーター補正処理のフローチャートである。 駆動波形の波形パターンの一例を示す図である。 第2実施形態の変形例3に係る制御パラメーター補正処理のフローチャートである。 インクジェットヘッドの搬送速度・駆動周期、インクの液滴速度の例を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
<第1実施形態>
(1.インクジェット記録装置の構成)
 本実施形態のインクジェット記録装置100は、例えば、立体物等(記録媒体)に画像形成をするインクジェット記録装置であって、図1に示すような、インクジェットヘッド20を搭載するキャリッジ111を備えるロボットアーム本体11を備える。
 図2は、本実施形態のインクジェット記録装置100の機能構成を示すブロック図である。
 インクジェット記録装置100は、ロボットアーム部10と、インクジェットヘッド20と、駆動波形信号生成部30と、制御部40と、記憶部50と、通信部60と、操作受付部71と、表示部72と、電力供給部80などを備える。
 ロボットアーム部10は、キャリッジ111を備えるロボットアーム本体11と、ロボットアーム駆動制御部12を備える。
 ロボットアーム本体11は、6軸の多関節ロボットであり、例えば、記録媒体が立体物であって、記録媒体の画像形成面が曲面であっても、画像形成面に対し設定された所定の距離にインクジェットヘッド20を配置することができるようになっている。また、ロボットアーム本体11は6軸に限定されるものではなく、5軸、7軸など適宜の軸数を備えた多関節ロボットを用いることができる。尚、多関節ロボット自体は公知であるためその詳しい説明は省略する。
 ロボットアーム駆動制御部12は、制御部40の制御の下、ロボットアーム本体11を駆動制御する。
 また、ロボットアーム駆動制御部12は、エンコーダー121を備える。エンコーダー121は、ロボットアーム駆動制御部12の駆動モーターの回転を検出し、所定の角度の回転ごとに回転方向に応じた信号を出力することで、キャリッジ111の位置を検出する。
 インクジェットヘッド20は、記録媒体上にインクを吐出して画像などを記録する。インクジェットヘッド20は、複数の記録素子20aと、ヘッド駆動部24などを備える。
 記録素子20aは、それぞれ、ノズル21と、インク流路22と、圧電素子23などを有する。
 ヘッド駆動部24は、選択された圧電素子23に駆動信号(駆動波形)を印加して圧電素子23を変形動作させる。
 インクは、複数のノズル21に対して共通の供給路から、各ノズル21に連通するインク流路22を介してそれぞれノズル21へ送られる。各インク流路22は、圧力室を含み、当該圧力室の壁面に沿って位置する(又は壁面自体をなす)圧電素子23に対する駆動電圧の印加に応じた変形動作により圧力室内のインクに圧力変動が付与される。圧電素子23は、ノズル21に供給されるインクに対して駆動波形に応じた圧力変動を付与してノズル21からインク液滴を射出(吐出)させ、画像を記録する。インクジェット記録装置100には、インクジェット記録装置100において一度の画像記録動作で射出されるインクの色や種別の数に応じた数のインクジェットヘッド20が設けられる。このインクジェットヘッド20では、複数発のインク液滴を連続的に吐出させてこれらを途中で合一させ、単一液滴として対応する画素範囲(同一の画素範囲)に着弾させるマルチドロップ方式でのインク吐出が可能であり、インク液滴の数に応じて各画素範囲の濃度階調を定めることができる。
 駆動波形信号生成部30は、ヘッド駆動部24が記録素子20aへ出力する駆動波形を生成する。駆動波形信号生成部30は、特には限られないが、予め定められた駆動波形を示すデジタルデータをアナログ変換し、電圧及び電流を増幅した信号を駆動波形としてヘッド駆動部24に出力する。生成される駆動波形には、インクを吐出させる台形波形状や矩形波形状のものに加えて、より緩やかにインクに圧力変化を生じさせるような波形の駆動波形(三角波など。パルス幅は、例えば半値幅(振幅の50%以上の部分の幅)。50%以外の値であってもよい)が含まれていてもよい。
 制御部40は、CPU41(Central Processing Unit)と、RAM42(Random Access Memory)を備え、インクジェット記録装置100の各種動作を統括制御するプロセッサーである。CPU41は、各種演算処理を行って制御動作を実行する。RAM42は、CPU41に作業用のメモリー空間を提供し、一時データを記憶する。制御部40は、記録対象の画像データや画像の記録に係る設定データなどに基づいて、インクジェットヘッド20におけるインク吐出動作に係る駆動波形の記録素子20aへの出力を制御する。
 また、制御部40は、記憶部50に後述するキャリッジ座標-キャリッジ速度テーブル、あるいはキャリッジ座標-キャリッジ加速度テーブルを記憶させることで、キャリッジ111の位置ごとにキャリッジ111の速度及び加速度のうち少なくとも一つを設定する。このとき、制御部40は設定部として機能する。
 また、制御部40は、インクジェットヘッド20から吐出されるインクの液滴速度の駆動周期依存性情報としての液滴速度-駆動周期特性テーブルを記憶部50より取得する。このとき、制御部40は取得部として機能する。
