WO2022260077A1 - ポリカーボネート系樹脂組成物及び成形体 - Google Patents

ポリカーボネート系樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2022260077A1
WO2022260077A1 PCT/JP2022/023114 JP2022023114W WO2022260077A1 WO 2022260077 A1 WO2022260077 A1 WO 2022260077A1 JP 2022023114 W JP2022023114 W JP 2022023114W WO 2022260077 A1 WO2022260077 A1 WO 2022260077A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polycarbonate
carbon atoms
resin composition
based resin
Prior art date
Application number
PCT/JP2022/023114
Other languages
English (en)
French (fr)
Inventor
稔 薮上
悠人 埴岡
信廣 渡邉
敏夫 磯崎
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020237042523A priority Critical patent/KR20240017829A/ko
Priority to US18/568,001 priority patent/US20240239962A1/en
Priority to JP2023527892A priority patent/JPWO2022260077A1/ja
Priority to CN202280041379.3A priority patent/CN117460786A/zh
Priority to DE112022002974.9T priority patent/DE112022002974T5/de
Publication of WO2022260077A1 publication Critical patent/WO2022260077A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences

Definitions

  • the present invention relates to a polycarbonate-based resin composition and a molded article.
  • Polycarbonate-polyorganosiloxane copolymers have attracted attention due to their good properties such as impact resistance, chemical resistance, and flame retardancy. Therefore, it is expected to be widely used in various fields such as electric and electronic equipment fields and automobile fields. Techniques relating to such polycarbonate-polyorganosiloxane copolymers include, for example, those described in Patent Documents 1 and 2.
  • Patent Document 1 discloses (a) a hydroxyaryloxy terminated dimethylsiloxane and (b) a weight average molecular weight of 3000 to 24000 and a molar ratio of OH end groups to aryl end groups of 10:90 to 70:30. an oligocarbonate in the melt at a weight ratio of (a) to (b) between 1:99 and 40:60 at a temperature of 250-320° C. and a pressure of 0.01-100 mbar.
  • a process for the preparation of polysiloxane/polycarbonate block cocondensation products is described comprising:
  • US Pat. No. 6,200,403 discloses a process for preparing a polysiloxane-polycarbonate block cocondensate by reacting at least one hydroxyaryl-terminated polydialkylsiloxane with at least one polycarbonate in a melt, comprising the steps of: A process is described in which the process is carried out in at least two stages, a reactor combination consisting of at least one pre-reactor and a high viscosity reactor and a discharge device.
  • the present invention has been made in view of the above circumstances, and provides a polycarbonate resin composition from which a molded article having an improved balance between tensile properties and impact resistance can be obtained. Furthermore, the present invention provides a polycarbonate-based resin molded article with an improved balance between tensile properties and impact resistance.
  • a polycarbonate-based resin composition containing a polycarbonate-polyorganosiloxane copolymer (A) having a specific structure and an elastomer (B) is a molded article having an improved balance between tensile properties and impact resistance. I found that I can give
  • the following polycarbonate-based resin composition and molded article are provided.
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, or It represents an alkylaryl group having 7 to 22 carbon atoms.
  • R 6 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain.
  • R 8 may be the same or different, and represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups contains at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH-, and -NR 111 - in at least one of the main chain and the side chain; It's okay.
  • R 111 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • z and u represent 0 or 1; a represents an integer of 2-500, and b represents an integer of 2-200.
  • R 10 is a divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 40 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms. and these groups may be substituted by a substituent and may contain at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
  • y represents an integer from 10 to 500;
  • R 55 and R 56 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, an arylene group having 6 to 20 carbon atoms, a cyclo having 5 to 15 carbon atoms an alkylidene group, a fluorenediyl group, an arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, -S-, -SO-, -SO 2 -, -O- or -CO- .
  • R 100 represents a divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms
  • the divalent aliphatic hydrocarbon group may contain at least one selected from the group consisting of branched structures and cyclic structures, It may contain at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom.
  • the polycarbonate block (A-2) is 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl) ) cyclohexane, 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxy phenyl)cyclododecene, isosorbide, cyclohexane-1,4-dimethanol, tricyclodecanedimethanol, 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro [5.5]
  • R 1 to R 4 , R 6 , R 8 , z, a and b have the same meanings as defined above.
  • R 5 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain. may contain at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH- and -NR 111 -.
  • R 7 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain. may contain at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH-, and -NR 111 -.
  • R 111 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • z1 indicates 0 or 1 ;
  • b 1 represents an integer of 2-200.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid.
  • [8] The polycarbonate resin composition according to any one of [1] to [7], wherein all of R 1 to R 4 are methyl groups.
  • R 6 is a trimethylene group.
  • R 8 is a dimethylene group, a methyl-substituted dimethylene group (—CH 2 CHMe—), or a trimethylene group, and the z is 1.
  • a strip-shaped molded piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm obtained by molding the polycarbonate-based resin composition, measured at a measurement temperature of 23° C. in accordance with ISO-179-1:2010.
  • the polycarbonate according to any one of the above [1] to [14], wherein a molded piece having a notch (r 0.25 mm ⁇ 0.05 mm) by post-processing has a Charpy impact strength of 38 kJ / m2 or more. system resin composition.
  • the elastomer (B) is a methyl methacrylate-butadiene-styrene copolymer, a methyl methacrylate-butadiene copolymer, a methyl methacrylate-acrylic rubber copolymer, a methyl methacrylate-acrylic rubber-styrene copolymer, a methyl methacrylate-acrylic At least one selected from the group consisting of butadiene rubber copolymers, methyl methacrylate-acrylic/butadiene rubber-styrene copolymers, and methyl methacrylate-(acrylic/silicone IPN rubber) copolymers [1] to [16]
  • the polycarbonate resin composition according to any one of [16].
  • the content of the elastomer (B) is 1.0 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin (S), according to any one of [1] to [17].
  • Polycarbonate resin composition [19] The polycarbonate-based resin composition according to any one of [1] to [18], wherein the polycarbonate-polyorganosiloxane copolymer (A) is a copolymer obtained by a melt polymerization method.
  • polycarbonate-based resin composition according to any one of [1] to [19] above, wherein the polycarbonate-polyorganosiloxane copolymer (A) is a copolymer obtained using a diol monomer (a1).
  • a molded article comprising the polycarbonate-based resin composition according to any one of [1] to [20].
  • a polycarbonate-based resin composition capable of obtaining a molded article having an improved balance between tensile properties and impact resistance, and a polycarbonate-based resin molded article having an improved balance between tensile properties and impact resistance. be able to.
  • the polycarbonate resin composition of the present invention comprises a polyorganosiloxane block (A-1) containing a structural unit represented by general formula (1) and a structural unit represented by general formula (2). It contains a polycarbonate-based resin (S) containing a polycarbonate-polyorganosiloxane copolymer (A) having a polycarbonate block (A-2) and an elastomer (B). According to the polycarbonate-based resin composition of the present invention, a molded article having an improved balance between tensile properties and impact resistance can be obtained.
  • Polycarbonate-polyorganosiloxane copolymer (A) is a polyorganosiloxane block (A-1) containing a structural unit represented by the general formula (1) and a polycarbonate containing a structural unit represented by the general formula (2) It has a block (A-2).
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, or It represents an alkylaryl group having 7 to 22 carbon atoms.
  • R 6 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain.
  • R 8 may be the same or different, and represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups contains at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH-, and -NR 111 - in at least one of the main chain and the side chain; It's okay.
  • R 111 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • z and u represent 0 or 1; a represents an integer of 2-500, and b represents an integer of 2-200.
  • R 10 is a divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 40 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 20 carbon atoms. and these groups may be substituted by a substituent and may contain at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom.
  • y represents an integer from 10 to 500; ]
  • the affinity between the polycarbonate block (A-2) and the polyorganosiloxane structural site of the polyorganosiloxane block (A-1) can be enhanced. As a result, it is presumed that separation between components can be reduced, resulting in molded articles with an improved balance of tensile properties and impact resistance. Further, during the production of the polycarbonate-polyorganosiloxane copolymer (A), the monomer from which the polyorganosiloxane block (A-1) is derived is provided with a structural unit represented by the general formula (1), so that other Compatibility with raw material components is improved.
  • the reaction rate of the monomer can be increased and the polyorganosiloxane structure can be incorporated into the polycarbonate-polyorganosiloxane copolymer (A) with high randomness.
  • the structural unit represented by the general formula (1) the unreacted polyorganosiloxane that could not be copolymerized and the copolymer in which the polyorganosiloxane was excessively incorporated can be reduced, As a result, separation between components caused by those components can be reduced, presumably resulting in molded bodies with improved balance of tensile properties and impact resistance.
  • the polyorganosiloxane block (A-1) is a structural unit present between the two closest polycarbonate bonds on the main chain of the polycarbonate-polyorganosiloxane copolymer (A), and has the following general formula (X ) contains at least one repeating unit.
  • the polyorganosiloxane block (A-1) containing a structural unit represented by general formula (1) is selected from the group consisting of structural units represented by general formulas (1-1) to (1-3). It preferably contains at least one, and more preferably contains a structural unit represented by general formula (1-1).
  • R 1 to R 4 , R 6 , R 8 , z, a and b have the same meanings as defined above.
  • R 5 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain. may contain at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH- and -NR 111 -.
  • R 7 represents an arylene group having 6 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms, or an alkylarylene group having 7 to 22 carbon atoms, and these groups are present in at least one of the main chain and the side chain. may contain at least one group selected from the group consisting of -O-, -COO-, -CO-, -S-, -NH- and -NR 111 -.
  • R 111 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • z1 indicates 0 or 1 ;
  • b 1 represents an integer of 2-200.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid.
  • the halogen atoms represented by R 1 to R 4 include fluorine, chlorine, bromine and iodine atoms.
  • the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups, and various hexyl groups (this "Various types" in the specification include straight-chain and all branched-chain types, and the same shall apply hereinafter).
  • Examples of the alkoxy group having 1 to 10 carbon atoms represented by R 1 to R 4 include alkoxy groups having the same alkyl group moiety as the aforementioned alkyl group.
  • the aryl group having 6 to 12 carbon atoms represented by R 1 to R 4 includes a phenyl group and a naphthyl group.
  • alkylaryl groups having 7 to 22 carbon atoms represented by R 1 to R 4 include alkylaryl groups having the same alkyl group portion as the aforementioned alkyl group and the same aryl group portion as the aforementioned aryl group.
  • Each of R 1 to R 4 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an arylalkyl group having 7 to 22 carbon atoms. More preferably all are alkyl groups having 1 to 6 carbon atoms, and more preferably all are methyl groups.
  • the arylene group having 6 to 20 carbon atoms represented by R 5 , R 6 , R 7 or R 8 includes a phenylene group and a naphthylene group.
  • the alkylene group having 1 to 10 carbon atoms represented by R 5 , R 6 , R 7 or R 8 includes methylene group, dimethylene group, trimethylene group, methyl-substituted dimethylene group and various butylene groups. Any butylene group is preferably a tetramethylene group.
  • the alkylarylene group represented by R 5 , R 6 , R 7 or R 8 includes an alkylarylene group having the same alkyl group site as the alkylene group and the same arylene group site as the arylene group. .
  • R 111 represents an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms represented by R 111 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • the aryl group having 6 to 10 carbon atoms represented by R 111 includes a phenyl group and a naphthyl group.
  • Each of R 5 , R 6 , R 7 and R 8 is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, a dimethylene group, a methyl-substituted More preferably, it is a dimethylene group ( --CH.sub.2CHMe-- or --CHMeCH.sub.2-- ) or a trimethylene group.
  • R 5 and R 6 are more preferably trimethylene groups.
  • R 7 and R 8 are more preferably dimethylene groups.
  • "-Me" represents a methyl group ( -CH3 group).
  • z and z1 are each 1 , more preferably both z and z1 are 1 .
  • R 1 to R 8 z, z 1 , a, b, and b 1 , each may be the same or different.
  • R 1 to R 4 are all methyl groups, R 6 is a trimethylene group, R 8 is a dimethylene group, z is 1, and more preferably R 1 to R More preferably, 4 are both methyl groups, R 6 is a trimethylene group, R 8 is a dimethylene group, z is 1, and u is 1.
  • R 1 to R 4 are all methyl groups, R 5 and R 6 are both trimethylene groups, and R 7 and R 8 are both dimethylene and z and z1 are both 1 .
  • a divalent group derived from a diisocyanate compound represented by ⁇ or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid for example, a divalent group represented by the following general formulas (iii) to (vii) groups.
  • a represents the number of repeating units of the polyorganosiloxane, preferably 2 or more, more preferably 10 or more, still more preferably 15 or more, still more preferably 20 or more, still more preferably 35 or more, and preferably 500 or less, more It is preferably an integer of 300 or less, more preferably 100 or less, still more preferably 70 or less, still more preferably 65 or less, and even more preferably 50 or less.
  • the average number of repeating units of the polyorganosiloxane which is the average value of a, is preferably 2 or more, more preferably 10 or more, still more preferably 15 or more, still more preferably 20 or more, still more preferably 35 or more, and preferably It is 500 or less, more preferably 300 or less, still more preferably 100 or less, still more preferably 70 or less, still more preferably 65 or less, still more preferably 50 or less.
  • the polycarbonate-polyorganosiloxane copolymer has a higher total light transmittance and becomes a highly transparent copolymer, which is preferable.
  • b and b1 represent the number of repeating units of the terminal modified group of the polyorganosiloxane, and are each independently preferably 2 or more, more preferably 5 or more, still more preferably 8 or more, still more preferably 10 or more, still more preferably 12 or more. and is preferably an integer of 200 or less, more preferably 100 or less, still more preferably 50 or less, still more preferably 45 or less, still more preferably 40 or less, and still more preferably 38 or less.
  • the average number of repeating units of terminal modified groups of the polyorganosiloxane which is the average value of b and b1, is preferably 2 or more, more preferably 5 or more, still more preferably 8 or more, still more preferably 10 or more, still more preferably 12 and is preferably 200 or less, more preferably 100 or less, still more preferably 50 or less, still more preferably 45 or less, still more preferably 40 or less, still more preferably 38 or less.
  • the above range is preferable because of the availability of raw materials.
  • the average number of repeating units of the terminal modified group of the polyorganosiloxane is 10 or more, the balance between tensile properties and impact resistance of the resulting molded article can be further improved, which is more preferable.
  • the average number of repeating units of the group is 100 or less, it is more preferable because it is possible to suppress the deterioration of the handleability due to the increase in the viscosity and melting point of the polyorganosiloxane. It is more preferable that the content of the polyorganosiloxane block in the resin is less than or equal to the amount that can maintain the effect of improving the physical properties.
  • z and z1 each independently represent 0 or 1, preferably 1.
  • u represents 0 or 1, preferably 1.
  • Examples of the divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms represented by R 10 in the general formula (2) include ethylene group, n-propylene group, isopropylene group, n-butylene group and isobutylene group.
  • n-pentylene group n-hexylene group, n-heptylene group, n-octylene group, 2-ethylhexylene group, n-nonylene group, n-decylene group, n-undecylene group, n-dodecylene group, n- tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, n-heptadecylene group, n-octadecylene group and the like.
  • these groups may be substituted with substituents and may contain at least one atom selected from the group consisting of oxygen, nitrogen, sulfur and halogen atoms.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 40 carbon atoms represented by R 10 in the general formula (2) include a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, a cyclo A tetradecylene group, an adamantylene group, a bicycloheptylene group, a bicyclodecylene group, a tricyclodecylene group, and the like.
  • these groups may be substituted with substituents and may contain at least one atom selected from the group consisting of oxygen, nitrogen, sulfur and halogen atoms.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 10 in the general formula (2) include 2,2-bis(4-hydroxyphenyl)propane (also referred to as bisphenol A), 2 , 2-bis(4-hydroxy-3-methylphenyl)propane (also referred to as bisphenol C), 1,1-bis(4-hydroxyphenyl)cyclohexane (also referred to as bisphenol Z), 1,1-bis(4 -hydroxyphenyl)-3-methylcyclohexane (also called bisphenol 3MZ), 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (also called bisphenol HTG), 1,1-bis Divalent aromatic hydrocarbon radicals derived from (4-hydroxyphenyl)cyclododecene, hydroquinone, resorcinol (also called resorcinol) and catechol can be mentioned.
  • 2,2-bis(4-hydroxyphenyl)propane also referred to as bisphenol A
  • Such divalent aromatic hydrocarbon groups are derived, for example, from the use of the above compounds during production. However, these groups may be substituted with substituents and may contain at least one atom selected from the group consisting of oxygen, nitrogen, sulfur and halogen atoms.
  • the polycarbonate block (A-2) containing the structural unit represented by the general formula (2) includes at least one of the structural unit represented by the general formula (111) and the structural unit represented by the general formula (112). It preferably contains a structural unit represented by general formula (111).
  • the polycarbonate block (A-2) contains a structural unit represented by general formula (111), preferably 90 mol in 100 mol% of structural units represented by general formula (2). % or more, more preferably 95 mol % or more, still more preferably 98 mol % or more, still more preferably 99 mol % or more, still more preferably 100 mol % or more.
  • R 55 and R 56 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, an arylene group having 6 to 20 carbon atoms, a cyclo having 5 to 15 carbon atoms an alkylidene group, a fluorenediyl group, an arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, -S-, -SO-, -SO 2 -, -O- or -CO- .
  • R 100 represents a divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms
  • the divalent aliphatic hydrocarbon group may contain at least one selected from the group consisting of branched structures and cyclic structures, It may contain at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom.
  • y represents an integer from 10 to 500; s and t each independently represent an integer of 0 to 4; ]
  • Halogen atoms represented by R 55 or R 56 include fluorine, chlorine, bromine and iodine atoms.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 55 or R 56 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • the alkoxy group represented by R55 or R56 includes an alkoxy group having the same alkyl group moiety as the above alkyl group.
  • Examples of the alkylene group having 1 to 8 carbon atoms represented by X include methylene group, ethylene group, trimethylene group, tetramethylene group, and hexamethylene group, and the alkylene group having 1 to 5 carbon atoms is preferable.
  • Examples of the alkylidene group having 2 to 8 carbon atoms represented by X include an ethylidene group and an isopropylidene group.
  • the cycloalkylene group having 5 to 15 carbon atoms represented by X includes a cyclopentanediyl group, a cyclohexanediyl group, a cyclooctanediyl group and the like, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
  • the arylene group having 6 to 20 carbon atoms represented by X includes a phenylene group, a naphthylene group, a biphenylene group and the like.
  • the cycloalkylidene group having 5 to 15 carbon atoms represented by X includes a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group, and the like, and has 5 to 10 carbon atoms. is preferred, and a cycloalkylidene group having 5 to 8 carbon atoms is more preferred.
  • the arylalkylene group having 7 to 15 carbon atoms represented by X is an aryl group having 6 to 14 ring carbon atoms such as a phenyl group, naphthyl group, biphenyl group, or anthryl group, and the alkylene moiety is Examples include arylalkylene groups which are the same as the above alkylene.
  • the arylalkylidene group having 7 to 15 carbon atoms represented by X is an aryl group having 6 to 14 ring carbon atoms such as a phenyl group, naphthyl group, biphenyl group, or anthryl group, and the alkylidene moiety is Examples include arylalkylidene groups which are the same as the alkylidene groups described above.
  • s and t each independently represent an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1. Among them, it is preferable that s and t are 0 and X is a single bond or an alkylene group having 1 to 8 carbon atoms, and it is preferable that s and t are 0 and X is an alkylidene group, particularly s and t are 0 and X is an isopropylidene group.
  • the divalent aliphatic hydrocarbon group having 2 to 40 carbon atoms represented by R 100 includes an alkylene group having 2 to 40 carbon atoms, a cycloalkylene group having 4 to 40 carbon atoms, and a cycloalkylene group having 4 to 40 carbon atoms. Examples thereof include a divalent saturated heterocyclic group containing oxygen or nitrogen.
  • the alkylene group preferably has 2 to 18 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • the cycloalkylene group preferably has 4 to 20 carbon atoms, more preferably 5 to 20 carbon atoms.
  • the oxygen- or nitrogen-containing divalent saturated heterocyclic group preferably has 4 to 20 carbon atoms, more preferably 5 to 20 carbon atoms.
