WO2022262450A1 - 显示装置及其制作方法 - Google Patents

显示装置及其制作方法 Download PDF

Info

Publication number
WO2022262450A1
WO2022262450A1 PCT/CN2022/090940 CN2022090940W WO2022262450A1 WO 2022262450 A1 WO2022262450 A1 WO 2022262450A1 CN 2022090940 W CN2022090940 W CN 2022090940W WO 2022262450 A1 WO2022262450 A1 WO 2022262450A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
display device
substrate
film layer
Prior art date
Application number
PCT/CN2022/090940
Other languages
English (en)
French (fr)
Inventor
龙浩晖
赵迎波
李小龙
黄丽媚
李健辉
肖甜
方建平
张适
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22823933.1A priority Critical patent/EP4340030A1/en
Publication of WO2022262450A1 publication Critical patent/WO2022262450A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to the field of display technology, and in particular to a display device and a manufacturing method thereof.
  • foldable display devices With the maturity of flexible folding screen technology, foldable display devices will be a major trend in the development of mobile terminals in the future. This type of display device looks similar in size to a traditional mobile phone when folded and is easier to carry. When unfolded, its display screen can reach about twice the size of a traditional mobile phone screen, bringing a new dimension to users in the fields of reading, gaming and office work. Visual experience and convenience.
  • the cover of the traditional non-folding display device is a glass cover, which can well resist the impact of external force and effectively protect the display screen from being cracked.
  • the cover plate in the foldable display device is formed of flexible materials. When the screen of the display device is squeezed, bumped and other stress scenarios, the cover plate cannot effectively protect the display screen, resulting in the collapse of the foldable display device. , Falling balls, falling, etc. are less reliable.
  • an embodiment of the present application provides a display device, including:
  • an array substrate comprising a substrate and an array layer located on one side of the substrate;
  • a cover plate the cover plate is located on the side of the array layer facing away from the substrate, the cover plate includes a first film layer and a second film layer, the first film layer is located on the back of the second film layer towards the substrate side;
  • the first film layer is formed of a high modulus material
  • the elastic modulus of the high modulus material is E1, 50Mpa ⁇ E1 ⁇ 5Gpa
  • the second film layer is made of a viscous and shear thickening material Formation of modified energy-absorbing and impact-resistant materials.
  • the modified energy-absorbing and impact-resistant material includes modified silica gel, modified thermoplastic polyurethane elastomer rubber, modified polyurethane or modified shear thickening material.
  • the molecular structure of the modified energy-absorbing and impact-resistant material includes a bonded polymer molecular main chain and a modified polymer molecular main chain, wherein the modified polymer molecular main chain has hydrogen A bond or a coordinate bond, the coordinate bond includes a boron-oxygen bond, a metal-catechol or a metal-histidine.
  • the elastic modulus of the second film layer is E2, 10Kpa ⁇ E2 ⁇ 500Mpa.
  • the film thickness of the first film layer is smaller than the film thickness of the second film layer.
  • the cover plate further includes a third film layer, the third film layer is located on the side of the second film layer facing the substrate, and the third film layer is made of high modulus material Formed, the elastic modulus of the high modulus material is E3, 50Mpa ⁇ E3 ⁇ 5Gpa.
  • the cover plate further includes a fourth film layer, the fourth film layer is located on the side of the second film layer facing the substrate, and the fourth film layer is composed of adhesive and shear film layers.
  • a modified energy-absorbing and impact-resistant material with thickening properties is provided.
  • the array layer includes a protective layer, a semiconductor layer, a first gate insulating layer, a first gate layer, a second gate insulating layer, a second gate layer, an interlayer insulating layer and a source-drain layer, the inorganic insulating layer including the protective layer, the first gate insulating layer, the second gate insulating layer, and the interlayer insulating layer;
  • the protective layer has a first hollow part, and in a direction perpendicular to the plane where the substrate is located, the first hollow part does not overlap with the semiconductor layer;
  • the first gate insulating layer has a second hollow part, and in a direction perpendicular to the plane where the substrate is located, the second hollow part does not overlap with the first gate layer;
  • the second gate insulating layer has a third hollow part, and in a direction perpendicular to the plane where the substrate is located, the third hollow part does not overlap with the second gate layer;
  • the interlayer insulating layer has a fourth hollow part, the display device includes a display area, and in a direction perpendicular to the plane where the substrate is located, the fourth hollow part covers the display area.
  • the display device further includes a protective film, and the protective film is located on a side of the cover plate facing away from the substrate;
  • the protective film further includes a hard coat layer, the hard coat layer is located between the anti-reflection layer and the cover plate;
  • the hardness of the hard coating is h, 1H ⁇ h ⁇ 2H, and/or, in the direction perpendicular to the plane where the substrate is located, the film thickness of the hard coating is D1, 5 ⁇ m ⁇ D1 ⁇ 8 ⁇ m, And/or, the elastic modulus of the hard coating is E4, 80Gpa ⁇ E4 ⁇ 100Gpa.
  • the display device further includes an adhesive layer, the adhesive layer is located between the cover plate and the array layer, the glass transition temperature of the adhesive layer is Tg, and Tg ⁇ -40°C .
  • the glue layer solution forming the glue layer is synthesized from materials including the following mass percentages: 40% to 66% of the first soft monomer, 2% to 8% of the second soft monomer, and 0.05% to 0.4% of the initiator , 0.05% to 0.5% of crosslinking agent, 2% to 10% of hard monomer, 30% to 50% of macromolecular polymer;
  • the glass transition temperature of the first soft monomer and the second soft monomer is less than or equal to -40°C, and the glass transition temperature of the hard monomer is greater than or equal to 0°C.
  • the hard monomer includes at least one of hydroxyl acrylate monomer, carboxyl acrylate monomer, amino acrylate monomer, and dicyclopentyl acrylate;
  • the initiator includes a free radical photoinitiator
  • the crosslinking agent includes a bifunctional acrylate active polymer, and the molecular weight of the crosslinking agent is greater than or equal to 200 g/mol and less than or equal to 5000 g/mol;
  • the macromolecular polymer is formed by prepolymerization of the first soft monomer, the second soft monomer and the hard monomer, and the molecular weight of the macromolecular polymer is greater than or equal to 10 ⁇ 10 4 g /mol and less than or equal to 100 ⁇ 10 4 g/mol.
  • the embodiment of the present application also provides a method for manufacturing a display device, including:
  • the process of forming the cover plate includes: forming a second film layer on the side of the array layer facing away from the substrate, the second film layer is modified by a viscous and shear thickening Formed from an energy-absorbing and impact-resistant material; a first film layer is formed on the side of the second film layer facing away from the substrate, the first film layer is formed of a high-modulus material, and the elasticity formed by the high-modulus material
  • the modulus is E1, 50Mpa ⁇ E1 ⁇ 5Gpa.
  • the process of forming the cover plate before forming the second film layer, further includes: a third film layer on the side of the array layer facing away from the substrate, the third film layer
  • the layer is formed of a high modulus material, and the elastic modulus of the high modulus material is E3, 50Mpa ⁇ E3 ⁇ 5Gpa.
  • the process of forming the array layer includes:
  • a protective layer, a semiconductor layer, a first gate insulating layer, a first gate layer, a second gate insulating layer, a second gate layer and an interlayer insulating layer are sequentially formed on the substrate, and the inorganic insulating layer including the protective layer, the first gate insulating layer, the second gate insulating layer and the interlayer insulating layer;
  • the manufacturing method further includes forming a protective film including an anti-reflection layer;
  • the process of forming the anti-reflection layer includes: forming inner core microspheres/microemulsions by self-assembly or surfactants, using sol-gel method to prepare silica shells on the surface of the inner core microspheres, and then repeatedly Washing and taking away the inner core microspheres to form hollow silica, the particle size of the hollow silica is r, 25nm ⁇ r ⁇ 30nm, and/or, the particle wall thickness of the hollow silica is k , 10nm ⁇ k ⁇ 12nm.
  • the process of forming the protective film further includes forming a hard coat layer, the hardness of the hard coat layer is h, 1H ⁇ h ⁇ 2H; and/or, In the direction perpendicular to the plane where the substrate is located, the film thickness of the hard coating is d4, 5 ⁇ m ⁇ d4 ⁇ 8 ⁇ m; and/or, the elastic modulus of the hard coating is E4, 80Gpa ⁇ E4 ⁇ 100Gpa .
  • the manufacturing method before forming the second film layer, the manufacturing method further includes forming an adhesive layer;
  • the process of forming the adhesive layer includes: configuring an adhesive layer solution and preparing an adhesive layer using the configured adhesive layer solution, wherein the adhesive layer solution is synthesized from materials including the following mass percentages: the first soft monomer 40% to 66%, the second soft monomer 2% to 8% of the second soft monomer, 0.05% to 0.4% of the initiator, 0.05% to 0.5% of the crosslinking agent, 2% to 10% of the hard monomer, and 30% to 50% of the macromolecular polymer; the first The glass transition temperature of the soft monomer and the second soft monomer is less than or equal to -40°C, and the glass transition temperature of the hard monomer is greater than or equal to 0°C.
  • the cover plate in the display device is a laminated structure formed by laminating at least the first film layer and the second film layer.
  • the first film layer and the second film layer by designing the first film layer and the second film layer, It has different characteristics, and the mutual cooperation between the first film layer and the second film layer can be used to make the cover plate have good impact resistance, scratch resistance and bending performance, and improve the protection of the display device. ability.
  • the elastic modulus of the first film layer is higher, and the hardness is correspondingly higher.
  • the first film layer with higher hardness can not only improve the scratch resistance, prevent the screen of the display device from being scratched, but also effectively reduce the deformation under impact stress or extrusion stress, thereby Effectively reduce the strain of the film layer inside the display device, such as the inorganic layer.
  • the second film layer can be used to further achieve the cushioning effect: on the one hand, the second film layer The layer can convert the mechanical energy generated by impact or extrusion into heat energy, and absorb the impact energy or extrusion energy. On the other hand, the second film layer has shear thickening properties. At low stress rates, the second film layer maintains The material is soft, and its bending performance is better. Under high stress rate, the elastic modulus of the second film layer increases, which can effectively block the external impact stress or extrusion stress, and protect the display device from damage.
  • the second film layer is sticky, which improves the adhesion between the second film layer and the adjacent film layers on both sides.
  • the display device When the display device is bent or subjected to external force, it can reduce the risk of the second film layer detaching, thereby improving the adhesion of the second film layer.
  • FIG. 1 is a schematic structural view of a display device in the prior art
  • FIG. 2 is another schematic structural view of a display device in the prior art
  • FIG. 3 is a schematic structural view of a light emitting device layer in the prior art
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the molecular structure of the modified energy-absorbing and impact-resistant material provided by the embodiment of the present invention.
  • FIG. 6A is another schematic structural view of a display device provided by an embodiment of the present invention.
  • FIG. 6B is another structural schematic diagram of a display device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of cracking of an inorganic insulating layer in the prior art
  • Fig. 8 is an enlarged schematic view of area A in Fig. 7;
  • FIG. 9 is a schematic diagram of a bending direction of a display device in the prior art.
  • FIG. 10 is a schematic diagram of bending of a display device in the prior art
  • Fig. 11 is a schematic diagram of the front of the display device being squeezed in the prior art
  • FIG. 12 is another structural schematic diagram of a display device provided by an embodiment of the present invention.
  • FIG. 13 is another structural schematic diagram of a display device provided by an embodiment of the present invention.
  • Fig. 14 is a schematic diagram of the bending conditions provided by the embodiment of the present invention.
  • Fig. 15 is a schematic diagram of the extrusion working conditions provided by the embodiment of the present invention.
  • FIG. 16 is a top view of a display device provided by an embodiment of the present invention.
  • Fig. 17 is a sectional view along the direction A1-A2 of Fig. 16;
  • Fig. 18 is a schematic structural diagram of a protective film provided by an embodiment of the present invention.
  • Fig. 19 is a schematic diagram of the protective film provided by the embodiment of the present invention being scratched
  • Fig. 20 is a schematic diagram of the deformation of the protective film provided by the embodiment of the present invention.
  • Fig. 22 is a simulation curve diagram of force and simulation time provided by the embodiment of the present invention.
  • FIG. 23 is another structural schematic diagram of a display device provided by an embodiment of the present invention.
  • Fig. 24 is a flow chart of the manufacturing method provided by the embodiment of the present invention.
  • Fig. 25 is a structural flow chart of the fabrication method of the array layer provided by the embodiment of the present invention.
  • Figure 26A is a schematic diagram of the molecular structure of the sulfonium salt provided by the embodiment of the present invention.
  • Fig. 26B is a schematic diagram of the molecular structure of the ladder-shaped siloxane provided by the embodiment of the present invention.
  • Fig. 26C is a schematic diagram of the molecular structure of the cage siloxane provided by the embodiment of the present invention.
  • the present invention Before explaining the technical solution provided by the present invention, the present invention firstly describes the structure of the display device in detail, so as to have a deeper understanding of the display device:
  • FIG. 1 is a schematic structural view of a display device in the prior art.
  • the display device includes a stacked substrate 101, an array substrate 102, a light emitting device layer 103, an encapsulation layer 104, a polarizer 105, and a touch layer.
  • the display device further includes a driving chip 108 bound on the array substrate 102 .
  • FIG. 2 is another schematic structural view of a display device in the prior art.
  • the substrate 101 may specifically include a steel sheet 109, and a transition layer 110 such as a base film and adhesive
  • the array substrate 102 may specifically include a poly A substrate 111 formed of an imide (Polyimide, PI) material, and an array layer 112 located on one side of the substrate 111, the array layer 112 may specifically include semiconductor layers and metals for forming electronic devices (such as transistors and storage capacitors) layer, and multiple inorganic insulating layers.
  • Fig. 3 is a schematic structural diagram of a light-emitting device layer in the prior art. As shown in Fig.
  • the light-emitting device layer 103 may specifically include a stacked anode 113, a hole injection layer 114, a hole transport layer 115, a light-emitting layer 116, an electron
  • the transport layer 117, the electron injection layer 118 and the cathode 119 when driving the display device to emit light, the electronic devices in the array layer 112 transmit the driving current to the anode 113, and the electrons and holes are respectively injected into the light emitting layer 116 to recombine and emit light.
  • the encapsulation layer 104 may specifically include a first inorganic encapsulation layer 120, an organic encapsulation layer 121, and a second inorganic encapsulation layer 122 that are laminated. Light emitting devices and electronic devices are protected.
  • the TPU film is made of rubber. Although the material is soft, it can absorb a certain amount of impact energy, but the surface is poor in scratch resistance and scratch resistance, and it is also not resistant to extrusion.
  • the cover plate 107 in the existing display device it is difficult for the cover plate 107 in the existing display device to have good impact resistance, scratch resistance and bending performance, resulting in poor reliability of the display device.
  • FIG. 4 is a schematic structural view of the display device provided by an embodiment of the present invention.
  • the display device includes an array substrate 1, and the array substrate 1 includes a substrate 2 and the array layer 3 on one side of the substrate 2.
  • the display device also includes a cover plate 4.
  • the cover plate 4 is located on the side of the array layer 3 facing away from the substrate 2.
  • the cover plate 4 includes a first film layer 5 and a second film layer 6.
  • the first film layer 5 is located on the second film layer 6. facing away from the substrate 2 side.
  • the first film layer 5 is formed by a high modulus material, and the elastic modulus of the high modulus material is E1, 50Mpa ⁇ E1 ⁇ 5Gpa.
  • the first film layer 5 can be TPU, polyurethane (polyurethane, PU) Or polycarbonate (Polycarbonate, PC), PET, PI, polymethyl methacrylate (Polymethyl Methacrylate, PMMA) and other organic materials.
  • the second film layer 6 is formed of a modified energy-absorbing impact-resistant material having viscous and shear thickening properties.
  • the cover plate 4 in the display device is a laminated structure formed by laminating at least the first film layer 5 and the second film layer 6.
  • the first film layer 5 and the second film layer 6 is designed to have different characteristics, and the mutual cooperation of the performance of the first film layer 5 and the second film layer 6 can be used to make the cover plate 4 have good impact resistance, scratch resistance and bending performance , improve the protection ability of the display device.
  • the elastic modulus of the first film layer 5 is relatively high, and the hardness is relatively high.
  • the first film layer 5 with higher hardness can not only improve the scratch resistance, prevent the screen of the display device from being scratched, but also effectively reduce the deformation under impact stress or extrusion stress. Variable, thereby effectively reducing the strain of the film layers inside the display device, such as the inorganic layer.
  • the second film layer 6 can be used to further achieve the cushioning effect: on the one hand, The second film layer 6 can convert the mechanical energy generated by impact or extrusion into heat energy, and absorb the impact energy or extrusion energy. On the other hand, the second film layer 6 has shear thickening properties, and at low stress rates, The second film layer 6 keeps the material soft, and its bending performance is better.
  • the elastic modulus of the second film layer 6 increases, effectively blocking external impact stress or extrusion stress, and protecting the display device from damage
  • the second film layer 6 has viscosity, which improves the adhesion between the second film layer 6 and the film layers on both adjacent sides.
  • the second film layer 6 can be lowered. The risk of detachment, thereby improving the reliability of the second film layer 6 for energy absorption and impact resistance.
  • the impact resistance of the cover plate 4 with a laminated structure provided by the embodiment of the present invention can be improved by at least 100%.
  • the modified energy-absorbing impact-resistant material used to form the second film layer 6 may specifically include modified silica gel, modified thermoplastic polyurethane elastomer rubber (Thermoplastic polyurethanes, TPU), modified polyurethane (polyurethane, PU) or modified shear thickening materials. This type of material is softer and deforms more, so the energy absorption effect is better. Further, the modified energy-absorbing and impact-resistant material can specifically be polyborosiloxane-modified silica gel.
  • FIG. 5 is a schematic diagram of the molecular structure of the modified energy-absorbing and impact-resistant material provided by the embodiment of the present invention.
