WO2022259872A1 - 重合体粒子およびその製造方法 - Google Patents

重合体粒子およびその製造方法 Download PDF

Info

Publication number
WO2022259872A1
WO2022259872A1 PCT/JP2022/021463 JP2022021463W WO2022259872A1 WO 2022259872 A1 WO2022259872 A1 WO 2022259872A1 JP 2022021463 W JP2022021463 W JP 2022021463W WO 2022259872 A1 WO2022259872 A1 WO 2022259872A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polymer particles
cyclic ether
particles
acrylic acid
Prior art date
Application number
PCT/JP2022/021463
Other languages
English (en)
French (fr)
Inventor
綾太 小島
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to CN202280039250.9A priority Critical patent/CN117425685A/zh
Priority to JP2023527607A priority patent/JPWO2022259872A1/ja
Priority to KR1020237042174A priority patent/KR20240005052A/ko
Publication of WO2022259872A1 publication Critical patent/WO2022259872A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to polymer particles and a method for producing the same.
  • An anisotropic conductive material is a material in which conductive particles are dispersed in a binder resin (adhesive), and examples thereof include anisotropic conductive paste (ACP) and anisotropic conductive film (ACF).
  • ACP anisotropic conductive paste
  • ACF anisotropic conductive film
  • the conductive particles used for anisotropic conductive connection are formed by covering the core polymer particles with a metal layer.
  • development of conductive particles contained in the anisotropic conductive material has been advanced. Since the compressive deformation properties of the conductive particles are strongly influenced by the properties of the core polymer particles, it is required to increase the hardness of the polymer particles in order to improve the connection reliability during pressure connection.
  • polymer particles used in anisotropic conductive materials are required to be monodisperse from the viewpoint of connection reliability.
  • Patent Document 1 describes a step (a) of radically polymerizing a polymerizable monomer having a functional group capable of reacting with a double bond and an amino group to obtain mother particles; A crosslinked polymer particle obtained through a step (b) of contacting an amino compound having a group to further crosslink the crosslinked polymer through reaction of the functional group and the amino group is disclosed.
  • the crosslinked polymer particles described in Patent Document 1 are characterized by having good compression properties.
  • the method comprises a step of absorbing a compound having two or more amino groups into organic fine particles having glycidyl groups, and a cross-linking step of reacting the glycidyl groups and the amino groups.
  • a method for producing crosslinked fine particles and crosslinked particles produced by the production method are disclosed.
  • the crosslinked fine particles described in Patent Document 2 are characterized by being monodisperse and excellent in solvent resistance and heat resistance.
  • An object of the present invention is to provide polymer particles that achieve both monodispersity and high hardness, and a method for producing the same.
  • the inventors diligently studied to solve the above problems. As a result, by adding an imidazole compound and/or an amino compound having a tertiary amino group to a polymer particle containing a (meth)acrylic resin having a cyclic ether structure and ring-opening polymerizing the cyclic ether moiety, the above The present inventors have found that the problem can be solved and completed the present invention.
  • the present invention relates to, for example, the following [1] to [8].
  • a (meth)acrylic ester having a structure obtained by polymerizing a (meth)acrylic acid ester (A) having a cyclic ether structure and having a structure formed by ring-opening polymerization of the cyclic ether sites in the cyclic ether structure A polymer particle containing a resin.
  • the (meth)acrylic resin further includes a structure derived from a polymerizable monomer (B) other than the (meth)acrylic acid ester (A) having a cyclic ether structure Polymer particles as described.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • x represents an integer of 1 to 6
  • Y represents a single bond or —O—CH 2 —
  • z is an integer of 0-2.
  • a method for producing polymer particles according to any one of [1] to [6], A step (1) of radically polymerizing a polymerizable monomer component containing a (meth)acrylic acid ester (A) having a cyclic ether structure to obtain mother particles containing a (meth)acrylic resin; The mother particles are brought into contact with an imidazole-based compound or/and an amino compound having a tertiary amino group to cause ring-opening polymerization between the cyclic ether portions in the cyclic ether structure, whereby the ring-opening polymerization of the cyclic ether portions occurs.
  • the polymer particles of the present invention contain a (meth)acrylic resin.
  • the (meth)acrylic resin has a structure obtained by polymerizing a (meth)acrylic acid ester (A) having a cyclic ether structure and by ring-opening polymerization of cyclic ether sites in the cyclic ether structure. .
  • (meth)acrylic is used as a generic term for acrylic and methacrylic, and may be acrylic or methacrylic.
  • (Meth)acrylate is used as a generic term for acrylate and methacrylate, and may be either acrylate or methacrylate.
  • (Meth)acryloyl is used as a generic term for acryloyl and methacryloyl, and may be acryloyl or methacryloyl.
  • the "(meth)acrylic resin” means a structural unit derived from (meth)acrylic acid, a structural unit derived from acrylate, a structural unit derived from acrylic acid ester, a structural unit derived from methacrylic acid, and a methacrylate. It refers to a resin in which the sum of structural units derived from acrylic acid ester and structural units derived from methacrylic acid ester is 50% by mass or more with respect to 100% by mass of all structural units of the (meth)acrylic resin.
  • the method for producing polymer particles of the present invention comprises: Step (1) of radically polymerizing a monomer component containing a (meth)acrylic acid ester (A) having a cyclic ether structure to obtain mother particles containing a (meth)acrylic resin; The mother particles are brought into contact with an imidazole-based compound or/and an amino compound having a tertiary amino group to cause ring-opening polymerization between the cyclic ether portions in the cyclic ether structure, whereby the ring-opening polymerization of the cyclic ether portions occurs. a step (2) of obtaining polymer particles containing a (meth)acrylic resin having a structure consisting of and a step (3) of pulverizing the polymer particles.
  • synthesis can be completed in one pot from the step of producing particles before cross-linking to obtaining polymer particles through a cross-linking reaction, so the production work can be simplified.
  • the base particles containing the (meth)acrylic resin are obtained by radically polymerizing a polymerizable monomer component containing the (meth)acrylic acid ester (A) having a cyclic ether structure by a known method.
  • the (meth)acrylic acid ester (A) having a cyclic ether structure (hereinafter also referred to as "(meth)acrylic acid ester (A)") may be a (meth)acrylic acid ester having a cyclic ether structure in the molecule.
  • (meth)acrylic acid ester (A) may be a (meth)acrylic acid ester having a cyclic ether structure in the molecule.
  • cyclic ether structures include oxacyclopropane (oxirane), oxacyclobutane (oxetane), oxacyclopentane (tetrahydrofuran), oxacyclohexane (tetrahydropyran), 1,4-dioxacyclohexane (1,4-dioxane), 1,2-epoxycyclohexane, 1,2-epoxycyclopentane, 1,4-epoxycyclohexane, 1-methyl-1,2-epoxycyclohexane, exo-2,3-epoxynorbornane and the like.
  • oxirane is preferable from the viewpoint of high reactivity and easy ring-opening polymerization of cyclic ether moieties by a catalyst.
  • the (meth)acrylic acid ester (A) has a structure in which a cyclic ether structure is directly or indirectly bonded to the oxygen atom of the (meth)acrylic acid ester, for example, the group represented by the following formula (I) is It intervenes between the oxygen atom of the ester and the cyclic ether structure.
  • (Meth)acrylic acid ester (A) is preferably a compound represented by the following formula (1), more preferably a compound represented by the following formula (2).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • x represents an integer of 1 to 6
  • Y represents a single bond or --O--CH 2 --
  • z represents an integer of 0-2;
  • the upper limit of the number of carbon atoms in the alkyl group of R 2 is preferably 6 from the viewpoint of ensuring the polymerization stability of the polymer particles while increasing the crosslink density of the polymer particles.
  • R 2 is particularly preferably a hydrogen atom
  • x is preferably 1 to 4
  • z is preferably 0 or 1; More preferably, z is 0.
  • Examples of compounds represented by formula (2) include glycidyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, glycidyloxy (poly)alkylene glycol (meth)acrylate, methylglycidyl (meth)acrylate, 4-Hydroxybutyl acrylate glycidyl ether may be mentioned.
  • glycidyl (meth)acrylate and 4-hydroxybutyl acrylate glycidyl ether are preferred from the viewpoint of ensuring polymerization stability of the polymer particles while increasing the crosslink density of the polymer particles.
  • the content of the (meth)acrylic acid ester (A)-derived structural unit in the (meth)acrylic resin is preferably 5 to 90% by mass with respect to 100% by mass of the total structural units of the (meth)acrylic resin. Yes, more preferably 10 to 80% by mass, still more preferably 10 to 50% by mass, and particularly preferably 10 to 30% by mass.
  • the content of the structural unit derived from the (meth)acrylic acid ester (A) is within the above range, both the polymerization stability of the polymer particles and the ring-opening polymerization of the cyclic ether moiety by the catalyst can be achieved.
  • the content of structural units derived from (meth) acrylic acid ester (A) is calculated from the amount of (meth) acrylic acid ester (A) in the polymerizable monomer component used in producing the (meth) acrylic resin. can do.
  • the (meth)acrylic resin preferably further contains a structure derived from a polymerizable monomer (B) other than the (meth)acrylic acid ester (A).
  • the resulting polymer particles are excellent in monodispersibility and high hardness.
  • step (1) by radically polymerizing the polymerizable monomer (B) together with the (meth)acrylic acid ester (A), polymer particles further including a structure derived from the polymerizable monomer (B) are obtained. Obtainable.
  • the polymerizable monomer (B) is not particularly limited as long as it can be copolymerized with the (meth)acrylic acid ester (A).
  • monomers, functional group-containing monomers, conjugated diene monomers, monomers and polyols forming polyurethane resins preferably monomers having 1 to 4 functional groups in one molecule.
  • Examples of (meth)acrylic acid-based monomers include (meth)acrylic acid alkyl esters; methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, Pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate and (meth)acrylic acid dodecyl, etc.
  • (meth)acrylic acid aryl ester phenyl (meth)acrylate and benzyl (meth)acrylate, etc.
  • Alkoxyalkyl (meth)acrylate methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, propoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate and ethoxypropyl (meth)acrylate, etc. salts such as (meth)acrylic acid and alkali metal (meth)acrylic acid; Examples include (meth)acrylic acid esters of alicyclic alcohols; cyclohexyl (meth)acrylate; and isobornyl (meth)acrylate.
  • Styrenic monomers include alkylstyrenes such as styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, triethylstyrene, propylstyrene, butylstyrene, hexylstyrene, heptylstyrene and octylstyrene, fluorostyrene, chlorostyrene, bromostyrene, dibromostyrene, chloromethylstyrene, iodinated styrene, nitrostyrene, acetylstyrene, methoxystyrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • alkylstyrenes such as styrene, methylstyrene,
  • Examples of functional group-containing monomers include Oxazoline group-containing polymerizable compounds; 2-vinyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline and 2-isopropenyl-2-oxazoline, etc. aziridine group-containing polymerizable compounds; (meth)acryloylaziridine, (meth)acrylic acid-2-aziridinylethyl, etc.
  • epoxy group-containing vinyl monomers allyl glycidyl ether, (meth)acrylic acid glycidyl ether, and (meth)acrylic acid-2-ethylglycidyl ether, Hydroxyl group-containing vinyl compound; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, (meth)acrylic acid and polypropylene glycol or polyethylene glycol Monoesters with and adducts of lactones and (meth)acrylic acid-2-hydroxyethyl, etc. fluorine-containing vinyl monomer; fluorine-substituted (meth)acrylic acid alkyl ester, etc.
  • Carboxyl group-containing vinyl monomers unsaturated carboxylic acids such as (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid and fumaric acid, their salts and their (partial) ester compounds and acid anhydrides, etc.
  • Conjugated diene monomers include butadiene, isoprene and chloroprene.
  • a monomer for forming a polyurethane resin a polyol containing glycol as a main component and a diisocyanate raw material can be used.
  • Polyols include diol compounds such as ethylene glycol and diethylene glycol, and polyether glycols.
  • the above polymerizable monomers may be used alone or in combination of two or more.
  • the polymerizable monomer (B) derived is preferably 15 to 90% by mass based on 100% by mass of all structural units of the (meth)acrylic resin.
  • the content of the structural unit derived from the polymerizable monomer (B) can be calculated from the amount of the polymerizable monomer (B) in the monomer component used in producing the (meth)acrylic resin. .
  • a polyfunctional monomer may be used as the polymerizable monomer (B) within a range that does not impair the effects of the present invention.
  • polyfunctional monomers include Bifunctional monomer; ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyoxyethylene di(meth)acrylate, neo pentyl glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, divinylbenzene, etc.
  • trifunctional monomer trimethylolpropane triacrylate, trimethylolethane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, Propoxylated trimethylolpropane tri(meth)acrylate, tris(2-(meth)acryloxyethyl isocyanurate), etc.
  • Tetrafunctional or higher monomer pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, propoxylated pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol Tetra(meth)acrylate, propoxylated dipentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated ditrimethylolpropane tetra(meth)acrylate and ethoxylated ditrimethylolpropane tetra(meth)acrylate Tetra(meth)acrylate compounds such as Diisocyanate compounds having an aliphatic group between diisocyanates such as hexamethylene diisocyan