  • these groups may contain at least one selected from the group consisting of branched structures and cyclic structures, and at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a halogen atom. may contain.
  • alkylene group having 2 to 40 carbon atoms examples include ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, n-pentylene group, n-hexylene group, n-heptylene group and n-octylene.
  • Examples of the cycloalkylene group having 4 to 40 carbon atoms include a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, a cyclotetradecylene group, an adamantylene group, a bicycloheptylene group and a bicyclodecylene group. , and a tricyclodecylene group.
  • Examples of the divalent heterocyclic group containing oxygen or nitrogen having 4 to 40 carbon atoms include those containing an oxygen or nitrogen atom in the cycloalkylene group skeleton.
  • the polycarbonate block (A-2) comprising the repeating unit represented by the above general formula (2) comprises structural units represented by the following general formulas (ai) to (a-xiii). It preferably contains at least one selected from the group, and more preferably contains at least one selected from the group consisting of structural units represented by general formulas (ai) to (av) below. , (ai), (a-ii) and (a-v) It is more preferable to include at least one selected from the group consisting of structural units represented by (a-v) More preferably, it contains a structural unit. Higher transparency can be obtained by containing such preferable structural units.
  • Polycarbonate block (A-2) represented by general formula (2) includes 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1, 1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1 , 1-bis(4-hydroxyphenyl)cyclododecene, isosorbide, cyclohexane-1,4-dimethanol, tricyclodecanedimethanol, 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4 ,8,10-tetraoxaspiro[5.5]undecane, 1,3-propanediol, and 1,4-butanediol. .
  • Such structural units are derived, for example, from the use of the compound during manufacture
  • y is more preferably 20 or more, still more preferably 40 or more, and more preferably 200 or less, still more preferably 100 or less.
  • y is 20 or more, it is possible to suppress an increase in low-molecular-weight components in the copolymer, which is preferable.
  • y is 40 or more, the toughness of the copolymer is increased, which is preferable.
  • y is 200 or less, appropriate fluidity can be obtained during molding.
  • the polyorganosiloxane block (A-1) preferably contains structural units represented by general formula (1) as a main component.
  • the main component in this specification means that the content of all structures is 50% by mass or more.
  • the content of structural units represented by general formula (1) is preferably 50% by mass or more with respect to all structures of the polyorganosiloxane block (A-1). , more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably 98% by mass or more.
  • the polycarbonate block (A-2) preferably contains a structural unit represented by general formula (2) as a main component.
  • the content of structural units represented by general formula (2) is preferably 50% by mass or more, more than It is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 98% by mass or more.
  • the content of the polyorganosiloxane block (A-1) in the polycarbonate-polyorganosiloxane copolymer (A) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1 0% by mass or more, more preferably 3.0% by mass or more, and preferably 60% by mass or less, more preferably 40% by mass or less, even more preferably 20% by mass or less, and still more preferably 10% by mass or less. be. If the content of polyorganosiloxane blocks in the polycarbonate-polyorganosiloxane copolymer (A) is within the above range, better impact resistance and transparency can be obtained.
  • the content of the polycarbonate block (A-2) in the polycarbonate-polyorganosiloxane copolymer (A) is preferably 40% by mass or more, more preferably 60% by mass or more, still more preferably 80% by mass or more, and still more preferably is 90% by mass or more, and is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, still more preferably 99.0% by mass or less, and still more preferably 97.0% by mass or less.
  • the content of the polyorganosiloxane block (A-1) in the polycarbonate-polyorganosiloxane copolymer (A) means the polycarbonate block (A-2) in the general formula (X) Structural units represented, structural units represented by the following general formula (Y), and, if necessary, the total mass of the terminal structure derived from the terminal terminator described later contained in the polycarbonate-polyorganosiloxane copolymer (A) of the total mass of the structural units represented by the general formula (X).
  • content of polyorganosiloxane block (A-1) in polycarbonate resin (S) and “content of polyorganosiloxane block (A-1) in polycarbonate resin composition” described later. be.
  • R Y is R 7 or R 8 ; z 0 is z when R Y is R 8 and z 0 is z 1 when R Y is R 7 .
  • R 7 , R 8 , z and z 1 have the same meanings as above.
  • the viscosity average molecular weight of the polycarbonate-polyorganosiloxane copolymer (A) is preferably 5,000 or more, more preferably 12,000 or more, still more preferably 14,000 or more, still more preferably 16,000 or more, And it is preferably 50,000 or less, more preferably 30,000 or less, still more preferably 23,000 or less, still more preferably 21,000 or less.
  • the polycarbonate-polyorganosiloxane copolymer (A) can be produced, for example, by using the diol monomer (a1) and the polyorganosiloxane (a2) as starting monomers.
  • the diol monomer (a1) is not particularly limited as long as it has a structure represented by the following general formula (a1). An aromatic dihydroxy compound or an aliphatic dihydroxy compound can be used as the diol monomer (a1).
  • R 10 in the general formula (a1) is as described above, and preferable ones are also the same.
  • Polyorganosiloxane (a2) preferably has a structure represented by the following general formula (a2-0).
  • R 1 to R 4 , R 6 , R 8 , z, a, b, and u have the same meanings as defined above. However, multiple R 1 , R 2 , R 6 , and R 8 may be the same or different.
  • R 40′′ represents a hydrocarbon group having 1 to 40 carbon atoms which may have a structure containing one or more heteroatoms in at least one of its main chain and side chain. e and h represent 0 or 1; ]
  • the hydrocarbon group represented by R 40′′ is a divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and a 6 to 20 carbon atom
  • a divalent structure comprising at least one hydrocarbon group selected from the group consisting of divalent aromatic hydrocarbon groups of and at least one heteroatom selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom preferably includes at least two linked repeating chain structures.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 20 carbon atoms include methylene and the same divalent aliphatic hydrocarbon groups having 2 to 40 carbon atoms represented by R 10 . .
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include the same as the divalent alicyclic hydrocarbon group having 3 to 40 carbon atoms represented by R 10 .
  • Examples of the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms include the same as the divalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 10 .
  • the R represents a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, even if they are substituted with a substituent good.
  • the repeating chain structure preferably includes at least one structure selected from the group consisting of polyether, polyacetal, polylactone, polyacrylate, polyester, polycarbonate, polyketone, polysulfide, polysulfone, polyamide and polyimide. Among them, it preferably contains at least one structure selected from the group consisting of polyether, polyacrylate, and polycarbonate, and most preferably contains polyether.
  • polyalkylene ether is preferred, and polyethylene glycol, polypropylene glycol, polytrimethylene glycol, and polytetramethylene glycol are particularly preferred.
  • the above structure is preferable from the viewpoint of enhancing affinity with the diol monomer (a1) and performing more uniform polymerization.
  • the repeating chain structure may have at least one substituent selected from the group consisting of —OH, —NH 2 and —NRH. R has the same meaning as above.
  • the polyorganosiloxane (a2) is preferably a monomer having any structure represented by the following general formulas (a2-1) to (a2-3).
  • R 1 to R 4 , R 5 , R 6 , R 7 , R 8 , z, z 1 , ⁇ , a, b, and b 1 have the same meanings as above. Preferred are likewise, and combinations of preferred are likewise preferred.
  • the method for producing the polyorganosiloxane (a2) is not particularly limited.
  • cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize ⁇ , ⁇ -dihydrogenorganopentasiloxane, followed by Addition reaction of an oligomer or polymer modified with an allyl group at one end (e.g., polyalkylene ether, polyester, polycarbonate, etc.) to the ⁇ , ⁇ -dihydrogenorganopentasiloxane in the presence of a hydrosilylation reaction catalyst. can obtain polyorganosiloxane. Further, according to the method described in Japanese Patent No.
  • polyorganosiloxane can be obtained by subjecting polysiloxane to an addition reaction with an oligomer or polymer modified with an allyl group at one end in the presence of a hydrosilylation reaction catalyst.
  • the ⁇ , ⁇ -dihydrogenorganopolysiloxane can be used by appropriately adjusting the average repetition number a depending on the polymerization conditions, or a commercially available ⁇ , ⁇ -dihydrogenorganopolysiloxane can be used. good.
  • the oligomer having one end modified with an allyl group can be used by appropriately adjusting the average repetition number b depending on the polymerization conditions, or a commercially available one-end allyl group-modified oligomer can be used.
  • the one-end allyl group-modified oligomers the one-end allyl group-modified polyethylene glycol can be produced with reference to Japanese Patent No. 5652691 and the like.
  • Commercially available allyl group-modified polyethylene glycols include Uniox PKA-5001, Uniox PKA-5002, Uniox PKA-5003, Uniox PKA-5004, and Uniox PKA-5005 manufactured by NOF Corporation.
  • the polycarbonate-polyorganosiloxane copolymer (A) can be produced by polymerizing raw material monomers by an interfacial polymerization method or a melt polymerization method (ester exchange method).
  • an interfacial polymerization method for example, the method described in JP-A-2014-80462 can be employed.
  • Polyorganosiloxane (a2), a diol monomer (a1), and a carbonate ester compound are reacted by a melt polymerization method, preferably in the presence of a basic catalyst, to obtain a polycarbonate-polyorganosiloxane copolymer.
  • Coalescence (A) can be produced.
  • a terminal terminator may be further added to carry out the polymerization reaction.
  • the melt polymerization method does not require a solvent such as methylene chloride, which is required in the interfacial polymerization method, and is therefore environmentally and economically advantageous.
  • highly toxic phosgene which is used as a carbonate source in the interfacial polymerization method, is not used, it is advantageous in terms of production.
  • carbonate ester compound examples include diaryl carbonate compounds, dialkyl carbonate compounds, and alkylaryl carbonate compounds.
  • Examples of diaryl carbonate compounds include compounds represented by the following general formula (11) and compounds represented by the following general formula (12).
  • Ar 1 and Ar 2 each represent an aryl group and may be the same or different.
  • Ar 3 and Ar 4 each represent an aryl group, which may be the same or different, and D 1 is a residue obtained by removing two hydroxyl groups from the aromatic dihydroxy compound or aliphatic dihydroxy compound. show. ]
  • dialkyl carbonate compounds examples include compounds represented by the following general formula (13) and compounds represented by the following general formula (14).
  • R 21 and R 22 each represent an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and may be the same or different.
  • R 23 and R 24 each represent an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, which may be the same or different, and D 2 is the A residue obtained by removing two hydroxyl groups from an aromatic dihydroxy compound or an aliphatic dihydroxy compound is shown.
  • alkylaryl carbonate compounds include compounds represented by the following general formula (15) and compounds represented by the following general formula (16).
  • Ar 5 represents an aryl group
  • R 25 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms
  • Ar 6 is an aryl group
  • R 26 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms
  • D 1 is 2 hydroxyl groups from the above aromatic dihydroxy compound or aliphatic dihydroxy compound. Residues excluding 1 are shown.
  • Diaryl carbonate compounds include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, bis(m-cresyl) carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate, and bisphenol A bisphenyl carbonate.
  • Dialkyl carbonate compounds include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
  • alkylaryl carbonate compounds include methylphenyl carbonate, ethylphenyl carbonate, butylphenyl carbonate, cyclohexylphenyl carbonate, bisphenol A methylphenyl carbonate, and the like.
  • a preferred carbonate compound is diphenyl carbonate.
  • One or more carbonic acid ester compounds can be used in the production of the polycarbonate-polyorganosiloxane copolymer (A).
  • Terminal terminator In the production of the polycarbonate-polyorganosiloxane copolymer (A), a terminal terminator may be used as necessary.
  • a terminal terminator a known terminal terminator in the production of polycarbonate resin may be used. Specific examples thereof include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p- Cumylphenol, p-nonylphenol, p-tert-amylphenol and the like can be mentioned. Each of these monohydric phenols may be used alone, or two or more of them may be used in combination.
  • Branching agent can also be used in the production of the polycarbonate-polyorganosiloxane copolymer (A).
  • Branching agents include phloroglucin, trimellitic acid, 1,1,1-tris(4-hydroxyphenyl)ethane, 1-[ ⁇ -methyl- ⁇ -(4'-hydroxyphenyl)ethyl]-4-[ ⁇ ' , ⁇ ′-bis(4′′-hydroxyphenyl)ethyl]benzene, ⁇ , ⁇ ′, ⁇ ′′-tris(4-hydroxyphenyl)-1,3,5-triisopropylbenzene, and isatin bis(o-cresol), etc. are mentioned.
  • the polycarbonate-polyorganosiloxane copolymer (A) can be produced by a melt polymerization method, for example, according to the following procedure.
  • a diol monomer (a1), a polyorganosiloxane (a2), and a carbonate compound are transesterified.
  • the ratio of the carbonate compound to the diol monomer is preferably 0.9 to 1.2 times mol, more preferably 0.98 to 1.02 times mol.
  • the polycarbonate obtained when the amount of the end terminator present is in the range of 0.05 to 10 mol% with respect to the total amount of the diol monomer (a1) and the polyorganosiloxane (a2) -Since the hydroxyl group terminals of the polyorganosiloxane copolymer are sufficiently blocked, it is preferable from the viewpoint that a polycarbonate resin having excellent heat resistance and water resistance can be obtained.
  • the amount of terminal terminator present relative to the total amount of diol monomer (a1) and polyorganosiloxane (a2) is more preferably 1 to 6 mol %.
  • the entire amount of the terminal terminator may be added to the reaction system in advance, or a part thereof may be added in advance to the reaction system and the remainder may be added as the reaction progresses. It is preferable that the diol monomer (a1), the polyorganosiloxane (a2), and the carbonate compound are simultaneously charged with an antioxidant into a reactor, and the transesterification reaction is carried out in the presence of the antioxidant.
  • the reaction temperature in carrying out the transesterification reaction is not particularly limited, and may be, for example, in the range of 100 to 330°C, preferably in the range of 180 to 300°C, more preferably in the range of 200 to 240°C. Also, a method of gradually raising the temperature from 180 to 300° C. as the reaction progresses is preferred.
  • the temperature of the transesterification reaction is 100° C. or higher, the reaction rate is sufficiently high, while when it is 330° C. or lower, side reactions do not occur much, and the resulting polycarbonate-polyorganosiloxane copolymer is colored. It is difficult to cause problems such as
  • the reaction pressure is set according to the vapor pressure of the monomers used and/or the reaction temperature. It is not particularly limited as long as it is set so that the reaction can be carried out efficiently. For example, in the initial stage of the reaction, atmospheric pressure (ordinary pressure) or increased pressure of 1 to 50 atm (760 to 38,000 torr) is used, and in the latter stage of the reaction, the pressure is reduced, and finally 1.33-1. 33 ⁇ 10 4 Pa (0.01 to 100 torr) is preferable.
  • the reaction may be performed until the target molecular weight is reached, for example, 0.2 to 10 hours.
  • the above transesterification reaction is carried out, for example, in the absence of an inert solvent, but if necessary, in the presence of 1 to 150 parts by mass of an inert solvent with respect to 100 parts by mass of the polycarbonate resin obtained.
  • Inert solvents include aromatic compounds such as diphenyl ethers, halogenated diphenyl ethers, benzophenones, polyphenyl ethers, dichlorobenzene, and methylnaphthalene ; and; and cycloalkanes such as cyclodecane.
  • inert gases include gases such as argon, carbon dioxide, dinitrogen monoxide, and nitrogen; chlorofluorohydrocarbons, alkanes such as ethane and propane; and alkenes such as propylene.
  • the basic catalyst is at least one selected from the group consisting of metal catalysts such as alkali metal compounds and alkaline earth metal compounds, nitrogen-containing compounds, organic catalysts such as quaternary phosphonium salts containing aryl groups, and metal compounds. can be mentioned. These compounds can be used alone or in combination.
  • Basic catalysts include organic acid salts, inorganic salts, oxides, hydroxides, hydrides and alkoxides of alkali metals or alkaline earth metals; quaternary ammonium hydroxides; quaternary phosphonium salts containing aryl groups, etc. is preferably used.
  • a basic catalyst can be used individually by 1 type or in combination of 2 or more types.
  • Alkali metal compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium acetate, potassium acetate, cesium acetate, lithium acetate, Sodium stearate, potassium stearate, cesium stearate, lithium stearate, sodium borohydride, sodium benzoate, potassium benzoate, cesium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, phosphorus dilithium oxyhydrogen, disodium phenylphosphate, disodium salt, dipotassium salt, dicesium salt, dilithium salt of bisphenol A, sodium salt, potassium salt, cesium salt, lithium salt of phenol and the like.
  • Alkaline earth metal compounds include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, magnesium diacetate, calcium diacetate, strontium diacetate, diacetic acid. barium and the like.
  • nitrogen-containing compounds include quaternary ammonium hydroxides having an alkyl or aryl group such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide. mentioned. Also included are tertiary amines such as triethylamine, dimethylbenzylamine and triphenylamine, and imidazoles such as 2-methylimidazole, 2-phenylimidazole and benzimidazole.
  • bases or basic salts such as ammonia, tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate, tetraphenylammonium tetraphenylborate and the like.
  • metal compounds include zinc-aluminum compounds, germanium compounds, organic tin compounds, antimony compounds, manganese compounds, titanium compounds, and zirconium compounds.
  • quaternary phosphonium salts containing an aryl group include, for example, tetraphenylphosphonium hydroxide, tetranaphthylphosphonium hydroxide, tetra(chlorophenyl)phosphonium hydroxide, tetra(biphenyl)phosphonium hydroxide, tetratolylphosphonium hydroxide, tetra Tetra (aryl or alkyl) phosphonium hydroxides such as methylphosphonium hydroxide, tetraethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, tetramethylphosphonium tetraphenylborate, tetraphenylphosphonium bromide, tetraphenylphosphonium phenolate, tetraphenylphosphonium tetra Phenylborate, methyltriphenylphosphonium tetraphenylborate,
  • a quaternary phosphonium salt containing an aryl group is preferably combined with a nitrogen-containing organic basic compound, such as a combination of tetramethylammonium hydroxide and tetraphenylphosphonium tetraphenylborate.
  • the amount of the basic catalyst used is preferably 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 2 mol, more preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 mol, and further preferably 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 2 mol, and It can be preferably selected in the range of 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 3 mol.
  • a catalyst deactivator can also be added in the latter stage of the reaction.
  • a known catalyst deactivator is effectively used as the catalyst deactivator.
  • Catalyst deactivators include, for example, ammonium salts of sulfonic acids and phosphonium salts of sulfonic acids.
  • the amount of the catalyst deactivator used is preferably 0.5 to 50 mol, more preferably 0, per 1 mol of the catalyst. 0.5 to 10 mol, more preferably 0.8 to 5 mol. It is preferable to mix the antioxidant after adding the catalyst deactivator and terminating the polymerization reaction.
  • the reaction in the melt polymerization method may be carried out either continuously or batchwise.
  • Reactors used for melt polymerization are vertical reactors equipped with anchor-type impellers, MAXBLEND impellers, or helical-ribbon-type impellers, or horizontal reactors equipped with paddle impellers, lattice impellers, or spectacle impellers. any device. Further, it may be an extruder type equipped with a screw. In the case of a continuous system, it is preferable to use such reactors in appropriate combination.
  • the polycarbonate-based resin (S) may contain a polycarbonate-based resin (P) other than the polycarbonate-polyorganosiloxane copolymer (A) (hereinafter sometimes referred to as a polycarbonate-based resin (P)).
  • the content of the polycarbonate-polyorganosiloxane copolymer (A) in the polycarbonate resin (S) is preferably 50% by mass or more, from the viewpoint of improving the balance between impact resistance, tensile properties and chemical resistance.
  • the content of the polycarbonate-polyorganosiloxane copolymer (A) in the polycarbonate-based resin (S) is not particularly limited, but from the viewpoint of obtaining a resin composition having desired properties, it is, for example, 100% by mass or less. .
  • the content of the polyorganosiloxane block (A-1) in the polycarbonate resin (S) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass or more. , more preferably 3.0% by mass or more, preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and even more preferably 7.0% by mass or less.
  • the content of the polyorganosiloxane block (A-1) in the polycarbonate-based resin composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 1.0% by mass or more, It is more preferably 3.0% by mass or more, preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and even more preferably 7.0% by mass or less.
  • the viscosity average molecular weight of the polycarbonate resin (S) is preferably 5,000 or more, more preferably 12,000 or more, still more preferably 14,000 or more, still more preferably 16,000 or more, and preferably 50,000 or more. 000 or less, more preferably 30,000 or less, still more preferably 23,000 or less, still more preferably 21,000 or less.
  • polycarbonate-based resin (P) As the polycarbonate-based resin (P), various known polycarbonate-based resins can be used without any particular limitation.
  • the polycarbonate-based resin (P) preferably does not contain the polyorganosiloxane block (A-1) containing the structural unit represented by the general formula (1), and the structural unit represented by the general formula (2).