  • the molecular structure of the modified energy-absorbing and impact-resistant material includes bonded polymeric Molecular main chain 71 and modified polymer molecular main chain 72, wherein the main chain of modified polymer molecule 72 has hydrogen bonds or coordination bonds, and the coordination bonds include boron-oxygen bonds, metal-catechol or metal- Histidine, a hydrogen bond or a coordinate bond is indicated by reference numeral 73 in FIG. 5 .
  • the main chain of the above-mentioned polymer molecule is the main chain of the silica gel molecule
  • the main chain of the modified polymer molecule is the main chain of the modified silica gel molecule
  • the main chain of the above-mentioned polymer molecule is the main chain of the TPU molecule
  • the main chain of the modified polymer molecule is is a modified TPU molecular main chain
  • the above-mentioned polymer molecular main chain is a PU molecular main chain
  • the modified polymer molecular main chain is a modified PU molecular main chain.
  • the elastic modulus of the second film layer 6 by setting the elastic modulus of the second film layer 6 within the range of 10Kpa to 500Mpa, it can not only avoid the elastic modulus being too low, but also ensure that the second film layer 6 has a good energy-absorbing effect. Avoid excessively high elastic modulus, and reduce the risk of the second film layer 6 detaching under the action of external force.
  • the display device when the display device is impacted or squeezed, when the stress acts on each film layer, it mainly manifests as a transverse shear force and a longitudinal extrusion force.
  • the shear force When the stress acts on the first film layer 5, the shear force will As the vibration of the first film layer 5 spreads laterally to the surroundings, the extrusion force will continue to spread longitudinally to the second film layer 6 , and the second film layer 6 is used to absorb the extrusion force to a certain extent.
  • the film thickness of the first film layer 5 is d1, 20 ⁇ m ⁇ d1 ⁇ 200 ⁇ m
  • the film thickness of the second film layer 6 is d2, 20 ⁇ m ⁇ d2 ⁇ 200 ⁇ m.
  • the film thickness of the first film layer 5 is smaller than the film thickness of the second film layer 6, for example, the film thickness of the first film layer 5 is 50 ⁇ m, and the film thickness of the second film layer 5 is 50 ⁇ m.
  • the film thickness of the film layer 6 is 100 ⁇ m.
  • FIG. 6A is another schematic structural view of a display device provided by an embodiment of the present invention.
  • the cover 4 further includes a third film layer 12, and the third film layer 12 is located
  • the second film layer 6 faces the side of the substrate 2, and the third film layer 12 is formed of high modulus material, and the elastic modulus of the high modulus material is E3, 50Mpa ⁇ E3 ⁇ 5Gpa.
  • the third film layer 12 may be formed of organic materials such as TPU, PU, or PC, PET, PMMA, and PI.
  • the hardness of the third film layer 12 is correspondingly higher, which can block the large deformation generated by the second film layer 6 and prevent the deformation from continuing. Accumulated inwardly, the film layer in the array layer 3 also undergoes greater deformation, so that the cover plate 4 has better impact resistance.
  • the film thickness of the third film layer 12 is d3, 20 ⁇ m ⁇ d3 ⁇ 200 ⁇ m.
  • the third film layer 12 can be made of the same material and film thickness as the first film layer 5 , or can be made of different materials and film thickness.
  • the first film layer 5 is formed of PI material with a film thickness of 50 ⁇ m
  • the second film layer 6 is formed of polyborosiloxane modified silica gel with a film thickness of 100 ⁇ m
  • the third film layer 12 is formed of PET material. The film thickness was 50 ⁇ m.
  • FIG. 6B is another schematic structural view of the display device provided by the embodiment of the present invention.
  • the cover plate 4 further includes a fourth film layer 44 located on the first
  • the second film layer 6 faces the side of the substrate 2
  • the fourth film layer 44 is formed of a modified energy-absorbing and impact-resistant material with viscosity and shear thickening properties.
  • the film thickness of the fourth film layer 44 is d4, 20 ⁇ m ⁇ d4 ⁇ 200 ⁇ m.
  • the film layer structure of the display device includes multiple inorganic layers, for example, the array substrate includes multiple inorganic insulating layers, and the packaging layer includes multiple inorganic packaging layers.
  • the array substrate includes multiple inorganic insulating layers
  • the packaging layer includes multiple inorganic packaging layers.
  • organic materials inorganic materials The bending resistance of the display device is poor, which makes it difficult to release the stress on the internal film layer of the display device.
  • Figure 7 is a schematic diagram of cracking of the inorganic insulating layer in the prior art
  • Figure 8 is an enlarged schematic diagram of area A in Figure 7, as shown in Figure 7 and Figure 8
  • the array substrate 102 includes a plurality of inorganic insulating layers 123 and a plurality of metal layers 124.
  • the inorganic insulating layer 123 will cause The cracking of the display device makes it difficult to ensure the impact resistance and bending reliability of the display device.
  • the cracking of the inorganic insulating layer 123 will further cause the disconnection of the metal layer 124 adjacent to the inorganic insulating layer 123 , which will further cause defective display phenomena such as broken bright spots and bright lines in the display device.
  • FIG. 9 is a schematic diagram of the bending direction of the display device in the prior art
  • FIG. 10 is a schematic diagram of the bending direction of the display device in the prior art, as shown in FIG. 9 and FIG. 10
  • the outer bending radius R becomes smaller
  • the bending or extrusion stress on the array substrate 102 will increase, and the risk of cracks in the inorganic insulating layer 123 in the array substrate 102 will increase.
  • the inorganic insulating layer 123 has a greater risk of fracture, which restricts the further development of the bending radius R.
  • FIG. 11 is a schematic diagram of the front of the display device in the prior art when it is squeezed, wherein the bamboo book structure 125 shown in FIG. 11 is used to improve the bending performance.
  • the cover plate 107 is a single-layer flexible film structure. When the front of the display device is squeezed, the cover plate 107 deforms greatly, and the corresponding deformation of the array substrate 102 is also relatively large, which causes the inorganic insulating layer 123 in the array substrate 102 to more prone to cracks.
  • the inorganic insulating layer 123 in the existing display device also has a great influence on the reliability of the display device.
  • FIG. 12 is another structural schematic diagram of the display device provided by the embodiment of the present invention.
  • the array layer 3 includes an inorganic insulating layer 13, at least one inorganic insulating layer 13 has a hollow portion 14 filled with an organic portion 15 .
  • the embodiment of the present invention provides a hollow part 14 in the inorganic insulating layer 13, and fills the organic material in the hollow part 14, so that the inorganic insulating layer 13 can be filled with an organic material.
  • the concentrated stress is dispersed to prevent the stress from accumulating to the cracking threshold of the inorganic insulating layer 13, thereby effectively reducing the risk of fracture of the inorganic insulating layer 13 and the metal layer in the array substrate 1, and improving the extrusion resistance and bending resistance of the display device. It also avoids bad display phenomena such as broken bright spots and bright lines caused by disconnection of the metal layer.
  • the display device includes a display area 16 .
  • the array layer 3 includes a protection layer 17, a semiconductor layer 18, a first gate insulating layer 19, a first gate layer 20, a second gate insulating layer 21, and a second gate layer 22 stacked along the back side of the substrate 2. , an interlayer insulating layer 23 and a source-drain layer 24 , wherein the inorganic insulating layer 13 includes a protective layer 17 , a first gate insulating layer 19 , a second gate insulating layer 21 and an interlayer insulating layer 23 .
  • the electronic devices in the array layer 3 include a transistor 25 and a storage capacitor 26.
  • the transistor 25 includes an active layer 27 located in the semiconductor layer 18, a gate 28 located in the first gate layer 20, and a gate 28 located in the source and drain layers.
  • the source 29 and the drain 30 of the storage capacitor 26 include a first plate 31 on the first gate layer 20 and a second plate 32 on the second gate layer 22 .
  • the protective layer 17 has a first hollow part 33, and in the direction perpendicular to the plane where the substrate 2 is located, the first hollow part 33 does not overlap with the semiconductor layer 18, and the first gate insulating layer 19 has a second hollow part 34 , in the direction perpendicular to the plane where the substrate 2 is located, the second hollow part 34 does not overlap with the first gate layer 20, and the second gate insulating layer 21 has a third hollow part 35, In the direction of the plane, the third hollow part 35 does not overlap with the second gate layer 22, and the interlayer insulating layer 23 has a fourth hollow part 36. In the direction perpendicular to the plane where the substrate 2 is located, the fourth hollow part 36 Overlay display area 16.
  • the protective layer 17, the first gate insulating layer 19, the second gate insulating layer 21 and the interlayer insulating layer 23 all have hollowed-out parts 14 in the inorganic insulating layers 13, and the filling in the The organic portion 15 in the hollow portion 14 improves the extrusion resistance and bending resistance of the display device.
  • the hollowed-out parts 14 in the protection layer 17, the first gate insulating layer 19 and the second gate insulating layer 21 do not overlap with the metal layer or the semiconductor layer 18 on the side of the film layer facing away from the substrate 2 respectively, and also That is, the lower side of the metal layer or the semiconductor layer 18 is still adjacent to the inorganic material, so that the inorganic material can be used for better insulation.
  • the capacitor dielectric layer of the storage capacitor 26 is still an inorganic layer. Since the dielectric constant of the inorganic material is high, the electronic characteristics of the storage capacitor 26 are better. .
  • a planarization layer 56 for forming a flat surface is provided between the array layer 3 and the light emitting device layer 8, and the light emitting device layer 8 includes an anode 37 stacked along the back side of the substrate 2,
  • the light-emitting device layer 8 also includes support pillars 45 located on the side of the pixel definition layer 43 facing away from the substrate 2, and the support pillars 45 are used to support a fine metal mask when the subsequent light-emitting layer 38 is evaporated. , FMM) role.
  • the protection layer 17 may specifically include an isolation layer 46 and a buffer layer 47 located on the side of the isolation layer 46 facing away from the substrate 2.
  • the isolation layer 46 and the buffer layer 47 can isolate the carrier Na+ and K+ in the glass, and the buffer layer 47 can also play an insulating role in the Excimer laser annealing (ELA) process.
  • Fig. 13 is another schematic structural view of the display device provided by the embodiment of the present invention. As shown in Fig. 13, a layer of PI layer 48 may also be separated between the isolation layer 46 and the buffer layer 47.
  • the buffer layer 47, the PI layer 48 and the isolation layer 46 can be patterned simultaneously by using the same patterning process, and then the buffer layer 47, the PI layer 48 and the isolation layer 46 are hollowed out.
  • the organic portion 15 may be formed by filling the portion 14 with an organic material.
  • FIG. 14 is a schematic diagram of the bending condition provided by the embodiment of the present invention. As shown in FIG. 14, the display device is bent When reaching the specific bending state defined by the dotted line in the figure, the maximum principal strain of the inorganic insulating layer in the existing structure, such as the buffer layer 47, is 4858ue, while in the structure of the embodiment of the present invention, the maximum principal strain of the buffer layer 47 is reduced to 4560ue, a 6.1% reduction.
  • Fig. 15 is a schematic diagram of the extrusion working conditions provided by the embodiment of the present invention.
  • the maximum principal strain of the buffer layer 47 in the existing structure is 5754ue, while In the structure of the embodiment of the present invention, the maximum principal strain of the buffer layer 47 is reduced to 5242ue, which is reduced by 8.7%.
  • FIG. 16 is a top view of a display device provided by an embodiment of the present invention
  • FIG. 17 is a cross-sectional view of FIG. 16 along the direction A1-A2.
  • the display device includes a display area 16 and a non-display area 49
  • the non-display area 49 includes a shift register circuit area 50 and a fan-shaped wiring area 51
  • the display area 16 is provided with a pixel circuit
  • the shift register circuit area 50 is provided with a scanning signal for outputting a scan signal to the pixel circuit or
  • the hollowed out part 14 is located in the display area 16 and the shift register circuit area 50 , and in the direction perpendicular to the plane where the substrate 2 is located, the hollowed out part 14 does not overlap with the fan-shaped wiring area 51 .
  • the wiring in the fan-shaped wiring area 51 needs to transmit a large current signal.
  • the inorganic material in the fan-shaped wiring area 51 By retaining the inorganic material in the fan-shaped wiring area 51, only the display area 16 and the shift register circuit area 50 are patterned on the inorganic insulating layer 13, The metal traces in the fan-shaped trace area 51 can still be adjacent to the inorganic material, so as to prevent high current breakdown by utilizing the characteristics of the better dielectric constant of the inorganic material.
  • FIG. 18 is a schematic structural view of the protective film provided by the embodiment of the present invention.
  • the protective film 80 includes an anti-reflection layer 81 , a hard coat layer 52 on the side of the anti-reflection layer 81 facing the substrate 2 , a PET layer 53 and an optical glue 54 on the side of the hard coat layer 52 facing the substrate 2 .
  • Figure 19 is a schematic diagram of the protective film provided by the embodiment of the present invention being scratched
  • Figure 20 is a schematic diagram of the deformation of the protective film provided by the embodiment of the present invention, as shown in Figure 19 and Figure 20, when the protective film 80 is scratched , scratching will generate shear force in the z direction and extrusion force in the y direction, the accumulation of shear force will scratch the surface of the protective film 80, and the extrusion force will cause the protective film 80 to deform downwardly , when the protective film 80 is deformed, the deflection increment of the protective film 80
  • E is the modulus of elasticity of the protective film 80
  • F is the force generated by scratching
  • L is the length of the protective film 80
  • h is the film thickness of the protective film 80 in the direction perpendicular to the substrate 2
  • B is the protective film 80 width.
  • the deflection increment of the protective film 80 is inversely proportional to the elastic modulus of the protective film 80 , that is, the harder the protective film 80 is, the smaller the deflection increment of the protective film 80 is, and the lower the deformation degree of the downward depression is.
  • the anti-reflection layer 81 includes hollow anti-reflection particles 60, the particle size of the anti-reflection particles 60 is r, 25nm ⁇ r ⁇ 30nm, and/or, the anti-reflection particles 60
  • the particle wall thickness is k, 10nm ⁇ k ⁇ 12nm.
  • the particle size refers to the distance from the center of the particle to the outer wall of the particle.
  • the shear force first acts on the anti-reflection layer 81 .
  • the particle size of the antireflection particles 60 in the antireflection layer 81 is between 35nm and 40nm, and the wall thickness of the particles is between 5nm and 7nm.
  • Increasing the particle size and/or increasing the particle wall thickness of the anti-reflection particles 60 can improve the ability of the anti-reflection layer 81 to resist shearing force, disperse the shearing force more quickly, and avoid external forces from scratching the surface of the protective film 80 .
  • Fig. 21 is a schematic diagram of the structural comparison of two anti-reflection layers provided by the embodiment of the present invention.
  • the particle size r1 of the anti-reflection particles 60 in the anti-reflection layer A is 30nm
  • the particle wall thickness is k1 is 10nm
  • the particle size r2 of the antireflection particles 60 in the antireflection layer B is 40nm
  • the particle wall thickness k2 is 6nm.
  • the anti-reflection layer A corresponds to the linear fitting straight line of anti-reflection layer A and anti-reflection layer B respectively, as shown in Fig. 22, the anti-reflection layer A
  • the maximum force in the z direction is about 5 ⁇ E 15 to 6 ⁇ E 15
  • the maximum force in the z direction of the antireflection layer B is about 1 ⁇ E 15 to 3 ⁇ E 15 . It can be seen that the wear resistance of the antireflection layer A is the antireflection 2 to 3 times the wear resistance of layer B.
  • the hardness of the hard coat layer 52 is h, 1H ⁇ h ⁇ 2H; and/or, in the direction perpendicular to the plane where the substrate 2 is located, the film thickness of the hard coat layer 52 is D1, 5 ⁇ m ⁇ D1 ⁇ 8 ⁇ m; and/or, the elastic modulus of the hard coat layer 52 is E4, 80Gpa ⁇ E4 ⁇ 100Gpa.
  • the film thickness of the antireflection layer 81 is 200 nm
  • the film thickness of the hard coat layer 52 is 5 ⁇ m
  • the film thickness of the PET layer 53 is 50 ⁇ m
  • the film thickness of the optical glue layer 54 is 25 ⁇ m.
  • the hardness of the protective film 80 is mainly affected by the hardness of the hard coat layer 52.
  • the hardness, film thickness and elastic modulus of the hard coat layer 52 within the above-mentioned range, the overall hardness of the protective film 80 can be increased and the protective film 80 can be reduced.
  • the deflection increment ⁇ W of the film 80 improves the longitudinal (y-direction) deformation resistance of the protective film 80 , thereby further improving the scratch resistance of the protective film 80 and improving the protective effect of the protective film 80 on the display device.
  • FIG. 23 is another schematic structural view of the display device provided by the embodiment of the present invention.
  • the display device further includes an adhesive layer 55 located between the cover plate 4 and the array layer.
  • the glass transition temperature of the adhesive layer 55 is Tg, Tg ⁇ -40°C, specifically, -50°C ⁇ Tg ⁇ -40°C.
  • the glass transition temperature of the adhesive layer 55 is relatively low, so that the adhesive layer 55 has high viscoelastic properties in a relatively large temperature range, which improves the bending performance of the display device at low temperature and prolongs the service life.
  • the glue layer solution forming the glue layer 55 is synthesized from materials including the following mass percentages: 40% to 66% of the first soft monomer, 2% to 8% of the second soft monomer, and 0.05% of the initiator ⁇ 0.4%, crosslinking agent 0.05% ⁇ 0.5%, hard monomer 2% ⁇ 10%, macromolecular polymer 30% ⁇ 50%; among them, the glass transition temperature of the first soft monomer and the second soft monomer Less than or equal to -40°C, the glass transition temperature of the hard monomer is greater than or equal to 0°C, so that the glass transition temperature of the adhesive layer 55 as a whole is lowered by using the first soft monomer and the second soft monomer, and the bonding interface is improved At the same time as the binding force, hard monomers and macromolecular polymers are used to improve the stability of the molecular structure of the adhesive layer 55 at high temperatures and reduce high temperature creep. It has been verified that the adhesive layer 55 formed by this adhesive layer solution can be bent 100,000 times at minus 20
  • first soft monomer and the second soft monomer respectively include one or more of isooctyl acrylate, n-hexyl acrylate, hydroxybutyl acrylate, and n-butyl acrylate.
  • the hard monomer includes at least one of hydroxy acrylate monomer, carboxy acrylate monomer, amino acrylate monomer and dicyclopentyl acrylate.
  • Initiators include free radical photoinitiators.
  • the crosslinking agent includes a bifunctional acrylate active polymer, and the molecular weight of the crosslinking agent is greater than or equal to 200 g/mol and less than or equal to 5000 g/mol.
  • the film The thickness is D2, 15 ⁇ m ⁇ d5 ⁇ 100 ⁇ m; and/or, the elastic modulus of the adhesive layer 55 is E5, 5Kpa ⁇ E5 ⁇ 50Mpa.
  • FIG. 24 is a flowchart of the manufacturing method provided by an embodiment of the present invention. As shown in FIG. Production methods include:
  • Step S1 forming an array layer 3 on the substrate 2 .
  • the substrate 2 and the array layer 3 constitute the array substrate 1 .