  • the base particles containing the (meth)acrylic resin are obtained by radically polymerizing the (meth)acrylic acid ester (A) and, if necessary, the polymerizable monomer (B) by a known method.
  • Examples of this method include a method of emulsifying or suspension polymerization in the presence of a radical polymerization initiator, or a method of polymerizing by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles (so-called , seed polymerization method), and a polymerization method in an aqueous medium such as a soap-free emulsion polymerization method.
  • seed polymerization method it is preferable to use the seed polymerization method, since mother particles having a particle size of several ⁇ m and having a uniform particle size can be obtained.
  • Radical polymerization initiators that can be used in the above polymerization include persulfates such as potassium persulfate and ammonium persulfate; peroxides such as benzoyl peroxide and lauryl peroxide; and azo compounds such as azobisisobutyronitrile. mentioned.
  • a polymerization initiator may be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the monomer component.
  • emulsifiers examples include alkylsulfonates such as sodium dodecylsulfonate; alkylbenzenesulfonates such as sodium dodecylbenzenesulfonate; alphasulfones such as sodium 2-sulfotetradecanoic acid 1-methyl ester. fatty acid ester salts; polyethylene glycol alkyl aryl ethers such as polyethylene glycol nonylphenyl ether; polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether; . Among these, alkylbenzenesulfonates are preferred.
  • Emulsifiers may be used alone or in combination of two or more. The amount of the emulsifier used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the monomer component.
  • Dispersion stabilizers that can be used in the above polymerization include, for example, partially saponified polyvinyl alcohol; completely saponified polyvinyl alcohol; polyacrylic acid, its copolymers and neutralized products thereof; polymers and neutralized products thereof; celluloses such as carboxymethylcellulose and hydroxypropylmethylcellulose; and polyvinylpyrrolidone. Dispersion stabilizers may be used alone or in combination of two or more. The amount of the dispersion stabilizer used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the monomer component.
  • the aqueous medium that can be used for the polymerization includes water and a mixture of water and a hydrophilic organic solvent.
  • water include purified water (eg, ion-exchanged water, distilled water), groundwater, and tap water.
  • Hydrophilic organic solvents include, for example, lower alcohols such as methanol, ethanol and isopropanol; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol and triethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve; ketones such as tetrahydrofuran; ethers such as tetrahydrofuran; and esters such as methyl formate.
  • lower alcohols such as methanol, ethanol and isopropanol
  • polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol and triethylene glycol
  • cellosolves such as methyl cellosolve and ethyl cellosolve
  • ketones such as tetrahydrofuran
  • ethers such as tetrahydrofuran
  • esters such as methyl formate.
  • the hydrophilic organic solvent may be used alone or in combination of two or more.
  • the amount of the hydrophilic organic solvent added is usually 10 parts by mass or less per 100 parts by mass of water.
  • aqueous medium refers to the medium described above.
  • the polymerization temperature is usually 40-100°C, preferably 55-85°C, and the polymerization time is usually 1-24 hours, preferably 1-10 hours.
  • the above polymerization conditions can be adopted in each stage.
  • Seed polymerization is a polymerization method that uses seeds when performing polymerization.
  • the seed polymerization is preferably carried out as seed emulsion polymerization, which is a kind of emulsion polymerization.
  • seed emulsion polymerization the in-situ nucleation step in conventional emulsion polymerization can be replaced by seeds.
  • resin particles having a large and uniform particle size can be obtained.
  • the (meth)acrylic acid ester (A) and, if necessary, the polymerizable monomer (B) and other monomer components are added as seeds ( species) copolymerize in the presence.
  • the seed it is preferable to use the polymer of (meth)acrylic acid alkyl ester exemplified as the monomer component, such as particles of polymethyl methacrylate (PMMA) or polymethyl acrylate.
  • PMMA polymethyl methacrylate
  • the seed polymerization may be repeated multiple times, and usually the seed polymerization is performed 1 to 15 times, preferably 1 to 10 times to obtain (meth)acrylic resin particles.
  • the resin particles obtained by the first seed polymerization are used as seeds (seeds) for the second seed polymerization, and similarly obtained by the n-1 seed polymerization.
  • the resin particles are used as seeds for the n-th seed polymerization.
  • the example of the seed mentioned above is an example of the seed used for the first seed polymerization when the seed polymerization is performed a plurality of times.
  • the average particle size of the seeds used in the first seed polymerization varies depending on the desired average particle size of the (meth)acrylic resin and the number of times the seed polymerization is repeated.
  • seeds having an average particle size of 0.1 to 3.0 ⁇ m, preferably 0.1 to 2.0 ⁇ m are usually used.
  • the seed is usually used in an amount of 1 to 50 parts by mass, preferably 1 to 30 parts by mass, per 100 parts by mass of the monomer component.
  • the seed is usually used in an amount of 1 to 50 parts by mass, preferably 1 to 30 parts by mass, based on 100 parts by mass of the monomer component in each seed polymerization.
  • the CV value of the seeds is preferably 10% or less with high monodispersity, and more preferably 2 to 8%.
  • the CV value (Coefficient of Variation) is an index of the particle size distribution of particles, is also called a coefficient of variation, and can be obtained by the following formula (II).
  • each monomer used in the monomer component is preferably (meth)acrylic ester ( A) 5 to 90 parts by mass, 10 to 95 parts by mass of the polymerizable monomer (B), more preferably 10 to 80 parts by mass of the (meth) acrylic acid ester (A), the polymerizable monomer (B ) of 20 to 90 parts by mass, more preferably 10 to 50 parts by mass of (meth) acrylic acid ester (A), 50 to 90 parts by mass of polymerizable monomer (B), particularly preferably (meth) acrylic acid 10 to 30 parts by mass of the ester (A) and 70 to 90 parts by mass of the polymerizable monomer (B).
  • each monomer when the total of all monomer components used in each stage is 100
  • step (1) finally, if necessary, the (meth)acrylic resin can be washed and dehydrated with deionized water using a Buchner funnel or the like.
  • step (2) after step (1), the mother particles are brought into contact with an imidazole compound or/and an amino compound having a tertiary amino group to open the cyclic ether sites in the cyclic ether structure.
  • a polymer particle containing a (meth)acrylic resin having a structure formed by ring-opening polymerization of cyclic ether moieties is obtained by ring polymerization.
  • the structure formed by ring-opening polymerization of the cyclic ether sites in the cyclic ether structure in the (meth)acrylic resin may be ring-opening polymerization of one cyclic ether site of the cyclic ether structure, and two or more of the cyclic ether sites may be ring-opening polymerized. may be ring-opening polymerized.
  • Examples of structures formed by ring-opening polymerization of cyclic ether moieties include repeating units represented by the following formula (3).
  • P 1 represents a polymer chain containing a structural unit derived from (meth)acrylic acid ester (A).
  • A a structural unit derived from (meth)acrylic acid ester
  • the polymer particles obtained have a repeating structure of glycidyl methacrylate polymer chains in step (1), and further have a repeating structure formed by ring-opening polymerization of epoxy groups of glycidyl methacrylate in step (2).
  • the content of the structural unit formed by ring-opening polymerization of the cyclic ether sites in the cyclic ether structure in the (meth)acrylic resin is preferably 5 per 100% by mass of the total structural units of the (meth)acrylic resin. to 90% by mass, more preferably 10 to 80% by mass, still more preferably 10 to 50% by mass, and particularly preferably 10 to 30% by mass.
  • the polymer particles of the present invention are obtained by polymerizing a (meth)acrylic acid ester (A) having a cyclic ether structure, and adding an imidazole compound to a part of the cyclic ether structure to open the cyclic ether site. It preferably contains a (meth)acrylic resin having a cyclic structure.
  • imidazole-based compound examples include imidazole-based compounds having an active hydrogen at the 1-position represented by the following formula (5), or imidazole-based compounds having no active hydrogen at the 1-position represented by the following formula (6). .
  • R 3 and R 6 represent an organic group
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Examples of the imidazole compound having an active hydrogen at the 1-position represented by formula (5) include 2-ethyl-4-methylimidazole, 2-phenyl-1H-imidazole, 2-methylimidazole, 4-methyl-1H- Ethyl imidazole-5-carboxylate, 2-isopropylimidazole, 1H-imidazole-4,5-dicarboxylic acid, benzimidazole, 2-phenyl-5-benzimidazolesulfonic acid, 2-hydroxybenzimidazole, 4-methylimidazole, 5 , 6-dimethylbenzimidazole.
  • Examples of the imidazole compound having no active hydrogen at the 1-position represented by formula (6) include, for example, 2,4-diamino-6-[2-(2-methyl-1-imidazolyl)ethyl]-1 , 3,5-triazine, 1-isobutyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-1 -benzyl-1H-imidazole.
  • imidazole compounds 2-ethyl-4-methylimidazole is preferred from the viewpoint of reactivity and water solubility.
  • the imidazole compounds may be used alone or in combination of two or more.
  • the amount of the imidazole-based compound added in step (2) is 0.01 to 5.0 parts by mass, preferably 0.05 to 3.0 parts by mass, more preferably 0 parts by mass with respect to 100 parts by mass of the solid content of the mother particles. .1 to 2.0 parts by mass.
  • the imidazole compound preferably has a molecular weight of 50 to 1,000, more preferably 50 to 500, still more preferably 50 to 300.
  • step (2) if an imidazole compound having an active hydrogen at the 1-position is used, the active hydrogen of the imidazole compound causes the imidazole compound to react with the cyclic ether of a part of the side chain of the (meth)acrylic resin. Then, an imidazole-based compound can be added to the site where a part of the cyclic ether structure is ring-opened.
  • an imidazole-based compound having an active hydrogen at the 1-position is attached to a part of the (meth)acrylic resin.
  • a structure represented by the following formula (7) in which an imidazole-based compound is added by reacting with a cyclic ether of the chain to open the ether ring is exemplified.
  • R 3 represents an organic group
  • R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • P 2 represents the main component of the (meth)acrylic resin. indicates a chain and w is an integer from 1 to 6.
  • the structure in which an imidazole compound is added to a part of the cyclic ether structure to open the cyclic ether site constitutes a (meth)acrylic resin having a structure formed by ring-opening polymerization of the cyclic ether sites ( It may be in the same molecule as the meth)acrylic polymer, or may be in the molecule of a (meth)acrylic polymer different from the (meth)acrylic polymer.
  • the cyclic ether moiety that reacts in the ring-opening polymerization between the cyclic ether moieties is preferably 5 to 90% by mass with respect to 100% by mass of the total structural units of the polymer particles. , more preferably 10 to 80% by mass, still more preferably 10 to 50% by mass, and particularly preferably 10 to 30% by mass.
  • amino compounds having a tertiary amino group include trimethylamine, triethylamine, tributylamine, trioctylamine, N-methylmorpholine, N-ethylmorpholine, N,N-dimethylethanolamine, N,N-diethylethanolamine, N,N-dibutylethanolamine, N-methyldiethanolamine, Nn-butyldiethanolamine, Nt-butyldiethanolamine, N,N-diethylisopropanolamine, 1-methylimidazole, 1,8-diazabicyclo [5.4. 0]undec-7-ene and polyethyleneimine.
  • the compound does not have primary and/or secondary amino groups in its molecule from the viewpoint of obtaining polymer particles having both monodispersity and high hardness by ring-opening polymerization between cyclic ether moieties.
  • amino compounds having only tertiary amino groups are preferred.
  • a compound having a tertiary amino group advances the reaction as a polymerization catalyst, unlike a compound having a primary or secondary amino group.
  • a tertiary amine produced after the reaction between an amino compound having a primary or secondary amino group and a cyclic ether group has little catalytic function due to its steric hindrance, but compounds having a tertiary amino group are strongly basic. Therefore, it has a catalytic function and can carry out ring-opening polymerization between cyclic ether moieties.
  • the amount of the amino compound having a tertiary amino group added in step (2) is 0.01 to 5.0 parts by mass, preferably 0.05 to 3.0 parts by mass, based on 100 parts by mass of the solid content of the mother particles. , more preferably 0.1 to 2.0 parts by mass.
  • the average molecular weight of the amino compound having a tertiary amino group is preferably 50-2,000, more preferably 50-500, still more preferably 50-200.
  • one or more imidazole-based compounds or amino compounds having a tertiary amino group can be used, and the imidazole-based compound and the amino compound having a tertiary amino group can be used within a range that does not impair the effects of the present invention. may be used together. Among them, it is more preferable to use an imidazole-based compound because it can increase the hardness of the polymer particles.
  • step (2) other components may be used together with the imidazole compound or the amino compound having a tertiary amino group, if desired.
  • Other components include, for example, amino compounds having primary amino groups and/or amino compounds having secondary amino groups.
  • amino compounds having a primary amino group examples include alkyldiamine; mencenediamine, isophorone diamine, xylenediamine, diethylenetriamine (including secondary amine), trimethylenetetramine (including secondary amine), tetraethylenepentamine (including secondary amine), 1,3-bis(aminomethyl)cyclohexane, Alicyclic amines such as diethylaminopropylamine, 4,4′-methylenebis(2-methylcyclohexanamine); aromatic amines such as m-phenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether, 1,3-bis(3-aminophenoxy)benzene;
  • amino compounds having a secondary amino group examples include methylcyclohexylamine, diethylenetriamine (including primary amines), trimethyltetramine (including primary amines), tetraethylenepentamine (including primary amines); Aromatic amines such as 4,4'-methyleneaniline can be mentioned.