  • the structural unit represented by the general formula (2) contained in the polycarbonate-based resin (P) is the same as the structural unit represented by the general formula (2) contained in the polycarbonate-polyorganosiloxane copolymer (A). are mentioned. A preferred form is also the same.
  • the polycarbonate-based resin (P) preferably contains a structural unit represented by general formula (2) as a main component.
  • the content of the structural unit represented by the general formula (2) is preferably 50% by mass or more, more preferably 80% by mass, with respect to the entire structure of the polycarbonate-based resin (P). % or more, more preferably 90 mass % or more, more preferably 98 mass % or more.
  • the viscosity average molecular weight of the polycarbonate resin (P) is preferably 5,000 or more, more preferably 12,000 or more, still more preferably 14,000 or more, still more preferably 16,000 or more, and preferably 50,000 or more. 000 or less, more preferably 30,000 or less, still more preferably 23,000 or less, still more preferably 21,000 or less.
  • the polycarbonate-based resin composition according to the present invention contains a polycarbonate-based resin (S) and an elastomer (B).
  • the polycarbonate-based resin composition preferably contains 1.0 parts by mass or more and 40 parts by mass or less of the elastomer (B) with respect to 100 parts by mass of the polycarbonate-based resin (S).
  • the content of the elastomer (B) is 1.0 parts by mass or more, the balance between tensile properties and impact resistance can be further improved.
  • the content of the elastomer (B) is 40 parts by mass or less, for example, impact resistance, mechanical strength, heat resistance, chemical resistance, transparency, etc. can be further improved.
  • the content of the elastomer (B) in the polycarbonate resin composition according to the present invention is more preferably 2.0 parts by mass or more, more preferably 3.0 parts by mass or more, more preferably 4.0 parts by mass or more, and further improve impact resistance, mechanical strength, heat resistance, chemical resistance, transparency, etc. from the viewpoint of increasing the Part by mass or less.
  • the polycarbonate-based resin composition according to the present invention can contain one or more elastomers as the elastomer (B).
  • the elastomer (B) is preferably a graft copolymer obtained by graft-copolymerizing a rubber component with a monomer component copolymerizable with the rubber component.
  • the method for producing the graft copolymer may be bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, or the like, and the copolymerization method may be single-stage grafting or multi-stage grafting.
  • the glass transition temperature of the rubber component is preferably 0°C or lower, more preferably -20°C or lower, and still more preferably -30°C or lower.
  • rubber components include polybutadiene rubber; polyisoprene rubber; polyalkyl acrylate rubber such as polybutyl acrylate, poly(2-ethylhexyl acrylate), butyl acrylate/2-ethylhexyl acrylate copolymer; silicone such as polyorganosiloxane rubber.
  • butadiene-acrylic composite rubber IPN (Interpenetrating Polymer Network) type composite rubber consisting of polyorganosiloxane rubber and polyalkyl acrylate rubber; styrene-butadiene rubber; ethylene-propylene rubber; ethylene-butene rubber, ethylene-octene rubber, etc.
  • Ethylene- ⁇ -olefin rubber ethylene-acrylic rubber; fluorine rubber, and the like.
  • These rubber components may be used alone or in combination of two or more.
  • the group consisting of polybutadiene rubber, polyalkylacrylate rubber, polyorganosiloxane rubber, IPN type composite rubber composed of polyorganosiloxane rubber and polyalkylacrylate rubber, and styrene-butadiene rubber from the viewpoint of mechanical properties and appearance.
  • At least one selected from is preferable, at least one selected from the group consisting of polybutadiene rubber and styrene-butadiene rubber is more preferable, and polybutadiene rubber is still more preferable.
  • Examples of monomer components that can be graft-copolymerized with the rubber component include aromatic vinyl compounds; vinyl cyanide compounds; (meth)acrylic acid ester compounds; (meth)acrylic acid compounds; Group-containing (meth)acrylic acid ester compounds; maleimide compounds such as maleimide, N-methylmaleimide and N-phenylmaleimide; ⁇ , ⁇ -unsaturated carboxylic acid compounds such as maleic acid, phthalic acid and itaconic acid and their anhydrides (for example, maleic anhydride, etc.) and the like. These monomer components may be used singly or in combination of two or more.
  • At least one selected from the group consisting of aromatic vinyl compounds, vinyl cyanide compounds, (meth)acrylic acid ester compounds and (meth)acrylic acid compounds is preferable from the viewpoint of mechanical properties and surface appearance, (Meth)acrylic acid ester compounds are more preferred.
  • (Meth)acrylic acid ester compounds for example, from the group consisting of methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate and octyl (meth)acrylate At least one selected from the group consisting of methyl (meth)acrylate and ethyl (meth)acrylate is preferred, and methyl (meth)acrylate is more preferred.
  • the elastomer (B) is a graft copolymer obtained by copolymerizing rubber components, and is preferably a core/shell type graft copolymer type from the viewpoint of impact resistance and appearance.
  • Rubbers containing polybutadiene, rubbers containing polybutylacrylate, At least one rubber component selected from the group consisting of polyorganosiloxane rubber and IPN type composite rubber consisting of polyorganosiloxane rubber and polyalkyl acrylate rubber is used as a core layer, and a (meth)acrylic acid ester is covalently formed around the core layer.
  • a core/shell type graft copolymer comprising a shell layer formed by polymerization is more preferred.
  • the core/shell type graft copolymer preferably contains 40% by mass or more of the rubber component, more preferably 60% by mass or more. Moreover, the (meth)acrylic acid is preferably contained in an amount of 10% by mass or more.
  • core/shell type does not necessarily mean that the core layer and the shell layer can be clearly distinguished, and broadly includes compounds obtained by graft-polymerizing a rubber component around a core portion.
  • Elastomer (B) is methyl methacrylate-butadiene-styrene copolymer (MBS), methyl methacrylate-butadiene copolymer (MB), methyl methacrylate-acrylic rubber, from the viewpoint of further improving the balance between tensile properties and impact resistance.
  • MBS methyl methacrylate-butadiene-styrene copolymer
  • MBS methyl methacrylate-butadiene copolymer
  • elastomers (B) may be used alone or in combination of two or more. These elastomers (B) are preferably the aforementioned core/shell type graft copolymers.
  • Examples of commercially available elastomers (B) include “Paraloid (registered trademark, hereinafter the same) EXL2602", “Paraloid EXL2603", “Paraloid EXL2655”, and “Paraloid EXL2311” manufactured by Rohm and Haas Japan Co., Ltd. , “Paraloid EXL2313”, “Paraloid EXL2315”, “Paraloid KM330”, “Paraloid KM336P”, “Paraloid KCZ201”, Mitsubishi Rayon Co., Ltd.
  • the total content of the polycarbonate-based resin (S) and the elastomer (B) in the polycarbonate-based resin composition according to the present invention is, when the entire polycarbonate-based resin composition is 100% by mass, tensile properties and impact resistance. From the viewpoint of further improving the balance, it is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably It is 95% by mass or more, more preferably 98% by mass or more, and still more preferably 99% by mass or more.
  • the upper limit of the total content of the polycarbonate resin (S) and the elastomer (B) is not particularly limited, but from the viewpoint of obtaining a resin composition having desired properties, it is, for example, 100% by mass or less.
  • the polycarbonate-based resin composition according to the present invention may appropriately contain an antioxidant (C) within a range that does not impair the object of the present invention.
  • the antioxidant (C) can suppress decomposition of the resin during production and molding of the polycarbonate-based resin composition.
  • the antioxidant (C) a known one can be used, and preferably at least one selected from phosphorus antioxidants and phenolic antioxidants can be used.
  • the phosphorus-based antioxidant is more preferably a phosphorus-based antioxidant having an aryl group, and is represented by the following general formula ( A compound represented by C1) is more preferred.
  • R C21 to R C25 are a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 14 carbon atoms, and may be the same or different. However, from the viewpoint of the effect as an antioxidant, all of R C21 to R C25 are not hydrogen atoms, and at least two of R C21 to R C25 are alkyl groups having 1 to 12 carbon atoms or carbon atoms. It is an aryl group having a number of 6 or more and 14 or less.
  • any two of R C21 to R C25 are alkyl groups having 1 to 12 carbon atoms or aryl groups having 6 to 14 carbon atoms, and the remainder are hydrogen atoms, more preferably R C21 Among compounds in which any two of to R C25 are alkyl groups having 1 to 12 carbon atoms or aryl groups having 6 to 14 carbon atoms and the rest are hydrogen atoms, at least one of R C21 or R C25 has a carbon number It is a compound that is an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • alkyl groups having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, various octyl groups, various decyl groups, and various dodecyl groups. and the like.
  • methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups, various hexyl groups, and various octyl groups One or more selected groups are preferable, one or more selected from the group consisting of a methyl group, an ethyl group, an isopropyl group and a tert-butyl group are more preferable, and a tert-butyl group is even more preferable.
  • R C21 to R C25 are more preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • An atom, a methyl group, an ethyl group, an isopropyl group, or a tert-butyl group are more preferred, and a hydrogen atom or a tert-butyl group are even more preferred.
  • R C21 and R C23 are tert-butyl groups and R C22 , R C24 and R C25 are hydrogen atoms.
  • Phosphorus-based antioxidants include, for example, triphenylphosphite, diphenylnonylphosphite, diphenyl(2-ethylhexyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(nonylphenyl) phosphites, diphenylisooctylphosphite, 2,2′-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, diphenylisodecylphosphite, diphenylmono(tridecyl)phosphite, phenyldiisodecylphosphite, Phenyldi(tridecyl)phosphite, Tris(2-ethylhexyl)phosphite, Tris(isodecyl)pho
  • the phenolic antioxidant is preferably hindered phenol.
  • phenolic antioxidants include triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-( 3,5-di-tert-butyl-4-hydroxyphenyl)propionate], pentaerythritol-tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, N , N-hexamethylenebis(3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl
  • antioxidant "Irganox 1010" (manufactured by BASF Japan Ltd., trademark), “Irganox 1076” (manufactured by BASF Japan Ltd., trademark), “Irganox 1330” (BASF Japan Ltd.) Trademark), “Irganox3114” (manufactured by BASF Japan Ltd., trademark), “Irganox3125” (manufactured by BASF Japan Ltd., trademark), “BHT” (manufactured by Takeda Pharmaceutical Co., Ltd., trademark), “Cyanox1790 (manufactured by Cyanamid Co., Ltd., trademark) and “Sumilizer GA-80” (manufactured by Sumitomo Chemical Co., Ltd., trademark).
  • the antioxidant (C) may be used alone or in combination of two or more.
  • the content of the antioxidant (C) in the polycarbonate resin composition according to the present invention is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass, relative to 100 parts by mass of the polycarbonate resin (S). part or more, more preferably 0.04 mass part or more, still more preferably 0.08 mass part or more, preferably 1.0 mass part or less, more preferably 0.50 mass part or less, still more preferably 0.25 mass part It is not more than 0.15 part by mass, more preferably not more than 0.15 part by mass.
  • the total amount is within the above range.
  • the polycarbonate-based resin composition according to the present invention may appropriately contain additives other than the elastomer (B) and the antioxidant (C) as long as the objects of the present invention are not impaired.
  • Additives include, for example, various fillers, heat stabilizers, plasticizers, light stabilizers, polymerized metal deactivators, flame retardants, lubricants, antistatic agents, surfactants, antibacterial agents, mold release agents, and UV absorbers. agents and the like.
  • the method for producing the polycarbonate-based resin composition according to the present invention is not particularly limited as long as it has a step of mixing the polycarbonate-based resin (S), the elastomer (B), and optional additives.
  • it can be produced by mixing the polycarbonate resin (S), the elastomer (B), and optional additives using a mixer or the like, followed by melt-kneading.
  • Melt-kneading is performed by a commonly used method such as a ribbon blender, Henschel mixer, Banbury mixer, drum tumbler, single-screw extruder, twin-screw extruder, co-kneader, multi-screw extruder, or the like. be able to.
  • the heating temperature during melt-kneading is appropriately selected, for example, in the range of 150°C to 300°C, preferably 220°C to 300°C.
  • JIS K 7139 2009 dumbbell-shaped tensile test piece type A22 obtained by molding the polycarbonate resin composition according to the present invention, total length 75 mm, parallel part length 30 mm, end width 10 mm, central parallel part
  • the tensile elongation at break of a molded piece having a width of 5 mm and a thickness of 2 mm is preferably 10% or more, more preferably 13% or more, still more preferably 20% or more, from the viewpoint of further improving the tensile properties of the obtained molded product. It is preferably 30% or more, more preferably 40% or more.
  • the upper limit is not particularly limited, but from the viewpoint of improving the mechanical strength, it is preferably 200% or less, or more. It is preferably 150% or less, more preferably 120% or less, still more preferably 100% or less, still more preferably 80% or less, still more preferably 60% or less.
  • the tensile elongation at break can be measured under conditions of a tensile speed of 25 mm/min, a measurement temperature of 23° C., and a distance between chucks of 57 mm. Specifically, it can be measured by the method described in Examples below.
  • the molding conditions for the molded pieces are a cylinder temperature of 280° C., a mold temperature of 100° C., and a cycle time of 60 seconds. Specifically, a molded piece is obtained by the method described in Examples below.
  • JIS K 7139 2009 dumbbell-shaped tensile test piece type A22 obtained by molding the polycarbonate resin composition according to the present invention, total length 75 mm, parallel part length 30 mm, end width 10 mm, central parallel part
  • the tensile modulus of the molded piece having a width of 5 mm and a thickness of 2 mm is preferably 2250 MPa or more, more preferably 2300 MPa or more, still more preferably 2350 MPa or more, and still more preferably 2400 MPa, from the viewpoint of further improving the tensile properties of the obtained molded product. That's it.
  • the tensile modulus can be measured under conditions of a tensile speed of 25 mm/min, a measurement temperature of 23° C., and a distance between chucks of 57 mm. Specifically, it can be measured by the method described in Examples below.
  • the molding conditions for the molded pieces are a cylinder temperature of 280° C., a mold temperature of 100° C., and a cycle time of 60 seconds. Specifically, a molded piece is obtained by the method described in Examples below.
  • the Charpy impact strength of the molded piece is preferably 38 kJ/m 2 or more, more preferably 40 kJ/m 2 or more, and still more preferably 41 kJ/m 2 or more, from the viewpoint of further improving the impact resistance of the resulting molded article. be. From the viewpoint of further improving the impact resistance of the obtained molded article, the higher the Charpy impact strength, the better.
  • the upper limit value is not particularly limited, but from the viewpoint of improving the tensile properties, it is preferably 100 kJ/m 2 . Below, more preferably 80 kJ/m 2 or less, still more preferably 60 kJ/m 2 or less.
  • the Charpy impact strength conforms to ISO-179-1:2010 and can be measured at a measurement temperature of 23° C. Specifically, it can be measured by the method described in Examples below.
  • the molding conditions for the molded pieces are a cylinder temperature of 280° C., a mold temperature of 100° C., and a cycle time of 60 seconds. Specifically, a molded piece is obtained by the method described in Examples below.
  • the shaped article of the present invention contains the polycarbonate-based resin composition of the present invention.
  • the molded article is produced by injection molding, injection compression molding, extrusion molding, blow molding, press molding, using a melt-kneaded product of a polycarbonate-based resin composition or pellets obtained through melt-kneading as a raw material. It can be produced by a vacuum molding method, a foam molding method, or the like. In particular, it is preferable to use the obtained pellets to produce a molded article by injection molding or injection compression molding.
  • the thickness of the molded body can be arbitrarily set according to the application, and when transparency of the molded body is particularly required, 0.2 to 4.0 mm is preferable, and 0.3 to 3.0 mm is preferable. More preferably, 0.3 to 2.0 mm is even more preferable. When the thickness of the molded body is 0.2 mm or more, warpage does not occur and good mechanical strength can be obtained. Also, if the thickness of the molded body is 4.0 mm or less, high transparency can be obtained.
  • the molded body may be coated with a hard coat film, an anti-fogging film, an anti-static film, or an anti-reflection film, or a composite coating of two or more types. Among them, it is preferable to form a hard coat film, because it has good weather resistance and can prevent abrasion of the surface of the molded article over time.
  • the material of the hard coat film is not particularly limited, and known materials such as acrylate hard coat agents, silicone hard coat agents, and inorganic hard coat agents can be used.
  • the molded article according to the present invention includes, for example, 1) automotive parts such as sunroofs, door visors, rear windows, and side windows, and 2) architectural parts such as architectural glass, soundproof walls, carports, sunrooms, and gratings. 3) Windows for trains and ships 4) Parts for televisions, radio cassettes, video cameras, video tape recorders, audio players, DVD players, telephones, displays, computers, registers, copiers, printers, facsimiles, etc. 5) Precision equipment such as cases or covers for precision machinery such as mobile phones, PDAs, cameras, slide projectors, clocks, calculators, measuring instruments, display devices, etc. 6) Agricultural parts such as vinyl houses and greenhouses; 7) Furniture parts such as lighting covers, blinds and interior fixtures.
  • polydimethylsiloxane may be abbreviated as PDMS.
  • Production of terminal-modified polyorganosiloxane Production Example 1 Production of PDMS-1 Under nitrogen atmosphere, the following formula: To a polyorganosiloxane (100 g) having an average number of repeating units of 45 represented by the following formula: A polyethylene glycol having an average oxyethylene chain length of 8 was added in an amount of 2 times the molar amount of the polyorganosiloxane. After adding 338 g of toluene as a solvent, the mixture was kept at 80° C. and sufficiently stirred.
  • Production Example 2 Production of PDMS-2 Polyether-modified polyorganosiloxane PDMS-2 was obtained in the same manner as in Production Example 1 except that the average oxyethylene chain length of polyethylene glycol was 38.
  • Production Example 3 Production of PDMS-3 Under a nitrogen atmosphere, the following formula: 2-allylphenol was added to a polyorganosiloxane having an average number of repeating units of 39 represented by . Next, a toluene solution of a platinum-vinylsiloxane complex was added in such an amount that the mass of platinum atoms was 5 ppm by mass relative to siloxane (-(SiMe 2 O)n-), and the mixture was stirred at a reaction temperature of 100°C for 10 hours. The platinum catalyst was removed from the resulting mixture to obtain allylphenol-modified polyorganosiloxane PDMS-3.
  • Table 1 shows the structural formulas of PDMS-1 to PDMS-3 obtained in Production Examples 1 to 3.
  • Probe 50TH5AT/FG2 Observation range: -5 to 15 ppm Observation center: 5 ppm Pulse repetition time: 9 seconds Pulse width: 45° NMR sample tube: 5 ⁇ Sample amount: 30-40mg Solvent: heavy chloroform Measurement temperature: 23°C Accumulated times: 256 times
  • PC-POS Polycarbonate-Polyorganosiloxane
  • the internal temperature of the reactor was raised to 240° C. over about 120 minutes, and the conditions were maintained until 1.5 L of phenol was distilled. Subsequently, the temperature in the reactor was adjusted to 280° C. and the pressure in the reactor to 1 mmHg (0.1 kPa) or less over about 120 minutes to distill 2 L or more of phenol, and the reaction was continued until a predetermined stirring torque was reached. continued. Thereafter, nitrogen was introduced to restore the pressure to normal pressure, and 0.037 g of butyl p-toluenesulfonate (10 times the number of moles of NaOH) was added as a deactivator.
  • Antioxidant 1 and Antioxidant 2 described below were each added to the resulting polymer in an amount of 0.05 part by mass, and thoroughly stirred. Thereafter, the resin strands were withdrawn from the bottom of the reactor under nitrogen pressure and cut with a pelletizer to obtain a polycarbonate-polyorganosiloxane copolymer.
  • Table 2 shows the analytical values of the obtained PC-POS copolymer 1.
  • the raw materials used for production are as follows.
  • ⁇ BisP-A Bisphenol A [manufactured by Idemitsu Kosan Co., Ltd.]
  • DPC diphenyl carbonate [manufactured by Mitsui Chemicals Fine Co., Ltd.] ⁇ 0.01 mol / L sodium hydroxide aqueous solution [manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.]
  • Antioxidant 1 tris (2,4-di-tert-butylphenyl) phosphite [manufactured by BASF Japan Ltd., Irgafos168]
  • Antioxidant 2 pentaerythritol-tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] [manufactured by BASF Japan Ltd., Irganox1010]
  • Production Example 5 Production of PC-POS Copolymer 2 By polymerizing under the same conditions as in Production Example 4, except that 179.7 g of PDMS-2 was used instead of PDMS-1 as the polyorganosiloxane, PC- A POS copolymer 2 was obtained. Table 2 shows the analytical values of the obtained PC-POS copolymer 2.
  • PC-POS copolymer 3 was obtained by polymerization under the same conditions as in Production Example 4, except that 179.7 g of PDMS-3 was used instead of PDMS-1 as the polyorganosiloxane. A POS copolymer 3 was obtained. Table 2 shows the analytical values of the obtained PC-POS copolymer 3.
  • the mass (theoretical value) of the obtained PC-POS copolymer is [mass charged of diol monomer (a1) + mass charged carbonic acid diester + mass charged polyorganosiloxane mass (a2) - mass of phenol produced (theoretical value, phenol in an amount twice the molar amount of diester carbonate)].
  • Examples 1-2 and Comparative Example 1 (1) Preparation of polycarbonate resin composition Each component was mixed in the ratio shown in Table 3, supplied to a twin-screw extruder [manufactured by DSM Xplore: Micro 15cc Twin Screw Compounder], barrel temperature 280 ° C., screw rotation. Melt-kneading was performed at several 50 rpm to obtain a polycarbonate-based resin composition.
  • the unit of the compounding amount of each component shown in Table 3 is parts by mass.
  • the impact resistance of the polycarbonate-based resin composition was evaluated by the following Charpy impact strength. ISO-179-1: 2010, Charpy impact strength at 23° C. was measured using a Charpy impact tester (Charpy impact tester, model 611, manufactured by Toyo Seiki Seisakusho Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、[1]特定の構造単位を含むポリオルガノシロキサンブロック(A-1)及び特定の構造単位を含むポリカーボネートブロック(A-2)を有するポリカーボネート-ポリオルガノシロキサン共重合体(A)を含むポリカーボネート系樹脂(S)と、エラストマー(B)と、を含有するポリカーボネート系樹脂組成物、並びに、[2]前記[1]に記載のポリカーボネート系樹脂組成物を含む成形体である。