  • Step S2 Form the cover plate 4.
  • the process of forming the cover plate 4 includes: forming a second film layer 6 on the side of the array layer 3 facing away from the substrate 2, and the second film layer 6 is made of a modified film having viscosity and shear thickening properties.
  • the first film layer 5 is formed on the side of the second film layer 6 facing away from the substrate 2, the first film layer 5 is formed of a high modulus material, and the elastic modulus of the high modulus material is E1, 50Mpa ⁇ E1 ⁇ 5Gpa.
  • the cover plate 4 formed by the above manufacturing method is a laminated structure formed by laminating at least the first film layer 5 and the second film layer 6.
  • the elastic modulus of the first film layer 5 is relatively high, and the hardness is correspondingly high.
  • the first film layer 5 with higher hardness It can not only improve the scratch resistance and prevent the screen of the display device from being scratched, but also effectively reduce the deformation under impact stress or extrusion stress, thereby effectively reducing the strain of the film layers inside the display device, such as the inorganic layer.
  • the second film layer 6 can be used to further achieve the cushioning effect: on the one hand, The second film layer 6 can convert the mechanical energy generated by impact or extrusion into heat energy, and absorb the impact energy or extrusion energy. On the other hand, the second film layer 6 has shear thickening properties, and at low stress rates, The second film layer 6 keeps the material soft, and its bending performance is better.
  • the elastic modulus of the second film layer 6 increases, effectively blocking external impact stress or extrusion stress, and protecting the display device from damage
  • the second film layer 6 has viscosity, which improves the adhesion between the second film layer 6 and the film layers on both adjacent sides.
  • the second film layer 6 can be lowered. The risk of detachment, thereby improving the reliability of the second film layer 6 for energy absorption and impact resistance.
  • the mutual cooperation of the performance of the first film layer 5 and the second film layer 6 can be used to improve the cover.
  • the protective performance of the plate 4 on the display device enables the display device to have better impact resistance, scratch resistance and bending performance.
  • first film layer 5 and the second film layer 6 have been described in the above-mentioned embodiments, and will not be repeated here.
  • the process of forming the cover plate 4 further includes: a third film layer 12 on the side of the array layer 3 facing away from the substrate 2 , the third film layer 12 is made of high modulus material, and the elastic modulus of high modulus material is E3, 50Mpa ⁇ E3 ⁇ 5Gpa.
  • the hardness of the third film layer 12 is correspondingly higher, which can block the large deformation generated by the second film layer 6 and prevent the deformation from continuing. Accumulated inwardly, the film layer in the array layer 3 also undergoes greater deformation, so that the cover plate 4 has better impact resistance.
  • the cover plate 4 includes the first film layer 5, the second film layer 6 and the third film layer 12, the first film layer 5 is a CPI film, the second film layer 6 is a polyborosiloxane modified silica gel, and the second film layer 6 is a polyborosiloxane modified silica gel.
  • the three film layers 12 are PET films as an example, and the process of forming the cover plate 4 may specifically include: forming a PET film (the third film layer 12), then dissolving polyborosiloxane modified silica gel in a solvent, and coating it Spread on the third film layer 12, dry the solvent with hot air, attach the CPI film (first film layer 5), and finally cure.
  • the process of forming the cover plate 4 further includes: a fourth film layer 44 on the side of the array layer 3 facing away from the substrate 2 , the fourth film layer 44 is formed from a modified energy absorbing impact material with viscous and shear thickening properties.
  • a fourth film layer 44 formed of a modified energy-absorbing and impact-resistant material inside the second film layer 6 not only can the fourth film layer 44 be used to further absorb impact energy or extrusion energy, to achieve a better cushioning effect, The viscosity and shear thickening properties of the fourth film layer 44 can also be used to make the cover plate 4 have better anti-extrusion performance.
  • the process of forming the array layer 3 includes: forming an inorganic insulating layer 13, forming a hollow portion 14 in at least one inorganic insulating layer 13, and filling the hollow portion 14 with an organic material to The organic portion 15 is formed.
  • the embodiment of the present invention provides a hollow part 14 in the inorganic insulating layer 13, and fills the organic material in the hollow part 14, so that the inorganic insulating layer 13 can be utilized by the organic material.
  • the concentrated stress in the insulating layer 13 is dispersed to avoid stress accumulation to the cracking threshold of the inorganic insulating layer 13, thereby effectively reducing the risk of fracture of the inorganic insulating layer 13 and the metal layer in the array substrate 1, and improving the extrusion resistance of the display device Excellent performance and bending resistance, and also avoid bad display phenomena such as broken bright spots and bright lines caused by the disconnection of the metal layer.
  • FIG. 25 is a structural flowchart of the method for fabricating the array layer provided by the embodiment of the present invention. As shown in FIG. 25 , the process of forming the array layer 3 includes:
  • Step K1 sequentially forming the protective layer 17, the semiconductor layer 18, the first gate insulating layer 19, the first gate layer 20, the second gate insulating layer 21, the second gate layer 22 and the interlayer
  • the insulating layer 23 , the inorganic insulating layer 13 includes a protective layer 17 , a first gate insulating layer 19 , a second gate insulating layer 21 and an interlayer insulating layer 23 .
  • step K1 specifically includes:
  • Step K11 coating and curing a PI material with a thickness of 9 ⁇ m ⁇ 11 ⁇ m on the cleaned glass substrate to form a substrate 2 .
  • Step K12 Utilize plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) technique to deposit a 650nm thick isolation layer 46 and a 5nm thick amorphous silicon layer on the substrate 2, wherein the isolation layer 46 is used for Laser lift off (laser lift off, LLO) energy is absorbed during the subsequent ELA process on the amorphous silicon layer.
  • PECVD plasma enhanced chemical vapor deposition
  • Step K13 Deposit a buffer layer 47 using PECVD technology.
  • the buffer layer 47 is a composite film layer of SiNx with a thickness of 200nm and SiO2 with a thickness of 350nm.
  • the buffer layer 47 is used to provide heat preservation during the subsequent ELA process on the amorphous silicon layer . It should be noted that before depositing the buffer layer 47 , referring to FIG. 13 , a PI layer with a thickness of 9-11 ⁇ m may also be formed first.
  • Step K14 Deposit an amorphous silicon layer using PECVD technology, and dehydrogenate the amorphous silicon layer (450°C, 2h), then perform an ELA process to realize the conversion of the amorphous silicon layer to a polysilicon layer, and perform a dehydrogenation treatment on the polysilicon layer Exposure, development, etching and other processes form the semiconductor layer 18 with a certain pattern.
  • Step K15 using PECVD to deposit a first gate insulating layer 19 with a thickness of 120 nm, the first gate insulating layer 19 may be a SiO 2 layer.
  • Step K17 Deposit a second gate insulating layer 21 with a thickness of 130 nm by using PECVD technology.
  • the second gate insulating layer 21 can be a SiN x layer, and the second gate insulating layer 21 is used as a capacitor dielectric layer of the storage capacitor 26 .
  • Step K18 Deposit a Mo metal layer with a thickness of 220nm using Sputter technology, and perform exposure, development and etching processes on the Mo metal layer to form a second gate layer 22 with a certain pattern, and the second gate layer 22 is used as a storage capacitor 26 of the second plate 32.
  • Step K19 Utilize the PECVD technique to deposit the interlayer insulating layer 23, the interlayer insulating layer 23 is a composite film layer formed by a SiNx layer with a thickness of 300nm and a SiO2 layer with a thickness of 300nm below, followed by hydrogenation treatment (350 degrees Celsius, 2h ), repairing dangling bonds on polysilicon surfaces.
  • Step K2 Etching the interlayer insulating layer 23 and the second gate insulating layer 21 to form a fourth hollow part 36 on the interlayer insulating layer 23 and a third hollow part on the second gate insulating layer 21 35 , and, in a direction perpendicular to the plane where the substrate 2 is located, the fourth hollow portion 36 covers the display area 16 of the display device, and the third hollow portion 35 does not overlap with the second gate layer 22 .
  • Step K3 Etching the first gate insulating layer 19 and the protective layer 17 to form the second hollowed out portion 34 on the first gate insulating layer 19 and the first hollowed out portion 33 on the protective layer 17, and, In a direction perpendicular to the plane of the substrate 2 , the second hollow portion 34 and the first hollow portion 33 do not overlap the semiconductor layer 18 and the first gate layer 20 .
  • the interlayer insulating layer 23 and the second gate insulating layer can be simultaneously processed in the first etching process. 21 for etching, and by adjusting the pattern of the mask plate of the second etching process, the first gate insulating layer 19 and the protective layer 17 are simultaneously etched in the second etching process to simplify process flow and reduce the number of masks required to be used.
  • organic materials can also be filled in the first hollow part 33 , the second hollow part 34 , the third hollow part 35 , the fourth hollow part 36 , and the hollows in the bending area at the same time, so as to simplify the process flow.
  • the source-drain layer 24 is a Ti-Al-Ti composite film layer, the thickness of the Ti-Al-Ti composite film layer is 50nm, 650nm and 50nm respectively, and after the deposition of the composite film layer is completed, processes such as exposure, development and etching are performed. A source-drain layer 24 with a certain pattern is formed.
  • the source-drain layer 24 is used as the source 29 and drain 30 of the transistor 25 for transmitting data signals to the light-emitting device layer 8 and controlling the light-emitting brightness of the light-emitting device.
  • the protective layer 17, the first gate insulating layer 19, the second gate insulating layer 21 and the interlayer insulating layer 23 all have hollowed-out parts 14 in the inorganic insulating layers 13, and the filling in the The organic portion 15 in the hollow portion 14 improves the extrusion resistance and bending resistance of the display device.
  • the hollowed-out parts 14 in the protection layer 17, the first gate insulating layer 19 and the second gate insulating layer 21 do not overlap with the metal layer or the semiconductor layer 18 on the side of the film layer facing away from the substrate 2 respectively, and also That is, the lower side of the metal layer or the semiconductor layer 18 is still adjacent to the inorganic material, so that the inorganic material can be used for better insulation.
  • the display device also includes film layers forming a planarization layer 56 , a light emitting device layer 8 , an encapsulation layer 9 , a polarizer 10 , and a touch layer 11 .
  • film layers forming a planarization layer 56 , a light emitting device layer 8 , an encapsulation layer 9 , a polarizer 10 , and a touch layer 11 .
  • the process of forming the planarization layer 56, the light emitting device layer 8, and the encapsulation layer 9 may specifically include:
  • Step Q1 forming a planarization layer 56 with a thickness of 1.5 ⁇ m, and performing processes such as exposure, development and etching on the planarization layer 56 to form via holes on the planarization layer 56 .
  • Step Q2 Deposit the ITO-Ag-ITO composite film layer, the thickness of the composite film layer is 10nm, 100nm and 7nm respectively, and perform exposure, development and etching processes on the composite film layer to complete the preparation of the anode 37 .
  • Step Q3 forming a pixel definition layer 43 (pixel definition layer, PDL) with a thickness of 1.5 ⁇ m, and performing processes such as exposure, development and etching on the pixel definition layer 43 to form openings.
  • pixel definition layer pixel definition layer, PDL
  • Step Q5 Form a luminescent layer 38 with a thickness of 300nm and a cathode 39 with a thickness of 12nm, and vapor-deposit to form a coupling layer (coupling layer, CPL) and a LiF layer, wherein the CPL layer is an organic layer for adjusting the refractive index.
  • CPL coupling layer
  • LiF layer is an inorganic layer, used for electromagnetic shielding.
  • the manufacturing method further includes forming a protective film 80 including an anti-reflection layer 81; wherein, the process of forming the anti-reflection layer 81 includes: through self-assembly or a surfactant Form core microspheres/microemulsions, use sol-gel method to prepare silica shells on the surface of core microspheres, and then repeatedly wash away the core microspheres with solvents to form hollow silica, which are anti-reflection particles 60.
  • the particle size of the hollow silica is r, 25nm ⁇ r ⁇ 30nm, and/or the wall thickness of the hollow silica is k, 10nm ⁇ k ⁇ 12nm.
  • the core microspheres/microemulsions are formed by self-assembly or surfactants, and the silica shell is prepared on the surface of the core microspheres using a sol-gel method, and then the core microspheres are repeatedly washed away by solvents to form a hollow silica shell.
  • Silicon process specifics may include:
  • Step H1 Disperse 0.3g-0.5g of polyacrylic acid into 15ml-20ml of ammonia water and stir until the polyacrylic acid is completely and uniformly dispersed in the ammonia water.
  • Step H2 Pour the aqueous solution of ammonium polyacrylate into an anhydrous ethanol beaker, and after the aqueous solution of ammonia polyacrylate is evenly dispersed, slowly add 2ml-3ml of tetraethyl orthosilicate to the beaker while stirring the beaker magnetically.
  • Step H3 After adding tetraethyl orthosilicate, the mixed solution was continuously stirred at room temperature for 10 h, and finally a transparent solution of hollow sphere silica sol was formed.
  • Step H4 Hybridize the hollow sphere silica sol, first condense the silica nanoparticle sol at about 80° to remove the ammonia water in the solution, cool to room temperature, then add dilute hydrochloric acid to adjust the pH value, and finally adjust The pH value is around 2-3, and finally add 1-2ml tetraethyl orthosilicate to the solution, and stir for 1-2 hours;
  • Step H5 Prepare an anti-reflection coating: solution coating is carried out on a PET substrate (or a PET substrate with an HC coating), and the final film thickness is controlled at 150nm- Between 200nm.
  • Step H6 After the film coating is completed, immerse in about 30% hydrogen peroxide and heat to 80-100° to remove tetraethyl orthosilicate in the solution to form a dense hollow silicon oxide coating, that is, the anti-reflection layer 81 .
  • the process of forming the protective film 80 further includes forming a hard coat layer 52, the hardness of the hard coat layer 52 is h, 1H ⁇ h ⁇ 2H; and/or , in the direction perpendicular to the plane of the substrate 2, the film thickness of the hard coat layer 52 is d4, 5 ⁇ m ⁇ d4 ⁇ 8 ⁇ m; and/or, the elastic modulus of the hard coat layer 52 is E4, 80Gpa ⁇ E4 ⁇ 100Gpa.
  • the hardness of the protective film 80 is mainly affected by the hardness of the hard coat layer 52.
  • the hardness, film thickness and elastic modulus of the hard coat layer 52 within the above-mentioned range, the overall hardness of the protective film 80 can be increased and the protective film 80 can be reduced.
  • the deflection increment ⁇ W of the film 80 improves the longitudinal deformation resistance of the protective film 80 , thereby further improving the scratch resistance of the protective film 80 and improving the protective effect of the protective film 80 on the display device.
  • the process of forming hard coating 52 includes:
  • Step G1 Mix a cationic initiator, such as sulfonium salt, with methyl ladder silsesquioxane or cage silsesquioxane at a ratio of 3% and 97%, and then mix it with tetrahydrofuran at a ratio of 1:2 and stir well.
  • a cationic initiator such as sulfonium salt
  • methyl ladder silsesquioxane or cage silsesquioxane at a ratio of 3% and 97%
  • tetrahydrofuran at a ratio of 1:2 and stir well.
  • the molecular structure of sulfonium salt is shown in Figure 26A
  • the analytical structure of methyl ladder silsesquioxane is shown in Figure 26B
  • the molecular structure of cage silsesquioxane is shown in Figure 26C.
  • Step G2 Coating the solution on the PET layer with a 5 ⁇ m wire rod at a coating speed of about 5-10 mm/s.
  • Step G3 remove the solvent by heating in a vacuum environment, specifically, the heating temperature is between 25° C. and 80° C., and the heating time is 5 to 10 minutes.
  • Step G4 UV curing for 15 to 20 minutes, the UV energy is 1-3j/cm2, the photoinitiator will generate a large amount of H during the curing process, and the epoxy group will be polymerized in the ACE (active-chain end) mode.
  • the active center of the epoxy group gradually decreases, the polymerization reaction gradually stops, and the conversion rate reaches saturation.
  • Step G5 Carry out damp heat annealing treatment, the condition is 60° C. and 90% humidity, and the time is 2 hours.
  • the introduction of moisture annealing can make the R 3 O + on the epoxy group react with water molecules, generate -OH at the end and generate a H+, and the newly generated H+ reacts with the neutral epoxy group to produce active
  • the secondary R 2 HO + makes the ACE reaction happen again and increases the polymerization until the film formation is completed to form a hard coat layer 52 .
  • the manufacturing method before forming the second film layer 6 , the manufacturing method further includes forming a glue layer 55 .
  • the process of forming the glue layer 55 includes: configuring the glue layer solution and preparing the glue layer 55 using the configured glue layer solution, wherein the glue layer solution is synthesized from materials including the following mass percentages: the first soft monomer 40% to 66%, the second Second soft monomer 2%-8%, initiator 0.05%-0.4%, cross-linking agent 0.05%-0.5%, hard monomer 2%-10%, macromolecular polymer 30%-50%; first soft single The glass transition temperature of the body and the second soft monomer is less than or equal to -40°C, and the glass transition temperature of the hard monomer is greater than or equal to 0°C. At this time, the glass transition temperature of the adhesive layer 55 is relatively low, so that the adhesive layer 55 has high viscoelastic properties in a relatively large temperature range, which improves the bending performance of the display device at low temperature and prolongs the service life.
  • the glue layer solution is synthesized from materials including the following mass percentages: the first soft monomer 40% to 66%, the second Second soft monomer
  • the process of configuring the glue layer solution includes:
  • Step W1 use the first soft monomer (such as isooctyl acrylate) as a solution to dilute the initiator and the cross-linking agent, and prepare the initiator solution and the cross-linking agent solution with a concentration of 1%.
  • first soft monomer such as isooctyl acrylate
  • Step W2 Dissolving and diluting the first soft monomer (such as isooctyl acrylate) to dilute the macromolecular polymer (such as modified acrylate prepolymer) using a stirring paddle or a reactor according to the proportion.
  • the first soft monomer such as isooctyl acrylate
  • the macromolecular polymer such as modified acrylate prepolymer
  • Step W3 According to the ratio, dilute the second soft monomer (such as hydroxybutyl acrylate), hard monomer (such as dicyclopentyl acrylate), and the first soft monomer (such as isooctyl acrylate)
  • the initiator solution configures the glue solution according to the ratio. It should be noted that the actual mass of the added solution can be the value in Table 1 multiplied by 100 times.
  • Step W4 irradiate the above-mentioned glue solution under an ultraviolet lamp with a wavelength of about 365nm, observe and measure its viscosity in real time, and stop the irradiation when the viscosity is about 4000-6000cps.
  • the process of preparing adhesive layer 55 comprises:
  • Step R2 Coat the prepared glue layer solution on the film materials such as release film or PET film by using a coating wire rod or a coating machine.
  • Step R3 Attach release film or PET film and other film materials on the coated adhesive layer solution.
  • Step R4 irradiate the adhesive layer under an ultraviolet lamp with a wavelength of 365 nm for 1 to 5 minutes until the adhesive layer is cured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请实施例提供一种显示装置及其制作方法,涉及显示技术领域,使盖板兼具良好的抗冲击性能、耐刮擦性能和弯折性能,有效提高可显示装置的可靠性。上述显示装置包括:阵列基板,阵列基板包括衬底和位于衬底一侧的阵列层;盖板,盖板位于阵列层背向衬底一侧,盖板包括第一膜层和第二膜层,第一膜层位于第二膜层背向衬底一侧;其中,第一膜层由高模量材料形成,高模量材料的弹性模量为E1,50Mpa≤E1≤5Gpa,第二膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。