  • the amount of the compound having a primary amino group and/or a secondary amino group to be added is preferably based on 100 parts by mass of the solid content of the mother particles. is 0.7 parts by mass or less.
  • ring-opening polymerization of the cyclic ether moieties of the (meth)acrylic acid ester (A) can be carried out without impairing the catalytic action of the imidazole compound or the amino compound having a tertiary amino group. can.
  • step (2) when using an imidazole compound having an active hydrogen at the 1-position, after the imidazole compound is added to the site where a part of the cyclic ether structure is ring-opened, the imidazole compound acts as a catalyst and the cyclic It is thought that this promotes ring-opening polymerization between ether moieties.
  • step (2) when using an imidazole compound having no active hydrogen at the 1-position or an amino compound having a tertiary amino group, the imidazole compound or amino compound having a tertiary amino group has a cyclic ether structure. It is considered that the ring-opening polymerization between the cyclic ether moieties of the base particles is promoted as a catalyst without being added to a part of the base particles.
  • the imidazole compound or amino compound having a tertiary amino group is used in a molar ratio (imidazole or tertiary amino group-containing
  • the amino compound/(meth)acrylic acid ester having a cyclic ether structure (A)) is preferably from 0.001 to 0.4, more preferably from 0.002 to 0.2. Since the imidazole-based compound and the amino compound having a tertiary amino group act as a catalyst for ring-opening polymerization between cyclic ether moieties, the anionic polymerization reaction sufficiently proceeds when the molar ratio is within the above range. Ring-opening polymerization can be carried out, for example, at 100 to 200° C. for 0.5 to 2 hours.
  • step (3) the polymer particles obtained in step (2) are pulverized.
  • the method for separating the polymer particles from the dispersion medium is not particularly limited, and known methods such as filtration and centrifugation can be used. Then, the separated polymer particles can be dried and pulverized by a commonly used method such as a freeze-drying method or a spray-drying method.
  • the polymer particles of the present invention are not particularly limited, but preferably have an average particle size of 2 to 20 ⁇ m, more preferably 2 to 5 ⁇ m. If the average particle size is below the range, the polymer particles may tend to aggregate. In the present specification, all "average particle diameters" including average particle diameters used for calculating the CV value and 10% K value of polymer particles can be obtained by the measuring method described in Examples.
  • the CV value of the polymer particles is preferably 15% or less, more preferably 7% or less.
  • the CV value of the particle diameter can be obtained by the same method as described for the CV value of the seed described above.
  • the polymer particles of the present invention preferably have a 10% K value of 3,000 to 7,000 N/mm 2 , more preferably 3,300 to 6,000 N/mm 2 , as determined by the following formula. preferable.
  • 10% K value (N/mm 2 ) (3/ ⁇ 2) F S -3/2 R -1/2
  • F and S are the load value (N) and compression displacement (mm) at 10% compression deformation of the polymer particles, respectively, and R is the radius (mm) of the polymer particles, measured by the method described in Examples. is half the average particle size of the polymer particles obtained.
  • the 10% K value of the polymer particles is too small, when used as an anisotropic conductive material, the binder (adhesive) around the conductive particles cannot be sufficiently removed (extended), and the electrode It may not be possible to obtain a low connection resistance value due to the fact that the degree of biting into the contact is weak and the contact may come off.
  • the 10% K value of the polymer particles is too large, the true contact area involved in electron conduction will increase and the resistance value will decrease, but the connection site will be damaged, ensuring good electrical contact. Sometimes I can't.
  • the 10% K value is a value calculated from the compressive load when the particle diameter is deformed by 10%, and universally and quantitatively represents the hardness of the sphere. A specific method for measuring the 10% K value is described in Examples below.
  • the polymer particles of the present invention preferably have a so-called breaking point at which the particles break before reaching the maximum load when the particles are compressed.
  • Methods for obtaining polymer particles having a breaking point include a method of forming a three-dimensional network structure in the resulting polymer by including a polyfunctional monomer as a polymer constituting the polymer particles. .
  • the epoxy groups of the uncrosslinked polymer can be exchanged by contacting a compound having a tertiary amino group or an imidazole compound as a post-addition catalyst.
  • a method of advancing ring-opening polymerization can be mentioned.
  • Applications of the polymer particles of the present invention are not particularly limited. Used as additives for rheology control, shot blasting agents, abrasives, carriers for chromatography, etc.
  • the polymer particles of the present invention are preferably applied to the polymer particles that form the core of the conductive particles used in the anisotropic conductive adhesive, in order to exhibit the effects of the present invention.
  • conductive particles can be obtained by providing a conductive metal layer on the surface of the polymer particles.
  • the method for forming a metal layer on the surface of the polymer particles is not particularly limited, and examples include a method by electroless plating, a method of coating a paste obtained by mixing metal fine powder alone or with a binder, vacuum deposition, and ion spraying. physical vapor deposition methods such as coating and ion sputtering. More specifically, for example, the method described in JP-A-2000-319309 can be mentioned.
  • the anisotropic conductive adhesive only needs to contain the conductive particles and the binder resin, and the other components are not particularly limited, and the components conventionally contained in the anisotropic conductive adhesive can be used without particular limitation. can be done.
  • the binder resin is not particularly limited as long as it is an insulating resin.
  • examples include acrylic resins, ethylene-vinyl acetate resins, thermoplastic resins such as styrene-butadiene block copolymers, monomers and oligomers having a glycidyl group, and isocyanates.
  • a curable resin composition that is cured by reaction with a curing agent such as a curable resin composition that is cured by light or heat.
  • anisotropic conductive adhesive can be made into a film or paste, and the dispersion method can be appropriately changed according to the form.
  • a film-like anisotropic conductive adhesive is obtained by molding a mixture in which conductive particles are dispersed in a resin component into a film. It is obtained by adjusting the viscosity and the like using a solvent for the mixture obtained in the same manner as the conductive film.
  • the polymer particles of the present invention are used in an anisotropically conductive adhesive
  • the polymer particles are preferably contained in an amount of 5 to 60 parts by mass, more preferably 10 to 50 parts by mass, per 100 parts by mass of the anisotropically conductive adhesive. If the content of the conductive particles is too small, it may be difficult to obtain sufficient electrical conduction. In some cases, it is difficult to exhibit the function as a conductive material.
  • An anisotropic conductive adhesive can be obtained, for example, by mixing or kneading at least conductive particles and an adhesive. It can be obtained by mixing or kneading.
  • Average particle size The average particle diameter of the polymer particles obtained in Examples and Comparative Examples was measured using a laser diffraction particle size distribution analyzer FPIA-3000S (manufactured by Spectris Co., Ltd.), and the number of effective analyzes: 30,000. The average particle diameter (cumulative 50% particle diameter based on volume) was measured and taken as the average particle diameter.
  • CV value The CV values of the polymer particles obtained in Examples and Comparative Examples were obtained from the following formula.
  • CV value (%) standard deviation of particle size distribution / average particle size x 100 [10% K value]
  • the 10% K value of the polymer particles obtained in Examples and Comparative Examples was measured using an ultra-micro indentation hardness tester ENT-NEXUS (manufactured by Elionix Co., Ltd.) at 25° C. with a tip of 50 ⁇ m ⁇ . A flat indenter was attached, one polymer particle with a diameter of 3.0 ⁇ m was selected using a microscope attached to the apparatus, and the polymer particle was compressed under conditions of a maximum load of 50 mN and a load rate of 1.33 mN/sec. , the compressive load F (N) when the particle diameter was deformed by 10% was measured and obtained from the following equation.
  • the breaking point was used as an indicator that the uncrosslinked polymer constituting the polymer particles was crosslinked by the ring-opening polymerization between the epoxy groups due to the tertiary amine or imidazole-based post-addition catalyst.
  • "None" in the breaking point column means that there is no applicable data.
  • Example 1 ⁇ Step (1)> (First-stage polymerization: production of monodisperse particles) 100 parts of methyl methacrylate (hereinafter also referred to as "MMA") and 300 parts of ion-exchanged water are added to a 1-liter four-necked flask equipped with a thermometer and a nitrogen inlet tube, mixed and stirred, and nitrogen The temperature was raised to 80° C. while stirring under an air current to obtain a mixed liquid. 0.5 part of potassium persulfate was added to the heated mixed solution, and the mixture was reacted for 6 hours while being kept at 80° C. to obtain a dispersion (A1) of polymethyl methacrylate (PMMA) resin particles.
  • MMA methyl methacrylate
  • PMMA polymethyl methacrylate
  • the PMMA resin particles obtained by separating and drying the dispersion liquid (A1) were spherical monodisperse particles with an average particle diameter of 0.4 ⁇ m and a CV value of 3.5%.
  • the solid content concentration in the dispersion liquid (A1) was 24% by mass.
  • the PMMA resin particle dispersion (A1) was added to the emulsified liquid so that the PMMA resin particle content was 6.4 parts. After swelling this mixture at 50°C for 1 hour, water in which partially saponified polyvinyl alcohol was dissolved (total of 40 parts of dispersion stabilizer and water) was added, and the mixture was heated at 73°C for 1.5 hours and then at 90°C. for 1.5 hours and then cooled to obtain a dispersion (A2) of monodisperse seed particles having an average particle diameter of 1.0 ⁇ m and a CV value of 3.5%.
  • the dispersion (A2) of the monodisperse seed particles was added to the emulsified liquid so that the amount of the seed particles was 3.7 parts. After swelling this mixture at 50°C for 1 hour, water in which partially saponified polyvinyl alcohol was dissolved (total of 40 parts of dispersion stabilizer and water) was added, and the mixture was heated at 73°C for 1.5 hours and at 90°C. After reacting for 1.5 hours, the mixture was cooled to obtain a dispersion liquid (A3) of (meth)acrylic resin particles having an average particle diameter of 2.8 ⁇ m and a CV value of 5.2%.
  • Step (2)> Contact of imidazole compounds and ring-opening polymerization between cyclic ether moieties
  • 1 part of 2-ethyl-4-methylimidazole (hereinafter also referred to as "2E4MZ”) serving as an epoxy polymerization catalyst is added to 100 parts by mass of the solid content of the particles to obtain a matrix.
  • the particles were brought into contact with an imidazole compound.
  • a dispersion liquid (A4) containing a (meth)acrylic resin having a structure in which the cyclic ether sites of the (meth)acrylic resin particles are ring-opening polymerized was obtained.
  • the dispersion (A4) is powdered by freeze-drying, and then the powder is further pulverized with a mortar and a jet mill, and a (meth)acrylic having a structure in which the cyclic ether moieties of the monodisperse seed particles are ring-opening polymerized. Polymer particles containing system resin particles were obtained.
  • Examples 2 to 16 Comparative Examples 1 to 13
  • Polymer particles were obtained in the same manner as in Example 1, except that the types and amounts of each component used were changed as shown in Tables 1 and 2.
  • crosslinking refers to polymerization containing a monofunctional monomer containing a (meth)acrylic acid ester (A) and a polyfunctional monomer as a polymerizable monomer (B) means a polymer particle composed of a polymonomer.
  • H means active hydrogen in the imidazole compound.
  • Hx0 means that there is no active hydrogen in the imidazole compound, and
  • Hx1 means that one active hydrogen is present in the imidazole compound.
  • NH 2 means the imidazole-based compound or amine-based catalyst used in Examples and Comparative Examples. It means a primary amino group in the curing agent.
  • NH 2 ⁇ 1 means that one primary amino group is present in the imidazole compound or amine curing agent.
  • the polymer particles in each example had high hardness and excellent monodispersity.
  • the reason why the breaking point is "none" is that by using a post-addition catalyst that is an amino compound in which primary to tertiary amino groups are mixed, primary and secondary Because the addition reaction of the amino group to the epoxy group proceeded only near the surface of the polymer particle, the ring-opening polymerization between the epoxy groups did not proceed and the uncrosslinked polymer inside the particle remained as an uncrosslinked polymer. It is considered to be
  • the molar ratio between the cyclic ether structure and the amine-based curing agent in the mother particles is usually about 0.5 to 5
  • some unreacted epoxy groups remain. It is conceivable that.
  • the polymer particles of Comparative Example 12 do not have a structure formed by ring-opening polymerization of the ether sites in GMA, and thus the 10% K value is considered to be low.
  • the amine curing agent Nissan Amine M-14 used in Comparative Example 13 is a compound having a primary amino group.
  • the amine curing agent n-butylamine used in Comparative Example 14 is a compound having a low molecular weight primary amino group.
  • the tertiary amine produced by the addition of the compound having a primary amino group does not have a catalytic function to promote ring-opening polymerization between epoxy groups. It is considered that this did not contribute to increasing the hardness of the polymer particles.