 また、制御部40は、キャリッジ111の速度及び加速度のうち少なくとも一つ、及び液滴速度の駆動周期依存性情報に基づいて、インクジェットヘッド20のインク吐出時の制御パラメーターを補正する。このとき、制御部40は補正部として機能する。
 ここで、制御パラメーターは、画像データ、吐出信号、駆動波形である。
 記憶部50は、記録対象の画像データを記憶し、また、各種プログラムや設定データを記憶する。記憶部50は、少なくとも不揮発性メモリーを有し、また、揮発性メモリー(RAM)を有していてもよい。画像データは、RAMに記憶されてもよい。不揮発性メモリーは、例えば、フラッシュメモリーなどであり、これに加えて又は代えてHDD(Hard Disk Drive)などを有していてもよい。なお、記憶部50の一部は、インクジェットヘッド20などが保持するものであってもよい。インクジェットヘッド20固有のパラメーター情報や初期異常ノズルの情報などは、インクジェットヘッド20が備える不揮発性メモリーなどに記憶され得る。これらの情報は、当該インクジェットヘッド20がインクジェット記録装置100に装着された後の初期設定などで制御部40により読み取られ、インクジェット記録装置100の記憶部50に統合的に記憶、管理されてもよい。
 また、記憶部50は、波形設定データ51を記憶する。
 波形設定データ51は、各記録素子20aに出力する駆動波形の波形パターンデータを記憶する。ここで記憶される波形パターンデータには、特に、複数発のインク吐出を連続的に行う場合における各インク吐出にそれぞれ応じた駆動波形の開始タイミング、パルス幅及び電圧振幅の情報が含まれる。パルス幅の情報は、上記インクジェットヘッド20が備える不揮発性メモリーから取得されたパラメーターであってもよい。これらは、駆動波形信号生成部30により生成される駆動波形の元となるデジタルデータとされてよい。
 また、記憶部50は、所定のキャリッジ111の位置を示すキャリッジ座標における、キャリッジ111の速度を予め設定した対応関係を示すキャリッジ座標-キャリッジ速度テーブルを記憶する。また、当該キャリッジ座標-キャリッジ速度テーブルの代わりに、キャリッジ座標における、キャリッジ111の加速度を予め設定した対応関係を示すキャリッジ座標-キャリッジ加速度テーブルを記憶してもよい。
 また、記憶部50は、インクジェットヘッド20が吐出するインクの液滴速度と、インクジェットヘッド20の駆動周期の対応関係をシミュレーションによって算出した液滴速度-駆動周期特性テーブルを記憶する。ここで、図3はインクの液滴速度のインクジェットヘッド20の駆動周期依存性の一例を示す図である。図3に示すように、インクジェットヘッド20の駆動周期が比較的に短い(例えば、40~80us)と、インクの液滴速度が安定しないことが分かる。
 通信部60は、外部機器との間での通信を実行制御する。通信部60は、例えば、TCP/IPなどの通信規格に基づいて外部のコンピューターと接続されて、記録対象の画像データを含むジョブデータを取得し、また、ジョブデータに基づく画像記録動作のステータスを出力することができる。また、通信部60は、USB(Universal Serial Bus)などにより周辺機器と直接接続されてデータの送受信がなされてもよい。
 操作受付部71は、ユーザーなどによる入力操作を受け付けて、受け付けた内容を入力信号として制御部40に出力する。操作受付部71は、例えば、タッチパネルや押しボタンスイッチなどを備える。タッチパネルは、表示部72の表示画面と重なって位置し、表示画面への表示内容と同期して操作内容が特定されてもよい。
 表示部72は、ユーザーなどに対してステータスや選択メニューなどを示す表示を行う。表示部72は、例えば、表示画面とインディケーター(ランプ)などを有する。表示部72は、例えば、液晶ディスプレイなどを有し、表示画面に各種文字や図形をドットマトリクス表示することができる。インディケーターは、例えば、LEDランプなどにより電力供給の有無や動作異常の有無などを示す場合に利用されてもよい。
 電力供給部80は、インクジェット記録装置100の各部に応じた電圧の電力を供給する。インクジェットヘッド20の駆動基板には、各駆動波形のピーク電圧に応じた電圧が出力される。
(2.インクジェット記録装置の動作)
 次に、本実施形態のインクジェット記録装置100におけるインクジェットヘッド20の制御パラメーター補正処理について説明する。制御部40は、本実施形態の制御パラメーター補正処理をインクジェットヘッド20による画像形成前に実施する。
 図4は、制御パラメーター補正処理の流れを示すフローチャートである。
 まず、制御部40は、記憶部50よりキャリッジ座標-キャリッジ速度テーブルを取得する(ステップS1)。
 次に、制御部40は、記憶部50より液滴速度-駆動周期特性テーブルを取得する(ステップS2)。
 次に、制御部40は、ステップS1において取得したキャリッジ座標-キャリッジ速度テーブルと、ステップS2において取得した液滴速度-駆動周期特性テーブルより、キャリッジ座標とインクの液滴速度の対応関係を示すキャリッジ座標-液滴速度テーブルを算出する(ステップS3)。