Description

显示装置及其制作方法
本申请要求于2021年6月16日提交中国专利局、申请号为202110665834.4、申请名称为“显示装置及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,更具体的涉及一种显示装置及其制作方法。
背景技术
随着柔性折叠屏技术的日趋成熟,可折叠的显示装置将会是未来移动终端发展的一大趋势。该类显示装置折叠后看起来与传统的手机大小类似,更易携带,而展开后其显示屏则可达到传统手机屏幕的两倍左右,为用户在阅读、游戏和办公等领域带来了全新的视觉体验和便利。
传统的非折叠显示装置的盖板为玻璃盖板,玻璃盖板可以很好的抵抗外力的冲击,有效保护显示屏不被磕裂。而可折叠显示装置中的盖板则由柔性材料形成,当显示装置的屏幕受到挤压、磕碰等受力场景后,盖板难以对显示屏进行有效保护,从而导致可折叠显示装置在挤压、落球、跌落等方面的可靠性较差。
发明内容
有鉴于此,本申请提供一种显示装置及其制作方法,使盖板兼具良好的抗冲击性能、耐刮擦性能和弯折性能,有效提高可显示装置的可靠性。
第一方面,本申请实施例提供一种显示装置,包括:
阵列基板,所述阵列基板包括衬底和位于所述衬底一侧的阵列层;
盖板,所述盖板位于所述阵列层背向所述衬底一侧,所述盖板包括第一膜层和第二膜层,所述第一膜层位于所述第二膜层背向所述衬底一侧;
其中,所述第一膜层由高模量材料形成,所述高模量材料的弹性模量为E1,50Mpa≤E1≤5Gpa,所述第二膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
在一种实施方式中,所述改性吸能抗冲材料包括改性硅胶、改性热塑性聚氨酯弹性体橡胶、改性聚氨酯或改性剪切增稠材料。
在一种实施方式中,所述改性吸能抗冲材料的分子结构包括键合的聚合物分子主链和改性聚合物分子主链,其中,所述改性聚合物分子主链具有氢键或配位键,所述配位键包括硼氧键、金属-邻苯二酚或金属-组氨酸。
进一步地,所述第二膜层的弹性模量为E2,10Kpa≤E2≤500Mpa。
进一步地,在垂直于所述衬底所在平面的方向上,所述第一膜层的膜厚小于所述第二膜层的膜厚。
在一种实施方式中,所述盖板还包括第三膜层,所述第三膜层位于所述第二膜层朝向所述衬底一侧,所述第三膜层由高模量材料形成,所述高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。
在一种实施方式中,所述盖板还包括第四膜层,所述第四膜层位于所述第二膜层朝向所述衬底一侧,所述第四膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
在一种实施方式中,所述阵列层包括无机绝缘层,至少一层所述无机绝缘层具有镂空部,所述镂空部内填充有有机部。
进一步地,所述阵列层包括沿背向所述衬底层叠设置的防护层、半导体层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层和源漏极层,所述无机绝缘层包括所述防护层、所述第一栅极绝缘层、所述第二栅极绝缘层和所述层间绝缘层;
其中,所述防护层具有第一镂空部,在垂直于所述衬底所在平面的方向上,所述第一镂空部与所述半导体层不交叠;
所述第一栅极绝缘层具有第二镂空部,在垂直于所述衬底所在平面的方向上,所述第二镂空部与所述第一栅极层不交叠;
所述第二栅极绝缘层具有第三镂空部,在垂直于所述衬底所在平面的方向上,所述第三镂空部与所述第二栅极层不交叠;
所述层间绝缘层具有第四镂空部,所述显示装置包括显示区,在垂直于所述衬底所在平面的方向上,所述第四镂空部覆盖所述显示区。
进一步地,所述显示装置包括显示区和非显示区,所述非显示区包括移位寄存器电路区和扇形走线区,所述镂空部位于所述显示区和所述移位寄存器电路区,在垂直于所述衬底所在平面的方向上,所述镂空部与所述扇形走线区不交叠。
在一种实施方式中,所述显示装置还包括保护膜,所述保护膜位于所述盖板背向所述衬底一侧;
所述保护膜包括抗反射层,所述抗反射层包括中空的减反粒子,所述减反粒子的颗粒粒径为r,25nm≤r≤30nm,和/或,所述减反粒子的颗粒壁厚为k,10nm≤k≤12nm。
在一种实施方式中,所述保护膜还包括硬涂层,所述硬涂层位于所述抗反射层与所述盖板之间;
所述硬涂层的硬度为h,1H≤h≤2H,和/或,在垂直于所述衬底所在平面的方向上,所述硬涂层的膜厚为D1,5μm≤D1≤8μm,和/或,所述硬涂层的弹性模量为E4,80Gpa≤E4≤100Gpa。
在一种实施方式中,所述显示装置还包括胶层,所述胶层位于所述盖板与所述阵列层之间,所述胶层的玻璃化转变温度为Tg,Tg≤-40℃。
进一步地,形成所述胶层的胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;
其中,所述第一软单体和所述第二软单体的玻璃化转变温度小于或等于-40℃,所述硬单体的玻璃化转变温度大于或等于0℃。
进一步地,所述第一软单体和所述第二软单体分别包括丙烯酸异辛酯、丙烯酸正己酯、丙烯酸羟丁酯、丙烯酸正丁酯中的一种或多种;
所述硬单体包括羟基丙烯酸酯单体、羧基丙烯酸酯单体、胺基丙烯酸酯单体、丙烯酸二环戊基酯中的至少一种;
所述引发剂包括自由基光引发剂;
所述交联剂包括双官能度丙烯酸酯活性聚合物,且所述交联剂的分子量大于或等于200g/mol且小于或等于5000g/mol;
所述大分子聚合物由所述第一软单体、所述第二软单体和所述硬单体预聚制备形成,且所述大分子聚合物的分子量大于或等于10×10 4g/mol且小于或等于100×10 4g/mol。
在一种实施方式中,在垂直于所述衬底所在平面的方向上,所述胶层的膜厚为D2,15μm≤D2≤100μm,和/或,所述胶层的弹性模量为E5,5Kpa≤E5≤50Mpa。
基于同一发明构思,本申请实施例还提供一种显示装置的制作方法,包括:
在衬底上形成阵列层;
形成盖板,形成所述盖板的过程包括:在所述阵列层背向所述衬底一侧形成第二膜层,所述第二膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成;在所述第二膜层背向所述衬底一侧形成第一膜层,所述第一膜层由高模量材料形成,所述高模量材料形成的弹性模量为E1,50Mpa≤E1≤5Gpa。
在一种实施方式中,在形成所述第二膜层之前,形成所述盖板的过程还包括:在所述阵列层背向所述衬底一侧第三膜层,所述第三膜层由高模量材料形成,所述高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。
在一种实施方式中,在形成所述第二膜层之前,形成所述盖板的过程还包括:在所述阵列层背向所述衬底一侧第四膜层,所述第四膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
在一种实施方式中,形成所述阵列层的过程包括:形成无机绝缘层,且在至少一层所述无机绝缘层中形成镂空部,并在所述镂空部内填充有机材料以形成有机部。
进一步地,形成所述阵列层的过程包括:
在所述衬底上依次形成防护层、半导体层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层和层间绝缘层,所述无机绝缘层包括所述防护层、所述第一栅极绝缘层、所述第二栅极绝缘层和所述层间绝缘层;
对所述层间绝缘层和所述第二栅极绝缘层进行刻蚀,以在所述层间绝缘层上形成第四镂空部以及在所述第二栅极绝缘层上形成第三镂空部,并且,在垂直于所述衬底所在平面的方向上,所述第四镂空部覆盖显示装置的显示区,所述第三镂空部与所述第二栅极层不交叠;
对所述第一栅极绝缘层和所述防护层进行刻蚀,以在所述第一栅极绝缘层上形成第二镂空部以及在所述防护层上形成第一镂空部,并且,在垂直于所述衬底所在平面的方向上,所述第二镂空部和所述第一镂空部与所述半导体层和所述第一栅极层不交叠;
在所述第一镂空部、所述第二镂空部、所述第三镂空部和所述第四镂空部内填充 有机材料;
形成源漏极层。
在一种实施方式中,形成所述盖板之后,所述制作方法还包括形成包括抗反射层的保护膜;
其中,形成所述抗反射层的过程包括:通过自组装或表面活性剂形成内核微球/微乳液,在所述内核微球表面使用溶胶凝胶法制备二氧化硅壳层,然后通过溶剂反复清洗带走所述内核微球以形成中空二氧化硅,所述中空二氧化硅的颗粒粒径为r,25nm≤r≤30nm,和/或,所述中空二氧化硅的颗粒壁厚为k,10nm≤k≤12nm。
在一种实施方式中,形成所述抗反射层之前,形成所述保护膜的过程还包括形成硬涂层,所述硬涂层的硬度为h,1H≤h≤2H;和/或,在垂直于所述衬底所在平面的方向上,所述硬涂层的膜厚为d4,5μm≤d4≤8μm;和/或,所述硬涂层的弹性模量为E4,80Gpa≤E4≤100Gpa。
在一种实施方式中,形成所述第二膜层之前,所述制作方法还包括形成胶层;
形成所述胶层的过程包括:配置胶层溶液以及利用配置的胶层溶液制备胶层,其中,胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;所述第一软单体和所述第二软单体的玻璃化转变温度小于或等于-40℃,所述硬单体的玻璃化转变温度大于或等于0℃。
本申请提供的显示装置及其制作方法,具有如下有益效果:
在本发明实施例中,显示装置中的盖板为至少由第一膜层和第二膜层层叠形成的叠层结构,本发明实施例通过对第一膜层和第二膜层进行设计,使其具有不同的特性,可以利用第一膜层和第二膜层性能上的相互配合,使盖板兼具良好的抗冲击性能、耐刮擦性能和弯折性能,提高对显示装置的防护能力。
具体地,第一膜层的弹性模量较高,硬度也相应较高,通过将其设置在显示装置的外侧,显示装置受到外力冲击或是挤压时,冲击应力或挤压应力会先作用于第一膜层,此时,硬度较高的第一膜层不仅可以提高耐刮擦性能,防止显示装置的屏幕被划伤,还可以有效降低冲击应力或挤压应力下的形变量,从而有效减小显示装置内部的膜层,如无机层的应变。进一步地,通过在第一膜层内侧再设置一层具有粘性和剪切增稠特性的吸能抗冲的第二膜层,可以利用第二膜层进一步实现缓冲效果:一方面,第二膜层可以将冲击或挤压产生的机械能转变为热能,对冲击能量或挤压能量进行吸收,另一方面,第二膜层具有剪切增稠特性,在低应力速率下,第二膜层保持材料柔软,其弯折性能更优,在高应力速率下,第二膜层弹性模量增大,有效阻挡外界的冲击应力或挤压应力,保护显示装置不受损伤,再一方面,第二膜层具有粘性,提高了第二膜层与相邻两侧膜层的粘附力,当显示装置弯折或者受到外力作用时,能够降低第二膜层脱离的风险,进而提高第二膜层吸能抗冲的可靠性。
附图说明
图1为现有技术中显示装置的一种结构示意图;
图2为现有技术中显示装置的另一种结构示意图;
图3为现有技术中发光器件层的结构示意图;
图4为本发明实施例所提供的显示装置的结构示意图;
图5为本发明实施例所提供的改性吸能抗冲材料的分子结构示意图;
图6A为本发明实施例所提供的显示装置的另一种结构示意图;
图6B为本发明实施例所提供的显示装置的再一种结构示意图;
图7为现有技术中无机绝缘层开裂的示意图;
图8为图7中区域A的放大示意图;
图9为现有技术中显示装置的弯折方向示意图;
图10为现有技术中显示装置的弯折示意图;
图11为现有技术中显示装置正面被挤压时的示意图;
图12为本发明实施例所提供的显示装置的又一种结构示意图;
图13为本发明实施例所提供的显示装置的又一种结构示意图;
图14为本发明实施例所提供的弯折工况的示意图;
图15为本发明实施例所提供的挤压工况的示意图;
图16为本发明实施例所提供的显示装置的俯视图;
图17为图16沿A1-A2方向的剖视图;
图18为本发明实施例所提供的保护膜的结构示意图;
图19为本发明实施例所提供的保护膜被刮擦的示意图;
图20为本发明实施例所提供的保护膜的形变示意图;
图21为本发明实施例所提供的两种抗反射层的结构对比示意图;
图22为本发明实施例所提供的作用力与仿真时间的仿真曲线图
图23为本发明实施例所提供的显示装置的又一种结构示意图;
图24为本发明实施例所提供的制作方法的流程图;
图25为本发明实施例所提供的阵列层制作方法的结构流程图;
图26A为本发明实施例所提供的硫鎓盐的分子结构示意图;
图26B为本发明实施例所提供的梯形硅氧烷的分子结构示意图;
图26C为本发明实施例所提供的笼型硅氧烷的分子结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在阐述本发明所提供的技术方案之前,本发明首先对显示装置的结构进行详细说 明,以便对显示装置有一个更加深入的了解:
图1为现有技术中显示装置的一种结构示意图,如图1所示,显示装置包括层叠设置的基底101、阵列基板102、发光器件层103、封装层104、偏振片105、触控层106和盖板107,此外,显示装置还包括绑定在阵列基板102上的驱动芯片108。
图2为现有技术中显示装置的另一种结构示意图,如图2所示,基底101具体可包括钢片109、以及底膜、粘胶等过渡层110,阵列基板102具体可包括由聚酰亚胺(Polyimide,PI)材料形成的衬底111、以及位于衬底111一侧的阵列层112,阵列层112具体可包括用于形成电子器件(如晶体管和存储电容)的半导体层和金属层,以及多个无机绝缘层。图3为现有技术中发光器件层的结构示意图,如图3所示,发光器件层103具体可包括层叠设置的阳极113、空穴注入层114、空穴传输层115、发光层116、电子传输层117、电子注入层118和阴极119,在驱动显示装置发光时,阵列层112中的电子器件向阳极113传输驱动电流,电子和空穴分别注入到发光层116内进行复合发光。请再次参见图2,封装层104具体可包括层叠设置的第一无机封装层120、有机封装层121和第二无机封装层122,封装层104用于防止外界水氧渗入,对显示装置内的发光器件和电子器件进行保护。
在现有技术中,可折叠显示装置中的盖板107通常为由聚对苯二甲酸乙二醇酯(Polyethylene glycol terephthalate,PET)、热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethanes,TPU)或透明聚酰亚胺(Clear Polyimide,CPI)等材料形成的单层薄膜结构。由于盖板107的形成材料类型单一,因而盖板107特性也较为单一。例如,盖板107为PET薄膜时,PET薄膜材质较硬,抗冲击性能较差,显示装置的屏幕收到外力冲击之后,难以将冲击能量吸收或者耗散掉,而盖板107为TPU薄膜时,TPU薄膜属于橡胶材质,虽材质较软,可以吸收一定的冲击能量,但表面抗划伤和耐刮擦能力又较差,而且也不耐挤压。
因此,现有显示装置中的盖板107难以兼具良好的抗冲击性能、耐刮擦性能和弯折性能,导致显示装置的可靠性较差。
为此,本发明实施例提供了一种显示装置,图4为本发明实施例所提供的显示装置的结构示意图,如图4所示,该显示装置包括阵列基板1,阵列基板1包括衬底2和位于衬底2一侧的阵列层3。显示装置还包括盖板4,盖板4位于阵列层3背向衬底2一侧,盖板4包括第一膜层5和第二膜层6,第一膜层5位于第二膜层6背向衬底2一侧。
其中,第一膜层5由高模量材料形成,高模量材料的弹性模量为E1,50Mpa≤E1≤5Gpa,示例性的,第一膜层5可采用TPU、聚氨酯(polyurethane,PU)或者聚碳酸酯(Polycarbonate,PC)、PET、PI、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)等有机材料形成。第二膜层6由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
需要说明的是,请再次参见图4,显示装置还包括基底7、发光器件层8、封装层9、偏振片10和触控层11,这部分结构的具体膜层结构以及与阵列基板1、盖板4的相对位置关系与现有技术相同,此处不再赘述。
在本发明实施例中,显示装置中盖板4为至少由第一膜层5和第二膜层6层叠形 成的叠层结构,本发明实施例通过对第一膜层5和第二膜层6进行设计,使其具有不同的特性,可以利用第一膜层5和第二膜层6性能上的相互配合,使盖板4兼具良好的抗冲击性能、耐刮擦性能和弯折性能,提高对显示装置的防护能力。
具体地,第一膜层5的弹性模量较高,硬度也相应较高,通过将其设置在显示装置的外侧,显示装置受到外力冲击或是挤压时,冲击应力或挤压应力会先作用于第一膜层5,此时,硬度较高的第一膜层5不仅可以提高耐刮擦性能,防止显示装置的屏幕被划伤,还可以有效降低冲击应力或挤压应力下的形变量,从而有效减小显示装置内部的膜层,如无机层的应变。进一步地,通过在第一膜层5内侧再设置一层具有粘性和剪切增稠特性的吸能抗冲的第二膜层6,可以利用第二膜层6进一步实现缓冲效果:一方面,第二膜层6可以将冲击或挤压产生的机械能转变为热能,对冲击能量或挤压能量进行吸收,另一方面,第二膜层6具有剪切增稠特性,在低应力速率下,第二膜层6保持材料柔软,其弯折性能更优,在高应力速率下,第二膜层6弹性模量增大,有效阻挡外界的冲击应力或挤压应力,保护显示装置不受损伤,再一方面,第二膜层6具有粘性,提高了第二膜层6与相邻两侧膜层的粘附力,当显示装置弯折或者受到外力作用时,能够降低第二膜层6脱离的风险,进而提高第二膜层6吸能抗冲的可靠性。