Description

ポリカーボネート系樹脂組成物及び成形体
 本発明は、ポリカーボネート系樹脂組成物及び成形体に関する。
 ポリカーボネート-ポリオルガノシロキサン共重合体は、耐衝撃性、耐薬品性、及び難燃性等の性質が良好であるため注目されている。そのため、電気及び電子機器分野、自動車分野等の様々な分野において幅広い利用が期待されている。
 このようなポリカーボネート-ポリオルガノシロキサン共重合体に関する技術としては、例えば、特許文献1及び2に記載のものが挙げられる。
 特許文献1には、(a)ヒドロキシアリールオキシ停止のジメチルシロキサンと、(b)重量平均分子量が3000~24000でありそしてOH末端基とアリール末端基のモル比が10:90~70:30であるオリゴカーボネートとを、該(a)と該(b)の重量比が1:99と40:60の間で、温度250~320℃及び圧力0.01~100ミリバールでの溶融状態で反応させることを包含するポリシロキサン/ポリカーボネートブロック共縮合生成物の製造方法が記載されている。
 特許文献2には、ポリシロキサン-ポリカーボネートブロック共縮合物を製造するための、少なくとも一種のヒドロキシアリール末端を有するポリジアルキルシロキサンを少なくとも一種のポリカーボネートと融成物中で反応させる方法であって、前記方法が、少なくとも一基の予備反応器及び高粘度反応器及び排出装置からなる反応器の組合せの、少なくとも2工程で行われる方法が記載されている。
特開平10-251408号公報 特表2016-532733号公報
 本発明者らの検討によれば、例えば特許文献1及び2に記載されているような、アリール末端を有するポリオルガノシロキサンを用いて得られたポリカーボネート-ポリオルガノシロキサン共重合体に対して、エラストマーを配合してなるポリカーボネート系樹脂組成物は、引張特性及び耐衝撃性のバランスの観点で改善の余地があることが明らかになった。
 本発明は上記事情に鑑みてなされたものであり、引張特性及び耐衝撃性のバランスが向上した成形体を得ることができるポリカーボネート系樹脂組成物を提供するものである。
 さらに、本発明は、引張特性及び耐衝撃性のバランスが向上したポリカーボネート系樹脂成形体を提供するものである。
 本発明者らは、特定構造を有するポリカーボネート-ポリオルガノシロキサン共重合体(A)と、エラストマー(B)とを含むポリカーボネート系樹脂組成物が、引張特性及び耐衝撃性のバランスが向上した成形体を与えることができることを見出した。
 すなわち、本発明によれば、以下に示すポリカーボネート系樹脂組成物及び成形体が提供される。
[1]
 一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)及び一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)を有するポリカーボネート-ポリオルガノシロキサン共重合体(A)を含むポリカーボネート系樹脂(S)と、
 エラストマー(B)と、を含有するポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000005

[式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~12のアリール基、又は炭素数7~22のアルキルアリール基を示す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。複数のRは、それぞれ同一か又は異なっていてもよく、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。z及びuは0又は1を示す。aは2~500の整数を示し、bは2~200の整数を示す。R10は、炭素数2~40の二価の脂肪族炭化水素基、炭素数3~40の二価の脂環式炭化水素基、又は炭素数6~20の二価の芳香族炭化水素基を示し、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。]
[2]
 前記ポリカーボネートブロック(A-2)が、一般式(111)で表される構造単位及び一般式(112)で表される構造単位の少なくとも一方を含む、前記[1]に記載のポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000006

[式中、R55及びR56はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数6~20のアリーレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。R100は、炭素数2~40の二価の脂肪族炭化水素基を示し、前記二価の脂肪族炭化水素基は分岐構造及び環状構造からなる群から選ばれる少なくとも一つを含んでもよく、酸素原子、窒素原子、硫黄原子及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。s及びtはそれぞれ独立して、0~4の整数を示す。]
[3]
 前記ポリカーボネートブロック(A-2)が、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデセン、イソソルビド、シクロヘキサン-1,4-ジメタノール、トリシクロデカンジメタノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3-プロパンジオール、及び1,4-ブタンジオールからなる群から選択される少なくとも一つの化合物に由来する構造単位を含む、前記[1]又は[2]に記載のポリカーボネート系樹脂組成物。
[4]
 前記ポリカーボネートブロック(A-2)が、一般式(a-i)~(a-v)で表される構造単位からなる群から選択される少なくとも一つを含む、前記[1]~[3]のいずれかに記載のポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000007

[5]
 前記aが2以上300以下の整数である、前記[1]~[4]のいずれかに記載のポリカーボネート系樹脂組成物。
[6]
 前記bが10以上である、前記[1]~[5]のいずれかに記載のポリカーボネート系樹脂組成物。
[7]
 前記ポリオルガノシロキサンブロック(A-1)が、一般式(1-1)~(1-3)で表される構造単位からなる群から選択される少なくとも1つを含む、前記[1]~[6]のいずれかに記載のポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000008

[式中、R~R、R、R、z、a、bは前記と同じ意味を表す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選択される少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。zは0又は1を示す。bは2~200の整数を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。]
[8]
 前記R~Rがすべてメチル基である、前記[1]~[7]のいずれかに記載のポリカーボネート系樹脂組成物。
[9]
 前記Rがトリメチレン基である、前記[1]~[8]のいずれかに記載のポリカーボネート系樹脂組成物。
[10]
 前記Rがジメチレン基、メチル置換ジメチレン基(-CHCHMe-)、又はトリメチレン基であり、前記zが1である、前記[1]~[9]のいずれかに記載のポリカーボネート系樹脂組成物。
[11]
 前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)における、前記ポリオルガノシロキサンブロック(A-1)の含有量が0.1質量%以上60質量%以下である、前記[1]~[10]のいずれかに記載のポリカーボネート系樹脂組成物。
[12]
 前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)の粘度平均分子量(Mv)が5,000以上50,000以下である、前記[1]~[11]のいずれかに記載のポリカーボネート系樹脂組成物。
[13]
 引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる、JIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張破断伸びが10%以上である、前記[1]~[12]のいずれかに記載のポリカーボネート系樹脂組成物。
[14]
 引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる、JIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張弾性率が2250MPa以上である、前記[1]~[13]のいずれかに記載のポリカーボネート系樹脂組成物。
[15]
 ISO-179-1:2010に準拠し、測定温度23℃の条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる長さ80mm、幅10mm、厚さ4mmの短冊状の成形片に後加工でノッチ(r=0.25mm±0.05mm)を付与した成形片のシャルピー衝撃強さが38kJ/m以上である、前記[1]~[14]のいずれかに記載のポリカーボネート系樹脂組成物。
[16]
 前記エラストマー(B)がコア/シェル型グラフト共重合体を含む、前記[1]~[15]のいずれかに記載のポリカーボネート系樹脂組成物。
[17]
 前記エラストマー(B)が、メチルメタクリレート-ブタジエン-スチレン共重合体、メチルメタクリレート-ブタジエン共重合体、メチルメタクリレート-アクリルゴム共重合体、メチルメタクリレート-アクリルゴム-スチレン共重合体、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、及びメチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体からなる群から選択される少なくとも一種を含む、前記[1]~[16]のいずれかに記載のポリカーボネート系樹脂組成物。
[18]
 前記エラストマー(B)の含有量が、前記ポリカーボネート系樹脂(S)100質量部に対し、1.0質量部以上40質量部以下である、前記[1]~[17]のいずれかに記載のポリカーボネート系樹脂組成物。
[19]
 前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)は溶融重合法により得られる共重合体である、前記[1]~[18]のいずれかに記載のポリカーボネート系樹脂組成物。
[20]
 前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)はジオールモノマー(a1)を用いて得られる共重合体である、前記[1]~[19]のいずれかに記載のポリカーボネート系樹脂組成物。
[21]
 前記[1]~[20]のいずれかに記載のポリカーボネート系樹脂組成物を含む成形体。
 本発明によれば、引張特性及び耐衝撃性のバランスが向上した成形体を得ることができるポリカーボネート系樹脂組成物、及び引張特性及び耐衝撃性のバランスが向上したポリカーボネート系樹脂成形体を提供することができる。
 以下、本発明のポリカーボネート系樹脂組成物及びその成形体について詳細に説明する。本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
 一の技術的事項に関して、「x以上」等の下限値が複数存在する場合、又は「y以下」等の上限値が複数存在する場合、当該上限値及び下限値から任意に選択して組み合わせることができるものとする。
1.ポリカーボネート系樹脂組成物
 本発明のポリカーボネート系樹脂組成物は、一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)及び一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)を有するポリカーボネート-ポリオルガノシロキサン共重合体(A)を含むポリカーボネート系樹脂(S)と、エラストマー(B)と、を含有する。
 本発明のポリカーボネート系樹脂組成物によれば、引張特性及び耐衝撃性のバランスが向上した成形体を得ることができる。
<ポリカーボネート-ポリオルガノシロキサン共重合体(A)>
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)は、一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)及び一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)を有する。
Figure JPOXMLDOC01-appb-C000009

[式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~12のアリール基、又は炭素数7~22のアルキルアリール基を示す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。複数のRは、それぞれ同一か又は異なっていてもよく、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。z及びuは0又は1を示す。aは2~500の整数を示し、bは2~200の整数を示す。R10は、炭素数2~40の二価の脂肪族炭化水素基、炭素数3~40の二価の脂環式炭化水素基、又は炭素数6~20の二価の芳香族炭化水素基を示し、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。]
 上記一般式(1)で表される構造単位を備えることで、ポリカーボネートブロック(A-2)とポリオルガノシロキサンブロック(A-1)のポリオルガノシロキサン構造部位との親和性を高めることができる。その結果、成分間の分離を減らすことができるため、引張特性及び耐衝撃性のバランスが向上した成形体が得られると推定される。
 また、ポリカーボネート-ポリオルガノシロキサン共重合体(A)の製造時において、ポリオルガノシロキサンブロック(A-1)が由来するモノマーが一般式(1)で表される構造単位を備えることで、その他の原料成分との相溶性が向上する。その結果、前記モノマーの反応率を高め、ポリオルガノシロキサン構造を高いランダム性でポリカーボネート-ポリオルガノシロキサン共重合体(A)に取り込むことができると推定している。上記一般式(1)で表される構造単位を備えることで、共重合することができなかった未反応ポリオルガノシロキサン及びポリオルガノシロキサンが過剰に取り込まれた共重合体を少なくすることができ、その結果、それらの成分が原因で生じる成分間の分離を減らすことができるため、引張特性及び耐衝撃性のバランスが向上した成形体が得られると推定される。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)の構成単位の一つであるポリオルガノシロキサンブロック(A-1)は、一般式(1)で表される構造単位を含む。
 ポリオルガノシロキサンブロック(A-1)は、ポリカーボネート-ポリオルガノシロキサン共重合体(A)の主鎖上において、最も近接する2つのポリカーボネート結合の間に存在する構造単位であり、下記一般式(X)で表される繰り返し単位を少なくとも1つ含む。
Figure JPOXMLDOC01-appb-C000010
[式中、R及びRは前記と同じ意味を表す。]
 一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)は、一般式(1-1)~(1-3)で表される構造単位からなる群から選択される少なくとも1つを含むことが好ましく、一般式(1-1)で表される構造単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000011