Abstract

本発明の課題は、単分散性と高硬度化を両立した重合体粒子、およびその製造方法を提供することにある。 本発明の重合体粒子は、環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を含むことを特徴とする。

Description

重合体粒子およびその製造方法
 本発明は重合体粒子およびその製造方法に関する。
 半導体素子や配線板等の接続において、対向する多数の電極や配線間の電気的接続を行うために、異方性導電材料による接続方式が広く用いられている。異方性導電材料は導電性粒子をバインダー樹脂(接着剤)に分散させた材料であり、例えば、異方性導電ペースト(ACP)、異方性導電フィルム(ACF)等が挙げられる。
 異方導電接続に用いられる導電性粒子は、コアとなる重合体粒子を金属層で覆うことにより形成される。近年では、異方性導電材料の性能を高めるために、異方性導電材料に含まれる導電性粒子の開発が進められている。導電性粒子の圧縮変形特性は、コアとなる重合体粒子の特性に強く影響されるため、加圧接続時の接続信頼性を高めるため重合体粒子の高硬度化が要求されている。また、異方性導電材料に用いられる重合体粒子は、接続信頼性の観点から単分散性が求められている。
 特許文献1には、二重結合およびアミノ基と反応し得る官能基を有する重合性単量体をラジカル重合し母粒子を得る工程(a)と、工程(a)の後、母粒子とアミノ基を有するアミノ化合物を接触させて、官能基とアミノ基との反応により架橋ポリマーを更に架橋する工程(b)を経て得られる架橋ポリマー粒子が開示されている。特許文献1に記載の架橋ポリマー粒子は、良好な圧縮特性を有することを特徴としている。
 また、特許文献2には、グリシジル基を有する有機微粒子に2つ以上のアミノ基を有する化合物を吸収させる工程、および、前記グリシジル基と前記アミノ基とを反応させる架橋工程よりなることを特徴とする架橋微粒子の製造方法およびその製造方法により製造される架橋粒子が開示されている。特許文献2に記載の架橋微粒子は、単分散で耐溶剤性および耐熱性に優れていることを特徴としている。
国際公開第2011/158761号 特開2001-206954号公報
 上記の特許文献1および特許文献2で提案されている重合体粒子は単分散性と高硬度化の両立が不充分であった。本発明の課題は、単分散性と高硬度化を両立した重合体粒子、およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、環状エーテル構造を有する(メタ)アクリル系樹脂を含む重合体粒子に、イミダゾール系化合物または/および3級アミノ基を有するアミノ化合物を加えて環状エーテル部位を開環重合させることにより、上記課題を解決できることを見出し、本発明を完成するに至った。本発明は例えば以下の[1]~[8]に関する。
 [1] 環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を含む重合体粒子。
 [2] 前記(メタ)アクリル系樹脂が、前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)以外の重合性単量体(B)に由来する構造をさらに含む、前記[1]に記載の重合体粒子。
 [3] 前記重合性単量体(B)が、1分子中に1~4個の(メタ)アクリロイル基を有する単量体からなる群より選ばれる少なくとも1種の化合物である、前記[2]に記載の重合体粒子。
 [4] 前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)が、下記式(1)で表される化合物である、前記[1]~[3]のいずれかに記載の重合体粒子。
Figure JPOXMLDOC01-appb-C000002
 [式(1)中、R1は水素原子またはメチル基を示し、R2は水素原子または炭素数1~10のアルキル基を示し、xは1~6の整数を示し、Yは単結合または-O-CH2-を示し、zは0~2の整数を示す。]
 [5] 前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造の一部が開環した部位にイミダゾール系化合物を付加させてなる構造を有する(メタ)アクリル系樹脂を含む、前記[1]~[4]のいずれかに記載の重合体粒子。
 [6] 前記重合体粒子において、10%K値が3,000~7,000N/mm2である、前記[1]~[5]のいずれかに記載の重合体粒子。
 [7] 前記[1]~[6]のいずれかに記載の重合体粒子の製造方法であって、
 環状エーテル構造を有する(メタ)アクリル酸エステル(A)を含む重合性単量体成分をラジカル重合させて(メタ)アクリル系樹脂を含む母粒子を得る工程(1)と、
 前記母粒子とイミダゾール系化合物または/および3級アミノ基を有するアミノ化合物とを接触させて、前記環状エーテル構造中の環状エーテル部位同士を開環重合させて、環状エーテル部位同士が開環重合して成る構造を有する(メタ)アクリル系樹脂を含む重合体粒子を得る工程(2)と、
 前記重合体粒子を粉体化する工程(3)とを含む、重合体粒子の製造方法。
 [8] 異方導電性接着剤の導電性粒子に用いられる、前記[1]~[6]のいずれかに記載の重合体粒子。
 本発明によれば、単分散性と高硬度化を両立した重合体粒子、およびその製造方法を提供することができる。
 以下、本発明の重合体粒子およびその製造方法について具体的に説明する。
 [重合体粒子]
 本発明の重合体粒子は、(メタ)アクリル系樹脂を含む。(メタ)アクリル系樹脂は、環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造を有する。
 なお、本明細書において(メタ)アクリルは、アクリルおよびメタクリルの総称で用い、アクリルでもメタクリルでもよい。(メタ)アクリレートは、アクリレートおよびメタアクリレートの総称で用い、アクリレートでもメタクリレートでもよい。(メタ)アクリロイルは、アクリロイルおよびメタクリロイルの総称で用い、アクリロイルでもメタクリロイルでもよい。
 本発明において「(メタ)アクリル系樹脂」とは、(メタ)アクリル酸由来の構成単位、アクリル酸塩由来の構成単位、アクリル酸エステル由来の構成単位、メタクリル酸由来の構成単位、メタクリル酸塩由来の構成単位およびメタクリル酸エステル由来の構成単位の合計が、(メタ)アクリル系樹脂の全構成単位100質量%に対し、50質量%以上である樹脂のことをいう。
 本発明の重合体粒子は、上記(メタ)アクリル系樹脂を含むことで、単分散性と高硬度化の両立が可能となる。
 [重合体粒子の製造方法]
 本発明の重合体粒子の製造方法は、
 環状エーテル構造を有する(メタ)アクリル酸エステル(A)を含む単量体成分をラジカル重合させて(メタ)アクリル系樹脂を含む母粒子を得る工程(1)と、
 前記母粒子とイミダゾール系化合物または/および3級アミノ基を有するアミノ化合物とを接触させて、前記環状エーテル構造中の環状エーテル部位同士を開環重合させて、環状エーテル部位同士が開環重合して成る構造を有する(メタ)アクリル系樹脂を含む重合体粒子を得る工程(2)と、
 前記重合体粒子を粉体化する工程(3)とを含む。
 本発明の重合体粒子の製造方法は、架橋前の粒子を作製する工程から架橋反応を経て重合体粒子を得るまでをワンポットで合成完了できるため、製造作業の簡略化が可能となる。
 <工程(1)>
 (メタ)アクリル系樹脂を含む母粒子は、環状エーテル構造を有する(メタ)アクリル酸エステル(A)を含む重合性単量体成分を公知の方法によりラジカル重合させることで得られる。
 ≪環状エーテル構造を有する(メタ)アクリル酸エステル(A)≫
 環状エーテル構造を有する(メタ)アクリル酸エステル(A)(以下、「(メタ)アクリル酸エステル(A)」ともいう。)は、分子中に環状エーテル構造を有する(メタ)アクリル酸エステルであれば特に限定されず、公知の環状エーテル構造を有する(メタ)アクリル酸エステルを広く使用することができる。
 環状エーテル構造としては、例えば、オキサシクロプロパン(オキシラン)、オキサシクロブタン(オキセタン)、オキサシクロペンタン(テトラヒドロフラン)、オキサシクロヘキサン(テトラヒドロピラン)、1,4-ジオキサシクロヘキサン(1,4-ジオキサン)、1,2-エポキシシクロヘキサン、1,2-エポキシシクロペンタン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、exo-2,3-エポキシノルボルナン等が挙げられる。これらの中でも、反応性が高く触媒によって容易に環状エーテル部位同士が開環重合する観点から、オキシランが好ましい。
 (メタ)アクリル酸エステル(A)は、(メタ)アクリル酸エステルの酸素原子に環状エーテル構造が直接または間接的に結合した構造を有し、例えば、下記式(I)で表される基がエステルの酸素原子と環状エーテル構造との間に介在する。
 -(CH2m- ・・・(I)
 (式(I)中、mは1~7の整数を示す。)
 (メタ)アクリル酸エステル(A)は、好ましくは下記式(1)で表される化合物であり、より好ましくは下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 [式(1)および式(2)中、R1は水素原子またはメチル基を示し、R2は水素原子または炭素数1~10のアルキル基を示し、xは1~6の整数を示し、Yは単結合または-O-CH2-を示し、zは0~2の整数を示す。]
 式(1)および式(2)中、重合体粒子の架橋密度を上げつつ重合体粒子の重合安定性を確保する観点から、R2のアルキル基の炭素数の上限は、6であることが好ましく、3であることがより好ましく、2であることがさらに好ましく、R2としては水素原子が特に好ましく;xは1~4であることが好ましく;zは0または1であることが好ましく、zは0であることがより好ましい。
 式(2)で表される化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、グリシジルオキシ(ポリ)アルキレングリコール(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテルが挙げられる。
 これらの中でも重合体粒子の架橋密度を上げつつ重合体粒子の重合安定性を確保する観点から、グリシジル(メタ)アクリレートおよび4-ヒドロキシブチルアクリレートグリシジルエーテルが好ましい。
 これらの化合物は、単独で用いてもよく、二種以上を用いてもよい。
 (メタ)アクリル系樹脂における(メタ)アクリル酸エステル(A)由来の構成単位の含有量は、(メタ)アクリル系樹脂の全構成単位100質量%中に対し、好ましくは5~90質量%であり、より好ましくは10~80質量%、さらに好ましくは10~50質量%、特に好ましくは10~30質量%である。
 (メタ)アクリル酸エステル(A)由来の構成単位の含有量が前記範囲にあると、重合体粒子の重合安定性と触媒による環状エーテル部位の開環重合を両立することができる。
 (メタ)アクリル酸エステル(A)由来の構成単位の含有量は、(メタ)アクリル樹脂を製造する際に用いる重合性単量体成分中の(メタ)アクリル酸エステル(A)の量から算出することができる。
 ≪重合性単量体(B)≫
 本発明の重合体粒子は、前記(メタ)アクリル系樹脂が、前記(メタ)アクリル酸エステル(A)以外の重合性単量体(B)に由来する構造をさらに含むことが好ましい。重合性単量体(B)を含むことで、得られる重合体粒子の単分散性および高硬度化に優れる。
 工程(1)において、(メタ)アクリル酸エステル(A)とともに重合性単量体(B)をラジカル重合することで、重合性単量体(B)に由来する構造をさらに含む重合体粒子を得ることができる。
 重合性単量体(B)は、前記(メタ)アクリル酸エステル(A)と共重合できれば特に限定されず、例えば、(メタ)アクリル酸系単量体等の単官能性単量体、スチレン系単量体、官能基含有単量体、共役ジエン系単量体、ポリウレタン樹脂を形成するモノマーおよびポリオール等が挙げられ、好ましくは、1分子中に1~4個の官能基を有する単量体からなる群より選ばれる少なくとも1種の化合物が好ましく、1分子中に1~4個の(メタ)アクリロイル基を有する単量体からなる群より選ばれる少なくとも1種の化合物であることがより好ましい。
 (メタ)アクリル酸系単量体としては、例えば、(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルおよび(メタ)アクリル酸ドデシル等、
 (メタ)アクリル酸アリールエステル;(メタ)アクリル酸フェニルおよび(メタ)アクリル酸ベンジル等、
 (メタ)アクリル酸アルコキシアルキル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチルおよび(メタ)アクリル酸エトキシプロピル等、
 (メタ)アクリル酸および(メタ)アクリル酸アルカリ金属塩などの塩;
 脂環式アルコールの(メタ)アクリル酸エステル;(メタ)アクリル酸シクロヘキシル;(メタ)アクリル酸イソボルニル等が挙げられる。
 スチレン系単量体としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、へキシルスチレン、ヘプチルスチレンおよびオクチルスチレンなどのアルキルスチレン、フロロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、クロルメチルスチレン、ヨウ化スチレン、ニトロスチレン、アセチルスチレン、メトキシスチレン、α-メチルスチレン、ビニルトルエン等が挙げられる。
 官能基含有単量体としては、例えば、
 オキサゾリン基含有重合性化合物;2-ビニル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリンおよび2-イソプロペニル-2-オキサゾリン等、
 アジリジン基含有重合性化合物;(メタ)アクリロイルアジリジン、(メタ)アクリル酸-2-アジリジニルエチル等、