 次に、制御部40は、ステップS3において算出したキャリッジ座標-液滴速度テーブルに基づいて、図5Aに示すような、キャリッジ座標と形成される画像の濃度の対応関係を示す濃淡プロファイルを算出する(ステップS4)。
 次に、制御部40は、ステップS4において算出した濃淡プロファイルにおける濃度ムラを打ち消すような、図5Bに示す濃度補正プロファイルを算出する(ステップS5)。ここで、図5A及び図5Bに示す例は、全画素で吐出を行ういわゆるベタ印字の場合である。
 次に、制御部40は、ステップS5において算出した濃度補正プロファイルに基づいて、記録対象の画像データ(制御パラメーター)の濃度を補正し(ステップS6)、処理を終了する。
 ここで、制御部40は、キャリッジ座標-キャリッジ速度テーブルの代わりに、キャリッジ座標-キャリッジ加速度テーブルを用いて上記制御パラメーター補正処理を実行してもよい。
<第2実施形態>
 本実施形態のインクジェット記録装置100において、キャリッジ111は、検知部111aを備える。検知部111aは、キャリッジ111の速度と加速度のうち、少なくとも一つを検知するセンサーであって、検知信号を制御部40に出力する。また、検知部111aは、インクジェットヘッド20に備えられてもよい。このように、検知部111aをキャリッジ111またはインクジェットヘッド20に備えることで、検知部111aをキャリッジ111以外のロボットアーム本体11の部分に備える場合よりも、インクジェットヘッド20の速度及び加速度を正確に検知することができる。
 その他の構成は、上記第1実施形態の構成と同様である。
 次に、本実施形態のインクジェット記録装置100におけるインクジェットヘッド20の制御パラメーター補正処理について説明する。制御部40は、本実施形態の制御パラメーター補正処理をインクジェットヘッド20による画像形成中に実施する。
 図6は、本実施形態の制御パラメーター補正処理の流れを示すフローチャートである。
 まず、制御部40は、エンコーダー121よりキャリッジ111の現在位置情報を取得する(ステップS11)。
 次に、制御部40は、検知部111aより、ステップS11において取得したキャリッジ111の現在位置に対応する画素におけるキャリッジ111の速度の平均値VHを取得する(ステップS12)。ここで、現在位置に対応する画素におけるキャリッジ111の速度の平均値とは、例えば、吐出を行ったN-1画素目から次に吐出を行うN画素目をインクジェットヘッド20が通過する時の速度の平均値である。
 次に、制御部40は、ステップS12において取得した現在位置に対応する画素におけるキャリッジ111の速度の平均値VHに基づいて、現在位置に対応する画素(例えば、N-1画素目~N画素目)における駆動周期Tを以下の式(1)より算出する(ステップS13)。
 T = d / VH …式(1)
 ここで、dは、入力画像データ上でのN-1画素目~N画素目の距離である。
 次に、制御部40は、記憶部50より液滴速度-駆動周期特性テーブルを取得する(ステップS14)。
 次に、制御部40は、ステップS13において算出した現在位置に対応する画素における駆動周期Tと、ステップS14において取得した液滴速度-駆動周期特性テーブルより、現在位置に対応する画素における液滴速度DVを取得する(ステップS15)。
 次に、制御部40は、ステップS15において取得した液滴速度DVとインクジェットヘッド20のノズル面から記録媒体の画像形成面までの距離Gapから、現在位置に対応する画素における液滴飛翔時間tを以下の式(2)より算出する(ステップS16)。
 t = Gap / DV …式(2)
 ここで、液滴飛翔時間tを算出する際に、インクの液滴における空気抵抗の影響を考慮してもよい。
 次に、制御部40は、ステップS16において算出した液滴飛翔時間tと現在位置に対応する画素におけるキャリッジ111の速度の平均値VHから、インクの液滴が画像形成面上に着弾する位置を算出することで、以下の式(3)より現在位置に対応する画素における隣接ドット間距離Dを算出する(ステップS17)。
 D = VH・t - VHN-1・tN-1 + d …式(3)
 ここで、図7に隣接ドット間距離Dの変化量の一例を示す。図7に示す例において、横軸はキャリッジ111の位置(mm)であり、縦軸は隣接ドット間距離Dの変化量(um)である。
 次に、制御部40は、ステップS17において算出した隣接ドット間距離Dが入力画像データ上でのN-1画素目~N画素目の距離d(濃度ムラが無い状態である目標値)と等しくなるような濃度補正値を算出する(ステップS18)。具体的には、距離dに対して隣接ドット間距離Dが小さい場合は、濃度を低くする方向に補正し、大きい場合は、濃度を高くする方向に補正する。
 次に、制御部40は、ステップS18において算出した濃度補正値に基づいて、記録対象の画像データ(制御パラメーター)の濃度を補正し(ステップS19)、処理を終了する。
(変形例1)
 次に、上記第2実施形態の変形例1について説明する。
 図8は、本変形例の制御パラメーター補正処理を示すフローチャートである。制御部40は、本変形例の制御パラメーター補正処理をインクジェットヘッド20による画像形成中に実施する。