[式中、R~R、R、R、z、a、bは前記と同じ意味を表す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選択される少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。zは0又は1を示す。bは2~200の整数を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。]
 式中、R~Rで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。R~Rで示される炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる(本明細書における「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示し、以下同様である。)。R~Rで示される炭素数1~10のアルコキシ基としては、アルキル基部位が前記アルキル基と同じアルコキシ基が挙げられる。R~Rで示される炭素数6~12のアリール基としては、フェニル基及びナフチル基が挙げられる。R~Rで示される炭素数7~22のアルキルアリール基としては、アルキル基部位が前記アルキル基と同じであり、アリール基部位が前記アリール基と同じであるアルキルアリール基が挙げられる。
 R~Rとしては、いずれも水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~12のアリール基又は炭素数7~22のアリールアルキル基であることが好ましく、いずれも炭素数1~6のアルキル基であることがより好ましく、いずれもメチル基であることが更に好ましい。
 R、R、R、又はRで示される炭素数6~20のアリーレン基としては、フェニレン基、及びナフチレン基が挙げられる。R、R、R、又はRで示される炭素数1~10のアルキレン基としては、メチレン基、ジメチレン基、トリメチレン基、メチル置換ジメチレン基、各種ブチレン基が挙げられる。各種ブチレン基は好ましくはテトラメチレン基である。R、R、R、又はRで示されるアルキルアリーレン基としては、アルキル基部位が前記アルキレン基と同じであり、アリーレン基部位が前記アリーレン基と同じであるアルキルアリーレン基が挙げられる。ただし、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-(当該基は、-C(=O)O-及び-OC(=O)-のいずれであってもよい。)、-CO-、-S-、-NH-、及び-NR111-からなる群から選択される少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。R111で示される炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R111で示される炭素数6~10のアリール基としてはフェニル基、及びナフチル基が挙げられる。
 R、R、R、及びRは、いずれも炭素数1~10のアルキレン基であることが好ましく、炭素数1~5のアルキレン基であることがより好ましく、ジメチレン基、メチル置換ジメチレン基(-CHCHMe-もしくは-CHMeCH-)又はトリメチレン基であることが更に好ましい。R及びRは、更に好ましくはトリメチレン基である。R及びRは、更に好ましくはジメチレン基である。
 本明細書において、「-Me」は、メチル基(-CH基)を示す。
 z及びzは、それぞれ1であることが好ましく、z及びzが共に1であることがより好ましい。
 R~R、z、z、a、b、及びbが複数存在する場合、それぞれ同一であっても、異なっていてもよい。
 一般式(1)において、R~Rがいずれもメチル基であり、Rがトリメチレン基であり、Rがジメチレン基であり、zが1であることが更に好ましく、R~Rがいずれもメチル基であり、Rがトリメチレン基であり、Rがジメチレン基であり、zが1であり、uが1であることが更に好ましい。
 一般式(1-1)~(1-3)において、R~Rがいずれもメチル基であり、R及びRがいずれもトリメチレン基であり、R及びRがいずれもジメチレン基であり、z及びzがいずれも1であることが更に好ましい。
 βで示されるジイソシアネート化合物由来の2価の基又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基としては、例えば、以下の一般式(iii)~(vii)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 aはポリオルガノシロキサンの繰り返し単位数を示し、好ましくは2以上、より好ましくは10以上、更に好ましくは15以上、更に好ましくは20以上、更に好ましくは35以上であり、そして好ましくは500以下、より好ましくは300以下、更に好ましくは100以下、更に好ましくは70以下、更に好ましくは65以下、更に好ましくは50以下の整数である。
 aの平均値であるポリオルガノシロキサンの平均繰り返し単位数は、好ましくは2以上、より好ましくは10以上、更に好ましくは15以上、更に好ましくは20以上、更に好ましくは35以上であり、そして好ましくは500以下、より好ましくは300以下、更に好ましくは100以下、更に好ましくは70以下、更に好ましくは65以下、更に好ましくは50以下である。ポリオルガノシロキサンの平均繰り返し単位数が上記範囲にあると、ポリカーボネート-ポリオルガノシロキサン共重合体がより高い全光線透過率を有し、高透明な共重合体となるため好ましい。
 b及びbはポリオルガノシロキサンの末端変性基の繰り返し単位数を示し、それぞれ独立に好ましくは2以上、より好ましくは5以上、更に好ましくは8以上、更に好ましくは10以上、更に好ましくは12以上であり、そして好ましくは200以下、より好ましくは100以下、更に好ましくは50以下、更に好ましくは45以下、更に好ましくは40以下、更に好ましくは38以下の整数である。
 b及びbの平均値であるポリオルガノシロキサンの末端変性基の平均繰り返し単位数は、好ましくは2以上、より好ましくは5以上、更に好ましくは8以上、更に好ましくは10以上、更に好ましくは12以上であり、そして好ましくは200以下、より好ましくは100以下、更に好ましくは50以下、更に好ましくは45以下、更に好ましくは40以下、更に好ましくは38以下である。上記範囲であれば原料の入手容易性のため好ましい。ポリオルガノシロキサンの末端変性基の平均繰り返し単位数が10以上であると、得られる成形体の引張特性及び耐衝撃性のバランスをより一層向上させることができるためより好ましく、ポリオルガノシロキサンの末端変性基の平均繰り返し単位数が100以下であると、ポリオルガノシロキサンの粘度及び融点の上昇による取り扱い性の低下を抑えることができるためより好ましく、ポリオルガノシロキサンの末端変性基の平均繰り返し単位数が50以下であると、樹脂中のポリオルガノシロキサンブロック含有量を、物性改良効果を維持できる量に保つことができるためより好ましい。
 上記一般式(1)、又は一般式(1-1)~(1-3)において、z及びzはそれぞれ独立に0又は1を示し、好ましくは1である。
 上記一般式(1)において、uは0又は1を示し、好ましくは1である。
 上記一般式(2)中のR10が示す炭素数2~40の二価の脂肪族炭化水素基としては、例えば、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、2-エチルヘキシレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、及びn-オクタデシレン基等が挙げられる。ただし、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも1つの原子を含んでもよい。
 上記一般式(2)中のR10が示す炭素数3~40の二価の脂環式炭化水素基としては、例えば、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、シクロテトラデシレン基、アダマンチレン基、ビシクロヘプチレン基、ビシクロデシレン基、及びトリシクロデシレン基等が挙げられる。ただし、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも1つの原子を含んでもよい。
 上記一般式(2)中のR10が示す炭素数6~20の二価の芳香族炭化水素基としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールAともいう。)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールCともいう。)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZともいう。)、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン(ビスフェノール3MZともいう。)、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(ビスフェノールHTGともいう。)、1,1-ビス(4-ヒドロキシフェニル)シクロドデセン、ハイドロキノン、レゾルシノール(レゾルシンともいう。)及びカテコールに由来する二価の芳香族炭化水素基を挙げることができる。このような二価の芳香族炭化水素基は、例えば、製造時に上記化合物を使用することで、誘導される。ただし、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも1つの原子を含んでもよい。
 上記一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)は、一般式(111)で表される構造単位及び一般式(112)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(111)で表される構造単位を含むことがより好ましい。
 本発明の好ましい態様において、ポリカーボネートブロック(A-2)は、一般式(111)で表される構造単位を、上記一般式(2)で表される構造単位100モル%中、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上、更に好ましくは99モル%以上、更に好ましくは100モル%以上含む。
Figure JPOXMLDOC01-appb-C000013

[式中、R55及びR56はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数6~20のアリーレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。R100は、炭素数2~40の二価の脂肪族炭化水素基を示し、前記二価の脂肪族炭化水素基は分岐構造及び環状構造からなる群から選ばれる少なくとも一つを含んでもよく、酸素原子、窒素原子、硫黄原子及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。s及びtはそれぞれ独立して、0~4の整数を示す。]
 R55又はR56で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 R55又はR56で示される炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R55又はR56で示されるアルコキシ基としては、アルキル基部位が前記アルキル基と同じであるアルコキシ基が挙げられる。
 Xで示される炭素数1~8のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、及びヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。Xで示される炭素数2~8のアルキリデン基としては、エチリデン基、及びイソプロピリデン基等が挙げられる。Xで示される炭素数5~15のシクロアルキレン基としては、シクロペンタンジイル基、シクロヘキサンジイル基、及びシクロオクタンジイル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。Xが表す炭素数6~20のアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基等が挙げられる。Xで示される炭素数5~15のシクロアルキリデン基としては、シクロヘキシリデン基、3,5,5-トリメチルシクロヘキシリデン基、及び2-アダマンチリデン基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、炭素数5~8のシクロアルキリデン基がより好ましい。Xで示される炭素数7~15のアリールアルキレン基としては、アリール部位が、フェニル基、ナフチル基、ビフェニル基、又はアントリル基等の環形成炭素数6~14のアリール基であり、アルキレン部位が前記アルキレンと同じであるアリールアルキレン基が挙げられる。Xで示される炭素数7~15のアリールアルキリデン基としては、アリール部位が、フェニル基、ナフチル基、ビフェニル基、又はアントリル基等の環形成炭素数6~14のアリール基であり、アルキリデン部位が前記アルキリデンと同じであるアリールアルキリデン基が挙げられる。
 s及びtは、それぞれ独立に0~4の整数を示し、好ましくは0~2、より好ましくは0又は1である。中でも、s及びtが0であり、Xが単結合又は炭素数1~8のアルキレン基であると好ましく、また、s及びtが0であり、Xがアルキリデン基であると好ましく、特に、s及びtが0であり、Xがイソプロピリデン基であると好適である。
 R100で示される、炭素数2~40の二価の脂肪族炭化水素基としては、炭素数2~40のアルキレン基、炭素数4~40のシクロアルキレン基、及び、炭素数4~40の酸素又は窒素を含有する2価の飽和複素環式基等が挙げられる。前記アルキレン基の炭素数は、好ましくは2~18であり、より好ましくは2~10であり、更に好ましくは3~6である。前記シクロアルキレン基の炭素数は、好ましくは4~20であり、より好ましくは5~20である。前記酸素又は窒素を含有する2価の飽和複素環式基の炭素数は、好ましくは4~20であり、より好ましくは5~20である。ただし、これらの基は、分岐構造及び環状構造からなる群から選ばれる少なくとも一つを含んでもよく、また、酸素原子、窒素原子、硫黄原子及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。
 前記炭素数2~40のアルキレン基としては、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、2-エチルヘキシレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、及びn-オクタデシレン基等が挙げられる。前記炭素数4~40のシクロアルキレン基としては、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、シクロテトラデシレン基、アダマンチレン基、ビシクロヘプチレン基、ビシクロデシレン基、及びトリシクロデシレン基等が挙げられる。前記炭素数4~40の酸素又は窒素を含有する二価の複素環式基としては、上記シクロアルキレン基骨格中に酸素又は窒素原子を含有するものを挙げることができる。
 上記一般式(2)で表される繰り返し単位からなるポリカーボネートブロック(A-2)は、具体的には、下記一般式(a-i)~(a-xiii)で表される構造単位からなる群から選択される少なくとも一つを含むことが好ましく、下記一般式(a-i)~(a-v)で表される構造単位からなる群から選択される少なくとも一つを含むことがより好ましく、(a-i)、(a-ii)及び(a-v)で表される構造単位からなる群より選択される少なくとも一つを含むことがより好ましく、(a-v)で表される構造単位を含むことが更に好ましい。このような好ましい構造単位を含むことで、より高い透明性が得られる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 一般式(2)で表されるポリカーボネートブロック(A-2)は、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデセン、イソソルビド、シクロヘキサン-1,4-ジメタノール、トリシクロデカンジメタノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3-プロパンジオール、及び1,4-ブタンジオールからなる群から選択される少なくとも一つの化合物に由来する構造単位を含むことが好ましい。このような構造単位は、例えば、製造時に当該化合物を使用することで誘導される。
 yは、より好ましくは20以上、更に好ましくは40以上であり、そしてより好ましくは200以下、更に好ましくは100以下である。yは20以上とすることで共重合体中の低分子量成分の増加を抑制できるため好ましい。yを40以上とすることで共重合体の靭性が高まるため好ましい。yを200以下とすることで成形時に適度な流動性が得られるため好ましく、100以下であれば製造時の反応混合物が適度な流動性を有するため、生産性が向上するため好ましい。
 ポリオルガノシロキサンブロック(A-1)は、好ましくは一般式(1)で表される構造単位を主成分として含む。本明細書における主成分とは、全ての構造に対する含有量が50質量%以上であることを意味する。ポリオルガノシロキサンブロック(A-1)は、一般式(1)で表される構造単位の含有量が、ポリオルガノシロキサンブロック(A-1)の全ての構造に対して、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは98質量%以上である。
 ポリカーボネートブロック(A-2)は、一般式(2)で表される構造単位を主成分として含むのが好ましい。ポリカーボネートブロック(A-2)は、一般式(2)で表される構造単位の含有量が、ポリオルガノシロキサンブロック(A-1)の全ての構造に対して、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは98質量%以上である。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)における、ポリオルガノシロキサンブロック(A-1)の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更に好ましくは3.0質量%以上であり、そして好ましくは60質量%以下、より好ましくは40質量%以下、更に好ましくは20質量%以下、更に好ましくは10質量%以下である。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)中にポリオルガノシロキサンブロックの含有量が上記範囲であれば、より優れた耐衝撃性及び透明性を得ることができる。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)における、ポリカーボネートブロック(A-2)の含有量は、好ましくは40質量%以上、より好ましくは60質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上であり、そして好ましくは99.9質量%以下、より好ましくは99.5質量%以下、更に好ましくは99.0質量%以下、更に好ましくは97.0質量%以下である。
 本明細書において、「ポリカーボネート-ポリオルガノシロキサン共重合体(A)中のポリオルガノシロキサンブロック(A-1)の含有量」とは、ポリカーボネートブロック(A-2)、前記一般式(X)で表される構造単位、下記一般式(Y)で表される構造単位、及び必要に応じてポリカーボネート-ポリオルガノシロキサン共重合体(A)が含む後述の末端停止剤に由来する末端構造の合計質量に対する、前記一般式(X)で表される構造単位の合計質量の百分率である。後述する「ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-1)の含有量」及び「ポリカーボネート系樹脂組成物中のポリオルガノシロキサンブロック(A-1)の含有量」についても同様である。
Figure JPOXMLDOC01-appb-C000017
[式中、RはR又はRである。RがRである場合はzはzであり、RがRである場合はzはzである。R、R、z、及びzは前記と同じ意味を表す。]
 本明細書の記載において、「含有量」と「含有率」は交換して用いることができる。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)の粘度平均分子量は、好ましくは5,000以上、より好ましくは12,000以上、更に好ましくは14,000以上、更に好ましくは16,000以上であり、そして好ましくは50,000以下、より好ましくは30,000以下、更に好ましくは23,000以下、更に好ましくは21,000以下である。
 本明細書における粘度平均分子量(Mv)は、20℃における塩化メチレン溶液(濃度:g/L)の極限粘度[η]を測定し、下記Schnellの式から算出した値である。
[η]=1.23×10-5Mv0.83
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)は、例えば、ジオールモノマー(a1)及びポリオルガノシロキサン(a2)を原料モノマーとして用いることにより、製造することができる。
<<ジオールモノマー(a1)>>
 上記ジオールモノマー(a1)は、下記一般式(a1)で示される構造を有するものであれば特に限定されない。ジオールモノマー(a1)として、芳香族ジヒドロキシ化合物又は脂肪族ジヒドロキシ化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000018
 上記一般式(a1)におけるR10は上記した通りであり、好ましいものも同様である。
<<ポリオルガノシロキサン(a2)>>
 ポリオルガノシロキサン(a2)は、下記一般式(a2-0)で示される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000019

[式中、R~R、R、R、z、a、b、及びuは前記と同じ意味を表す。ただし、複数存在するR、R、R、及びRはそれぞれ同一でも異なってもよい。R40’’は、主鎖及び側鎖の少なくとも一方に一つ以上のヘテロ原子を含む構造を有していてもよい炭素数1~40の炭化水素基を示す。e及びhは0又は1を示す。]
 R40’’で示される炭化水素基は、炭素数1~20の二価の脂肪族炭化水素基、炭素数3~20の二価の脂環式炭化水素基、及び、炭素数6~20の二価の芳香族炭化水素基からなる群から選ばれる少なくとも1つの炭化水素基と、酸素原子、窒素原子及び硫黄原子からなる群から選択される少なくとも1つのヘテロ原子とを含む二価の構造とが、少なくとも2個連結した繰返し連鎖構造を含むことが好ましい。
 前記炭素数1~20の二価の脂肪族炭化水素基としては、メチレン、及び、R10が示す炭素数2~40の二価の脂肪族炭化水素基として挙げたものと同じものが挙げられる。
 前記炭素数3~20の二価の脂環式炭化水素基としては、R10が示す炭素数3~40の二価の脂環式炭化水素基として挙げたものと同じものが挙げられる。
 前記炭素数6~20の二価の芳香族炭化水素基としては、R10が示す、炭素数6~20の二価の芳香族炭化水素基として挙げたものと同じものが挙げられる。
 前記酸素原子、窒素原子及び硫黄原子からなる群から選択される少なくとも1つのヘテロ原子を含む二価の構造としては、-O-、-(C=O)-、-O(C=O)-(当該二価の構造は、-O(C=O)-又は-(C=O)O-のいずれであってもよい。)、-O(C=O)O-、-NR-、-NR-(C=O)-(当該二価の構造は、-NR-(C=O)-又は-(C=O)-NR-のいずれであってもよい。)、-N=CR-(当該二価の構造は、-N=CR-又は-CR=N-のいずれであってもよい。)、-SH、-S-、-S-S-及び-(S=O)-が挙げられる。前記Rは、水素原子、炭素数1~20の1価の脂肪族炭化水素基、又は炭素数6~20の1価の芳香族炭化水素基を表し、それらは置換基で置換されていてもよい。
 前記繰返し連鎖構造は、ポリエーテル、ポリアセタール、ポリラクトン、ポリアクリレート、ポリエステル、ポリカーボネート、ポリケトン、ポリスルフィド、ポリスルホン、ポリアミド及びポリイミドからなる群から選ばれる少なくとも一つの構造を含むことが好ましい。中でもポリエーテル、ポリアクリレート、及びポリカーボネートからなる群から選択される少なくとも1つの構造を含むことが好ましく、ポリエーテルを含むことが最も好ましい。ポリエーテルとしては、ポリアルキレンエーテルが好ましく、中でもポリエチレングリコール、ポリプロピレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールが好ましい。上記の構造は、ジオールモノマー(a1)との親和性をより高め、より均一な重合を行う観点から好ましい。
 また、前記繰返し連鎖構造は、-OH、-NH、及び、-NRHからなる群から選ばれる少なくとも一つの置換基を有してもよい。Rは、前記と同じ意味を表す。
 ポリオルガノシロキサン(a2)は、好ましくは下記一般式(a2-1)~(a2-3)で示されるいずれかの構造を有するモノマーである。
Figure JPOXMLDOC01-appb-C000020
 上記式中、R~R、R、R、R、R、z、z、β、a、b、及びbは前記と同じ意味を表す。好ましいものも同様であり、好ましいものの組み合わせは同様に好ましい。
 ポリオルガノシロキサン(a2)の製造方法は特に限定されない。例えば、特開平11-217390号公報に記載の方法によれば、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させて、α,ω-ジハイドロジェンオルガノペンタシロキサンを合成し、次いで、ヒドロシリル化反応用触媒の存在下に、該α,ω-ジハイドロジェンオルガノペンタシロキサンに片末端をアリル基で変性したオリゴマー若しくはポリマー(例えば、ポリアルキレンエーテル、ポリエステル、ポリカーボネート等)を付加反応させることで、ポリオルガノシロキサンを得ることができる。また、特許第2662310号公報に記載の方法によれば、オクタメチルシクロテトラシロキサンとテトラメチルジシロキサンとを硫酸等の酸性触媒の存在化で反応させ、得られたα,ω-ジハイドロジェンオルガノポリシロキサンを上記と同様に、ヒドロシリル化反応用触媒の存在下に片末端をアリル基で変性したオリゴマー若しくはポリマーを付加反応させることで、ポリオルガノシロキサンを得ることができる。なお、α,ω-ジハイドロジェンオルガノポリシロキサンは、その重合条件によりその平均繰り返し数aを適宜調整して用いることもできるし、市販のα,ω-ジハイドロジェンオルガノポリシロキサンを用いてもよい。また、片末端をアリル基で変性したオリゴマーは、その重合条件によりその平均繰り返し数bを適宜調整して用いることもできるし、市販の片末端アリル基変性オリゴマーを用いてもよい。片末端アリル基変性オリゴマーの内、片末端アリル基変性ポリエチレングリコールは、特許第5652691号等を参考として製造することができる。また、市販のアリル基変性ポリエチレングリコールは日油株式会社製のユニオックスPKA-5001、ユニオックスPKA-5002、ユニオックスPKA-5003、ユニオックスPKA-5004、ユニオックスPKA-5005等が挙げられる。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)は、界面重合法又は溶融重合法(エステル交換法)により原料モノマーを重合させることにより製造することができる。界面重合法により製造する場合には、例えば、特開2014-80462号公報等に記載の方法を採用することができる。好ましくは塩基性触媒の存在下に、原料モノマーであるポリオルガノシロキサン(a2)と、ジオールモノマー(a1)と、炭酸エステル化合物とを溶融重合法により反応させることにより、ポリカーボネート-ポリオルガノシロキサン共重合体(A)を製造することができる。このとき、末端停止剤を更に加えて重合反応を行ってもよい。
 溶融重合法は、界面重合法で必要とする塩化メチレン等の溶媒を必要としないため、環境面及び経済的に有利である。加えて、界面重合法でカーボネート源として使用される毒性の高いホスゲンを用いないため、製造面でも有利である。
(炭酸エステル化合物)
 炭酸エステル化合物としては、炭酸ジアリール化合物、炭酸ジアルキル化合物及び炭酸アルキルアリール化合物を挙げることができる。
 炭酸ジアリール化合物としては、下記一般式(11)で表される化合物、及び下記一般式(12)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021

[式(11)中、Ar及びArはそれぞれアリール基を示し、互いに同一でも異なっていてもよい。式(12)中、Ar及びArはそれぞれアリール基を示し、互いに同一でも異なっていてもよく、Dは前記芳香族ジヒドロキシ化合物又は脂肪族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。]
 炭酸ジアルキル化合物としては、下記一般式(13)で表される化合物、及び下記一般式(14)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022

[式(13)中、R21及びR22はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、互いに同一でも異なっていてもよい。式(14)中、R23及びR24はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、それらはたがいに同一でも異なっていてもよく、Dは前記芳香族ジヒドロキシ化合物又は脂肪族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。]
 炭酸アルキルアリール化合物としては、下記一般式(15)で表される化合物、及び下記一般式(16)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023

[式(15)中、Arはアリール基、R25は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示す。式(16)中、Arはアリール基,R26は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基、Dは前記芳香族ジヒドロキシ化合物又は脂肪族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。]
 炭酸ジアリール化合物としては、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、ビス(m-クレジル)カーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、及びビスフェノールAビスフェニルカーボネート等が挙げられる。
 炭酸ジアルキル化合物としては、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート、及びビスフェノールAビスメチルカーボネート等が挙げられる。
 炭酸アルキルアリール化合物としては、メチルフェニルカーボネート、エチルフェニルカーボネート、ブチルフェニルカーボネート、シクロヘキシルフェニルカーボネート、及びビスフェノールAメチルフェニルカーボネート等が挙げられる。
 好ましい炭酸エステル化合物は、ジフェニルカーボネートである。
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)の製造には、1種又は2種以上の炭酸エステル化合物を用いることができる。
(末端停止剤)
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)の製造に際しては、必要に応じて末端停止剤を用いることができる。末端停止剤としては、ポリカーボネート樹脂の製造における公知の末端停止剤を用いればよく、例えば、その具体的化合物としては、フェノール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、及びp-tert-アミルフェノール等を挙げることができる。これらの一価フェノールはそれぞれ単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
(分岐剤)
 ポリカーボネート-ポリオルガノシロキサン共重合体(A)の製造に際しては、分岐剤を用いることもできる。分岐剤としては、フロログルシン、トリメリット酸、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、及びイサチンビス(o-クレゾール)等が挙げられる。
 具体的には、例えば以下の手順により、溶融重合法にてポリカーボネート-ポリオルガノシロキサン共重合体(A)を製造することができる。
 ジオールモノマー(a1)と、ポリオルガノシロキサン(a2)と、炭酸エステル化合物とをエステル交換反応させる。ジオールモノマーに対する炭酸エステル化合物は、好ましくは0.9~1.2倍モルであり、より好ましくは0.98~1.02倍モルである。
 上記のエステル交換反応に当たって、末端停止剤の存在量が、ジオールモノマー(a1)及びポリオルガノシロキサン(a2)の合計量に対して、0.05~10モル%の範囲にあると、得られるポリカーボネート-ポリオルガノシロキサン共重合体の水酸基末端が十分に封止されるため、耐熱性及び耐水性に優れたポリカーボネート樹脂が得られるという観点で好ましい。ジオールモノマー(a1)及びポリオルガノシロキサン(a2)の合計量に対する末端停止剤の存在量は、より好ましくは1~6モル%である。末端停止剤は、予め反応系に全量添加しておいてもよく、また予め反応系に一部添加しておき、反応の進行に伴って残部を添加してもよい。
 ジオールモノマー(a1)、ポリオルガノシロキサン(a2)、及び炭酸エステル化合物とともに、酸化防止剤を同時に反応器に投入し、酸化防止剤存在下でエステル交換反応を行うことが好ましい。
 エステル交換反応を行うに当たって反応温度は、特に制限はなく、例えば100~330℃の範囲でよく、好ましくは180~300℃の範囲であり、より好ましくは200~240℃の範囲である。また、反応の進行に合わせて次第に180から300℃まで温度を上げていく方法が好ましい。エステル交換反応の温度が100℃以上であれば、反応速度が十分に速くなり、一方、330℃以下であれば、副反応が多く生じることなく、生成するポリカーボネート-ポリオルガノシロキサン共重合体が着色する等の問題が生じにくい。
 反応圧力は、使用するモノマーの蒸気圧及び/又は反応温度に応じて設定される。反応が効率良く行われるように設定されれば、特に限定されない。例えば、反応初期においては、1~50atm(760~38,000torr)までの大気圧(常圧)又は加圧状態にし、反応後期においては、減圧状態とし、最終的には1.33~1.33×10Pa(0.01~100torr)とするのが好ましい。
 反応時間は、目標の分子量となるまで行えばよく、例えば、0.2~10時間である。
 上記のエステル交換反応は、例えば不活性溶剤の不存在下で行われるが、必要に応じて、得られるポリカーボネート樹脂100質量部に対して、1~150質量部の不活性溶剤の存在下において行ってもよい。不活性溶剤としては、ジフェニルエーテル、ハロゲン化ジフェニルエーテル、ベンゾフェノン、ポリフェニルエーテル、ジクロロベンゼン、及びメチルナフタレン等の芳香族化合物;並びに;トリシクロ[5.2.1.02,6]デカン、シクロオクタン、及びシクロデカン等のシクロアルカン等が挙げられる。
 必要に応じて不活性ガス雰囲気下で行ってもよく、不活性ガスとしては、例えばアルゴン、二酸化炭素、一酸化二窒素、窒素等のガス;クロロフルオロ炭化水素、エタン、プロパン等のアルカン;エチレン、プロピレン等のアルケン等、各種のものが挙げられる。
 溶融重合法においては、触媒として塩基性触媒を用いることが好ましい。塩基性触媒としては、アルカリ金属化合物、アルカリ土類金属化合物等の金属触媒、含窒素化合物、アリール基を含む4級ホスホニウム塩等の有機系触媒及び金属化合物からなる群から選択される少なくとも1種を挙げることができる。これらの化合物は単独もしくは組み合わせて用いることができる。
 塩基性触媒としては、アルカリ金属又はアルカリ土類金属の、有機酸塩、無機塩、酸化物、水酸化物、水素化物、及びアルコキシド;4級アンモニウムヒドロキシド;アリール基を含む4級ホスホニウム塩等が好ましく用いられる。塩基性触媒は1種単独で又は2種以上を組み合わせて用いることができる。
 アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、フェニルリン酸二ナトリウム、ビスフェノールAの二ナトリウム塩、二カリウム塩、二セシウム塩、二リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が挙げられる。
 アルカリ土類金属化合物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、二酢酸マグネシウム、二酢酸カルシウム、二酢酸ストロンチウム、二酢酸バリウム等が挙げられる。
 含窒素化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール基等を有する4級アンモニウムヒドロキシド類が挙げられる。また、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類が挙げられる。さらに、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基あるいは塩基性塩等が挙げられる。
 金属化合物としては亜鉛アルミニウム化合物、ゲルマニウム化合物、有機スズ化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物等が挙げられる。
 アリール基を含む4級ホスホニウム塩の具体例としては、例えばテトラフェニルホスホニウムヒドロキシド、テトラナフチルホスホニウムヒドロキシド、テトラ(クロロフェニル)ホスホニウムヒドロキシド、テトラ(ビフェニル)ホスホニウムヒドロキシド、テトラトリルホスホニウムヒドロキシド、テトラメチルホスホニウムヒドロキシド、テトラエチルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド等のテトラ(アリール又はアルキル)ホスホニウムヒドロキシド類、テトラメチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムブロミド、テトラフェニルホスホニウムフェノラート、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリフェニルホスホニウムテトラフェニルボレート、ベンジルトリフェニルホスホニウムテトラフェニルボレート、ビフェニルトリフェニルホスホニウムテトラフェニルボレート、テトラトリルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムフェノレート、テトラ(p-t-ブチルフェニル)ホスホニウムジフェニルホスフェート、トリフェニルブチルホスホニウムフェノレート、トリフェニルブチルホスホニウムテトラフェニルボレート等が挙げられる。
 アリール基を含む4級ホスホニウム塩は、含窒素有機塩基性化合物と組合せることが好ましく、例えばテトラメチルアンモニウムヒドロキシドとテトラフェニルホスホニウムテトラフェニルボレートとの組合せが好ましい。
 塩基性触媒の使用量は、ジオールモノマー(a1)1モルに対し、好ましくは1×10-9~1×10-2モル、より好ましくは1×10-8~1×10-2モル、更に好ましくは1×10-7~1×10-3モルの範囲で選ぶことができる。
 反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用される。触媒失活剤としては、例えば、スルホン酸のアンモニウム塩、及び、スルホン酸のホスホニウム塩が挙げられる。
 触媒失活剤の使用量はアルカリ金属化合物及びアルカリ土類金属化合物から選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1モル当たり好ましくは0.5~50モル、より好ましくは0.5~10モル、更に好ましくは0.8~5モルである。
 触媒失活剤を添加し、重合反応を終了させた後に酸化防止剤を混合することが好ましい。
 溶融重合法における反応は、連続式、及びバッチ式のいずれで行ってもよい。溶融重合に用いられる反応装置は、アンカー型撹拌翼、マックスブレンド撹拌翼、もしくはヘリカルリボン型撹拌翼等を装備した縦型反応装置、又はパドル翼、格子翼、もしくはメガネ翼等を装備した横型反応装置のいずれでもよい。更にスクリューを装備した押出機型であってもよい。連続式の場合は、かかる反応装置を適宜組み合わせて使用することが好ましい。
 <ポリカーボネート系樹脂(S)>
 ポリカーボネート系樹脂(S)は、ポリカーボネート-ポリオルガノシロキサン共重合体(A)以外のポリカーボネート系樹脂(P)(以下、ポリカーボネート系樹脂(P)ということがある)を含んでもよい。
 ポリカーボネート系樹脂(S)中のポリカーボネート-ポリオルガノシロキサン共重合体(A)の含有量は、耐衝撃性、引張特性及び耐薬品性のバランスを向上させる観点から、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上、更に好ましくは99質量%以上である。ポリカーボネート系樹脂(S)中のポリカーボネート-ポリオルガノシロキサン共重合体(A)の含有量の上限は特に限定されないが、所望の性質を有する樹脂組成物を得る観点から、例えば100質量%以下である。
 ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-1)の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更に好ましくは3.0質量%以上であり、好ましくは40質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、更に好ましくは7.0質量%以下である。
 ポリカーボネート系樹脂組成物中のポリオルガノシロキサンブロック(A-1)の含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更に好ましくは3.0質量%以上であり、好ましくは40質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、更に好ましくは7.0質量%以下である。
 ポリカーボネート系樹脂(S)の粘度平均分子量は、好ましくは5,000以上、より好ましくは12,000以上、更に好ましくは14,000以上、更に好ましくは16,000以上であり、そして好ましくは50,000以下、より好ましくは30,000以下、更に好ましくは23,000以下、更に好ましくは21,000以下である。
<ポリカーボネート系樹脂(P)>
 ポリカーボネート系樹脂(P)としては、特に制限はなく種々の公知のポリカーボネート系樹脂を使用できる。
 ポリカーボネート系樹脂(P)は、好ましくは、前記一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)を含まず、前記一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)を含むポリカーボネート系樹脂である。
 ポリカーボネート系樹脂(P)が含む、一般式(2)で表される構造単位としては、ポリカーボネート-ポリオルガノシロキサン共重合体(A)が含む一般式(2)で表される構造単位と同じものが挙げられる。好ましい形態も同じである。
 ポリカーボネート系樹脂(P)は、一般式(2)で表される構造単位を主成分として含むのが好ましい。ポリカーボネート系樹脂(P)は、一般式(2)で表される構造単位の含有量が、ポリカーボネート系樹脂(P)の全ての構造に対して、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは98質量%以上である。
 ポリカーボネート系樹脂(P)の粘度平均分子量は、好ましくは5,000以上、より好ましくは12,000以上、更に好ましくは14,000以上、更に好ましくは16,000以上であり、そして好ましくは50,000以下、より好ましくは30,000以下、更に好ましくは23,000以下、更に好ましくは21,000以下である。
<エラストマー(B)>
 本発明に係るポリカーボネート系樹脂組成物は、ポリカーボネート系樹脂(S)とエラストマー(B)とを含有する。ポリカーボネート系樹脂組成物は、エラストマー(B)をポリカーボネート系樹脂(S)100質量部に対し、1.0質量部以上40質量部以下含むのが好ましい。エラストマー(B)の含有量が1.0質量部以上であると、引張特性及び耐衝撃性のバランスをより向上させることができる。エラストマー(B)の含有量が40質量部以下であると、例えば耐衝撃性及び機械的強度、耐熱性、耐薬品性、透明性等をより向上させることができる。
 本発明に係るポリカーボネート系樹脂組成物中のエラストマー(B)の含有量は、引張特性及び耐衝撃性のバランスをより向上させる観点から、ポリカーボネート系樹脂(S)100質量部に対し、より好ましくは2.0質量部以上、更に好ましくは3.0質量部以上、更に好ましくは4.0質量部以上であり、耐衝撃性及び機械的強度、耐熱性、耐薬品性、透明性等をより向上させる観点から、より好ましくは30質量部以下、更に好ましくは20質量部以下、更に好ましくは15質量部以下、更に好ましくは12質量部以下、更に好ましくは10質量部以下、更に好ましくは8.0質量部以下である。
 本発明に係るポリカーボネート系樹脂組成物は、1種又は2種以上のエラストマーを、エラストマー(B)として含むことができる。
 エラストマー(B)としては、引張特性及び耐衝撃性のバランスをより向上させる観点から、ゴム成分にゴム成分と共重合可能な単量体成分をグラフト共重合したグラフト共重合体が好ましい。
 グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合等のいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
 ゴム成分のガラス転移温度は0℃以下が好ましく、-20℃以下がより好ましく、-30℃以下が更に好ましい。
 ゴム成分としては、例えば、ポリブタジエンゴム;ポリイソプレンゴム;ポリブチルアクリレート、ポリ(2-エチルヘキシルアクリレート)、ブチルアクリレート・2-エチルヘキシルアクリレート共重合体等のポリアルキルアクリレートゴム;ポリオルガノシロキサンゴム等のシリコーン系ゴム;ブタジエン-アクリル複合ゴム;ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN(Interpenetrating Polymer Network)型複合ゴム;スチレン-ブタジエンゴム;エチレン-プロピレンゴム;エチレン-ブテンゴム、エチレン-オクテンゴム等のエチレン-α-オレフィン系ゴム;エチレン-アクリルゴム;フッ素ゴム等が挙げられる。これらのゴム成分は、単独でも2種以上を混合して使用してもよい。
 これらの中でも、機械的特性及び外観の観点から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴム及びスチレン-ブタジエンゴムからなる群から選択される少なくとも一種が好ましく、ポリブタジエンゴム及びスチレン-ブタジエンゴムからなる群から選択される少なくとも一種がより好ましく、ポリブタジエンゴムが更に好ましい。
 ゴム成分とグラフト共重合可能な単量体成分としては、例えば、芳香族ビニル化合物;シアン化ビニル化合物;(メタ)アクリル酸エステル化合物;(メタ)アクリル酸化合物;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N-メチルマレイミド、N-フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β-不飽和カルボン酸化合物及びそれらの無水物(例えば無水マレイン酸等)等が挙げられる。
 これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。
 これらの中でも、機械的特性及び表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物及び(メタ)アクリル酸化合物からなる群から選択される少なくとも一種が好ましく、(メタ)アクリル酸エステル化合物がより好ましい。
 (メタ)アクリル酸エステル化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル及び(メタ)アクリル酸オクチルからなる群から選択される少なくとも一種が挙げられ、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルからなる群から選択される少なくとも一種が好ましく、(メタ)アクリル酸メチルがより好ましい。
 エラストマー(B)は、ゴム成分を共重合したグラフト共重合体として、耐衝撃性及び外観の点からコア/シェル型グラフト共重合体タイプのものが好ましく、ポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、及びポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなるIPN型複合ゴムからなる群から選択される少なくとも一種のゴム成分をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体がより好ましい。上記コア/シェル型グラフト共重合体において、ゴム成分を40質量%以上含有するものが好ましく、60質量%以上含有するものが更に好ましい。また、(メタ)アクリル酸は、10質量%以上含有するものが好ましい。なお、ここでコア/シェル型とは必ずしもコア層とシェル層が明確に区別できるものでなくてもよく、コアとなる部分の周囲にゴム成分をグラフト重合して得られる化合物を広く含む。
 エラストマー(B)は、引張特性及び耐衝撃性のバランスをより向上させる観点から、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)、メチルメタクリレート-ブタジエン共重合体(MB)、メチルメタクリレート-アクリルゴム共重合体(MA)、メチルメタクリレート-アクリルゴム-スチレン共重合体(MAS)、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、及びメチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体からなる群から選択される少なくとも一種が好ましく、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS)及びメチルメタクリレート-ブタジエン共重合体(MB)からなる群から選択される少なくとも一種がより好ましく、メチルメタクリレート-ブタジエン共重合体(MB)が更に好ましい。このようなエラストマー(B)は、1種を単独で用いても2種以上を併用してもよい。
 これらのエラストマー(B)は、前述のコア/シェル型グラフト共重合体であることが好ましい。
 エラストマー(B)の市販品としては、例えば、ローム・アンド・ハース・ジャパン(株)製の「パラロイド(登録商標、以下同じ)EXL2602」、「パラロイドEXL2603」、「パラロイドEXL2655」、「パラロイドEXL2311」、「パラロイドEXL2313」、「パラロイドEXL2315」、「パラロイドKM330」、「パラロイドKM336P」、「パラロイドKCZ201」、三菱レイヨン(株)製の「メタブレン(登録商標、以下同じ)C-223A」、「メタブレンE-901」、「メタブレンS-2001」、「メタブレンSRK-200」、(株)カネカ製の「カネエース(登録商標、以下同じ)M-511」、「カネエースM-600」、「カネエースM-400」、「カネエースM-580」、「カネエースM-711」、「カネエースMR-01」、宇部興産(株)製の「UBESTA XPA」等が挙げられる。
 本発明に係るポリカーボネート系樹脂組成物中のポリカーボネート系樹脂(S)及びエラストマー(B)の合計含有量は、ポリカーボネート系樹脂組成物の全体を100質量%としたとき、引張特性及び耐衝撃性のバランスをより向上させる観点から、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは98質量%以上、更に好ましくは99質量%以上である。ポリカーボネート系樹脂(S)及びエラストマー(B)の合計含有量の上限は特に限定されないが、所望の性質を有する樹脂組成物を得る観点から、例えば100質量%以下である。
<酸化防止剤(C)>
 本発明に係るポリカーボネート系樹脂組成物は、本発明の目的を損なわない範囲で酸化防止剤(C)を適宜含有してもよい。
 酸化防止剤(C)は、ポリカーボネート系樹脂組成物の製造時及び成形時の樹脂の分解を抑制することができる。酸化防止剤(C)としては公知のものを用いることができ、好ましくはリン系酸化防止剤及びフェノール系酸化防止剤から選択される少なくとも一種を用いることができる。
 ポリカーボネート系樹脂組成物を含む成形体の、高温成形時の酸化劣化を抑制する観点から、リン系酸化防止剤は、アリール基を有するリン系酸化防止剤であることがより好ましく、下記一般式(C1)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000024

 式(C1)中、RC21~RC25は水素原子、炭素数1以上12以下のアルキル基、又は炭素数6以上14以下のアリール基であり、同一であっても異なっていてもよい。但し、酸化防止剤としての効果の点から、RC21~RC25のすべてが水素原子になることはなく、RC21~RC25のうち少なくとも2つは炭素数1以上12以下のアルキル基又は炭素数6以上14以下のアリール基である。好ましくは、RC21~RC25のうちいずれか2つが炭素数1以上12以下のアルキル基又は炭素数6以上14以下のアリール基で残りが水素原子である化合物であり、より好ましくは、RC21~RC25のうちいずれか2つが炭素数1以上12以下のアルキル基又は炭素数6以上14以下のアリール基で残りが水素原子である化合物のうち、RC21又はRC25の少なくとも一方が炭素数1~12のアルキル基又は炭素数6以上14以下のアリール基である化合物である。
 炭素数1以上12以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、各種ドデシル基等が挙げられる。中でも、長期耐湿熱性及び長期耐熱性を付与する観点からは、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、及び各種オクチル基からなる群から選ばれる1種以上が好ましく、メチル基、エチル基、イソプロピル基、及びtert-ブチル基からなる群から選ばれる1種以上がより好ましく、tert-ブチル基が更に好ましい。
 炭素数6以上14以下のアリール基としては、例えばフェニル基、トリル基、キシリル基等が挙げられる。中でも、熱分解が起こりにくく長期耐湿熱性及び長期耐熱性の向上効果に優れるという観点から、RC21~RC25は、水素原子又は炭素数1以上12以下のアルキル基であることがより好ましく、水素原子、メチル基、エチル基、イソプロピル基、又はtert-ブチル基が更に好ましく、水素原子又はtert-ブチル基がより更に好ましい。
 特に好ましくは、RC21及びRC23がtert-ブチル基であり、RC22、RC24及びRC25が水素原子である、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトである。
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルノニルホスファイト、ジフェニル(2-エチルヘキシル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、ジフェニルイソオクチルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリス(イソデシル)ホスファイト、トリス(トリデシル)ホスファイト、ジブチルハイドロジェンホスファイト、トリラウリルトリチオホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、4,4’-イソプロピリデンジフェノールドデシルホスファイト、4,4’-イソプロピリデンジフェノールトリデシルホスファイト、4,4’-イソプロピリデンジフェノールテトラデシルホスファイト、4,4’-イソプロピリデンジフェノールペンタデシルホスファイト、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェニル)ジトリデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジステアリル-ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、テトラフェニルジプロピレングリコールジホスファイト、1,1,3-トリス(2-メチル-4-ジ-トリデシルホスファイト-5-tert-ブチルフェニル)ブタン、3,4,5,6-ジベンゾ-1,2-オキサホスファン、トリフェニルホスフィン、ジフェニルブチルホスフィン、ジフェニルオクタデシルホスフィン、トリス(p-トリル)ホスフィン、トリス(p-ノニルフェニル)ホスフィン、トリス(ナフチル)ホスフィン、ジフェニル(ヒドロキシメチル)ホスフィン、ジフェニル(アセトキシメチル)ホスフィン、ジフェニル(β-エチルカルボキシエチル)ホスフィン、トリス(p-クロロフェニル)ホスフィン、トリス(p-フルオロフェニル)ホスフィン、ベンジルジフェニルホスフィン、ジフェニル(β-シアノエチル)ホスフィン、ジフェニル(p-ヒドロキシフェニル)ホスフィン、ジフェニル(1,4-ジヒドロキシフェニル)-2-ホスフィン、フェニルナフチルベンジルホスフィン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。
 具体的には、リン系酸化防止剤として、「Irgafos168」(BASFジャパン(株)製、商標)、「Irgafos12」(BASFジャパン(株)製、商標)、「Irgafos38」(BASFジャパン(株)製、商標)、「ADKSTAB 329K」((株)ADEKA製、商標)、「ADKSTAB PEP-36」((株)ADEKA製、商標)、「ADKSTAB PEP-8」((株)ADEKA製、商標)、「Sandstab P-EPQ」(クラリアント社製、商標)、「Weston 618」(GE社製、商標)、「Weston 619G」(GE社製、商標)及び「Weston 624」(GE社製、商標)、「Doverphos S-9228PC」(Dover Chemical社製)等の市販品を挙げることができる。
 フェノール系酸化防止剤は、好ましくはヒンダードフェノールである。フェノール系酸化防止剤の具体例としては、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネートジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、3,9-ビス[1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等が挙げられる。
 具体的には、フェノール系酸化防止剤としては、「Irganox1010」(BASFジャパン(株)製、商標)、「Irganox1076」(BASFジャパン(株)製、商標)、「Irganox1330」(BASFジャパン(株)製、商標)、「Irganox3114」(BASFジャパン(株)製、商標)、「Irganox3125」(BASFジャパン(株)製、商標)、「BHT」(武田薬品工業(株)製、商標)、「Cyanox1790」(サイアナミド社製、商標)及び「SumilizerGA-80」(住友化学(株)製、商標)等の市販品を挙げることができる。
 酸化防止剤(C)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明に係るポリカーボネート系樹脂組成物中の酸化防止剤(C)の含有量は、ポリカーボネート系樹脂(S)100質量部に対し、好ましくは0.001質量部以上、より好ましくは0.01質量部以上、更に好ましくは0.04質量部以上、更に好ましくは0.08質量部以上であり、好ましくは1.0質量部以下、より好ましくは0.50質量部以下、更に好ましくは0.25質量部以下、更に好ましくは0.15質量部以下である。酸化防止剤(C)を複数種用いる場合は合計量が上記範囲となる。
<添加剤>
 本発明に係るポリカーボネート系樹脂組成物は、本発明の目的を損なわない範囲でエラストマー(B)及び酸化防止剤(C)以外の添加剤を適宜含有してもよい。
 添加剤としては、例えば、各種フィラー、熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、離型剤、紫外線吸収剤等が挙げられる。
 本発明に係るポリカーボネート系樹脂組成物の製造方法は、ポリカーボネート系樹脂(S)と、エラストマー(B)と、任意の添加剤とを混合する工程を有するものであれば特に限定されない。例えば、ポリカーボネート系樹脂(S)とエラストマー(B)と任意の添加物とを混合機等を用いて混合し、溶融混練を行うことで製造できる。溶融混練は、通常用いられている方法、例えば、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機等を用いる方法により行うことができる。溶融混練時の加熱温度は、例えば150℃~300℃、好ましくは220~300℃程度の範囲で適宜選定される。
 本発明に係るポリカーボネート系樹脂組成物を成形して得られるJIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張破断伸びは、得られる成形体の引張特性をより向上させる観点から、好ましくは10%以上、より好ましくは13%以上、更に好ましくは20%以上、更に好ましくは30%以上、更に好ましくは40%以上である。得られる成形体の引張特性をより向上させる観点から、前記引張破断伸びは高ければ高いほど好ましいため、上限値は特に限定されないが、機械的強度を向上させる観点から、好ましくは200%以下、より好ましくは150%以下、更に好ましくは120%以下、更に好ましくは100%以下、更に好ましくは80%以下、更に好ましくは60%以下である。
 前記引張破断伸びは引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定することができ、具体的には、後述の実施例に記載の方法により測定することができる。
 上記成形片の成形条件としては、シリンダー温度が280℃、金型温度が100℃、サイクル時間が60秒である。具体的には、後述の実施例に記載の方法によって成形片を得る。
 本発明に係るポリカーボネート系樹脂組成物を成形して得られるJIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張弾性率は、得られる成形体の引張特性をより向上させる観点から、好ましくは2250MPa以上、より好ましくは2300MPa以上、更に好ましくは2350MPa以上、更に好ましくは2400MPa以上である。得られる成形体の機械的強度をより向上させる観点から、前記引張弾性率は高ければ高いほど好ましいため、上限値は特に限定されないが、耐衝撃性を向上させる観点から、好ましくは10000MPa以下、より好ましくは5000MPa以下、更に好ましくは3000MPa以下である。
 前記引張弾性率は引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定することができ、具体的には、後述の実施例に記載の方法により測定することができる。
 上記成形片の成形条件としては、シリンダー温度が280℃、金型温度が100℃、サイクル時間が60秒である。具体的には、後述の実施例に記載の方法によって成形片を得る。
 本発明に係るポリカーボネート系樹脂組成物を成形して得られる長さ80mm、幅10mm、厚さ4mmの短冊状の成形片に後加工でノッチ(r=0.25mm±0.05mm)を付与した成形片のシャルピー衝撃強さは、得られる成形体の耐衝撃性をより向上させる観点から、好ましくは38kJ/m以上、より好ましくは40kJ/m以上、更に好ましくは41kJ/m以上である。得られる成形体の耐衝撃性をより向上させる観点から、前記シャルピー衝撃強さは高ければ高いほど好ましいため、上限値は特に限定されないが、引張特性を向上させる観点から、好ましくは100kJ/m以下、より好ましくは80kJ/m以下、更に好ましくは60kJ/m以下である。
 前記シャルピー衝撃強さはISO-179-1:2010に準拠し、測定温度23℃の条件で測定することができ、具体的には、後述の実施例に記載の方法により測定することができる。
 上記成形片の成形条件としては、シリンダー温度が280℃、金型温度が100℃、サイクル時間が60秒である。具体的には、後述の実施例に記載の方法によって成形片を得る。
2.成形体
 本発明の形体は、本発明のポリカーボネート系樹脂組成物を含むものである。当該成形体は、ポリカーボネート系樹脂組成物の溶融混練物、又は、溶融混練を経て得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等により製造することができる。特に、得られたペレットを用いて、射出成形法又は射出圧縮成形法により成形体を製造することが好ましい。
 成形体の厚さは用途に応じて任意に設定することができ、特に成形体の透明性が要求される場合には、0.2~4.0mmが好ましく、0.3~3.0mmがより好ましく、0.3~2.0mmが更に好ましい。成形体の厚みが0.2mm以上であれば、反りが生じることがなく、良好な機械強度が得られる。また成形体の厚みが4.0mm以下であれば、高い透明性が得られる。
 成形体には、必要に応じてハードコート膜、防曇膜、帯電防止膜、反射防止膜の被膜を形成してもよく、2種類以上の複合被膜としてもよい。
 中でも、耐候性が良好で、経時的な成形体表面の摩耗を防ぐことができることから、ハードコート膜の被膜が形成されていることが好ましい。ハードコート膜の材質は特に限定されず、アクリレート系ハードコート剤、シリコーン系ハードコート剤、無機系ハードコート剤等の公知の材料を用いることができる。
 本発明に係る成形体は、例えば、1)サンルーフ、ドアバイザー、リアウィンド、サイドウィンド等の自動車用部品、2)建築用ガラス、防音壁、カーポート、サンルーム、グレーチング類等の建築用部品、3)鉄道車両、船舶用の窓、4)テレビ、ラジオカセット、ビデオカメラ、ビデオテープレコーダ、オーディオプレーヤー、DVDプレーヤー、電話器、ディスプレイ、コンピュータ、レジスター、複写機、プリンター、ファクシミリ等の各種部品、外板又はハウジングの各部品等の電気機器用部品、5)携帯電話、PDA、カメラ、スライドプロジェクター、時計、電卓、計測器、表示器機等の精密機械等のケース又はカバー類等の精密機器用部品、6)ビニールハウス、温室等の農業用部品、7)照明カバー、ブラインド、インテリア器具類等の家具用部品等に好適に用いることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。本明細書においては、ポリジメチルシロキサンをPDMSと略記することがある。
1.末端変性ポリオルガノシロキサンの製造
製造例1:PDMS-1の製造
 窒素雰囲気下、下式:
Figure JPOXMLDOC01-appb-C000025

で示される平均繰り返し単位数が45であるポリオルガノシロキサン(100g)に、下式:
Figure JPOXMLDOC01-appb-C000026

で示される、平均オキシエチレン鎖長が8のポリエチレングリコールをポリオルガノシロキサンに対して2倍モル量加えた。ここに、溶媒としてトルエン338gを加えた後、80℃に保温して十分撹拌した。次いで、白金のビニルシロキサン錯体のトルエン溶液を、白金原子の質量がシロキサン(-(SiMeO)n-)に対して5質量ppmとなる量で加え、反応温度110℃で10時間撹拌した。得られた混合物からトルエン及び白金触媒を除去し、ポリエーテル変性ポリオルガノシロキサンPDMS-1を得た。
製造例2:PDMS-2の製造
 ポリエチレングリコールの平均オキシエチレン鎖長を38としたこと以外は、製造例1と同様に製造し、ポリエーテル変性ポリオルガノシロキサンPDMS-2を得た。
製造例3:PDMS-3の製造
 窒素雰囲気下、下式:
Figure JPOXMLDOC01-appb-C000027

で示される、平均繰り返し単位数が39である、ポリオルガノシロキサンに、2-アリルフェノールを、ポリオルガノシロキサンに対し2倍モル量加えた後、100℃に保温して十分撹拌した。次いで、白金のビニルシロキサン錯体のトルエン溶液を白金原子の質量がシロキサン(-(SiMeO)n-)に対して5質量ppmとなる量で加え、反応温度100℃で10時間撹拌した。得られた混合物から白金触媒を除去し、アリルフェノール変性ポリオルガノシロキサンPDMS-3を得た。
 製造例1~3で得られたPDMS-1~PDMS-3の構造式を表1に示す。
Figure JPOXMLDOC01-appb-T000028
<ポリオルガノシロキサンの平均繰り返し単位数、及び、ポリオルガノシロキサンの末端変性基の平均繰り返し単位数の測定方法>
 ポリオルガノシロキサンの平均繰り返し単位数は、NMR測定によって、ポリジメチルシロキサンのメチル基の積分値比により算出した。ポリオルガノシロキサンの末端変性基の平均繰り返し単位数は、NMR測定によって、ポリエチレングリコールのジメチレン基の積分値比により算出した。
 H-NMR測定条件
 NMR装置:株式会社JEOL RESONANCE製 ECA-500
 プローブ:50TH5AT/FG2
 観測範囲:-5~15ppm
 観測中心:5ppm
 パルス繰り返し時間:9秒
 パルス幅:45°
 NMR試料管:5φ
 サンプル量:30~40mg
 溶媒:重クロロホルム
 測定温度:23℃
 積算回数:256回
2.ポリカーボネート-ポリオルガノシロキサン(PC-POS)共重合体の製造
製造例4:PC-POS共重合体1の製造
 以下の原料と条件にて、ポリカーボネート-ポリオルガノシロキサン共重合体を製造した。
撹拌装置、留出フェノールを捕捉するトラップ、減圧装置を具備した10Lのステンレス製反応器に、ジオールモノマーとしてBisP-A(2,489.9g)及び炭酸ジエステル化合物としてDPC(2,500g)(各原料のモル比率:BisP-A/DPC=100/107)、ポリエーテル変性ポリオルガノシロキサンPDMS-1を179.7g投入し150℃にてこれらの原料モノマーを完全に溶融させ反応器内部を窒素で置換した。触媒として0.01mol/Lの水酸化ナトリウム1.64mL(全ジオールモノマーmol数に対し1.5×10-6倍量)を投入し重合を開始し、60分程度かけて反応器内の温度180℃及び反応器内の気圧200mmHg(26.6kPa)まで昇温及び減圧しフェノール留出量が0.2Lとなるまで反応条件を保持した。その後60分程度かけて反応器内の温度200℃及び反応器内の気圧10mmHg(1.3kPa)まで昇温及び減圧し1.0Lのフェノールが留出するまで当該条件を保持した。
 次に、120分程度かけて反応器の内温を240℃まで昇温しフェノールが1.5L留出するまで当該条件を保持した。続いて120分程度かけて反応器内の温度を280℃及び反応器内の気圧を1mmHg(0.1kPa)以下まで調整し、フェノールを2L以上留出させ、所定の撹拌トルクとなるまで反応を継続させた。その後、窒素を導入し常圧まで復圧し、失活剤としてp-トルエンスルホン酸ブチル0.037g(NaOHのモル数に対し10倍量)を投入した。下記酸化防止剤1及び酸化防止剤2をそれぞれ、得られるポリマーに対し0.05質量部となるよう投入し、十分撹拌した。その後、窒素圧力により反応器底部から樹脂ストランドを抜出しそれらをペレタイザでカットすることでポリカーボネート-ポリオルガノシロキサン共重合体を得た。
 得られたPC-POS共重合体1の分析値を表2に示す。
 製造に用いた原料は以下の通りである。
  ・BisP-A:ビスフェノールA[出光興産(株)製]
  ・DPC:炭酸ジフェニル[三井化学ファイン(株)製]
  ・0.01mol/Lの水酸化ナトリウム水溶液[富士フイルム和光純薬(株)製]
  ・酸化防止剤(C)
     酸化防止剤1:トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト[BASFジャパン(株)製、Irgafos168]
     酸化防止剤2:ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート][BASFジャパン(株)製、Irganox1010]
製造例5:PC-POS共重合体2の製造
 ポリオルガノシロキサンとしてPDMS-1の代わりにPDMS-2を179.7g使用した以外は、製造例4と同様の条件で重合することにより、PC-POS共重合体2を得た。
 得られたPC-POS共重合体2の分析値を表2に示す。
製造例6:PC-POS共重合体3の製造
 ポリオルガノシロキサンとしてPDMS-1の代わりにPDMS-3を179.7g使用した以外は、製造例4と同様の条件で重合することにより、PC-POS共重合体3を得た。
 得られたPC-POS共重合体3の分析値を表2に示す。
2.ポリカーボネート-ポリオルガノシロキサン共重合体の物性測定
(1)得られたポリカーボネート-ポリオルガノシロキサン共重合体に含まれるポリジメチルシロキサン含有量の定量方法
 NMR装置:(株)JEOL RESONANCE製 ECA-500
 プローブ:TH5 5φNMR試料管対応
 観測範囲:-5~15ppm
 観測中心:5ppm
 パルス繰り返し時間:9秒
 パルス幅:45°
 積算回数:256回
 NMR試料管:5φ
 サンプル量:30~40mg
 溶媒:重クロロホルム
 測定温度:23℃
 A:δ7.3~7.5付近に観測されるフェニル部のメタ位の積分値
 B:δ3.3~4.5付近に観測されるPEG部のメチレン基の積分値
 C:δ1.50~2.00付近に観測されるビスフェノールA部のメチル基の積分値
 D:δ-0.02~0.4付近に観測されるジメチルシロキサン部のメチル基の積分値
 E:δ0.52付近に観測されるジメチルシロキサン末端部のメチレン基の積分値
 a=A/2
 b=B/4
 c=(C-e×2)/6
 d=D/6
 e=E/2
 T=a+b+c+d
 f=a/T×100
 g=b/T×100
 h=c/T×100
 i=d/T×100
 TW=f×93+g×44+h×254+i×74.1
 PDMS(wt%)=(i×74.1)/TW×100
(2)ポリカーボネート-ポリオルガノシロキサン共重合体の粘度平均分子量の測定方法
 ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液(濃度:g/L)の粘度を測定し、これより極限粘度[η]を求め、次式(Schnellの式)にて粘度平均分子量(Mv)を算出した。
[η]=1.23×10-5Mv0.83
Figure JPOXMLDOC01-appb-T000029

*得られるPC-POS共重合体の質量(理論値)に対する、仕込みポリオルガノシロキサン(a2)の質量%を示す。
 得られるPC-POS共重合体の質量(理論値)は[ジオールモノマー(a1)の仕込み質量+炭酸ジエステルの仕込み質量+ポリオルガノシロキサン質量(a2)の仕込み質量-生成フェノールの質量(理論値、炭酸ジエステルの2倍モル量のフェノール)]から算出した。
3.使用した原料(樹脂及び添加剤)
 実施例及び比較例において以下の原料を使用した。
(1)ポリカーボネート-ポリオルガノシロキサン共重合体(A)(ただし、酸化防止剤(C)を含有する)
・PC-POS共重合体1:前記製造例4
・PC-POS共重合体2:前記製造例5
(2)ポリカーボネート-ポリオルガノシロキサン共重合体(A)以外のポリカーボネート-ポリオルガノシロキサン共重合体(ただし、酸化防止剤(C)を含有する)
・PC-POS共重合体3:前記製造例6
(3)エラストマー(B)
・エラストマー1:メチルメタクリレート-ブタジエン2元共重合体(ブタジエンのコアと、メチルメタクリレートのシェルとからなるコア/シェル型グラフト共重合体、(株)カネカ製、カネエースM-711)
4.実施例1~2及び比較例1
(1)ポリカーボネート系樹脂組成物の作製
 表3に示す割合で各成分を混合し、2軸押出成形機[DSM Xplore社製:Micro 15cc Twin Screw Compounder]に供給し、バレル温度280℃、スクリュー回転数50rpmにて溶融混練し、ポリカーボネート系樹脂組成物をそれぞれ得た。
 ここで、表3に示す各成分の配合量の単位は質量部である。
(2)評価用成形片の作製
 射出成形機[DSM Xplore社製:10cc Injection Moulding Machine]を用いて、シリンダー温度が280℃、金型温度が100℃、サイクル時間が60秒の条件で、前記(1)で得られたポリカーボネート系樹脂組成物を射出成形して、引張特性及び耐衝撃性を評価するための成形片(成形体)をそれぞれ成形した。
(3)評価
 前記(2)で得られた評価用成形片を用いて、下記の各評価をおこなった。結果を表3に示す。
・引張特性(引張破断伸び、引張弾性率)
 引張試験機[INSTRON社製:5567]を使用し、引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で、得られたJIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張破断伸び及び引張弾性率を測定した。数値が大きいほど、引張特性が良好であることを示す。
・耐衝撃性
 ポリカーボネート系樹脂組成物の耐衝撃性は、以下のシャルピー衝撃強さで評価した。
 得られた長さ80mm、幅10mm、厚さ4mmの短冊状の成形片に後加工でノッチ(r=0.25mm±0.05mm)を付与した成形片を用いて、ISO-179-1:2010に準拠して、シャルピー衝撃試験機((株)東洋精機製作所製、シャルピーインパクトテスター、型式611)により、23℃におけるシャルピー衝撃強さを測定した。
Figure JPOXMLDOC01-appb-T000030

Claims (21)

  1.  一般式(1)で表される構造単位を含むポリオルガノシロキサンブロック(A-1)及び一般式(2)で表される構造単位を含むポリカーボネートブロック(A-2)を有するポリカーボネート-ポリオルガノシロキサン共重合体(A)を含むポリカーボネート系樹脂(S)と、
     エラストマー(B)と、を含有するポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~12のアリール基、又は炭素数7~22のアルキルアリール基を示す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。複数のRは、それぞれ同一か又は異なっていてもよく、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。z及びuは0又は1を示す。aは2~500の整数を示し、bは2~200の整数を示す。R10は、炭素数2~40の二価の脂肪族炭化水素基、炭素数3~40の二価の脂環式炭化水素基、又は炭素数6~20の二価の芳香族炭化水素基を示し、これらの基は、置換基によって置換されていてもよく、また、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。]
  2.  前記ポリカーボネートブロック(A-2)が、一般式(111)で表される構造単位及び一般式(112)で表される構造単位の少なくとも一方を含む、請求項1に記載のポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式中、R55及びR56はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数6~20のアリーレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO-、-O-又は-CO-を示す。R100は、炭素数2~40の二価の脂肪族炭化水素基を示し、前記二価の脂肪族炭化水素基は分岐構造及び環状構造からなる群から選ばれる少なくとも一つを含んでもよく、酸素原子、窒素原子、硫黄原子及びハロゲン原子からなる群から選ばれる少なくとも一つの原子を含んでもよい。yは10~500の整数を示す。s及びtはそれぞれ独立して、0~4の整数を示す。]
  3.  前記ポリカーボネートブロック(A-2)が、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデセン、イソソルビド、シクロヘキサン-1,4-ジメタノール、トリシクロデカンジメタノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3-プロパンジオール、及び1,4-ブタンジオールからなる群から選択される少なくとも一つの化合物に由来する構造単位を含む、請求項1又は2に記載のポリカーボネート系樹脂組成物。
  4.  前記ポリカーボネートブロック(A-2)が、一般式(a-i)~(a-v)で表される構造単位からなる群から選択される少なくとも一つを含む、請求項1~3のいずれか一項に記載のポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
  5.  前記aが2以上300以下の整数である、請求項1~4のいずれか一項に記載のポリカーボネート系樹脂組成物。
  6.  前記bが10以上である、請求項1~5のいずれか一項に記載のポリカーボネート系樹脂組成物。
  7.  前記ポリオルガノシロキサンブロック(A-1)が、一般式(1-1)~(1-3)で表される構造単位からなる群から選択される少なくとも1つを含む、請求項1~6のいずれか一項に記載のポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004

    [式中、R~R、R、R、z、a、bは前記と同じ意味を表す。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選ばれる少なくとも一つの基を含んでもよい。Rは、炭素数6~20のアリーレン基、炭素数1~10のアルキレン基、又は炭素数7~22のアルキルアリーレン基を示し、これらの基は、主鎖及び側鎖の少なくとも一方の中に、-O-、-COO-、-CO-、-S-、-NH-、及び-NR111-からなる群から選択される少なくとも一つの基を含んでもよい。R111は炭素数1~10のアルキル基、又は炭素数6~10のアリール基を示す。zは0又は1を示す。bは2~200の整数を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。]
  8.  前記R~Rがすべてメチル基である、請求項1~7のいずれか一項に記載のポリカーボネート系樹脂組成物。
  9.  前記Rがトリメチレン基である、請求項1~8のいずれか一項に記載のポリカーボネート系樹脂組成物。
  10.  前記Rがジメチレン基、メチル置換ジメチレン基(-CHCHMe-)、又はトリメチレン基であり、前記zが1である、請求項1~9のいずれか一項に記載のポリカーボネート系樹脂組成物。
  11.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)における、前記ポリオルガノシロキサンブロック(A-1)の含有量が0.1質量%以上60質量%以下である、請求項1~10のいずれか一項に記載のポリカーボネート系樹脂組成物。
  12.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)の粘度平均分子量(Mv)が5,000以上50,000以下である、請求項1~11のいずれか一項に記載のポリカーボネート系樹脂組成物。
  13.  引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる、JIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張破断伸びが10%以上である、請求項1~12のいずれか一項に記載のポリカーボネート系樹脂組成物。
  14.  引張速度25mm/分、測定温度23℃、チャック間距離57mmの条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる、JIS K 7139:2009ダンベル型引張試験片タイプA22の、全長75mm、平行部の長さ30mm、端部の幅10mm、中央の平行部の幅5mm、厚さ2mmの成形片の引張弾性率が2250MPa以上である、請求項1~13のいずれか一項に記載のポリカーボネート系樹脂組成物。
  15.  ISO-179-1:2010に準拠し、測定温度23℃の条件で測定される、前記ポリカーボネート系樹脂組成物を成形して得られる長さ80mm、幅10mm、厚さ4mmの短冊状の成形片に後加工でノッチ(r=0.25mm±0.05mm)を付与した成形片のシャルピー衝撃強さが38kJ/m以上である、請求項1~14のいずれか一項に記載のポリカーボネート系樹脂組成物。
  16.  前記エラストマー(B)がコア/シェル型グラフト共重合体を含む、請求項1~15のいずれか一項に記載のポリカーボネート系樹脂組成物。
  17.  前記エラストマー(B)が、メチルメタクリレート-ブタジエン-スチレン共重合体、メチルメタクリレート-ブタジエン共重合体、メチルメタクリレート-アクリルゴム共重合体、メチルメタクリレート-アクリルゴム-スチレン共重合体、メチルメタクリレート-アクリル・ブタジエンゴム共重合体、メチルメタクリレート-アクリル・ブタジエンゴム-スチレン共重合体、及びメチルメタクリレート-(アクリル・シリコーンIPNゴム)共重合体からなる群から選択される少なくとも一種を含む、請求項1~16のいずれか一項に記載のポリカーボネート系樹脂組成物。
  18.  前記エラストマー(B)の含有量が、前記ポリカーボネート系樹脂(S)100質量部に対し、1.0質量部以上40質量部以下である、請求項1~17のいずれか一項に記載のポリカーボネート系樹脂組成物。
  19.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)は溶融重合法により得られる共重合体である、請求項1~18のいずれか一項に記載のポリカーボネート系樹脂組成物。
  20.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(A)はジオールモノマー(a1)を用いて得られる共重合体である、請求項1~19のいずれか一項に記載のポリカーボネート系樹脂組成物。
  21.  請求項1~20のいずれか一項に記載のポリカーボネート系樹脂組成物を含む成形体。
PCT/JP2022/023114 2021-06-09 2022-06-08 ポリカーボネート系樹脂組成物及び成形体 WO2022260077A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237042523A KR20240017829A (ko) 2021-06-09 2022-06-08 폴리카보네이트계 수지 조성물 및 성형체
US18/568,001 US20240239962A1 (en) 2021-06-09 2022-06-08 Polycarbonate resin composition and molded article
JP2023527892A JPWO2022260077A1 (ja) 2021-06-09 2022-06-08
CN202280041379.3A CN117460786A (zh) 2021-06-09 2022-06-08 聚碳酸酯系树脂组合物和成形体
DE112022002974.9T DE112022002974T5 (de) 2021-06-09 2022-06-08 Polycarbonat-Harzzusammensetzung und Formkörper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-096805 2021-06-09
JP2021096805 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022260077A1 true WO2022260077A1 (ja) 2022-12-15

Family

ID=84426118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023114 WO2022260077A1 (ja) 2021-06-09 2022-06-08 ポリカーボネート系樹脂組成物及び成形体

Country Status (7)

Country Link
US (1) US20240239962A1 (ja)
JP (1) JPWO2022260077A1 (ja)
KR (1) KR20240017829A (ja)
CN (1) CN117460786A (ja)
DE (1) DE112022002974T5 (ja)
TW (1) TW202313797A (ja)
WO (1) WO2022260077A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995536A (ja) * 1995-09-29 1997-04-08 Toray Dow Corning Silicone Co Ltd オキシアルキレン基含有ポリオルガノシロキサンの製造方法
JP2017036412A (ja) * 2015-08-12 2017-02-16 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形体
JP2017520663A (ja) * 2014-07-03 2017-07-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド エステル官能性ポリシロキサンおよびそれから作られるコポリマー
JP2018509519A (ja) * 2015-03-24 2018-04-05 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ ポリシロキサン−ポリカーボネートコポリマー組成物
WO2019124556A1 (ja) * 2017-12-21 2019-06-27 帝人株式会社 ポリカーボネート-ポリジオルガノシロキサン共重合体、その樹脂組成物、およびその製造方法
JP2020084005A (ja) * 2018-11-22 2020-06-04 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体
WO2021112260A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物
WO2021112257A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物
WO2021112259A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662310B2 (ja) 1989-07-07 1997-10-08 出光石油化学株式会社 ポリカーボネート―ポリジメチルシロキサン共重合体及びその製造方法
DE19710081A1 (de) 1997-03-12 1998-09-17 Bayer Ag Verfahren zur Herstellung von Polysiloxan-Polysiloxan-Polycarbonat-Blockcokondensaten
JP4306824B2 (ja) 1998-01-30 2009-08-05 東レ・ダウコーニング株式会社 有機官能性オルガノペンタシロキサンの製造方法、有機樹脂改質剤および有機樹脂
DK2348064T3 (da) 2008-11-11 2013-09-08 Nof Corp Fremgangsmåde til fremstilling af polyalkylenglycolderivater
JP6007058B2 (ja) 2012-10-12 2016-10-12 出光興産株式会社 ポリカーボネート−ポリオルガノシロキサン共重合体の連続的な製造方法
US9828462B2 (en) 2013-10-08 2017-11-28 Covestro Deutschland Ag Preparation of siloxane-containing block copolycarbonates by means of reactive extrusion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995536A (ja) * 1995-09-29 1997-04-08 Toray Dow Corning Silicone Co Ltd オキシアルキレン基含有ポリオルガノシロキサンの製造方法
JP2017520663A (ja) * 2014-07-03 2017-07-27 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド エステル官能性ポリシロキサンおよびそれから作られるコポリマー
JP2018509519A (ja) * 2015-03-24 2018-04-05 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ ポリシロキサン−ポリカーボネートコポリマー組成物
JP2017036412A (ja) * 2015-08-12 2017-02-16 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形体
WO2019124556A1 (ja) * 2017-12-21 2019-06-27 帝人株式会社 ポリカーボネート-ポリジオルガノシロキサン共重合体、その樹脂組成物、およびその製造方法
JP2020084005A (ja) * 2018-11-22 2020-06-04 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体
WO2021112260A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物
WO2021112257A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物
WO2021112259A1 (ja) * 2019-12-06 2021-06-10 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体及び該共重合体を含む樹脂組成物

Also Published As

Publication number Publication date
CN117460786A (zh) 2024-01-26
DE112022002974T5 (de) 2024-03-21
US20240239962A1 (en) 2024-07-18
KR20240017829A (ko) 2024-02-08
TW202313797A (zh) 2023-04-01
JPWO2022260077A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
TWI586701B (zh) 共聚碳酸酯及包含彼之組成物
JP2017179331A (ja) ポリカーボネート樹脂組成物及び成形品
JP2017218567A (ja) ポリカーボネート樹脂組成物及び成形品
JP2015189905A (ja) 芳香族ポリカーボネート樹脂組成物
KR20170105758A (ko) 폴리카보네이트 수지 조성물 및 이로부터 제조된 박막 성형품
WO2022260077A1 (ja) ポリカーボネート系樹脂組成物及び成形体
KR20190067166A (ko) 폴리카보네이트계 수지 조성물 및 성형체
WO2022260073A1 (ja) ポリカーボネート系樹脂組成物及び成形体
WO2022260075A1 (ja) ポリカーボネート系樹脂組成物及び成形体
WO2022260078A1 (ja) ポリカーボネート系樹脂組成物及び成形体
WO2022260076A1 (ja) ポリカーボネート系樹脂組成物及び成形体
WO2022260074A1 (ja) ポリカーボネート系樹脂組成物及び成形体
WO2022260079A1 (ja) ポリカーボネート系樹脂組成物及び成形体
JP2017178977A (ja) ポリカーボネート樹脂組成物及び成形品
TW202400684A (zh) 聚碳酸酯-聚有機矽氧烷共聚物
WO2022004275A1 (ja) 樹脂組成物、成形体及び樹脂組成物の特性を改善する方法
WO2024014530A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体、ポリカーボネート系樹脂組成物、及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527892

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18568001

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347083736

Country of ref document: IN

Ref document number: 202280041379.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002974

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820256

Country of ref document: EP

Kind code of ref document: A1