经验证,相对于相同厚度的PET单层薄膜或TPU单层薄膜,本发明实施例所提供的叠层结构的盖板4的抗冲击性能能够提升至少100%。
在一种实施方式中,用于形成第二膜层6的改性吸能抗冲材料具体可包括改性硅胶、改性热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethanes,TPU)、改性聚氨酯(polyurethane,PU)或改性剪切增稠材料。这类材料材质较软,形变较大,因而吸能效果更好。进一步地,改性吸能抗冲材料具体可为聚硼硅氧烷改性硅胶。
在一种实施方式中,图5为本发明实施例所提供的改性吸能抗冲材料的分子结构示意图,如图5所示,改性吸能抗冲材料的分子结构包括键合的聚合物分子主链71和改性聚合物分子主链72,其中,改性聚合物分子72主链具有氢键或配位键,配位键包括硼氧键、金属-邻苯二酚或金属-组氨酸,图5中氢键或配位键用附图标记73表示。
其中,上述聚合物分子主链为硅胶分子主链,改性聚合物分子主链为改性硅胶分子主链,或,上述聚合物分子主链为TPU分子主链,改性聚合物分子主链为改性TPU分子主链,或,上述聚合物分子主链为PU分子主链,改性聚合物分子主链为改性PU分子主链。
本发明实施例通过在微观上对第二膜层6形成材料的分子结构进行调整,在分子结构中引入氢键或硼氧键、硼氧键、金属-邻苯二酚或金属-组氨酸等配位键,可以使材料具有剪切增稠的特性,而通过令聚合物分子主链和改性聚合物分子主链键合,还可以利用改性聚合物分子主链是使材料具有粘性,从而使最终所形成的第二膜层6兼具粘性和剪切增稠特性,优化第二膜层6的性能。
在一种实施方式中,第二膜层6的弹性模量为E2,10Kpa≤E2≤500Mpa。对于第二膜层6来说,为实现良好的吸能效果,第二膜层6需要具有足够的形变来吸收能量,因此,第二膜层6的弹性模量不宜过高,而若第二膜层6的弹性模量过低的话,第二 膜层6的材质又会过软,在冲击应力或挤压应力下第二膜层6会产生很大的形变,由于第二膜层6具有一定粘性,因此会导致第二膜层6与相邻侧膜层之间相互拉扯,增大第二膜层6脱离的风险。为此,本发明实施例通过将第二膜层6的弹性模量设置在10Kpa~500Mpa范围内,既能避免弹性模量过低,保证第二膜层6具有良好的吸能效果,还能避免弹性模量过高,降低第二膜层6在外力作用下脱离的风险。
需要说明的是,显示装置受到冲击或挤压时,应力作用于各个膜层时主要表现为横向的剪切力和纵向的挤压力,应力作用于第一膜层5时,剪切力会随着第一膜层5的震动横向扩散至四周,挤压力则会继续纵向扩散至第二膜层6,利用第二膜层6对该挤压力进行一定程度的吸收。为了保证第一膜层5和第二膜层6具有足够的厚度以优化其震动散能效果或吸能效果,降低应力对其它膜层的影响,请再次参见图4,在垂直于衬底2所在平面的方向上,第一膜层5的膜厚为d1,20μm≤d1≤200μm,第二膜层6的膜厚为d2,20μm≤d2≤200μm。
进一步地,在垂直于衬底2所在平面的方向上,第一膜层5的膜厚小于第二膜层6的膜厚,示例性的,第一膜层5的膜厚为50μm,第二膜层6的膜厚为100μm。通过将第二膜层6设置的更厚一些,可以增大第二膜层6在厚度方向上产生的形变,进而进一步提高第二膜层6的吸能抗冲效果。
在一种实施方式中,图6A为本发明实施例所提供的显示装置的另一种结构示意图,如图6A所示,盖板4还包括第三膜层12,第三膜层12位于第二膜层6朝向衬底2一侧,第三膜层12由高模量材料形成,高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。示例性的,第三膜层12可采用TPU、PU或者PC、PET、PMMA、PI等有机材料形成。
通过在第二膜层6进一步增设一个高模量的第三膜层12,第三膜层12硬度相应较高,可以对第二膜层6所产生的较大的形变进行阻隔,避免形变继续向内侧累加,导致阵列层3中的膜层也产生较大形变,使盖板4具有更好的抗冲击性能。
进一步地,为优化第三膜层12的抗冲击效果,请再次参见图6A,在垂直于衬底2所在平面的方向上,第三膜层12的膜厚为d3,20μm≤d3≤200μm。
需要说明的是,第三膜层12可以和第一膜层5采用相同材料和相同膜厚,也可采用不同材料和不同膜厚。示例性的,第一膜层5采用PI材料形成,膜厚为50μm,第二膜层6采用聚硼硅氧烷改性硅胶形成,膜厚为100μm,第三膜层12采用PET材料形成,膜厚为50μm。
在一种实施方式中,图6B为本发明实施例所提供的显示装置的再一种结构示意图,如图6B所示,盖板4还包括第四膜层44,第四膜层44位于第二膜层6朝向衬底2一侧,第四膜层44由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
通过在第二膜层6内侧进一步增设由改性吸能抗冲材料形成的第四膜层44,不仅可以利用第四膜层44进一步吸收冲击能量或挤压能量,达到更好的缓冲效果,还可以利用第四膜层44自身的粘性和剪切增稠特性使盖板4具有更好的抗挤压性能。
进一步地,请再次参见图6B,在垂直于衬底2所在平面的方向上,第四膜层44的膜厚为d4,20μm≤d4≤200μm。
此外,还需要说明的是,显示装置的膜层结构包括多个无机层,例如,阵列基板 中包括多个无机绝缘层,封装层中包括多个无机封装层,相较于有机材料,无机材料的耐弯折性较差,这就导致显示装置内部膜层所受的应力难以释放。以阵列基板中的无机绝缘层为例,结合图1和图2,图7为现有技术中无机绝缘层开裂的示意图,图8为图7中区域A的放大示意图,如图7和图8所示,阵列基板102包括多个无机绝缘层123和多个金属层124,显示装置弯折或受到外力作用时,当应力积聚超过无机绝缘层123的开裂阈值时,就会引起无机绝缘层123的开裂,导致显示装置的抗冲击和弯折可靠性的保障难度较大。而且无机绝缘层123开裂还会进一步引起与无机绝缘层123相邻的金属层124的断线,进而导致显示装置出现碎亮点及亮线等不良显示现象。
尤其地,对于外折的显示装置来说,结合图1和图2,图9为现有技术中显示装置的弯折方向示意图,图10为现有技术中显示装置的弯折示意图,如图9和图10所示,随着外折半径R的越来越小,阵列基板102所受的弯折或挤压应力会越来越大,阵列基板102中的无机绝缘层123产生裂纹的风险也较大,尤其当弯折半径R减小至3mm甚至1mm时,无机绝缘层123存在较大的断裂风险,从而对弯折半径R的进一步开发产生了一定的制约性。
此外,图11为现有技术中显示装置正面被挤压时的示意图,其中,图11中所示的竹书结构125用于提高弯折性能,如图11所示,由于现有显示装置表面的盖板107为单层的柔性薄膜结构,当显示装置正面受到挤压时,盖板107形变较大,相应的阵列基板102形变也较大,这就导致阵列基板102中的无机绝缘层123更易产生裂纹。
可见,现有显示装置中无机绝缘层123对显示装置的可靠性也产生了较大的影响。
为此,在本发明实施例中,图12为本发明实施例所提供的显示装置的又一种结构示意图,如图12所示,阵列层3包括无机绝缘层13,至少一层无机绝缘层13具有镂空部14,镂空部14内填充有有机部15。相较于整层覆盖的无机绝缘层13来说,本发明实施例通过在无机绝缘层13中设置镂空部14,并在镂空部14内填充有机材料,可以利用有机材料对无机绝缘层13内集中的应力进行分散,避免应力积聚至无机绝缘层13的开裂阈值,从而有效降低了阵列基板1中无机绝缘层13和金属层断裂的风险,既提高了显示装置的抗挤压性能和耐弯折性能,还避免了由金属层断线导致的碎亮点及亮线等不良显示现象。
进一步地,请再次参见图12,显示装置包括显示区16。阵列层3包括沿背向衬底2层叠设置的防护层17、半导体层18、第一栅极绝缘层19、第一栅极层20、第二栅极绝缘层21、第二栅极层22、层间绝缘层23和源漏极层24,其中,无机绝缘层13包括防护层17、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23。需要说明的是,阵列层3中的电子器件包括晶体管25和存储电容26,晶体管25包括位于半导体层18的有源层27、位于第一栅极层20的栅极28、位于源漏极层24的源极29和漏极30,存储电容26包括位于第一栅极层20的第一极板31和位于第二栅极层22的第二极板32。
其中,防护层17具有第一镂空部33,在垂直于衬底2所在平面的方向上,第一镂空部33与半导体层18不交叠,第一栅极绝缘层19具有第二镂空部34,在垂直于衬底2所在平面的方向上,第二镂空部34与第一栅极层20不交叠,第二栅极绝缘层21具有第三镂空部35,在垂直于衬底2所在平面的方向上,第三镂空部35与第二栅 极层22不交叠,层间绝缘层23具有第四镂空部36,在垂直于衬底2所在平面的方向上,第四镂空部36覆盖显示区16。
基于上述设置方式,防护层17、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23多个无机绝缘层13中均具有镂空部14,更大程度地利用填充在镂空部14中的有机部15提高了显示装置的抗挤压性能和耐弯折性能。而且,防护层17、第一栅极绝缘层19和第二栅极绝缘层21中的镂空部14分别与所在膜层背向衬底2一侧的金属层或半导体层18不交叠,也就是金属层或半导体层18下侧仍与无机材料相邻,从而能够利用无机材料起到更好的绝缘作用。示例性地,存储电容26的两个极板之间仍间隔无机材料,存储电容26的电容介质层仍为无机层,由于无机材料的介电常数较高,因此存储电容26的电子特性更优。
需要说明的是,请再次参见图12,阵列层3与发光器件层8之间设有用于形成平坦表面的平坦化层56,发光器件层8包括沿背向衬底2层叠设置的阳极37、发光层38和阴极39,封装层9包括沿背向衬底2层叠设置的第一无机封装层40、有机封装层41和第二无机封装层42,显示装置还包括位于阳极37背向衬底2一侧的像素定义层43,像素定义层43具有开口,发光层38位于开口内。此外,发光器件层8还包括位于像素定义层43背向衬底2一侧的支撑柱45,支撑柱45用于为后续发光层38蒸镀时起到支撑超精细掩膜板(Fine metal mask,FMM)的作用。
此外,还需要说明的是,请再次参见图12,防护层17具体可包括隔离层46和位于隔离层46背向衬底2一侧的缓冲层47,隔离层46和缓冲层47能够隔离承载玻璃中的Na+和K+,并且,缓冲层47还可以在准分子激光退火(Excimer laser annealing,ELA)工艺中起到保温作用。图13为本发明实施例所提供的显示装置的又一种结构示意图,如图13所示,隔离层46和缓冲层47之间还可间隔一层PI层48,在对隔离层46和缓冲层47进行刻蚀以形成镂空部14时,可以采用同一构图工艺同时对缓冲层47、PI层48和隔离层46进行图案化,然后再在缓冲层47、PI层48和隔离层46的镂空部14内填充有机材料形成有机部15即可。
此外,发明人还对上述结构的弯折性能和耐挤压性能进行了验证。相较于图7所示的现有结构,采用本发明实施例所提供的结构,图14为本发明实施例所提供的弯折工况的示意图,如图14所示,将显示装置弯折到由图中虚线限定出的特定弯折状态时,现有结构中无机绝缘层,如缓冲层47的最大主应变为4858ue,而本发明实施例的结构,缓冲层47的最大主应变降低至了4560ue,降低了6.1%。图15为本发明实施例所提供的挤压工况的示意图,如图15所示,采用挤压头对显示装置进行挤压时,现有结构中缓冲层47的最大主应变为5754ue,而本发明实施例的结构,缓冲层47的最大主应变降低至了5242ue,降低了8.7%。
在一种实施方式中,图16为本发明实施例所提供的显示装置的俯视图,图17为图16沿A1-A2方向的剖视图,如图16和图17所示,显示装置包括显示区16和非显示区49,非显示区49包括移位寄存器电路区50和扇形走线区51,其中,显示区16设有像素电路、移位寄存器电路区50设有用于向像素电路输出扫描信号或发光控制信号的移位寄存器,镂空部14位于显示区16和移位寄存器电路区50,在垂直于衬底2所在平面的方向上,镂空部14与扇形走线区51不交叠。
通常,扇形走线区51中的走线需要传输大电流信号,通过在扇形走线区51内保留无机材料,仅对显示区16和移位寄存器电路区50对无机绝缘层13进行图案化,可以使扇形走线区51中的金属走线仍与无机材料相邻,进而利用无机材料介电常数较优的特性防止大电流击穿。
在一种实施方式中,图18为本发明实施例所提供的保护膜的结构示意图,如图18所示,显示装置还包括保护膜80,保护膜80位于盖板4背向衬底2一侧。保护膜80包括抗反射层81、位于抗反射层81朝向衬底2一侧的硬涂层52、位于硬涂层52朝向衬底2一侧的PET层53和光学胶54。
图19为本发明实施例所提供的保护膜被刮擦的示意图,图20为本发明实施例所提供的保护膜的形变示意图,如图19和图20所示,保护膜80被刮擦时,刮擦会产生z方向的剪切力和y方向的挤压力,剪切力积聚会对保护膜80的表面进行划伤,而挤压力则会使保护膜80产生向下凹陷的形变,保护膜80发生形变时,保护膜80的挠度增量
Figure PCTCN2022090940-appb-000001
其中,E为保护膜80的弹性模量,F为刮擦产生的作用力,L为保护膜80的长度,h为保护膜80在垂直于衬底2方向上的膜厚,B为保护膜80的宽度。可见,保护膜80的挠度增量和保护膜80的弹性模量呈反比,即,保护膜80越硬,保护膜80的挠度增量越小,向下凹陷的形变程度越小。
在一种实施方式中,请再次参见图18,抗反射层81包括中空的减反粒子60,减反粒子60的颗粒粒径为r,25nm≤r≤30nm,和/或,减反粒子60的颗粒壁厚为k,10nm≤k≤12nm。其中,颗粒粒径是指颗粒的圆心到颗粒外壁的距离。
当保护膜80表面受到刮擦时,剪切力首先会作用在抗反射层81中。在现有技术中,抗反射层81中的减反粒子60的颗粒粒径在35~40nm之间,颗粒壁厚在5~7nm之间,本发明实施例通过减小减反粒子60的颗粒粒径和/或增大减反粒子60的颗粒壁厚,可以提高抗反射层81对抗剪切力的能力,更快速地将剪切力分散掉,避免外力划伤保护膜80的表面。
具体地,图21为本发明实施例所提供的两种抗反射层的结构对比示意图,如图21所示,抗反射层A中减反粒子60的颗粒粒径r1为30nm,颗粒壁厚k1为10nm,抗反射层B中减反粒子60的颗粒粒径r2为40nm,颗粒壁厚k2为6nm,当对抗反射层A和抗反射层B进行同样程度的刮擦时,图22为本发明实施例所提供的作用力与仿真时间的仿真曲线图,图22中的两条虚线分别对应抗反射层A和抗反射层B的线性拟合直线,如图22所示,抗反射层A的z方向作用力最大约5×E 15~6×E 15,抗反射层B的z方向作用力最大约1×E 15~3×E 15,可见,抗反射层A的耐磨性能是抗反射层B的耐磨性能的2~3倍。
在一种实施方式中,硬涂层52的硬度为h,1H≤h≤2H;和/或,在垂直于衬底2所在平面的方向上,硬涂层52的膜厚为D1,5μm≤D1≤8μm;和/或,硬涂层52的弹性模量为E4,80Gpa≤E4≤100Gpa。示例性的,在保护膜80中,抗反射层81的膜厚为200nm,硬涂层52的膜厚为5μm,PET层53的膜厚为50μm,光学胶层54的膜厚 为25μm。
保护膜80的硬度主要受硬涂层52的硬度的影响,通过将硬涂层52的硬度、膜厚、弹性模量设置在上述范围内,可以增大保护膜80的整体硬度,减小保护膜80的挠度增量ΔW,提高保护膜80的纵向(y方向)抗形变能力,从而进一步提高保护膜80的耐刮擦性能,提高保护膜80对显示装置的保护作用。
在一种实施方式中,图23为本发明实施例所提供的显示装置的又一种结构示意图,如图23所示,显示装置还包括胶层55,胶层55位于盖板4与阵列层3之间,胶层55的玻璃化转变温度为Tg,Tg≤-40℃,具体地,-50℃≤Tg≤-40℃。此时,胶层55的玻璃化转变温度较低,从而使胶层55在较大的温度范围内均具有较高的粘弹特性,提高显示装置在低温下的弯折性能,增长使用寿命。
进一步地,结合表1,形成胶层55的胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;其中,第一软单体和第二软单体的玻璃化转变温度小于或等于-40℃,硬单体的玻璃化转变温度大于或等于0℃,从而在利用第一软单体和第二软单体降低胶层55整体的玻璃化转变温度,提升粘接界面结合力的同时,利用硬单体和大分子聚合物提升胶层55在高温下的分子结构的稳定性,降低高温蠕变。经验证,该种胶层溶液形成的胶层55可在零下20℃下进行10万次弯折。
表1
Figure PCTCN2022090940-appb-000002
进一步地,第一软单体和第二软单体分别包括丙烯酸异辛酯、丙烯酸正己酯、丙烯酸羟丁酯、丙烯酸正丁酯中的一种或多种。硬单体包括羟基丙烯酸酯单体、羧基丙烯酸酯单体、胺基丙烯酸酯单体、丙烯酸二环戊基酯中的至少一种。引发剂包括自由基光引发剂。具体可包括裂解性光引发剂和夺氢型光引发剂,具体种类包括但不仅限于1-羟基环己基苯基酮、2,4,6-三甲基二苯甲酮、4-甲基二苯甲酮、二苯甲酮、二羟基二甲基苯丙酮等。交联剂包括双官能度丙烯酸酯活性聚合物,且交联剂的分子量大于或等于200g/mol且小于或等于5000g/mol。大分子聚合物由第一软单体、第二软单体和硬单体预聚制备形成,且大分子聚合物的分子量大于或等于10×10 4g/mol且小于或等于100×10 4g/mol,例如,大分子聚合物包括大分子丙烯酸酯预聚物。