 以下では、上記第2実施形態との差異を中心に説明する。本変形例のインクジェット記録装置100の構成は、上記第2実施形態のインクジェット記録装置100と同一である。
 図8に示す本変形例の制御パラメーター補正処理において、まず、制御部40は、上記第2実施例の制御パラメーター補正処理のステップS11~S17と同様のステップS21~S27を実施する。
 次に、制御部40は、ステップS27において算出した隣接ドット間距離Dが入力画像データ上でのN-1画素目~N画素目の距離d(濃度ムラが無い状態である目標値)と等しくなるようにインクの吐出信号の補正を実施する。具体的には、制御部40は、以下の式(4)を満たすように以下の式(5)により吐出信号の補正時間Δtaを算出する(ステップS28)。
 VH・t - VH・Δta - VHN-1・tN-1 = 0 …式(4)
 Δta = t - tN-1・VHN-1 / VH …式(5)
 ここで、VH・Δtaは、インクジェットヘッド20が次に吐出を行うN画素目を通過する速度の平均値VHで、インクジェットヘッド20が移動しているとする場合の信号補正による液滴の着弾位置のずれ量である。
 次に、制御部40は、ステップS28において算出した吐出信号の補正時間Δtaに基づいて、吐出信号(制御パラメーター)を補正し(ステップS29)、処理を終了する。
 ここで、図9に吐出信号の補正時間Δtaの一例を示す。図9に示す例において、横軸はキャリッジ111の位置(mm)であり、縦軸は吐出信号の補正時間Δta(us)である。
 図7及び図9に示す例において、隣接ドット間距離Dの変化量が、濃度ムラが無い状態である目標値に対して大きくなる場合は、吐出信号を印可する時間をマイナス(駆動周波数を速くする方向)に補正する。また、隣接ドット間距離Dの変化量が小さくなる場合は、吐出信号を印可する時間をプラス(駆動周波数を遅くする方向)に補正する。
 また、図7及び図9に示す例は、全画素で吐出を行ういわゆるベタ印字の場合である。間欠的に吐出を行う場合は、図7及び図9に示すように連続ではなく非連続になる。
 上記本変形例において、制御部40は、制御パラメーター補正処理をインクジェットヘッド20による画像形成中に実施するとしたがこれに限らない。画像形成前にすべての画素に対して補正を行ってもよい。画像形成中に補正を行う場合は、N-1画素目を基準として、N-1画素目からN画素目における液滴の着弾位置のずれ量に基づいて補正するとした。しかし、画像形成前にすべての画素に対して補正を行う場合、例えば0画素目を基準としてそこからの液滴の着弾位置のずれ量に基づいて補正を行えばよい。
(変形例2)
 次に、上記第2実施形態の変形例2について説明する。
 図10は、本変形例の制御パラメーター補正処理を示すフローチャートである。制御部40は、本変形例の制御パラメーター補正処理をインクジェットヘッド20による画像形成中に実施する。
 以下では、上記第2実施形態との差異を中心に説明する。本変形例のインクジェット記録装置100の構成は、上記第2実施形態のインクジェット記録装置100と同一である。
 図10に示す本変形例の制御パラメーター補正処理において、まず、制御部40は、第2実施形態の制御パラメーター補正処理のステップS11~S15と同様のステップS31~S35を実施する。
 次に、制御部40は、ステップS35において取得した液滴速度に基づいて、波形設定データ51から各記録素子20aに出力する駆動波形の波形パターンデータ(制御パラメーター)を選択し(ステップS36)、処理を終了する。具体的には、制御部40は、図11に示すように、濃度ムラが無い状態である目標値に対して液滴速度が遅い場合には、電圧値が低い波形Aを選択する。また、制御部40は、目標値に対して液滴速度が速い場合には、電圧値が高い波形Cを選択する。また、制御部40は、目標値に対して液滴速度が適当である場合には、電圧値が波形Aと波形Cの中間である波形Bを選択する。
 このように、液滴速度に基づいて、駆動波形の波形パターンデータを選択することで、波形パターンの切り替え前後での着弾位置のずれなどを小さくできる。
 上記第2実施形態の変形例2の制御パラメーター補正処理のステップS36において、液滴速度に基づいて、駆動波形の波形パターンデータを選択することにより、駆動波形の電圧値を変えるとしたがこれに限らない。駆動波形のパルス幅や、スロープの時間を変えてもよい。また、波形の形状についても単一パルスの波形ではない複雑な波形を用いてもよい。
 また、波形設定データ51に記憶する駆動波形の波形パターンデータの数は、画像形成ジョブの最高周波数、入力画像データ転送速度、インクの液量の階調数等から決定される。
(変形例3)
 次に、上記第2実施形態の変形例3について説明する。
 図12は、本変形例の制御パラメーター補正処理を示すフローチャートである。制御部40は、本変形例の制御パラメーター補正処理をインクジェットヘッド20による画像形成中に実施する。
 以下では、上記第2実施形態との差異を中心に説明する。本変形例のインクジェット記録装置100の構成は、上記第2実施形態のインクジェット記録装置100と同一である。
 図12に示す本変形例の制御パラメーター補正処理において、まず、制御部40は、第2実施形態の制御パラメーター補正処理のステップS11~S15と同様のステップS41~S45を実施する。