 エポキシ基含有ビニル単量体;アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテル、および(メタ)アクリル酸-2-エチルグリシジルエーテル等、
 ヒドロキシル基含有ビニル化合物;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-2-ヒドロキシブチル、(メタ)アクリル酸とポリプロピレングリコールまたはポリエチレングリコールとのモノエステルおよびラクトン類と(メタ)アクリル酸-2-ヒドロキシエチルとの付加物等、
 含フッ素ビニル単量体;フッ素置換(メタ)アクリル酸アルキルエステル等、
 カルボキシル基含有ビニル単量体;(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸およびフマル酸のような不飽和カルボン酸、これらの塩並びにこれらの(部分)エステル化合物および酸無水物等、
 反応性ハロゲン含有ビニル単量体;(メタ)アクリル酸-2-クロロエチル、2-クロルエチルビニルエーテル、モノクロロ酢酸ビニルおよび塩化ビニリデン等、
 アミド基含有ビニル単量体;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミドおよびN-ブトキシメチル(メタ)アクリルアミド等、
 有機ケイ素基含有ビニル化合物単量体;ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、アリルトリメトキシシラン、トリメトキシシリルプロピルアリルアミンおよび2-メトキシエトキシトリメトキシシラン等、
 その他、マクロモノマー類;上記単量体の共重合物末端にラジカル重合性ビニル基を有する物質(例えば;フッ素系マクロモノマー、シリコン含有マクロモノマー、ウレタン系マクロモノマー)、
 アクリロニトリル;酢酸ビニル;を挙げることができる。
 共役ジエン系単量体としては、ブタジエン、イソプレンおよびクロロプレン等が挙げられる。
 ポリウレタン樹脂を形成するモノマーとしては、グリコールを主成分とするポリオールとジイソシアネート原料等とを用いることができ、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートやp-フェニレンジイソシアネート等の芳香族ジイソシアネート類、脂肪族ジイソシアネート類、2官能末端イソシアネートウレタンプレポリマー等が挙げられる。
 ポリオールとしては、エチレングリコール、ジエチレングリコールなどのジオール化合物やポリエーテルグリコール類等が挙げられる。
 上記重合性単量体は、単独で用いてもよく、二種以上を用いてもよい。
 (メタ)アクリル系樹脂が重合性単量体(B)由来の構成単位を含有する場合、得られる重合体粒子の重合安定性と硬度を調整する観点から、重合性単量体(B)由来の構成単位の含有量は、(メタ)アクリル系樹脂の全構成単位100質量%に対し好ましくは15~90質量%である。
 重合性単量体(B)由来の構成単位の含有量は、(メタ)アクリル樹脂を製造する際に用いる単量体成分中の重合性単量体(B)の量から算出することができる。
 得られる重合体粒子の硬度を調整する観点から、本発明の効果を損なわない範囲で、重合性単量体(B)として多官能性単量体を用いてもよい。
 多官能性単量体としては、例えば、
 二官能性単量体;エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリオキシエチレンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジビニルベンゼン等、
 三官能性単量体;トリメチロールプロパントリアクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トリメチロールプロパーントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパーントリ(メタ)アクリレート、トリス(2-(メタ)アクリロキシエチルイソシアヌレート)等、
 四官能以上の単量体;ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパーンテトラ(メタ)アクリレート、エトキシ化ジトリメチロールプロパーンテトラ(メタ)アクリレートおよびエトキシ化ジトリメチロールプロパーンテトラ(メタ)アクリレートなどのテトラ(メタ)アクリレート化合物、
 ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジイソシアネートメチルシクロヘキサン、イソフォロンジイソシアネートおよびメチレンビス(4-シクロヘキシルイソシアネート)のようなジイソシナネートの間に脂肪族を有するジイソシアネート化合物、またはジイソシアネートメチルベンゼンあるいは4,4,-ジフェニルメタンジイソシアネートのような芳香族基を有するジイソシアネート化合物と、グリシドールジ(メタ)アクリレートとの付加反応により得られるアダクト、
 ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 ≪ラジカル重合≫
 (メタ)アクリル系樹脂を含む母粒子は、前記(メタ)アクリル酸エステル(A)、および必要に応じて重合性単量体(B)を公知の方法によりラジカル重合させることで得られる。
 この方法としては、例えば、ラジカル重合開始剤の存在下で乳化または懸濁重合する方法、または、非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法(いわゆる、シード重合法)、ソープフリー乳化重合法等の水性媒体中での重合方法が挙げられる。これらの重合方法の中でも、数μmの粒子径で、かつ粒子径が揃った母粒子が得られることから、シード重合法を用いることが好ましい。
 (ラジカル重合開始剤)
 上記重合に用いることのできるラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化ベンゾイル、過酸化ラウリル等の過酸化物;アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。重合開始剤は単独で用いてもよく、2種以上を併用してもよい。重合開始剤の使用量は、モノマー成分100質量部に対して、0.1~10質量部が好ましい。
 (乳化剤)
 上記重合に用いることのできる乳化剤としては、例えば、ドデシルスルホン酸ナトリウム等のアルキルスルホン酸塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;2-スルホテトラデカン酸1-メチルエステルナトリウム等のアルファスルホン脂肪酸エステル塩;ポリエチレングリコールノニルフェニルエーテル等のポリエチレングリコールアルキルアリールエーテル;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレン多環フェニルエーテル、アリルエーテルおよびそれらの硫酸エステルの塩が挙げられる。これらの中でも、アルキルベンゼンスルホン酸塩が好ましい。乳化剤は単独で用いてもよく、2種以上を併用してもよい。乳化剤の使用量は、モノマー成分100質量部に対して、0.01~20質量部が好ましい。
 (分散安定剤)
 上記重合に用いることのできる分散安定剤としては、例えば、部分鹸化されたポリビニルアルコール;完全鹸化されたポリビニルアルコール;ポリアクリル酸、その共重合体およびこれらの中和物;ポリメタクリル酸、その共重合体およびこれらの中和物;カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロースなどのセルロース類;ポリビニルピロリドンが挙げられる。分散安定剤は単独で用いてもよく、2種以上を併用してもよい。分散安定剤の使用量は、モノマー成分100質量部に対して、0.1~10質量部が好ましい。
 上記重合に用いることのできる水性媒体としては、水、水と親水性有機溶媒との混合物が挙げられる。
 水としては、例えば、精製水(例:イオン交換水、蒸留水)、地下水、水道水が挙げられる。
 親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等の低級アルコール;エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、トリエチレングリコール等の多価アルコール;メチルセロソルブ、エチルセロソルブ等のセロソルブ類:アセトン等のケトン類;テトラヒドロフラン等のエーテル類;ギ酸メチル等のエステル類が挙げられる。
 親水性有機溶媒は単独で用いてもよく、2種以上を併用してもよい。親水性有機溶媒の添加量は、水100質量部に対し、通常10質量部以下である。本明細書において、特に言及しない限り「水性媒体」とは前記の媒体を指す。
 上記の重合方法において、重合温度は、通常40~100℃、好ましくは55~85℃であり、重合時間は、通常1~24時間、好ましくは1~10時間である。シード重合の場合には、各段階において前記重合条件を採用することができる。
 シード重合とは、重合を行う際に、シード(種)を用いる重合法である。シード重合としては、乳化重合の一種である、シード乳化重合として行われることが好ましい。シード乳化重合では、通常の乳化重合における系内での核形成の段階をシード(種)により置き換えることができる。粒子径を揃えたシード(種)を用い、また、重合前に充分にシードをモノマーで膨潤させることにより、粒子径が大きく且つ粒子径の揃った樹脂粒子を得ることができる。
 シード重合により、(メタ)アクリル系樹脂を得る場合には、前記(メタ)アクリル酸エステル(A)および、必要に応じて重合性単量体(B)、他の単量体成分をシード(種)存在下で共重合する。
 シードとしては、単分散粒子を用いることが、(メタ)アクリル系樹脂の粒子径を均一にする観点から好ましい。シードとしては、前記モノマー成分として例示した(メタ)アクリル酸アルキルエステルの重合体、例えばポリメチルメタクリレート(PMMA)やポリメチルアクリレートの粒子を用いることが好ましい。
 シード重合は、複数回繰り返してもよく、通常はシード重合を1~15回、好ましくは1~10回行うことにより、(メタ)アクリル系樹脂粒子を得る。なお、シード重合を繰り返し行う場合には、1回目のシード重合により得られた樹脂粒子を、2回目のシード重合に用いるシード(種)とし、同様にn-1回目のシード重合により得られた樹脂粒子を、n回目のシード重合に用いるシード(種)とする。なお、前述のシードの例示は、シード重合を複数回行う場合には、1回目のシード重合に用いるシードの例示である。
 1回目のシード重合、すなわち、最初のシード重合に用いるシードの平均粒子径としては、(メタ)アクリル系樹脂の平均粒子径としてどの程度のサイズを望むのか、またシード重合を繰り返す回数によっても異なるが、通常は平均粒子径が0.1~3.0μm、好ましくは、0.1~2.0μmのシードが用いられる。
 シードとしては、モノマー成分100質量部に対して、通常は1~50質量部、好ましくは1~30質量部用いる。なお、シード重合を複数回行う場合には、それぞれのシード重合において、モノマー成分100質量部に対して、シードを通常は1~50質量部、好ましくは1~30質量部用いる。
 また、シードのCV値としては、単分散性が高い10%以下が好ましく2~8%がより好ましい。なお、CV値(Coefficient of Variation)は、粒子の粒子径分布の指標であり、変動係数とも呼ばれる値であり、下記式(II)で求めることができる。
 CV値[%]=(σ/D)×100 ・・・(II)
 [式(II)において、σは標準偏差、Dは平均粒子径である。]
 単量体成分における各単量体の使用量は、(メタ)アクリル酸エステル(A)、重合性単量体(B)の合計を100質量部とすると、好ましくは(メタ)アクリル酸エステル(A)を5~90質量部、重合性単量体(B)を10~95質量部、より好ましくは(メタ)アクリル酸エステル(A)を10~80質量部、重合性単量体(B)を20~90質量部、さらに好ましくは(メタ)アクリル酸エステル(A)を10~50質量部、重合性単量体(B)を50~90質量部、特に好ましくは(メタ)アクリル酸エステル(A)を10~30質量部、重合性単量体(B)を70~90質量部である。なお、シード重合のように多段階の反応により(メタ)アクリル系樹脂を得た場合には、各段階で使用したすべての単量体成分の合計を100質量部とした際の、各単量体の使用量が前記範囲となればよい。
 工程(1)では、最後に必要であれば、ブフナー漏斗等を用いてイオン交換水で(メタ)アクリル系樹脂を洗浄・脱水することができる。
 <工程(2)>
 工程(2)では、前記工程(1)の後、前記母粒子とイミダゾール系化合物または/および3級アミノ基を有するアミノ化合物とを接触させて、前記環状エーテル構造中の環状エーテル部位同士を開環重合させて、環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を含む重合体粒子を得る。
 (メタ)アクリル系樹脂における環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造は、前記環状エーテル構造のうち1種の環状エーテル部位同士が開環重合してもよく2種以上の異なる環状エーテル部位同士が開環重合してもよい。
 環状エーテル部位同士が開環重合してなる構造としては、例えば、以下の式(3)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 [式(3)において、P1は、(メタ)アクリル酸エステル(A)由来の構成単位を含む重合体鎖を示す。]
 例えば、重合性単量体としてグリシジルメタクリレートを用いた場合、環状エーテル部位同士が開環重合してなる構造としては下記式(4)で表される構造となる。この場合、グリシジルメタクリレート重合体の環状エーテル部位同士、すなわちエポキシ基同士が開環重合する。よって、得られる重合体粒子は、工程(1)においてグリシジルメタクリレート重合体鎖の繰り返し構造を有し、さらに工程(2)においてグリシジルメタクリレートのエポキシ基同士が開環重合してなる繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000006