在一种实施方式中,为保证胶层55具有较高的粘弹性,提高显示装置的弯折性能,请再次参见图23,在垂直于衬底2所在平面的方向上,胶层55的膜厚为D2,15μm≤d5≤100μm;和/或,胶层55的弹性模量为E5,5Kpa≤E5≤50Mpa。
基于同一发明构思,本发明实施例还提供了一种显示装置的制作方法,结合图4和图5,图24为本发明实施例所提供的制作方法的流程图,如图24所示,该制作方法包括:
步骤S1:在衬底2上形成阵列层3。其中,衬底2和阵列层3构成阵列基板1。
步骤S2:形成盖板4,形成盖板4的过程包括:在阵列层3背向衬底2一侧形成第二膜层6,第二膜层6由具有粘性和剪切增稠特性的改性吸能抗冲材料形成;在第二膜层6背向衬底2一侧形成第一膜层5,第一膜层5由高模量材料形成,高模量材料形成的弹性模量为E1,50Mpa≤E1≤5Gpa。
上述制作方法所形成的盖板4为至少由第一膜层5和第二膜层6层叠形成的叠层结构,具体地,第一膜层5的弹性模量较高,硬度也相应较高,通过将其设置在显示装置的外侧,显示装置受到外力冲击或是挤压时,冲击应力或挤压应力会先作用于第一膜层5,此时,硬度较高的第一膜层5不仅可以提高耐刮擦性能,防止显示装置的屏幕被划伤,还可以有效降低冲击应力或挤压应力下的形变量,从而有效减小显示装置内部的膜层,如无机层的应变。进一步地,通过在第一膜层5内侧再设置一层具有粘性和剪切增稠特性的吸能抗冲的第二膜层6,可以利用第二膜层6进一步实现缓冲效果:一方面,第二膜层6可以将冲击或挤压产生的机械能转变为热能,对冲击能量或挤压能量进行吸收,另一方面,第二膜层6具有剪切增稠特性,在低应力速率下,第二膜层6保持材料柔软,其弯折性能更优,在高应力速率下,第二膜层6弹性模量增大,有效阻挡外界的冲击应力或挤压应力,保护显示装置不受损伤,再一方面,第二膜层6具有粘性,提高了第二膜层6与相邻两侧膜层的粘附力,当显示装置弯折或者受到外力作用时,能够降低第二膜层6脱离的风险,进而提高第二膜层6吸能抗冲的可靠性。
因此,本发明实施例通过对第一膜层5和第二膜层6进行设计,使其具有不同的特性,可以利用第一膜层5和第二膜层6性能上的相互配合,提高盖板4对显示装置的防护性能,使显示装置兼具较优的抗冲击性能、耐刮擦性能和弯折性能。
需要说明的是,第一膜层5和第二膜层6的形成材料和膜厚已在上述实施例中进行了说明,此处不再赘述。
在一种实施方式中,结合图6A,在形成第二膜层6之前,形成盖板4的过程还包括:在阵列层3背向衬底2一侧第三膜层12,第三膜层12由高模量材料形成,高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。通过在第二膜层6进一步增设一个高模量的第三膜层12,第三膜层12硬度相应较高,可以对第二膜层6所产生的较大的形变进行阻隔,避免形变继续向内侧累加,导致阵列层3中的膜层也产生较大形变,使盖板4具有更好的抗冲击性能。
当盖板4包括第一膜层5、第二膜层6和第三膜层12时,以第一膜层5为CPI膜、第二膜层6为聚硼硅氧烷改性硅胶、第三膜层12为PET膜为例,形成盖板4的过程具体可包括:形成PET膜(第三膜层12),然后将聚硼硅氧烷改性硅胶溶解在溶剂中,并将其涂布在第三膜层12上,采用热风烘干溶剂后,贴附CPI膜(第一膜层5),最后进行固化。
在一种实施方式中,结合图6B,在形成第二膜层6之前,形成盖板4的过程还包括:在阵列层3背向衬底2一侧第四膜层44,第四膜层44由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。通过在第二膜层6内侧进一步增设由改性吸能抗冲材料形成的第四膜层44,不仅可以利用第四膜层44进一步吸收冲击能量或挤压能量,达 到更好的缓冲效果,还可以利用第四膜层44自身的粘性和剪切增稠特性使盖板4具有更好的抗挤压性能。
在一种实施方式中,结合图12,形成阵列层3的过程包括:形成无机绝缘层13,且在至少一层无机绝缘层13中形成镂空部14,并在镂空部14内填充有机材料以形成有机部15。相较于现有技术中整层覆盖的无机绝缘层13来说,本发明实施例通过在无机绝缘层13中设置镂空部14,并在镂空部14内填充有机材料,可以利用有机材料对无机绝缘层13内集中的应力进行分散,避免应力积聚至无机绝缘层13的开裂阈值,从而有效降低了阵列基板1中无机绝缘层13和金属层断裂的风险,既提高了显示装置的抗挤压性能和耐弯折性能,还避免了由金属层断线导致的碎亮点及亮线等不良显示现象。
进一步地,图25为本发明实施例所提供的阵列层制作方法的结构流程图,如图25所示,形成阵列层3的过程包括:
步骤K1:在衬底2上依次形成防护层17、半导体层18、第一栅极绝缘层19、第一栅极层20、第二栅极绝缘层21、第二栅极层22和层间绝缘层23,无机绝缘层13包括防护层17、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23。
具体地,步骤K1具体包括:
步骤K11:在清洗后的玻璃基板上涂覆9μm~11μm厚度的PI材料并固化,以形成衬底2。
步骤K12:利用等离子体增强化学的气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在衬底2上沉积650nm厚度的隔离层46和5nm厚度的非晶硅层,其中,隔离层46用于在后续对非晶硅层进行ELA工艺时吸收激光剥离(laser lift off,LLO)能量。
步骤K13:利用PECVD技术沉积缓冲层47,缓冲层47为200nm厚度的SiN x和350nm厚度的SiO 2的复合膜层,缓冲层47用于在后续对非晶硅层进行ELA工艺时提供保温作用。需要说明的是,在沉积缓冲层47之前,结合图13,还可先形成一层9~11μm厚度的PI层。
步骤K14:利用PECVD技术沉积非晶硅层,并对非晶硅层进行去氢处理(450℃,2h),随后进行ELA工艺,实现非晶硅层到多晶硅层的转化,并对多晶硅层进行曝光显影刻蚀等工艺,形成具有一定图案的半导体层18。
步骤K15:利用PECVD沉积120nm厚度的第一栅极绝缘层19,第一栅极绝缘层19可为SiO 2层。
步骤K16:利用磁控溅射(Sputter)技术沉积220nm厚度的Mo金属层,并对Mo金属层进行曝光显影刻蚀等工艺,形成具有一定图案的第一栅极层20,第一栅极层20用于充当晶体管25的栅极28和存储电容26的第一极板31。
步骤K17:利用PECVD技术沉积130nm厚度的第二栅极绝缘层21,第二栅极绝缘层21可为SiN x层,第二栅极绝缘层21用于作为存储电容26的电容介质层。
步骤K18:利用Sputter技术沉积220nm厚度的Mo金属层,并对Mo金属层进行曝光显影刻蚀等工艺,形成具有一定图案的第二栅极层22,第二栅极层22用于作为存储电容26的第二极板32。
步骤K19:利用PECVD技术沉积层间绝缘层23,层间绝缘层23为由300nm厚度的SiN x层和下方300nm厚度的SiO 2层所形成的复合膜层,随后进行氢化处理(350摄氏度,2h),修复多晶硅表面的悬挂键。
步骤K2:对层间绝缘层23和第二栅极绝缘层21进行刻蚀,以在层间绝缘层23上形成第四镂空部36以及在第二栅极绝缘层21上形成第三镂空部35,并且,在垂直于衬底2所在平面的方向上,第四镂空部36覆盖显示装置的显示区16,第三镂空部35与第二栅极层22不交叠。
步骤K3:对第一栅极绝缘层19和防护层17进行刻蚀,以在第一栅极绝缘层19上形成第二镂空部34以及在防护层17上形成第一镂空部33,并且,在垂直于衬底2所在平面的方向上,第二镂空部34和第一镂空部33与半导体层18和第一栅极层20不交叠。
步骤K4:在第一镂空部33、第二镂空部34、第三镂空部35和第四镂空部36内填充有机材料,其中,有机部15可为聚酰亚胺体系得有机物材料或选用与平坦化层、像素定义层、支撑柱同种有机材料,填充有机材料以形成有机部15后,还需进一步在有机部15上形成过孔。
需要说明的是,为提高显示装置的屏占比,进一步减小边框宽度,可以将阵列基板1中位于非显示区的边缘部分向背面弯折(Pad bending)以绑定驱动芯片,为避免弯折区域内的无机绝缘层13在弯折过程出现裂纹,可以将弯折区域的无机绝缘层13刻蚀并填充有机材料。在对该弯折区域内的无机绝缘层13进行刻蚀时,通常会采用两次刻蚀工艺。基于此,在本发明实施例中,可以通过对第一次刻蚀工艺的掩膜板的图案进行调整,在第一次刻蚀工艺中同时对层间绝缘层23和第二栅极绝缘层21进行刻蚀,以及通过对第二次刻蚀工艺的掩膜板的图案进行调整,在第二次刻蚀工艺中同时对第一栅极绝缘层19和防护层17进行刻蚀,以简化工艺流程及减少所需使用的掩膜板数量。此外,还可以同时在第一镂空部33、第二镂空部34、第三镂空部35、第四镂空部36、以及在弯折区域的镂空内填充有机材料,以简化工艺流程。
步骤K5:形成源漏极层24。源漏极层24通过有机部15中的过孔与半导体层18相连。
具体地,源漏极层24为Ti-Al-Ti复合膜层,Ti-Al-Ti复合膜层的厚度分别为50nm、650nm和50nm,复合膜层沉积完成后进行曝光显影刻蚀等工艺,形成具有一定图案的源漏极层24,源漏极层24作为晶体管25的源极29和漏极30,用于给发光器件层8传输数据信号,控制发光器件的发光亮度。
基于上述设置方式,防护层17、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23多个无机绝缘层13中均具有镂空部14,更大程度地利用填充在镂空部14中的有机部15提高了显示装置的抗挤压性能和耐弯折性能。而且,防护层17、第一栅极绝缘层19和第二栅极绝缘层21中的镂空部14分别与所在膜层背向衬底2一侧的金属层或半导体层18不交叠,也就是金属层或半导体层18下侧仍与无机材料相邻,从而能够利用无机材料起到更好的绝缘作用。
此外,显示装置还包括形成平坦化层56、发光器件层8、封装层9、偏振片10和触控层11等膜层。其中,结合图12,形成平坦化层56、发光器件层8、封装层9的 过程具体可包括:
步骤Q1:形成1.5μm厚度的平坦化层56,并对平坦化层56进行曝光显影刻蚀等工艺,以在平坦化层56上形成过孔。
步骤Q2:沉积ITO-Ag-ITO复合膜层,复合膜层的厚度分别为10nm、100nm和7nm,并对复合膜层进行曝光显影刻蚀等工艺,完成阳极37的制备。
步骤Q3:形成1.5μm厚度的像素定义层43(pixel definition layer,PDL),并对像素定义层43进行曝光显影刻蚀等工艺以形成开口。
步骤Q4:形成2μm厚度的支撑柱45,支撑柱45用于在后续蒸镀发光层38时支撑FMM。
步骤Q5:形成300nm厚度的发光层38和12nm厚度的阴极39,并蒸镀形成光耦合层(coupling layer,CPL)、和LiF层,其中,CPL层为有机层,用于调整折射率,增大出光效率,LiF层为无机层,用于进行电磁屏蔽。
步骤Q6:形成1μm厚度的第一无机封装层40,第一无机封装层40可为SiON层,随后涂布有机材料以形成10um厚度的有机封装层41,最后形成1μm厚度的第二无机封装层42,第二无机封装层42可为SiOx层,第一无机封装层40、有机封装层41和第二无机封装层42构成封装层9。
在一种实施方式中,结合图18,形成盖板4之后,制作方法还包括形成包括抗反射层81的保护膜80;其中,形成抗反射层81的过程包括:通过自组装或表面活性剂形成内核微球/微乳液,在内核微球表面使用溶胶凝胶法制备二氧化硅壳层,然后通过溶剂反复清洗带走内核微球以形成中空二氧化硅,中空二氧化硅为减反粒子60,中空二氧化硅的颗粒粒径为r,25nm≤r≤30nm,和/或,中空二氧化硅的颗粒壁厚为k,10nm≤k≤12nm,通过减小减反粒子60的颗粒粒径以及增大颗粒壁厚的方式,提高抗反射层81对抗剪切力的能力,更快速地将剪切力分散掉,避免外力划伤保护膜80的表面。
进一步地,通过自组装或表面活性剂形成内核微球/微乳液,在内核微球表面使用溶胶凝胶法制备二氧化硅壳层,然后通过溶剂反复清洗带走内核微球以形成中空二氧化硅的过程具体可包括:
步骤H1:将0.3g~0.5g的聚丙烯酸分散至15ml~20ml的氨水中进行搅拌,直至聚丙烯酸完全均匀的分散到氨水中。
步骤H2:将聚丙烯酸氨水溶液倒入无水乙醇烧杯中,待聚丙烯酸氨水溶液均匀分散后一边磁力搅拌烧杯一边缓慢加入总量为2ml~3ml的正硅酸乙酯。
步骤H3:加入正硅酸乙酯后,混合溶液在室温下继续搅拌10h,最终形成空心球二氧化硅溶胶的透明溶液。
步骤H4:对空心球二氧化硅溶胶进行杂化,首先将氧化硅纳米颗粒溶胶进行80°左右的冷凝回流去除溶液中的氨水,冷却至室温后,再加入稀盐酸进行PH值调节,最终调节PH值在2-3左右,最后在溶液中加入1-2ml正硅酸乙酯,搅拌1~2h;
步骤H5:制备减反射涂层:在PET基底(或者带有HC涂层的PET基底)上进行溶液涂覆,在室温下采用旋涂工艺通过调整转速及涂膜次数控制最终膜厚在150nm~200nm之间。
步骤H6:涂膜完成后采用30%左右的双氧水进行浸泡加热至80-100°以去除溶液中的正硅酸乙酯,形成致密的中空氧化硅涂层,也就是抗反射层81。
在一种实施方式中,结合图18,形成抗反射层81之前,形成保护膜80的过程还包括形成硬涂层52,硬涂层52的硬度为h,1H≤h≤2H;和/或,在垂直于衬底2所在平面的方向上,硬涂层52的膜厚为d4,5μm≤d4≤8μm;和/或,硬涂层52的弹性模量为E4,80Gpa≤E4≤100Gpa。
保护膜80的硬度主要受硬涂层52的硬度的影响,通过将硬涂层52的硬度、膜厚、弹性模量设置在上述范围内,可以增大保护膜80的整体硬度,减小保护膜80的挠度增量ΔW,提高保护膜80的纵向抗形变能力,从而进一步提高保护膜80的耐刮擦性能,提高保护膜80对显示装置的保护作用。
其中,形成硬涂层52的过程包括:
步骤G1:将阳离子引发剂,如硫鎓盐与甲基梯形倍半硅氧烷或者笼型倍半硅氧烷混合,比例为3%和97%,随后再按照1:2的比例与四氢呋喃混合并搅拌均匀。其中,硫鎓盐的分子结构如图26A所示,甲基梯形倍半硅氧烷的分析结构如图26B所示,笼型倍半硅氧烷的分子结构如图26C所示。
步骤G2:采用5μm的丝棒将溶液涂覆在PET层上,涂覆速度约为5~10mm/s。
步骤G3:在真空环境中加热去除溶剂,具体地,加热温度在25℃~80℃之间,加热时间为5~10min。
步骤G4:紫外线固化15~20min,紫外线能量为1-3j/cm2,固化过程中光引发剂会产生大量的H,促使环氧基团以ACE(active-chain end)模式发生聚合反应,随着环氧基团的活性中心逐渐减少,聚合反应逐渐停止,转化率达到饱和。
步骤G5:进行湿热退火处理,条件为60℃加90%湿度,时间为2h。引入湿气退火可以使环氧基团上的R 3O +与水分子发生反应,在末端产生-OH并产生一个H+,新产生的H+与中性环氧基团发生反应,产生有活性的二级R 2HO +,使ACE反应再次发生,增加聚合,直至成膜完成形成硬涂层52。
在一种实施方式中,结合图23,形成第二膜层6之前,制作方法还包括形成胶层55。
形成胶层55的过程包括:配置胶层溶液以及利用配置的胶层溶液制备胶层55,其中,胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;第一软单体和第二软单体的玻璃化转变温度小于或等于-40℃,硬单体的玻璃化转变温度大于或等于0℃。此时,胶层55的玻璃化转变温度较低,从而使胶层55在较大的温度范围内均具有较高的粘弹特性,提高显示装置在低温下的弯折性能,增长使用寿命。
其中,配置胶层溶液的过程包括:
步骤W1:用第一软单体(如丙烯酸异辛酯)作为溶液稀释引发剂和交联剂,分别配置浓度为1%的引发剂溶液和交联剂溶液。
步骤W2:按照配比,采用搅拌桨或反应釜将第一软单体(如丙烯酸异辛酯)溶解稀释大分子聚合物(如改性丙烯酸酯预聚物)。
步骤W3:按照配比,将第二软单体(如丙烯酸羟丁酯)、硬单体(如丙烯酸二环戊基酯)、用第一软单体(如丙烯酸异辛酯)稀释后的引发剂溶液按照配比配置胶液。需要说明的是,实际加入的溶液质量可以为表1中的数值乘以100倍。
步骤W4:将上述胶液在波长为365nm左右的紫外线灯下进行照射,并实时观察测量其粘度,待粘度在4000~6000cps左右时停止照射。
步骤W5:按照配比,在溶液中加入用第一软单体(如丙烯酸异辛酯)稀释后的交联剂溶液,搅拌后形成胶层溶液。
其中,制备胶层55的过程包括:
步骤R1:根据胶层的厚度要求,设置垫片厚度或涂布机的刮刀间隙。
步骤R2:将配制好的胶层溶液利用涂布丝棒或涂布机涂布在离型膜或PET膜等膜材上。
步骤R3:在涂布好的胶层溶液上附上离型膜或PET膜等膜材。
步骤R4:将胶层在波长为365nm的紫外线灯下进行照射,照射时长在1~5分钟,直至胶层固化完成。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (24)