 次に、制御部40は、ステップS45において取得した液滴速度に基づいて、ロボットアーム駆動制御部12を制御し、キャリッジ111の位置と角度のうち、少なくとも一つを変更し(ステップS46)、処理を終了する。具体的には、制御部40は、濃度ムラが無い状態である目標値(所定の基準値)に対して液滴速度が遅い場合には、キャリッジ111と記録媒体との距離(制御パラメーター)を縮める。また、制御部40は、目標値に対して液滴速度が速い場合には、キャリッジ111と記録媒体との距離(制御パラメーター)を広げる。
 また、制御部40は、目標値に対して液滴速度が遅い場合には、液滴の着弾位置が密になるように、キャリッジ111の角度(制御パラメーター)を補正する。また、制御部40は、目標値に対して液滴速度が速い場合には、液滴の着弾位置が疎になるように、キャリッジ111の角度(制御パラメーター)を補正する。
 ここで、制御部40は、上記第2実施形態及びその変形例において、検知部111aより、111の現在位置に対応する画素におけるキャリッジ111の加速度を取得し、当該キャリッジ111の加速度に基づいて、制御パラメーター補正処理を実行してもよい。
 以上のように、本実施形態のインクジェット記録装置100は、インクジェットヘッド20と、インクジェットヘッド20を搭載するキャリッジ111と、キャリッジ111の位置ごとにキャリッジ111の速度及び加速度のうち少なくとも一つを設定する設定部(制御部40)と、インクジェットヘッド20から吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部(制御部40)と、キャリッジの速度及び加速度のうち少なくとも一つ、及び液滴速度の駆動周期依存性情報に基づいて、インクジェットヘッド20のインク吐出時の制御パラメーターを補正する補正部(制御部40)と、を備える。
 従って、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100は、インクジェットヘッド20と、インクジェットヘッド20を搭載するキャリッジ111と、形成する画像の画素ごとにキャリッジ111の速度及び加速度のうち少なくとも一つを検知する検知部111aと、インクジェットヘッド20から吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部(制御部40)と、キャリッジ111の速度及び加速度のうち少なくとも一つ、及び液滴速度の駆動周期依存性情報に基づいて、インクジェットヘッド20のインク吐出時の制御パラメーターを補正する補正部(制御部40)と、を備える。
 従って、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100は、インクジェットヘッド20と、インクジェットヘッド20を搭載するキャリッジ111と、キャリッジ111の位置ごとにキャリッジの速度及び加速度のうち少なくとも一つを設定する設定部(制御部40)と、形成する画像の画素ごとにキャリッジ111の速度及び加速度のうち少なくとも一つを検知する検知部111aと、インクジェットヘッド20から吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部(制御部40)と、キャリッジ111の速度及び加速度のうち少なくとも一つ、及び液滴速度の駆動周期依存性情報に基づいて、インクジェットヘッド20のインク吐出時の制御パラメーターを補正する補正部(制御部40)と、を備える。
 従って、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100は、検知部111aをインクジェットヘッド20、あるいはキャリッジ111に備える。
 従って、検知部111aをキャリッジ111以外のロボットアーム本体11の部分に備える場合よりも、インクジェットヘッド20の速度及び加速度を正確に検知することができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、キャリッジ111の速度が等速でない場合に制御パラメーターを補正する。
 従って、キャリッジ111の速度が等速でない場合でも、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100は、立体物を画像形成対象とする。
 従って、記録媒体が立体物である場合でも、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、制御パラメーターとして画像データを補正する。
 従って、画像データを補正することによって、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、制御パラメーターとして吐出信号を補正する。
 従って、吐出信号を補正することによって、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、制御パラメーターとして駆動波形の選択により補正する。