 (メタ)アクリル系樹脂における環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造単位の含有量は、(メタ)アクリル系樹脂の全構成単位100質量%中に対し、好ましくは5~90質量%であり、より好ましくは10~80質量%、さらに好ましくは10~50質量%、特に好ましくは10~30質量%である。
 環状エーテル部位同士が開環重合してなる構造体の含有量が前記範囲にあると、高硬度化と単分散性に優れた重合体粒子を得ることができる。
 ≪イミダゾール系化合物≫
 本発明の重合体粒子は、環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造の一部にイミダゾール系化合物を付加させて環状エーテル部位が開環した構造を有する(メタ)アクリル系樹脂を含むことが好ましい。
 イミダゾール系化合物としては、下記式(5)に示される1位に活性水素を有するイミダゾール系化合物、または、下記式(6)に示される1位に活性水素を有さないイミダゾール系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 [式(5)および式(6)中、R3およびR6は有機基を示し、R4およびR5はそれぞれ独立に水素原子または炭素数が1~20のアルキル基を示す。]
 式(5)に示される1位に活性水素を有するイミダゾール系化合物としては、例えば、2-エチル-4-メチルイミダゾール、2-フェニル-1H-イミダゾール、2-メチルイミダゾール、4-メチル-1H-イミダゾール-5-カルボン酸エチル、2-イソプロピルイミダゾール、1H-イミダゾール-4,5-ジカルボン酸、ベンゾイミダゾール、2-フェニル-5-ベンゾイミダゾールスルホン酸、2-ヒドロキシベンゾイミダゾール、4-メチルイミダゾール、5,6-ジメチルベンゾイミダゾールが挙げられる。
 式(6)に示される1位に活性水素を有さないイミダゾール系化合物としては、例えば、例えば、2,4-ジアミノ-6-[2-(2-メチル-1-イミダゾリル)エチル]-1,3,5-トリアジン、1-イソブチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウム・トリメリテート、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-1-ベンジル-1H-イミダゾールが挙げられる。
 前記イミダゾール系化合物のなかでも、反応性および水溶性の観点から、2-エチル-4-メチルイミダゾールが好ましい。
 前記イミダゾール系化合物は、単独で用いてもよく、二種以上を用いてもよい。
 工程(2)におけるイミダゾール系化合物の添加量は、母粒子の固形分100質量部に対して0.01~5.0質量部、好ましくは0.05~3.0質量部、より好ましくは0.1~2.0質量部である。
 イミダゾール系化合物の分子量は、好ましくは50~1,000、より好ましくは50~500、さらに好ましくは50~300である。
 工程(2)において、1位に活性水素を有するイミダゾール系化合物を用いると、イミダゾール系化合物の活性水素により、イミダゾール系化合物と(メタ)アクリル系樹脂の一部の側鎖の環状エーテルとが反応し、環状エーテル構造の一部が開環した部位にイミダゾール系化合物を付加することができる。
 前記環状エーテル構造の一部にイミダゾール系化合物を付加させて環状エーテル部位が開環した構造としては、例えば、1位に活性水素を有するイミダゾール系化合物が(メタ)アクリル系樹脂の一部の側鎖の環状エーテルと反応し、エーテル環が開環しイミダゾール系化合物が付加した下記式(7)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000009
[式(7)中、R3は有機基を示し、R4およびR5はそれぞれ独立に水素原子または炭素数が1~20のアルキル基を示し、P2は(メタ)アクリル系樹脂の主鎖を示し、wは1~6の整数を示す。]
 前記環状エーテル構造の一部にイミダゾール系化合物を付加させて環状エーテル部位が開環した構造は、前記環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を構成する(メタ)アクリル系重合体と同じ分子中にあってもよく、前記(メタ)アクリル系重合体とは別の(メタ)アクリル系重合体の分子中にあってもよい。
 本発明の重合体粒子が、前記環状エーテル構造の一部にイミダゾール系化合物を付加させて環状エーテル部位が開環した構造を有する場合、環状エーテル部位同士の開環重合において反応する環状エーテル部位の量とのバランスの観点から、イミダゾール系化合物を付加させて環状エーテル部位が開環した構造単位の含有量は、重合体粒子の全構成単位100質量%に対して、好ましくは5~90質量%であり、より好ましくは10~80質量%、さらに好ましくは10~50質量%、特に好ましくは10~30質量%である。
 ≪3級アミノ基を有するアミノ化合物≫
 3級アミノ基を有するアミノ化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリオクチルアミン、N-メチルモルホリン、N-エチルモルホリン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-メチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-t-ブチルジエタノールアミン、N,N-ジエチルイソプロパノールアミン、1-メチルイミダゾール、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ポリエチレンイミンが挙げられる。
 これらの中でも、環状エーテル部位同士を開環重合させ、単分散性と高硬度化が両立した重合体粒子を得られる観点から、化合物の分子内に1級および/または2級アミノ基を有しない、3級アミノ基のみを有するアミノ化合物が好ましい。
 3級アミノ基を有する化合物は、1級または2級アミノ基を有する化合物と異なり、重合触媒として反応を進行させる。1級または2級アミノ基を有するアミノ化合物と環状エーテル基との反応後に生成される3級アミンはその立体障害から触媒機能は持ちにくいが、3級アミノ基を有する化合物は強塩基性であるため触媒機能をもち、環状エーテル部位同士を開環重合させることができる。
 工程(2)における3級アミノ基を有するアミノ化合物の添加量は、母粒子の固形分100質量部に対して0.01~5.0質量部、好ましくは0.05~3.0質量部、より好ましくは0.1~2.0質量部である。
 3級アミノ基を有するアミノ化合物の平均分子量は、好ましくは50~2,000、より好ましくは50~500、さらに好ましくは50~200である。
 工程(2)において、イミダゾール系化合物または3級アミノ基を有するアミノ化合物をそれぞれ一種以上用いることができ、本発明の効果を損なわない範囲で前記イミダゾール系化合物と3級アミノ基を有するアミノ化合物とを併用してもよい。なかでも重合体粒子をより高硬度化できることから、イミダゾール系化合物を用いることがより好ましい。
 ≪その他の成分≫
 工程(2)では、前記イミダゾール系化合物または3級アミノ基を有するアミノ化合物と共に、必要に応じてその他の成分を用いてもよい。その他の成分としては、例えば、1級アミノ基を有するアミノ化合物および/または2級アミノ基を有するアミノ化合物が挙げられる。
 1級アミノ基を有するアミノ化合物としては、例えば、
 アルキルジアミン;
 メンセンジアミン、イソホロンジアミン、キシレンジアミン、ジエチレントリアミン(2級アミン含む)、トリメチレンテトラミン(2級アミン含む)、テトラエチレンペンタミン(2級アミン含む)、1,3-ビス(アミノメチル)シクロヘキサン、ジエチルアミノプロピルアミン、4,4'-メチレンビス(2-メチルシクロヘキサンアミン)等の脂環式アミン;
 m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン等の芳香族アミン挙げられる。
 2級アミノ基を有するアミノ化合物としては、例えば、
 メチルシクロヘキシルアミン、ジエチレントリアミン(1級アミン含む)、トリメチルテトラミン(1級アミン含む)、テトラエチレンペンタミン(1級アミン含む);
 4,4'-メチレンアニリン等の芳香族アミンが挙げられる。
 1級アミノ基および/または2級アミノ基を有する化合物を用いる場合、1級アミノ基および/または2級アミノ基を有する化合物の添加量は、母粒子の固形分100質量部に対して、好ましくは0.7質量部以下である。
 使用量が前記数値以下であると、イミダゾール系化合物または3級アミノ基を有するアミノ化合物の触媒作用を害することなく(メタ)アクリル酸エステル(A)の環状エーテル部位同士を開環重合させることができる。
 使用量が前記範囲を超えると、重合体粒子の表面に存在する環状エーテル部位と1級アミノ基および/または2級アミノ基の付加反応が起こり、一部の環状エーテルが反応せずに硬化が完了するといった問題が生じる。
 工程(2)において、1位に活性水素を有するイミダゾール系化合物を用いる場合、環状エーテル構造の一部が開環した部位にイミダゾール系化合物が付加した後に、イミダゾール系化合物が触媒となり母粒子の環状エーテル部位同士の開環重合を促進させると考えらえる。
 一方、工程(2)において、1位に活性水素を有さないイミダゾール系化合物または3級アミノ基を有するアミノ化合物を用いる場合、イミダゾール系化合物または3級アミノ基を有するアミノ化合物は、環状エーテル構造の一部に付加することなく触媒として母粒子の環状エーテル部位同士の開環重合を促進させると考えられる。
 これらの開環重合において、イミダゾール系化合物または3級アミノ基を有するアミノ化合物は、環状エーテル構造を有する(メタ)アクリル酸エステル(A)に対して、モル比(イミダゾールまたは3級アミノ基を有するアミノ化合物/環状エーテル構造を有する(メタ)アクリル酸エステル(A))が0.001~0.4であることが好ましく、0.002~0.2がより好ましい。前記イミダゾール系化合物および3級アミノ基を有するアミノ化合物は環状エーテル部位同士を開環重合させる触媒として作用するため、モル比が前記の範囲内にあれば、充分にアニオン重合反応が進行する。開環重合は、例えば、100~200℃で、0.5~2時間かけて行うことができる。
 <工程(3)>
 工程(3)では工程(2)で得られた重合体粒子を粉体化する。
 重合体粒子を分散媒体から分離する方法としては、特に制限はなく、濾過、遠心分離など公知の方法を利用することができる。次いで、凍結乾燥法、スプレードライ法など通常採用されている方法を利用することにより分離された重合体粒子を乾燥し、粉体化することができる。
 重合体粒子の硬度を考慮して、粒子の変形がない条件で乾燥することが好ましい。
 乾燥させた重合体粒子は、乳鉢、ジェットミルなどで粉砕することが好ましい。
 [重合体粒子の物性]
 本発明の重合体粒子は、特に限定されるものでないが、平均粒子径が好ましくは2~20μm、より好ましくは2~5μmである。平均粒子径が前記範囲を下回ると、重合体粒子が凝集しやすくなる可能性がある。なお、本明細書において、重合体粒子のCV値や10%K値の算出に用いる平均粒子径を含む全ての「平均粒子径」は、実施例に記載の測定方法により求めることができる。
 重合体粒子のCV値は、好ましくは15%以下、より好ましくは7%以下である。CV値が前記範囲を超えると、重合体粒子の各種用途における特性が低下する傾向にある。例えば、重合体粒子が異方導電性接着剤を構成する導電性粒子に用いられたときに接続信頼性が低下したりする傾向にある。なお、粒子径のCV値は、前述のシードのCV値の記載と同様の方法により求めることができる。
 本発明の重合体粒子は、下記式で求められる10%K値が、3,000~7,000N/mm2であることが好ましく、3,300~6,000N/mm2であることがより好ましい。
 10%K値(N/mm2)=(3/√2)・F・S-3/2・R-1/2
 [F、Sはそれぞれ重合体粒子の10%圧縮変形における荷重値(N)、圧縮変位(mm)であり、Rは重合体粒子の半径(mm)であり、実施例に記載の方法により測定した重合体粒子の平均粒子径の半数である。]
 重合体粒子の10%K値が小さすぎると、異方性導電材料として用いた際に、導電性粒子周囲のバインダー(接着剤)を十分に排除できない(押し広げられない)といったことや、電極への食い込み具合が弱く接点の脱落が生じるといったことにより、低い接続抵抗値を得ることができないことがある。一方、重合体粒子の10%K値が大きすぎると、電子伝導に関与する真の接触面積は増えて抵抗値が下がるものの、接続部位が破損してしまい、電気的に良好な接触状態を確保できないことがある。
 10%K値は、粒子径が10%変形した時の圧縮荷重から算出した値であり、球体の硬さを普遍的かつ定量的に表すものである。10%K値の具体的な計測方法については、後述の実施例に記載している。
 本発明の重合体粒子は、粒子を圧縮した時に最大荷重に達する前に粒子が割れる、いわゆる破壊点を有するものであることが好ましい。
 破壊点を有する重合体粒子を得る方法としては、重合体粒子を構成する重合体として多官能性単量体を含むことによって、得られる重合体において三次元の網目構造を形成させる方法が挙げられる。また、重合体として単官能単量体のみで構成された場合であっても、後添加触媒として3級アミノ基を有する化合物またはイミダゾール系化合物を接触させることによって未架橋重合体のエポキシ基同士の開環重合を進行させる方法が挙げられる。
 [重合体粒子の用途]
 本発明の重合体粒子の用途は特に限定されないが、例えば、異方導電性接着剤用の導電性粒子等の電気・電子材料分野をはじめ、各種スペーサー、樹脂フィルムの滑り特性の改質剤、レオロジー制御用添加剤、ショットブラスト剤、研磨剤、クロマトグラフィー用担体等に用いられる。本発明の重合体粒子は、本発明の効果が発揮される等の点から、異方導電性接着剤に用いられる導電性粒子のコアとなる重合体粒子に適用することが好ましい。