  1. 一种显示装置,其特征在于,包括:
    阵列基板,所述阵列基板包括衬底和位于所述衬底一侧的阵列层;
    盖板,所述盖板位于所述阵列层背向所述衬底一侧,所述盖板包括第一膜层和第二膜层,所述第一膜层位于所述第二膜层背向所述衬底一侧;
    其中,所述第一膜层由高模量材料形成,所述高模量材料的弹性模量为E1,50Mpa≤E1≤5Gpa,所述第二膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
  2. 根据权利要求1所述的显示装置,其特征在于,
    所述改性吸能抗冲材料包括改性硅胶、改性热塑性聚氨酯弹性体橡胶、改性聚氨酯或改性剪切增稠材料。
  3. 根据权利要求1所述的显示装置,其特征在于,
    所述改性吸能抗冲材料的分子结构包括键合的聚合物分子主链和改性聚合物分子主链,其中,所述改性聚合物分子主链具有氢键或配位键,所述配位键包括硼氧键、金属-邻苯二酚或金属-组氨酸。
  4. 根据权利要求1所述的显示装置,其特征在于,
    所述第二膜层的弹性模量为E2,10Kpa≤E2≤500Mpa。
  5. 根据权利要求1所述的显示装置,其特征在于,
    在垂直于所述衬底所在平面的方向上,所述第一膜层的膜厚小于所述第二膜层的膜厚。
  6. 根据权利要求1所述的显示装置,其特征在于,
    所述盖板还包括第三膜层,所述第三膜层位于所述第二膜层朝向所述衬底一侧,所述第三膜层由高模量材料形成,所述高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。
  7. 根据权利要求1所述的显示装置,其特征在于,
    所述盖板还包括第四膜层,所述第四膜层位于所述第二膜层朝向所述衬底一侧,所述第四膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
  8. 根据权利要求1所述的显示装置,其特征在于,
    所述阵列层包括无机绝缘层,至少一层所述无机绝缘层具有镂空部,所述镂空部内填充有有机部。
  9. 根据权利要求8所述的显示装置,其特征在于,
    所述阵列层包括沿背向所述衬底层叠设置的防护层、半导体层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间绝缘层和源漏极层,所述无机绝缘层包括所述防护层、所述第一栅极绝缘层、所述第二栅极绝缘层和所述层间绝缘层;
    其中,所述防护层具有第一镂空部,在垂直于所述衬底所在平面的方向上,所述第一镂空部与所述半导体层不交叠;
    所述第一栅极绝缘层具有第二镂空部,在垂直于所述衬底所在平面的方向上,所述第二镂空部与所述第一栅极层不交叠;
    所述第二栅极绝缘层具有第三镂空部,在垂直于所述衬底所在平面的方向上,所述第三镂空部与所述第二栅极层不交叠;
    所述层间绝缘层具有第四镂空部,所述显示装置包括显示区,在垂直于所述衬底所在平面的方向上,所述第四镂空部覆盖所述显示区。
  10. 根据权利要求8所述的显示装置,其特征在于,
    所述显示装置包括显示区和非显示区,所述非显示区包括移位寄存器电路区和扇形走线区,所述镂空部位于所述显示区和所述移位寄存器电路区,在垂直于所述衬底所在平面的方向上,所述镂空部与所述扇形走线区不交叠。
  11. 根据权利要求1所述的显示装置,其特征在于,
    所述显示装置还包括保护膜,所述保护膜位于所述盖板背向所述衬底一侧;
    所述保护膜包括抗反射层,所述抗反射层包括中空的减反粒子,所述减反粒子的颗粒粒径为r,25nm≤r≤30nm,和/或,所述减反粒子的颗粒壁厚为k,10nm≤k≤12nm。
  12. 根据权利要求11所述的显示装置,其特征在于,
    所述保护膜还包括硬涂层,所述硬涂层位于所述抗反射层与所述盖板之间;
    所述硬涂层的硬度为h,1H≤h≤2H,和/或,在垂直于所述衬底所在平面的方向上,所述硬涂层的膜厚为D1,5μm≤D1≤8μm,和/或,所述硬涂层的弹性模量为E4,80Gpa≤E4≤100Gpa。
  13. 根据权利要求1所述的显示装置,其特征在于,
    所述显示装置还包括胶层,所述胶层位于所述盖板与所述阵列层之间,所述胶层的玻璃化转变温度为Tg,Tg≤-40℃。
  14. 根据权利要求13所述的显示装置,其特征在于,
    形成所述胶层的胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;
    其中,所述第一软单体和所述第二软单体的玻璃化转变温度小于或等于-40℃,所述硬单体的玻璃化转变温度大于或等于0℃。
  15. 根据权利要求14所述的显示装置,其特征在于,
    所述第一软单体和所述第二软单体分别包括丙烯酸异辛酯、丙烯酸正己酯、丙烯酸羟丁酯、丙烯酸正丁酯中的一种或多种;
    所述硬单体包括羟基丙烯酸酯单体、羧基丙烯酸酯单体、胺基丙烯酸酯单体、丙烯酸二环戊基酯中的至少一种;
    所述引发剂包括自由基光引发剂;
    所述交联剂包括双官能度丙烯酸酯活性聚合物,且所述交联剂的分子量大于或等于200g/mol且小于或等于5000g/mol;
    所述大分子聚合物由所述第一软单体、所述第二软单体和所述硬单体预聚制备形成,且所述大分子聚合物的分子量大于或等于10×10 4g/mol且小于或等于100×10 4g/mol。
  16. 根据权利要求13所述的显示装置,其特征在于,
    在垂直于所述衬底所在平面的方向上,所述胶层的膜厚为D2,15μm≤D2≤100μm,和/或,所述胶层的弹性模量为E5,5Kpa≤E5≤50Mpa。
  17. 一种显示装置的制作方法,其特征在于,包括:
    在衬底上形成阵列层;
    形成盖板,形成所述盖板的过程包括:在所述阵列层背向所述衬底一侧形成第二膜层,所述第二膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成;在所述第二膜层背向所述衬底一侧形成第一膜层,所述第一膜层由高模量材料形成,所述高模量材料形成的弹性模量为E1,50Mpa≤E1≤5Gpa。
  18. 根据权利要求17所述的制作方法,其特征在于,
    在形成所述第二膜层之前,形成所述盖板的过程还包括:在所述阵列层背向所述衬底一侧第三膜层,所述第三膜层由高模量材料形成,所述高模量材料形成的弹性模量为E3,50Mpa≤E3≤5Gpa。
  19. 根据权利要求17所述的制作方法,其特征在于,
    在形成所述第二膜层之前,形成所述盖板的过程还包括:在所述阵列层背向所述衬底一侧第四膜层,所述第四膜层由具有粘性和剪切增稠特性的改性吸能抗冲材料形成。
  20. 根据权利要求17所述的制作方法,其特征在于,
    形成所述阵列层的过程包括:形成无机绝缘层,且在至少一层所述无机绝缘层中形成镂空部,并在所述镂空部内填充有机材料以形成有机部。
  21. 根据权利要求20所述的制作方法,其特征在于,
    形成所述阵列层的过程包括:
    在所述衬底上依次形成防护层、半导体层、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层和层间绝缘层,所述无机绝缘层包括所述防护层、所述第一栅极绝缘层、所述第二栅极绝缘层和所述层间绝缘层;
    对所述层间绝缘层和所述第二栅极绝缘层进行刻蚀,以在所述层间绝缘层上形成第四镂空部以及在所述第二栅极绝缘层上形成第三镂空部,并且,在垂直于所述衬底所在平面的方向上,所述第四镂空部覆盖显示装置的显示区,所述第三镂空部与所述第二栅极层不交叠;
    对所述第一栅极绝缘层和所述防护层进行刻蚀,以在所述第一栅极绝缘层上形成第二镂空部以及在所述防护层上形成第一镂空部,并且,在垂直于所述衬底所在平面的方向上,所述第二镂空部和所述第一镂空部与所述半导体层和所述第一栅极层不交叠;
    在所述第一镂空部、所述第二镂空部、所述第三镂空部和所述第四镂空部内填充有机材料;
    形成源漏极层。
  22. 根据权利要求17所述的制作方法,其特征在于,
    形成所述盖板之后,所述制作方法还包括形成包括抗反射层的保护膜;
    其中,形成所述抗反射层的过程包括:通过自组装或表面活性剂形成内核微球/微乳液,在所述内核微球表面使用溶胶凝胶法制备二氧化硅壳层,然后通过溶剂反复清洗带走所述内核微球以形成中空二氧化硅,所述中空二氧化硅的颗粒粒径为r,25nm≤r≤30nm,和/或,所述中空二氧化硅的颗粒壁厚为k,10nm≤k≤12nm。
  23. 根据权利要求22所述的制作方法,其特征在于,
    形成所述抗反射层之前,形成所述保护膜的过程还包括形成硬涂层,所述硬涂层的硬度为h,1H≤h≤2H;和/或,在垂直于所述衬底所在平面的方向上,所述硬涂层的膜厚为d4,5μm≤d4≤8μm;和/或,所述硬涂层的弹性模量为E4,80Gpa≤E4≤100Gpa。
  24. 根据权利要求17所述的制作方法,其特征在于,
    形成所述第二膜层之前,所述制作方法还包括形成胶层;
    形成所述胶层的过程包括:配置胶层溶液以及利用配置的胶层溶液制备胶层,其中,胶层溶液由包括如下质量百分比的材料合成:第一软单体40%~66%,第二软单体2%~8%,引发剂0.05%~0.4%,交联剂0.05%~0.5%,硬单体2%~10%,大分子聚合物30%~50%;所述第一软单体和所述第二软单体的玻璃化转变温度小于或等于-40℃,所述硬单体的玻璃化转变温度大于或等于0℃。
PCT/CN2022/090940 2021-06-16 2022-05-05 显示装置及其制作方法 WO2022262450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22823933.1A EP4340030A1 (en) 2021-06-16 2022-05-05 Display device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110665834.4A CN115483252A (zh) 2021-06-16 2021-06-16 显示装置及其制作方法
CN202110665834.4 2021-06-16