 従って、駆動波形の選択により補正することによって、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、制御パラメーターとしてインクジェットヘッド20と記録媒体との距離及び記録媒体に対するインクジェットヘッド20の角度を補正する。
 従って、記録媒体に対するインクジェットヘッド20の距離及び角度を補正することで、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、インクジェットヘッド20と記録媒体との距離を、液滴速度が所定の基準値よりも速い場合に広げる方向に距離を補正し、液滴速度が所定の基準値よりも遅い場合に狭くする方向に距離を補正する。
 従って、記録媒体に対するインクジェットヘッド20の距離を液滴速度に基づいて補正することで、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100において、補正部は、記録媒体に対するインクジェットヘッド20の角度を、液滴速度が所定の基準値よりも速い場合にインクジェットヘッド20から吐出される液滴の着弾位置が疎になるように補正し、液滴速度が所定の基準値よりも遅い場合にインクジェットヘッド20から吐出される液滴の着弾位置が密になるように補正する。
 従って、記録媒体に対するインクジェットヘッド20の角度を液滴速度に基づいて補正することで、形成した画像においてより安定した画質を得ることができる。
 また、本実施形態のインクジェット記録装置100は、ロボットアーム(ロボットアーム本体11)を備え、ロボットアームは、キャリッジ111を備える。
 従って、キャリッジ111がロボットアームに備えられ、キャリッジ111の速度が等速でない場合でも、形成した画像においてより安定した画質を得ることができる。
 なお、本発明は、上記実施の形態及び変形例に限られるものではなく、様々な変更が可能である。
 例えば、上記実施形態及び変形例においては、インクジェット記録装置100は、インクジェットヘッド20を搭載するロボットアーム本体11を備えるとしたがこれに限らない。レール上を移動するキャリッジにインクジェットヘッド20が備えられている構成であって、キャリッジの移動速度が等速でないときに画像形成をする場合に、インクジェットヘッド20のインク吐出時の制御パラメーターを補正するとしてもよい。
 また、上記実施形態及び変形例においては、キャリッジの速度が等速でない場合における補正の例を示したがこれに限らない。キャリッジの速度が等速であるが、インクジェットヘッドの駆動周波数が変化する場合において補正してもよい。
 また、上記実施形態及び変形例においては、キャリッジ111の速度及び加速度は、インクジェットヘッド20あるいはキャリッジ111に備えられる検知部によって検知されるとしたがこれに限らない。ロボットアーム駆動制御部12のエンコーダー121の出力信号に基づいて検知してもよい。
 また、制御部40は、上記第1実施形態及び第2実施形態の制御パラメーター補正処理におけるインクジェットヘッド20のインク吐出時の制御パラメーターの補正を併用してもよい。
 その他、上記実施の形態で示したインクジェット記録装置100の構成などの具体的な細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。本発明の範囲は、特許請求の範囲に記載した発明の範囲とその均等の範囲を含む。
 この発明は、インクジェット記録装置及びプログラムに利用することができる。
100 インクジェット記録装置
10 ロボットアーム部
11 ロボットアーム本体
111 キャリッジ
111a 検知部
12 ロボットアーム駆動制御部
20 インクジェットヘッド
20a 記録素子
21 ノズル
22 インク流路
23 圧電素子
24 ヘッド駆動部
30 駆動波形信号生成部
40 制御部
41 CPU
42 RAM
50 記憶部
51 波形設定データ
60 通信部
71 操作受付部
72 表示部
80 電力供給部

Claims (14)

  1.  インクジェットヘッドと、
     前記インクジェットヘッドを搭載するキャリッジと、
     前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部と、
     前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
     前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
     を備えるインクジェット記録装置。
  2.  インクジェットヘッドと、
     前記インクジェットヘッドを搭載するキャリッジと、
     形成する画像の画素ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを検知する検知部と、
     前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
     前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
     を備えるインクジェット記録装置。
  3.  インクジェットヘッドと、
     前記インクジェットヘッドを搭載するキャリッジと、
     前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部と、
     形成する画像の画素ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを検知する検知部と、
     前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部と、
     前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部と、
     を備えるインクジェット記録装置。
  4.  前記検知部を前記インクジェットヘッド、あるいは前記キャリッジに備える請求項2または3に記載のインクジェット記録装置。
  5.  前記補正部は、前記キャリッジの速度が等速でない場合に前記制御パラメーターを補正する請求項1から4のいずれか一項に記載のインクジェット記録装置。
  6.  立体物を画像形成対象とする請求項1から5のいずれか一項に記載のインクジェット記録装置。
  7.  前記補正部は、制御パラメーターとして画像データを補正する請求項1から6のいずれか一項に記載のインクジェット記録装置。
  8.  前記補正部は、制御パラメーターとして吐出信号を補正する請求項1から6のいずれか
    一項に記載のインクジェット記録装置。
  9.  前記補正部は、制御パラメーターとして駆動波形の選択により補正する請求項1から6のいずれか一項に記載のインクジェット記録装置。
  10.  前記補正部は、制御パラメーターとして前記インクジェットヘッドと記録媒体との距離及び前記記録媒体に対する前記インクジェットヘッドの角度を補正する請求項1から9のいずれか一項に記載のインクジェット記録装置。
  11.  前記補正部は、前記インクジェットヘッドと前記記録媒体との距離を、前記液滴速度が所定の基準値よりも速い場合に広げる方向に距離を補正し、前記液滴速度が所定の基準値よりも遅い場合に狭くする方向に距離を補正する請求項10に記載のインクジェット記録装置。
  12.  前記補正部は、前記記録媒体に対する前記インクジェットヘッドの角度を、前記液滴速度が所定の基準値よりも速い場合に前記インクジェットヘッドから吐出される液滴の着弾位置が疎になるように補正し、前記液滴速度が所定の基準値よりも遅い場合に前記インクジェットヘッドから吐出される液滴の着弾位置が密になるように補正する請求項10または11に記載のインクジェット記録装置。
  13.  ロボットアームを備え、
     前記ロボットアームは、前記キャリッジを備える請求項1から12のいずれか一項に記載のインクジェット記録装置。
  14.  インクジェットヘッドと、
     前記インクジェットヘッドを搭載するキャリッジと、
     を備えるインクジェット記録装置のコンピューターを、
     前記キャリッジの位置ごとに前記キャリッジの速度及び加速度のうち少なくとも一つを設定する設定部、
     前記インクジェットヘッドから吐出されるインクの液滴速度の駆動周期依存性情報を取得する取得部、
     前記キャリッジの速度及び加速度のうち少なくとも一つ、及び前記液滴速度の駆動周期依存性情報に基づいて、前記インクジェットヘッドのインク吐出時の制御パラメーターを補正する補正部、
     として機能させるプログラム。
PCT/JP2022/019701 2021-06-14 2022-05-09 インクジェット記録装置及びプログラム WO2022264710A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023529675A JPWO2022264710A1 (ja) 2021-06-14 2022-05-09
EP22824704.5A EP4357137A1 (en) 2021-06-14 2022-05-09 Inkjet recording device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021098467 2021-06-14
JP2021-098467 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264710A1 true WO2022264710A1 (ja) 2022-12-22

Family

ID=84526150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019701 WO2022264710A1 (ja) 2021-06-14 2022-05-09 インクジェット記録装置及びプログラム

Country Status (3)

Country Link
EP (1) EP4357137A1 (ja)
JP (1) JPWO2022264710A1 (ja)
WO (1) WO2022264710A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100398A (ja) * 1996-10-03 1998-04-21 Canon Inc 記録装置および記録方法
JP2002002046A (ja) 2000-06-20 2002-01-08 Canon Inc インクジェット印字装置
JP2016074145A (ja) * 2014-10-07 2016-05-12 株式会社リコー 画像形成方法、画像形成プログラム、画像形成装置
JP2019177659A (ja) * 2018-03-30 2019-10-17 株式会社リコー 予測方法及び予測システム
US20200079080A1 (en) * 2018-09-06 2020-03-12 Océ Holding B.V. Method and device for improving the droplet positioning in an inkjet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10100398A (ja) * 1996-10-03 1998-04-21 Canon Inc 記録装置および記録方法
JP2002002046A (ja) 2000-06-20 2002-01-08 Canon Inc インクジェット印字装置
JP2016074145A (ja) * 2014-10-07 2016-05-12 株式会社リコー 画像形成方法、画像形成プログラム、画像形成装置
JP2019177659A (ja) * 2018-03-30 2019-10-17 株式会社リコー 予測方法及び予測システム
US20200079080A1 (en) * 2018-09-06 2020-03-12 Océ Holding B.V. Method and device for improving the droplet positioning in an inkjet

Also Published As

Publication number Publication date
JPWO2022264710A1 (ja) 2022-12-22
EP4357137A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP5742368B2 (ja) 液体噴射装置
US7857406B2 (en) Inkjet head driving apparatus and driving method
JP2007022073A (ja) インクジェットヘッドの駆動方法及び駆動装置
JP2006315326A (ja) インクジェット記録ヘッド、ヘッド製造方法及びインクジェット記録装置
JP2001260350A (ja) インクジェット記録装置
JP2007203491A (ja) インクジェットプリンタ
JP6286671B2 (ja) インクジェット印刷装置
WO2022264710A1 (ja) インクジェット記録装置及びプログラム
US8905506B2 (en) Liquid ejecting apparatus and method of controlling liquid ejecting apparatus that corrects for aging of a print head
JP2008044233A (ja) 液滴吐出装置、液滴吐出制御装置、および液滴吐出方法
JP4844288B2 (ja) 液滴吐出装置、液滴吐出制御装置、および液滴吐出方法
JP4867522B2 (ja) 液滴吐出装置、液滴吐出制御装置、および液滴吐出方法
JP2005262525A (ja) 液体吐出ヘッドの駆動方法、インクジェットヘッドの駆動方法、及びインクジェットプリンタ
JP2019142106A (ja) 液体噴射装置の駆動方法、及び、液体噴射装置
JP2007118294A (ja) インクジエットヘッドの駆動装置および駆動方法
US6969138B2 (en) Ink jet recording apparatus
JP2002301814A (ja) インクジェットヘッドの駆動制御方法および駆動制御装置
US6450604B1 (en) Inkjet printing method and device
JP4042300B2 (ja) インクジェットヘッドの駆動制御方法および装置
JP7192547B2 (ja) 液滴吐出装置及び液滴吐出方法
JP2004174836A (ja) インクジェットプリンタの駆動制御方法およびインクジェットプリンタ
JP6931835B2 (ja) 印刷装置
JP2018001640A (ja) 液体吐出装置
JP2007001027A (ja) インクジェットプリンタのヘッド駆動装置及び駆動方法
JP2007118290A (ja) インクジェットプリンタの駆動装置及びその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529675

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022824704

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022824704

Country of ref document: EP

Effective date: 20240115