 <異方導電性接着剤>
 異方導電性接着剤に本発明の重合体粒子を用いる場合、重合体粒子の表面に導電性金属層を設けることにより導電性粒子が得られる。重合体粒子の表面に金属層を形成する方法としては特に限定されず、例えば、無電解メッキによる方法、金属微粉を単独又はバインダーに混ぜ合わせて得られるペーストをコーティングする方法、真空蒸着、イオンプレーティング、イオンスパッタリング等の物理的蒸着方法などが挙げられる。より具体的には、例えば、特開2000-319309号公報に記載の方法が挙げられる。
 異方導電性接着剤は、前記導電性粒子およびバインダー樹脂を含んでいればよく、他の成分については特に限定されず、従来から異方導電性接着剤に含まれる成分を特に制限なく用いることができる。
 バインダー樹脂としては、絶縁性の樹脂であれば特に限定されず、例えば、アクリル樹脂、エチレン-酢酸ビニル樹脂、スチレン-ブタジエンブロック共重合体などの熱可塑性樹脂、グリシジル基を有するモノマーやオリゴマーおよびイソシアネートなどの硬化剤との反応により硬化する硬化性樹脂組成物、光や熱により硬化する硬化性樹脂組成物等が挙げられる。
 また、接着剤製造方法により、異方導電性接着剤をフィルム状又はペースト状にすることができ、その形態に応じて分散方法を適宜変更することができる。フィルム状の異方導電性接着剤(異方性導電フィルム)では、導電性粒子を樹脂成分に分散させた混合物を、フィルム状に成型して得られ、異方性導電ペーストでは、異方性導電フィルムと同様にして得られた混合物について、溶媒を用いて粘度等を調整して得られる。
 本発明の重合体粒子を異方導電性接着剤に用いる場合、異方導電性接着剤100質量部あたり、重合体粒子を好ましくは5~60質量部、より好ましくは10~50質量部含む。導電性粒子の含有量が少なすぎると、充分な電気的導通が得られ難い場合があり、一方、導電性粒子の含有量が多すぎると、導電性粒子同士が接触してしまい、異方性導電材料としての機能が発揮され難い場合がある。
 異方性導電性接着剤は、例えば、少なくとも導電性粒子と接着剤とを混合あるいは混錬することにより得ることができるが、通常は導電性粒子と、接着剤と、硬化剤と、有機溶剤とを混合あるいは混錬することにより得ることができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、特に言及しない限り、「部」は「質量部」を示す。
 [平均粒子径]
 実施例および比較例で得られた重合体粒子の平均粒子径は、レーザー回折式粒度分布測定装置FPIA-3000S(スペクトリス(株)製)を使用し、有効解析数:30,000個の場合の粒子径の平均値(体積基準とした場合の累計50%粒子径)を測定し、平均粒子径とした。
 [CV値]
 実施例および比較例で得られた重合体粒子のCV値は、下式より求めた。
 CV値(%)=粒度分布の標準偏差/平均粒子径×100
 [10%K値]
 実施例および比較例で得られた重合体粒子の10%K値は、超微小押し込み硬さ試験機ENT-NEXUS((株)エリオニクス製)を使用し、25℃で試験機の先端に50μmφフラット圧子を装着し、装置に付属されている顕微鏡を用いて直径3.0μmの重合体粒子を1つ選択し、最大荷重50mN、荷重速度1.33mN/秒の条件で重合体粒子を圧縮し、粒子径が10%変形した時の圧縮荷重F(N)を測定し、下式より求めた。
 10%K値(N/mm2)=(3/√2)・F・S-3/2・R-1/2
 [F、Sはそれぞれ重合体粒子の10%圧縮変形における荷重値(N)、圧縮変位(mm)であり、Rは重合体粒子の半径(mm)であり、実施例に記載の方法により測定した重合体粒子の平均粒子径の半数である。]
 [破壊点]
 前記10%K値の測定と同様の試験機を用い、粒子を圧縮し最大荷重に達する前に粒子が割れたものを破壊点が「有」とした。破壊点は、重合体粒子を構成する未架橋重合体が、3級アミンまたはイミダゾール系後添加触媒によってエポキシ基同士の開環重合が進行し重合体同士が架橋されている指標とした。なお、表1および表2における破壊点の欄の表記「無」とは、該当するデータが無いことを意味する。
 [IR(910cm -1 )]
 赤外吸収分光法(IR)により910cm-1付近のピークを観察し、ピークの消失により重合体粒子の全てのエポキシ基がアミノ化合物の付加反応又はエポキシ基同士の開環重合により反応したことを確認した。なお、表1および表2におけるIR(910cm-1)の欄の符号「-」とは、該当するデータが無いことを意味し、「残」とは、ピークが残っていること、すなわち重合体粒子を構成する重合体の一部のエポキシ基がアミン化合物による付加反応が進行せずに、又は、開環重合せずにエポキシ基として存在することを意味する。
 各評価結果を表1および表2に示す。
 [実施例1]
 <工程(1)>
 (1段階目の重合:単分散粒子の製造)
 温度計と窒素導入管とを装着した容量1リットルの四つ口フラスコに、メチルメタクリレート(以下「MMA」ともいう)100部、およびイオン交換水300部を投入して、混合撹拌し、さらに窒素気流下で撹拌を行いながら80℃に昇温し、混合液を得た。加温された前記混合液中に過硫酸カリウム0.5部を加え、80℃に保持しながら6時間反応させ、ポリメチルメタクリレート(PMMA)樹脂粒子の分散液(A1)を得た。
 分散液(A1)から分離・乾燥して得られたPMMA樹脂粒子は、平均粒子径0.4μm、CV値3.5%である、真球状の単分散粒子であった。分散液(A1)中の固形分濃度は24質量%であった。
 (2段階目の重合:シード重合)
 容量1リットルのフラスコに、100部のメチルメタクリレート、開始剤として1.0部の過酸化ベンゾイルを投入して溶解させ溶液を得た。前記溶液に0.5部のドデシルベンゼンスルホン酸ナトリウム、300部のイオン交換水を投入し、ホモミキサーにて乳化し、乳化液を得た。
 次いで、前記乳化液に、前記PMMA樹脂粒子の分散液(A1)をPMMA樹脂粒子分が6.4部となるように添加した。
 この混合物を50℃で1時間膨潤させた後、部分ケン化ポリビニルアルコールを溶解させた水(分散安定剤と水との合計40部)を添加し、73℃で1.5時間、次いで90℃で1.5時間反応させた後、冷却することにより、平均粒子径1.0μm、CV値3.5%の単分散シード粒子の分散液(A2)を得た。
 (3段階目の重合:(メタ)アクリル系樹脂粒子の製造)
 容量1リットルのフラスコに、66.3部のメチルメタクリレート、30部のグリシジルメタクリレート(GMA)、開始剤として1.0部の過酸化ベンゾイルを投入して溶解させ溶液を得た。前記溶液に0.5部のドデシルベンゼンスルホン酸ナトリウム、200部のイオン交換水を投入し、ホモミキサーにて乳化し、乳化液を得た。
 次いで、前記乳化液に、前記単分散シード粒子の分散液(A2)をシード粒子分が3.7部となるように添加した。
 この混合物を50℃で1時間膨潤させた後、部分ケン化ポリビニルアルコールを溶解させた水(分散安定剤と水との合計40部)を添加し、73℃で1.5時間、90℃で1.5時間反応させた後、冷却することにより、平均粒子径2.8μm、CV値5.2%の(メタ)アクリル系樹脂粒子の分散液(A3)を得た。
 <工程(2)>
 (イミダゾール系化合物の接触および環状エーテル部位同士の開環重合)
 上記で得られた分散液(A3)に、粒子固形分100質量部に対して、エポキシ重合触媒となる2-エチル-4-メチルイミダゾール(以下「2E4MZ」ともいう)を1部添加して母粒子にイミダゾール系化合物を接触させた。その後、180℃で1時間加熱することにより、前記(メタ)アクリル樹脂粒子の環状エーテル部位同士が開環重合した構造を有する(メタ)アクリル系樹脂を含む分散液(A4)を得た。
 <工程(3)>
 (粉体化)
 前記分散液(A4)を凍結乾燥により粉体化し、次いで、粉体をさらに乳鉢とジェットミルで粉砕し、前記単分散シード粒子の環状エーテル部位同士が開環重合した構造を有する(メタ)アクリル系樹脂粒子を含む重合体粒子を得た。
 [実施例2~16、比較例1~13]
 使用した各成分の種類とその使用量を表1および表2に記載したとおりに変更した以外は実施例1と同様にして、重合体粒子を得た。
 [比較例14]
 アミン系硬化剤として使用したn-ブチルアミンの沸点が約75℃であるため、上記<工程(2)>において、2-エチル-4-メチルイミダゾールに代えてn-ブチルアミンを用いるとともに、加熱温度を60℃にした以外は、実施例1と同様にして、重合体粒子を得た。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1および表2中の各成分の記号の意味は以下の通りである。
 (シード)
 ・PMMA:ポリメチルメタクリレート
 (ラジカル重合性単量体)
 〔(メタ)アクリル酸エステル(A)〕
 ・GMA:グリシジルメタクリレート(ライトアクリレートG、共栄社化学(株)製)
 ・4HBAGE:4-ヒドロキシブチルアクリレートグリシジルエーテル(三菱ケミカル(株)製)
 〔単官能性単量体〕
 ・MMA:メチルメタクリレート
 ・MAA:メタクリル酸
 〔二官能性単量体〕
 ・EGDMA:エチレングリコールジメタクリレート
 〔三官能性単量体〕
 ・TMPTA:トリメチロールプロパントリアクリレート(ビスコート#295、大阪有機化学工業(株)製)
 〔四官能性単量体〕
 ・PETA:ペンタエリスリトールテトラアクリレート(M-305、東亜合成(株)製)
 (環状エーテル開環重合用後添加触媒)
 ・DBU:1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(サンアプロ(株)製、分子量=152.24)
 ・SP-003:ポリエチレンイミン(1-3級混在アミン(アミン比 1級:45%
 2級:35% 3級:20%)、エポミンSP-003、(株)日本触媒製、数平均分子量=300)
 ・2PZ-PW:2-フェニル-1H-イミダゾール(キュアゾール2PZ-PW、四国化成工業(株)製、分子量=144.17)
 ・2MZA-PW:2,4-ジアミノ-6-[2-(2-メチル-1-イミダゾリル)エチル]-1,3,5-トリアジン(キュアゾール2MZA-PW、四国化成工業(株)製、分子量=219.25)
 ・jERキュアIBMI12:1-イソブチル-2-メチルイミダゾール(jERキュアIBMI12、三菱ケミカル(株)製、分子量=138.21)
 ・2E4MZ:2-エチル-4-メチルイミダゾール(分子量=110.16)
 (アミン系硬化剤)
 ・jERキュア113:4,4'-メチレンビス(2-メチルシクロヘキサンアミン)(jERキュア113、三菱ケミカル(株)製)
 ・ニッサンアミンM-14:1-アミノ-3-ウンデカノキシ-プロパン(ニッサンアミンM-14、日油(株)製)
 ・ブチルアミン:n-ブチルアミン
 表1および表2中の「重合粒子の架橋種類」の欄において「未架橋」とは、(メタ)アクリル酸エステル(A)を含む単官能単量体のみから構成されている重合体粒子を意味し、「架橋」とは、(メタ)アクリル酸エステル(A)を含む単官能単量体、および重合性単量体(B)として多官能単量体を含む重合性単量体から構成されている重合体粒子を意味する。
 表1中の「環状エーテル開環重合用後添加触媒」の欄において、「H」とはイミダゾール系化合物中の活性水素を意味する。「H×0」の場合、イミダゾール系化合物中に活性水素が無いことを意味し、「H×1」の場合、イミダゾール系化合物中に活性水素が1つ存在することを意味する。
 表1および表2中の「環状エーテル開環重合用後添加触媒」と「アミン系硬化剤」の欄において、「NH2」とは、実施例および比較例で用いたイミダゾール系化合物またはアミン系硬化剤中の1級アミノ基を意味する。例えば、「NH2×1」の場合、イミダゾール系化合物またはアミン系硬化剤中に1級アミノ基が1つ存在することを意味する。
 表1に示すとおり、各実施例における重合体粒子は、硬度が高く、単分散性に優れていた。
 実施例11において、破壊点が「無」である理由としては、1~3級アミノ基が混在するアミノ化合物である後添加触媒を用いることにより、エポキシ基に対する反応性が高い1級および2級アミノ基によるエポキシ基への付加反応が重合体粒子表面近傍のみで進行したことで、粒子内部の未架橋重合体はエポキシ基同士の開環重合が進行せずに未架橋重合体のまま残ったためであると考えられる。
 比較例9~11において、破壊点が「有」である理由としては、二官能以上の単量体を多量に用いたことにより3次元の網目構造をもつネットワークポリマーを構成しているためだと考えられる。
 比較例12において、IR(910cm-1)が「残」である理由としては、1級アミンによるエポキシ基への付加反応が優先的に進行するものの、1級アミノ基を有するアミノ化合物が付加することにより生成した3級アミンは立体障害から触媒反応を持ちにくく一部のエポキシ基が反応せずに残存しているためだと考えられる。また、比較例12の1級アミノ基を有するアミノ化合物の添加量は、GMAのエポキシ基に対して0.04当量と、通常アミン系硬化剤を用いてエポキシ基と付加反応させる場合の添加量(例えば、母粒子中の環状エーテル構造とアミン系硬化剤とのモル比は通常0.5~5程度である)と比べて少ないことから、一部の未反応のエポキシ基が残存していると考えられる。更に上記の理由のとおり、比較例12の重合体粒子はGMA中のエーテル部位同士が開環重合してなる構造を有さないことから、10%K値が低いと考えられる。
 比較例13で用いたアミン系硬化剤であるニッサンアミンM-14は1級アミノ基を有する化合物である。比較例14で用いたアミン系硬化剤のn-ブチルアミンは低分子量の1級アミノ基を有する化合物である。比較例13及び14においても比較例12と同様に、1級アミノ基を有する化合物が付加することにより生成した3級アミンはエポキシ基同士の開環重合を進行させる触媒機能を有さないため、重合体粒子の高硬度化に寄与しなかったと考えられる。