Publications (1)

Publication Number Publication Date
WO2022262450A1 true WO2022262450A1 (zh) 2022-12-22

Family

ID=84419357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090940 WO2022262450A1 (zh) 2021-06-16 2022-05-05 显示装置及其制作方法

Country Status (3)

Country Link
EP (1) EP4340030A1 (zh)
CN (2) CN117253424B (zh)
WO (1) WO2022262450A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117253424B (zh) * 2021-06-16 2024-02-13 华为技术有限公司 显示装置及叠层结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601776A (zh) * 2016-12-26 2017-04-26 武汉华星光电技术有限公司 柔性amoled显示面板
CN107545847A (zh) * 2016-06-28 2018-01-05 三星显示有限公司 显示装置
CN109103224A (zh) * 2018-08-20 2018-12-28 云谷(固安)科技有限公司 Tft基板和显示面板
CN111312782A (zh) * 2020-02-27 2020-06-19 京东方科技集团股份有限公司 柔性显示装置,以及制备柔性显示装置的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118933B (zh) * 2015-09-02 2018-03-13 深圳市华星光电技术有限公司 薄膜封装方法及有机发光装置
KR102343573B1 (ko) * 2017-05-26 2021-12-28 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
CN111295532A (zh) * 2017-12-15 2020-06-16 深圳市柔宇科技有限公司 柔性抗冲击保护材料及其柔性抗冲击保护盖板
CN109377889B (zh) * 2018-12-19 2020-08-11 武汉华星光电半导体显示技术有限公司 柔性显示装置
CN112185247A (zh) * 2019-07-03 2021-01-05 华为技术有限公司 柔性显示盖板、柔性显示模组和柔性显示装置
CN110610979A (zh) * 2019-09-29 2019-12-24 武汉天马微电子有限公司 柔性显示面板及其制作方法、显示装置
CN112582575A (zh) * 2020-12-25 2021-03-30 京东方科技集团股份有限公司 柔性显示模组及电子设备
CN112757742A (zh) * 2021-01-18 2021-05-07 京东方科技集团股份有限公司 集成盖板及其制备方法、显示模组和显示装置
CN117253424B (zh) * 2021-06-16 2024-02-13 华为技术有限公司 显示装置及叠层结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107545847A (zh) * 2016-06-28 2018-01-05 三星显示有限公司 显示装置
CN106601776A (zh) * 2016-12-26 2017-04-26 武汉华星光电技术有限公司 柔性amoled显示面板
CN109103224A (zh) * 2018-08-20 2018-12-28 云谷(固安)科技有限公司 Tft基板和显示面板
CN111312782A (zh) * 2020-02-27 2020-06-19 京东方科技集团股份有限公司 柔性显示装置,以及制备柔性显示装置的方法

Also Published As

Publication number Publication date
CN117253424B (zh) 2024-02-13
CN117253424A (zh) 2023-12-19
CN115483252A (zh) 2022-12-16
EP4340030A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP3865245B2 (ja) 有機elディスプレイの製造方法および製造装置
TWI336210B (en) Light-emitting device, method for manufacturing light-emitting device, and electronic apparatus
TWI462632B (zh) 有機電激發光裝置和該製造方法及電子機器
CN107017353B (zh) 柔性有机发光显示装置及其制造方法
US9774714B2 (en) Method for fabricating window member
CN104992924B (zh) 柔性显示器件及其制造方法
WO2016045279A1 (zh) 一种封装层、电子封装器件及显示装置
TW200926879A (en) Organic electroluminescent device, method for manufacturing the same, and electronic apparatus including the same
KR20160066679A (ko) 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
WO2022262450A1 (zh) 显示装置及其制作方法
KR20090019752A (ko) 산란 부재 및 그것을 사용하는 유기 일렉트로루미네선스 표시 장치
US10862035B2 (en) Flexible organic light emitting diode display and manufacturing method of same
JP2004335207A (ja) 有機el素子とその製造方法
US20170077198A1 (en) Composite layer and method for manufacturing the same, and oled device
KR20180068252A (ko) 윈도우 필름, 이의 제조방법 및 이를 포함하는 디스플레이 장치
KR101788386B1 (ko) 윈도우 필름용 조성물, 이로부터 형성된 플렉시블 윈도우 필름 및 이를 포함하는 플렉시블 디스플레이 장치
CN106058068A (zh) 有机发光二极管和显示基板及其制作方法、显示器件
CN103474582A (zh) 电致发光装置及其制备方法
WO2021114416A1 (zh) 一种显示面板及显示装置
JP4061588B2 (ja) 有機elディスプレイの製造方法および製造装置
JP4010286B2 (ja) 有機elディスプレイの製造方法
JP3867914B2 (ja) 有機elディスプレイおよびその製造方法
JP6331681B2 (ja) 光散乱層用樹脂組成物、光散乱層、および有機エレクトロルミネッセンス装置
CN211404507U (zh) 一种柔性基板及柔性显示面板
WO2020211262A1 (zh) Oled器件的制备方法、oled器件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22823933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022823933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18570875

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022823933

Country of ref document: EP

Effective date: 20231213

NENP Non-entry into the national phase

Ref country code: DE