Claims (8)

  1.  環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造中の環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を含む重合体粒子。
  2.  前記(メタ)アクリル系樹脂が、前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)以外の重合性単量体(B)に由来する構造をさらに含む、請求項1に記載の重合体粒子。
  3.  前記重合性単量体(B)が、1分子中に1~4個の(メタ)アクリロイル基を有する単量体からなる群より選ばれる少なくとも1種の化合物である、請求項2に記載の重合体粒子。
  4.  前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)が、下記式(1)で表される化合物である、請求項1に記載の重合体粒子。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1は水素原子またはメチル基を示し、R2は水素原子または炭素数1~10のアルキル基を示し、xは1~6の整数を示し、Yは単結合または-O-CH2-を示し、zは0~2の整数を示す。]
  5.  前記環状エーテル構造を有する(メタ)アクリル酸エステル(A)を重合させてなり、かつ、前記環状エーテル構造の一部が開環した部位にイミダゾール系化合物を付加させてなる構造を有する(メタ)アクリル系樹脂を含む、請求項1に記載の重合体粒子。
  6.  前記重合体粒子において、10%K値が3,000~7,000N/mm2である、請求項1に記載の重合体粒子。
  7.  請求項1~6のいずれか1項に記載の重合体粒子の製造方法であって、
     環状エーテル構造を有する(メタ)アクリル酸エステル(A)を含む重合性単量体成分をラジカル重合させて(メタ)アクリル系樹脂を含む母粒子を得る工程(1)と、
     前記母粒子とイミダゾール系化合物または/および3級アミノ基を有するアミノ化合物とを接触させて、前記環状エーテル構造中の環状エーテル部位同士を開環重合させて、環状エーテル部位同士が開環重合してなる構造を有する(メタ)アクリル系樹脂を含む重合体粒子を得る工程(2)と、
     前記重合体粒子を粉体化する工程(3)とを含む、重合体粒子の製造方法。
  8.  異方導電性接着剤の導電性粒子に用いられる、請求項1~6のいずれか1項に記載の重合体粒子。
PCT/JP2022/021463 2021-06-10 2022-05-25 重合体粒子およびその製造方法 WO2022259872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280039250.9A CN117425685A (zh) 2021-06-10 2022-05-25 聚合物粒子及其制造方法
JP2023527607A JPWO2022259872A1 (ja) 2021-06-10 2022-05-25
KR1020237042174A KR20240005052A (ko) 2021-06-10 2022-05-25 중합체 입자 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097045 2021-06-10
JP2021-097045 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022259872A1 true WO2022259872A1 (ja) 2022-12-15

Family

ID=84425967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021463 WO2022259872A1 (ja) 2021-06-10 2022-05-25 重合体粒子およびその製造方法

Country Status (5)

Country Link
JP (1) JPWO2022259872A1 (ja)
KR (1) KR20240005052A (ja)
CN (1) CN117425685A (ja)
TW (1) TW202313733A (ja)
WO (1) WO2022259872A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119433A (ja) * 1998-10-20 2000-04-25 Matsushita Electric Ind Co Ltd 有機多孔体
WO2016181876A1 (ja) * 2015-05-08 2016-11-17 日清紡ホールディングス株式会社 楕円状、針状又は棒状架橋ポリマー粒子及びその用途
JP2017039091A (ja) * 2015-08-20 2017-02-23 東京応化工業株式会社 濾過材料、濾過フィルター及び濾過方法
JP2018015713A (ja) * 2016-07-28 2018-02-01 国立研究開発法人産業技術総合研究所 カップリング反応用触媒担持粒子およびその製造方法
JP2018048231A (ja) * 2016-09-20 2018-03-29 積水化学工業株式会社 繊維強化樹脂プリプレグおよび対象物を補強または補修する方法
WO2019205531A1 (zh) * 2018-04-27 2019-10-31 南京大学 一种复合功能树脂及制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206954A (ja) 2000-01-26 2001-07-31 Sekisui Chem Co Ltd 架橋微粒子の製造方法及び架橋微粒子
JP5375961B2 (ja) 2010-06-17 2013-12-25 日立化成株式会社 架橋ポリマー粒子及びその製造方法、導電性粒子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119433A (ja) * 1998-10-20 2000-04-25 Matsushita Electric Ind Co Ltd 有機多孔体
WO2016181876A1 (ja) * 2015-05-08 2016-11-17 日清紡ホールディングス株式会社 楕円状、針状又は棒状架橋ポリマー粒子及びその用途
JP2017039091A (ja) * 2015-08-20 2017-02-23 東京応化工業株式会社 濾過材料、濾過フィルター及び濾過方法
JP2018015713A (ja) * 2016-07-28 2018-02-01 国立研究開発法人産業技術総合研究所 カップリング反応用触媒担持粒子およびその製造方法
JP2018048231A (ja) * 2016-09-20 2018-03-29 積水化学工業株式会社 繊維強化樹脂プリプレグおよび対象物を補強または補修する方法
WO2019205531A1 (zh) * 2018-04-27 2019-10-31 南京大学 一种复合功能树脂及制备方法和应用

Also Published As

Publication number Publication date
CN117425685A (zh) 2024-01-19
TW202313733A (zh) 2023-04-01
KR20240005052A (ko) 2024-01-11
JPWO2022259872A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
US8173048B2 (en) Composition for circuit connection film and circuit connection film using the same
CA2727872C (en) Process to disperse organic microparticles / nanoparticles into non-aqueous resin medium
US11236228B2 (en) Epoxy resin composition
US10947337B2 (en) Toughened epoxy resin composition
JP6722976B2 (ja) ポリロタキサン架橋重合体、およびその水分散体
JP6215712B2 (ja) 硬化性樹脂用靭性改質剤および硬化性樹脂組成物
CN112041403B (zh) 使用含聚合物微粒的固化性树脂组合物的粘接方法、及使用该粘接方法得到的层叠体
WO2022259872A1 (ja) 重合体粒子およびその製造方法
JPS63500388A (ja) 予備成形分散剤を用いて製造した低粘性ハイソリッドポリオ−ル
JP5248623B2 (ja) 低い硬化温度を有するレドックス誘導カチオン重合性組成物
WO2020260638A1 (en) Composition comprising a compound with two polymerizable groups, a multistage polymer and a thermoplastic polymer, its method of preparation, its use and article comprising it
JP2004143275A (ja) ポリイソシアネート系誘導体及びそれを用いた光硬化性樹脂組成物
JP2943184B2 (ja) 水性分散液
TW201406789A (zh) 含氟聚合物水性分散液之製造方法
Jang et al. Polyurethane nano-composite with functionalized silica particle
JP4165152B2 (ja) 既架橋微粒子の製造方法
KR20190054396A (ko) 무용제 열중합 고기능성 점접착수지 및 이의 제조방법
JPS6243403A (ja) 部分アルコキシ化ポリオキシアルキレンアミン類を分散媒として用いるビニル重合体ポリオ−ル類の製造方法
JP6798435B2 (ja) ラテックスの製造方法、並びに前記ラテックスを含む被覆材及び微粒子の製造方法
TW202411284A (zh) 聚碳二亞胺化合物、樹脂組成物、及樹脂硬化物
US20230399449A1 (en) Polymer polyol and process for producing the same
CN112996663A (zh) 嵌段共聚物、剥离剂组合物、剥离层及剥离片
JP2021031659A (ja) 架橋型メタクリレート樹脂粒子および造孔剤
JP2002265820A (ja) 活性エネルギー線硬化型粉体塗料用組成物
JP2016074790A (ja) 反応性基を有する含フッ素2ブロック共重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527607

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237042174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042174

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE