WO2022259622A1 - レーザ増幅媒体およびレーザ増幅媒体の製造方法 - Google Patents

レーザ増幅媒体およびレーザ増幅媒体の製造方法 Download PDF

Info

Publication number
WO2022259622A1
WO2022259622A1 PCT/JP2022/005808 JP2022005808W WO2022259622A1 WO 2022259622 A1 WO2022259622 A1 WO 2022259622A1 JP 2022005808 W JP2022005808 W JP 2022005808W WO 2022259622 A1 WO2022259622 A1 WO 2022259622A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amplification medium
core portion
laser amplification
core
Prior art date
Application number
PCT/JP2022/005808
Other languages
English (en)
French (fr)
Inventor
浩一 濱本
智之 和田
貴代 小川
Original Assignee
三菱重工業株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立研究開発法人理化学研究所 filed Critical 三菱重工業株式会社
Priority to EP22819813.1A priority Critical patent/EP4336679A1/en
Priority to US18/568,008 priority patent/US20240291222A1/en
Publication of WO2022259622A1 publication Critical patent/WO2022259622A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Definitions

  • the present invention relates to a laser amplification medium and a method for manufacturing a laser amplification medium.
  • High-quality and high-power lasers are needed in fields such as laser processing, scientific research, nuclear fusion, space debris removal, and safety compensation.
  • Solid state lasers and fiber lasers are often considered as ways to realize such lasers.
  • fiber lasers tend to have a relatively large power density inside the waveguide because the area of the waveguide is relatively small. This is particularly noticeable in the case of pulsed lasers.
  • problems such as damage to materials such as optical fibers and degradation of characteristics due to nonlinear optical effects are known.
  • non-patent document 1 R. Soulard et al., "ICAN: A novel laser architecture for space debris removal", Acta Astronautica 105, published in 2014, pp. 192-200
  • non-patent document 2 T. Ebisuzaki et al. ⁇ Demonstration designs for the remediation of space debris from the International Space Station ⁇ Acta Astronautica 112 ⁇ 2015 ⁇ pp.102-113) ⁇ CAN(Coherent Amplification Network: ⁇ It has been proposed to combine a large number (eg 10,000) of fiber lasers called a network.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-148769 discloses a multiple beam coupling device.
  • the multiple beam combiner includes a phase shift section, a superimposition section, an observation section, and a phase control section.
  • the phase shift section generates a plurality of shifted laser beams by shifting the phase of each of the plurality of laser beams.
  • the superposition unit generates a plurality of superposed laser beams by superimposing each of the plurality of shifted laser beams and the reference beam.
  • the observation unit generates interference pattern information regarding spatial interference patterns that appear when observing each of the plurality of superimposed laser beams.
  • the phase control section feedback-controls the phase shift by the phase shift section based on the interference pattern information obtained for each of the plurality of superposed laser beams, thereby setting the plurality of shifted laser beams to a desired state.
  • a laser amplification medium that is easy to manufacture and a method for manufacturing a laser amplification medium that is easy to implement are provided.
  • Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
  • the laser amplification medium includes a cladding portion, a first core portion and a second core portion, a virtual first layer, a virtual second layer and a virtual third layer.
  • the clad has a predetermined first refractive index.
  • the first core portion and the second core portion each have a second refractive index higher than the first refractive index, each extend parallel to a predetermined axial direction, and each side surface is covered with the clad portion.
  • the virtual first layer includes a portion of the cladding, the first core and the second core.
  • a virtual second layer and a virtual third layer each include another portion of the cladding.
  • the first layer is laminated and joined between the second and third layers in a predetermined lamination direction perpendicular to the axial direction.
  • the side surface of each of the first core portion and the second core portion includes a first planar portion and a second planar portion.
  • the first planar portion is included in a virtual first surface that is a virtual bonding surface between the first layer and the second layer and perpendicular to the stacking direction.
  • the second plane portion is included in a virtual second surface, which is a virtual joint surface of the first layer with the third layer and perpendicular to the stacking direction, and faces the first plane portion.
  • a method of manufacturing a laser gain medium includes a plurality of first regions having a predetermined first refractive index and a plurality of second regions having a second refractive index greater than the first refractive index. forming a first layer containing including doing.
  • the laminating includes bonding a second layer to a first surface of the first layer perpendicular to the stacking direction so as to bond the plurality of first regions and the second layer; bonding the third layer to a second surface of the first layer opposite the first surface to bond the third layer.
  • forming the first layer includes: a plurality of second regions each extending parallel to a predetermined axial direction parallel to the first surface; and a first planar portion included in the first surface; generating a plurality of second regions to have a first core portion and a second core portion each having a side surface including a second planar portion included in the second surface; Laminating the second layer, the first layer, and the third layer means that the plurality of integrated first regions, the second layer, and the third layer form side surfaces of the first core portion and the second core portion, respectively. It includes laminating the second, first and third layers to act as an overlying cladding.
  • the embodiment it is possible to provide a laser amplification medium that is easy to manufacture and a method for manufacturing a laser amplification medium that is easy to implement.
  • FIG. 1A is a bird's-eye view showing one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 1B is a transparent bird's-eye view showing one configuration example of a virtual unit laser amplification medium obtained when a part of the laser amplification medium of FIG. 1A is extracted.
  • FIG. 2 is a cross-sectional view of the unit laser amplification medium of FIG. 1B taken along an arbitrary cross section passing through the optical axis of the core portion.
  • FIG. 3A is a transparent bird's-eye view showing an example of a method of injecting pumping light from an end face of each core portion of the laser amplifying medium of FIG. 1A.
  • FIG. 3B is a transparent bird's-eye view showing an example of a method of making excitation light incident from the side surface of each core portion of the laser amplification medium of FIG. 1A.
  • FIG. 3C is a transmissive overhead view showing an example of the configuration of a modification of the laser amplification medium of FIG. 1A and an example of a method of injecting excitation light into the laser amplification medium according to this modification.
  • FIG. 4A is a transmission overhead view showing an example of the configuration of another modification of the laser amplification medium of FIG. 1A and a method of injecting excitation light into the laser amplification medium according to this modification.
  • FIG. 4B is a bird's-eye view showing an example of how the excitation light incident from the end of the excitation light optical path in FIG. 4A leaks to the outside from the side surface of the excitation light optical path.
  • FIG. 5 is a flow chart showing one configuration example of a method for manufacturing a laser amplification medium according to one embodiment.
  • FIG. 6A is a cross-sectional view showing that the laser gain medium of FIG. 1A can be manufactured by laminating a first substrate and a second substrate.
  • FIG. 6B is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6C is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6A is a cross-sectional view showing that the laser gain medium of FIG. 1A can be manufactured by laminating a first substrate and a second substrate.
  • FIG. 6B is a cross-sectional view showing an example
  • FIG. 6D is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6E is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6F is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6G is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 6H is a cross-sectional view showing an example of a state in the middle of manufacturing the laser amplification medium.
  • FIG. 7 is a cross-sectional view of one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 7 is a cross-sectional view of one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 8 is a transparent bird's-eye view showing one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 9 is a graph for explaining an example of a method of controlling the temperature of the laser amplification medium by flowing a predetermined fluid through the laser amplification medium using the channel according to one embodiment.
  • FIG. 10A is a cross-sectional view showing one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 10B is a cross-sectional view showing another configuration example of the laser amplification medium according to one embodiment.
  • FIG. 11 is a cross-sectional view showing still another configuration example of the laser amplification medium according to one embodiment.
  • FIG. 12 is a cross-sectional view showing one configuration example of a laser amplification medium according to one embodiment.
  • FIG. 1A is a transparent bird's-eye view showing one configuration example of a laser amplification medium 1 according to one embodiment.
  • a laser amplification medium 1 of FIG. 1A includes a clad portion 2 and a plurality of core portions 3 .
  • the total number of core portions 3 is 16, but this is merely an example and does not limit the present embodiment.
  • the cladding part 2 is independent.
  • the core portion 3 extends in one direction and is formed in a shape having flat surfaces on opposite side surfaces.
  • each core portion 3 has the same rectangular parallelepiped shape.
  • the cladding portion 2 also has a rectangular parallelepiped shape, but its dimensions are different from those of the core portion 3 .
  • the core portion 3 may have the shape of a hexagonal prism whose cross-section orthogonal to its extending direction is hexagonal.
  • the positional relationship of the constituent elements of the laser amplification medium 1 of FIG. 1A will be described.
  • a total of 16 core portions 3 extend in the same direction. This extending direction is called the X-axis direction.
  • the clad portion 2 also extends in the same X-axis direction.
  • the core portion 3 is doped with a laser gain medium, and as will be described later, by allowing pumping light and seed light to enter, amplified light obtained by amplifying the seed light can be emitted.
  • the side surface of the core portion 3 is formed into a shape having opposed flat surfaces extending parallel to the X-axis direction.
  • the side surface of each core portion 3 has a rectangular shape in the above cross section or end surface.
  • the side surfaces of the core portion 3 refer to four surfaces parallel to the X-axis direction among the six surfaces of the rectangular parallelepiped.
  • the side surfaces of a total of 16 core portions 3 are arranged in a 4 ⁇ 4 two-dimensional array. The two directions related to this two-dimensional arrangement are called the Y-axis direction and the Z-axis direction, respectively.
  • the side surface of each core portion 3 is preferably parallel to the Y-axis direction or the Z-axis direction.
  • the laser amplification medium 1 of FIG. 1A has a structure in which a core portion 3 extending parallel to the X-axis direction is arranged inside a clad portion extending parallel to the X-axis direction.
  • the side surfaces are formed to have opposing flat surfaces extending parallel to the X-axis direction.
  • the core portion 3 according to this embodiment has a shape of a quadrangular prism or rectangular parallelepiped.
  • the dimension in the width direction of each core portion 3 is preferably about five to ten times the diameter of the core of a general optical fiber.
  • the cross-sectional area of the core portion 3 according to this embodiment is preferably about 25 to 100 times the diameter of the core of a general optical fiber.
  • these numerical values are merely examples and do not limit the present embodiment.
  • Each core portion 3 in FIG. 1A is covered with the clad portion 2 on its side surface.
  • the clad portion 2 exists between two adjacent core portions 3 .
  • FIG. 1B is a transparent bird's-eye view showing one configuration example of a virtual unit laser amplification medium 10 obtained when a part of the laser amplification medium 1 of FIG. 1A is extracted.
  • a unit laser amplification medium 10 in FIG. 1B includes one core portion 3 and a clad portion 2 covering the side surface thereof.
  • the refractive index of the core portion 3 is higher than that of the clad portion 2 . It is expected that the laser light incident from one end face of the core portion 3 does not leak from the core portion 3 to the clad portion 2 by satisfying a predetermined condition of the incident angle.
  • FIGS. 2, 3A, 3B, 3C, 4A, and 4B are cross-sectional views of the unit laser amplification medium 10 of FIG. 1B taken along an arbitrary cross section passing through the optical axis 31 of the core portion 3.
  • FIG. 1B is a cross-sectional view of the unit laser amplification medium 10 of FIG. 1B taken along an arbitrary cross section passing through the optical axis 31 of the core portion 3.
  • FIG. 1B is a cross-sectional view of the unit laser amplification medium 10 of FIG. 1B taken along an arbitrary cross section passing through the optical axis 31 of the core portion 3.
  • the optical axis direction is unified to the X-axis direction.
  • pumping lights 4A and 4B are made incident on the unit laser amplification medium 10 by roughly two methods.
  • the excitation light 4A is incident from the end surface of the core portion 3 .
  • the pumping light 4A does not necessarily have to be incident parallel to the optical axis 31 of the core portion 3, and does not necessarily have to be incident from both end faces.
  • the excitation light 4B is incident from the side surface 32 of the core portion 3. As shown in FIG.
  • the excitation light 4B does not necessarily have to be incident perpendicularly to the side surface 32 of the core portion 3, and does not necessarily have to be incident from a plurality of directions.
  • the pumping lights 4A and 4B enter from both the end surface and the side surface 32 of the core portion 3 .
  • the seed light amplified by the energy of the pumping lights 4A and 4B is preferably incident from the end face of the core portion 3.
  • FIG. 3A is a perspective overhead view showing an example of a method of making excitation light 4A incident from the end surface of each core portion 3 of the laser amplification medium 1 of FIG. 1A.
  • the pumping light 4A shown in FIG. 3A corresponds to the pumping light 4A shown in FIG.
  • the incident positions of the excitation light 4A are omitted for some of the core portions 3 for ease of viewing, but it is preferable that the excitation light 4A is actually incident on all the core portions 3 respectively.
  • FIG. 3B is a transparent bird's-eye view showing an example of a method of making the excitation light 4B incident from the side surface 32 of each core portion 3 of the laser amplification medium 1 of FIG. 1A.
  • the excitation light 4B shown in FIG. 3B corresponds to the excitation light 4B in FIG.
  • the pumping light 4B enters the inside of the core portion 3 from the side surface 32 of the core portion 3 by entering the pumping light 4B from the side surface of the clad portion 2 . Therefore, in the case of FIG. 3B, unlike the case of FIG. 3A, the seed light existing inside all the core portions 3 can be amplified only by injecting the pumping light 4B from the side surface of the clad portion 2 at once.
  • core portions 3 may be geometrically shaded by other core portions 3, but since the distance of the core portions 3 with respect to the direction of the excitation light 4B is short, the excitation light that is not absorbed It is possible to adopt a configuration in which the light 4B is absorbed by the core portion 3 in shadow.
  • FIG. 3C is a transmission bird's-eye view showing an example of a configuration of a modification of the laser amplification medium 1 of FIG. 1A and an example of a method of making pumping light 4C incident on the laser amplification medium 1 according to this modification.
  • the laser amplification medium 1 according to the modification of FIG. 3C is obtained by applying a double clad structure to the laser amplification medium 1 of FIG. 1A.
  • the laser amplification medium 1 of FIG. 3C is obtained by replacing the clad portion 2 of the laser amplification medium 1 of FIG. 1A with the inner clad portion 2A and the outer clad portion 2B.
  • the laser amplification medium 1 of FIG. 3C can also be obtained by replacing the cladding portion 2 of the laser amplification medium 1 of FIG. 1A with an inner cladding portion 2A and adding an outer cladding portion 2B to the outside of the side surface.
  • the excitation light 4C is fully emitted at the boundary surface between the inner clad portion 2A and the outer clad portion 2B. Reflection is repeated, and the excitation light 4C enters the inside of the core portion 3 from the side surface 32 of the core portion 3 during that time.
  • the refractive index of the outer clad portion 2B may be smaller than the refractive index of the inner clad portion 2A.
  • the seed light existing inside all the core portions 3 can be amplified simply by injecting the pumping light 4C from the end surface of the inner clad portion 2A at once.
  • FIG. 4A is a transmission bird's-eye view showing an example of the configuration of another modification of the laser amplification medium 1 of FIG. 1A and a method of making pumping light 4D incident on the laser amplification medium 1 according to this modification.
  • the laser amplification medium 1 according to the modification of FIG. 4A is obtained by replacing a portion of the core portion 3 of the laser amplification medium 1 of FIG. 1A with an optical path 6 for pumping light that is not doped with a laser gain medium.
  • FIG. 4B is a bird's-eye view showing an example of how the excitation light 4D entering from the end of the excitation light optical path 6 in FIG. 4A leaks to the outside from the side surface of the excitation light optical path 6.
  • the excitation light optical path 6 has a function of leaking incident light to the outside of the excitation light optical path 6 .
  • the excitation light optical path 6 includes a scattering source that scatters the incident light or a diffuse reflection source that diffuses the incident light.
  • the excitation light 4 ⁇ /b>D entering from the end of the excitation light optical path 6 leaks out in all directions along the side surfaces of the excitation light optical path 6 .
  • the excitation light 4 ⁇ /b>D leaking from the side surface of the excitation light optical path 6 enters all the core portions 3 from the side surface 32 of the core portion 3 .
  • the side surface of the excitation light optical path 6 may be appropriately processed so that the excitation light 4D can easily leak toward the clad portion 2 covering this side surface.
  • the pumping lights 4A, 4B, 4C, and 4D described above may be, for example, semiconductor laser lights having absorption wavelengths of the laser gain medium.
  • the pumping light 4D enters the pumping light optical path 6 from the end face thereof, thereby amplifying the seed light existing inside all the core portions 3. can do. Therefore, in the case of FIGS. 4A and 4B also, unlike the case of FIG. 3A, the seed light existing inside all the core portions 3 can be removed by simply injecting the excitation light 4D from the end face of the excitation light optical path 6 at once. can be amplified.
  • the laser amplification medium 1 can amplify the seed light existing inside all the core portions 3 by entering the pump light 4B, 4C or 4D at once. .
  • FIG. 5 is a flow chart showing one configuration example of a method for manufacturing the laser amplification medium 1 according to one embodiment.
  • 6A is a cross-sectional view showing that the laser amplification medium 1 of FIG. 1A can be manufactured by laminating the first substrate 11 and the second substrate 12.
  • FIG. 6B to 6H are cross-sectional views showing an example of the state during the manufacture of the laser amplification medium 1.
  • the stacking direction is unified to the Z-axis direction.
  • the flowchart of FIG. 5 includes a total of 4 steps from the first step S1 to the fourth step S4.
  • the first step S1 is executed.
  • the first substrate 11 is produced.
  • the first substrate 11 comprises a first portion 20 .
  • the first substrate 11 may be composed only of the first portion 20 .
  • the first portion 20 is made of the first material that constitutes the clad portion 2 of the laser amplification medium 1.
  • the first material is, for example, glass or YAG (Yttrium Aluminum Garnet) having predetermined characteristics. garnet) crystals or YAG ceramics.
  • the first material has the same refractive index as the cladding portion 2 .
  • FIG. 6B shows a cross section of the first substrate 110 that is thicker than the desired thickness.
  • a first substrate 110 having a thickness greater than a desired thickness is first produced, and a part of the first substrate 110 is scraped off from both or one side thereof to produce a first substrate 11 having a desired thickness. good.
  • CMP Chemical Mechanical Polishing
  • This scraping step may be performed as part of the first step S1, or may be performed as a separate step from the first step S1. In the latter case, in the first step S1, instead of producing the first substrate 11 with the desired thickness, a thicker first substrate 110 may be produced.
  • the required number of first substrates 11 and 110 may be generated collectively. Alternatively, the required number of first substrates 11 and 110 may be generated little by little by executing the first step S1 a plurality of times before and after the other steps.
  • the second step S2 is executed.
  • a second substrate 12 is produced.
  • the second substrate 12 comprises a first portion 20 and a second portion 30 .
  • the second substrate 12 may be composed only of the first portion 20 and the second portion 30 .
  • the second portion 30 may be made of a second material.
  • the second material is a material that constitutes the core portion 3 of the laser gain medium 1, and can be obtained, for example, by doping ions of an appropriate active element into glass, YAG crystal, or YAG ceramics as a laser gain medium.
  • This active element may be, for example, neodymium, ytterbium, erbium, or the like.
  • the second material preferably has the same refractive index as the core portion 3.
  • the refractive index of the core portion 3 may be uniform over its entire area, or may vary continuously according to the distance from the optical axis 31 in the radial direction.
  • the plurality of second portions 30 formed by ion doping do not always have ideal shapes due to manufacturing errors and other factors.
  • the ideal shape is a rectangular parallelepiped extending in the same direction like the core portion 3 in FIG. 1A.
  • the core portion 3 has a shape with sufficient precision for practical use, even if it contains a realistic manufacturing error, it is simply referred to as a "rectangular parallelepiped". The same is true for other geometric definitions.
  • FIG. 6C shows a cross section of the second substrate 120 that is thicker than the desired thickness.
  • the second substrate 120 having a thickness greater than the desired thickness is produced first, and then both sides or one side of the second substrate 120 is scraped off to produce the second substrate 12 having the desired thickness.
  • This scraping step may be performed as part of the second step S2, or may be performed as a separate step from the second step S2.
  • the second portion 30 is exposed on one surface of the second substrate 120, it does not necessarily have to reach the other surface.
  • the required number of second substrates 12 and 120 may be generated collectively. Alternatively, the required number of second substrates 12 and 120 may be generated little by little by executing the second step S2 a plurality of times before and after the other steps.
  • the third step S3 is executed.
  • the first substrates 11, 110 and the second substrates 12, 120 are laminated.
  • one surface of the second substrates 12 and 120 is bonded to one surface of the first substrates 11 and 110 .
  • both first portions 20 are joined so as to be optically integrated.
  • optically integrated bonding means that, for example, when light passes through this bonding surface, undesirable phenomena such as refraction, reflection, diffraction, and scattering do not occur, or even if they occur, they are practical. We mean such a junction that is practically negligible.
  • Each of the first substrates 11, 110 and the second substrates 12, 120 after being optically integrated may be called a virtual substrate, a virtual layer, or the like.
  • the joint surface after being optically integrated may be called a virtual surface, a virtual plane, a virtual joint surface, or the like.
  • Room-temperature bonding for example, is known as a method for realizing such bonding. In any case, it is preferable to perform processing such as polishing on the surfaces to be joined before joining.
  • FIG. 6D shows the surface of the second substrate 120 from which the second portion 30 is exposed.
  • the second substrate 120 having a desired thickness can be produced by scraping off the scraped portion 121 up to a predetermined thickness from the non-bonded surface of the second substrate 120 .
  • FIG. 6E shows the joined body of the first substrate 110 and the second substrate 12 after scraping away the scraped portion 121 of FIG. 6D.
  • the side surface of the second portion 30, which will be used as the core portion 3 in the future has at least a flat portion in the +Z-axis direction and a flat portion in the ⁇ Z-axis direction, both of which lie on the XY plane.
  • each core portion 3 of the laser amplification medium 1 preferably parallel to each other, i.e. parallel to each other.
  • the side surface 32 of each core portion 3 of the laser amplification medium 1 according to the present embodiment has two plane portions facing each other in the Z-axis direction on the virtual bonding surfaces of the first substrate 11 and the second substrate 12. It is preferable to include at least
  • lamination may be repeated a necessary number of times, or the first step S1 for generating the first substrates 11 and 110 and the second step S2 for generating the second substrates 12 and 120 may be performed. It may be repeated little by little according to the timing of execution.
  • a new first substrate 110 is further laminated on the surface of the second substrate 12 laminated on the first substrate 110 .
  • the first substrate 11 having a desired thickness can be produced by scraping off the scraped portion 111 up to a predetermined thickness from the unbonded surface of the new first substrate 110.
  • FIG. 6G shows the joined body of the first substrate 110, the second substrate 12 and the new first substrate 11 after the scraped portion 111 of FIG. 6F has been scraped away.
  • FIG. 6H shows a laminate obtained by laminating the first substrates 11, 110 and the second substrate 12 the number of times necessary to produce the laser amplification medium 1 of FIG. 1A. Thereafter, by scraping off the scraped portion 111 from each of the lowermost layer and the uppermost first substrate 110, the first substrate 11 having a desired thickness in each of the lowermost preliminary uppermost layers is generated. A laser gain medium 1 is produced, namely the laser gain medium 1 of FIG. 1A.
  • the fourth step S4 is executed.
  • finishing is performed.
  • processing such as polishing may be performed on the end faces in the X-axis direction and/or the Y-axis direction of the laser amplification medium 1 in FIG. 6A.
  • one end face of the laser amplification medium 1 in the X-axis direction can be processed into a state suitable for optically connecting a pre-stage device for injecting seed light to be amplified into each core portion 3 .
  • the other end face of the laser amplification medium 1 in the X-axis direction is preferably processed into a state suitable for emitting the laser light amplified by each core portion 3 to the outside.
  • the other end face of the laser amplification medium 1 in the X-axis direction is optically connected to a post-stage device for coupling a plurality of laser beams amplified by the plurality of core portions 3 into one high-output laser beam. It is preferable to process it in a state suitable for
  • the first portion 20 and the second portion 30 may be separately produced, processed into a desired shape, and then alternately joined to produce the second substrate 12.
  • FIG. it is expected that the shape of the core portion 3 can be brought closer to an ideal rectangular parallelepiped.
  • FIG. 7 is a cross-sectional view of one configuration example of the laser amplification medium 1 according to one embodiment.
  • a plurality of first substrates 11 and a plurality of second substrates 12 are alternately stacked in the Z-axis direction.
  • the number of the plurality of core portions 3 in the Y-axis direction The placement is staggered.
  • two first substrates 11 and one second substrate 11 are provided between an arbitrary core portion 3 and the core portion 3 closest to the arbitrary core portion 3 in the +Z-axis direction or the ⁇ Z-axis direction.
  • a substrate 12 is sandwiched.
  • a plurality of core portions 3 are arranged in a so-called staggered array in a cross section of the laser amplification medium 1 taken along a virtual plane perpendicular to the X-axis direction.
  • the laser amplification medium 1 according to the present embodiment can be manufactured by alternately laminating the first substrate 11 and the second substrate 12, so that the modified example shown in FIG. 7 can be easily adopted. is also possible.
  • such a modification is advantageous in order to allow the excitation light 4B to enter all the core portions 3 more uniformly when the excitation light 4B is incident from the side surface of the clad portion 2. is expected to become possible.
  • FIG. 8 is a transparent bird's-eye view showing a partial configuration example of the laser amplification medium 1 according to one embodiment.
  • a laser amplification medium 1 in FIG. 8 includes a clad portion 2, a core portion 3, and a plurality of flow paths 5.
  • the total number of flow paths 5 is 8 and the total number of core portions 3 is 1, but these numerical values are merely examples and do not limit the present embodiment.
  • the cladding part 2 is independent.
  • the flow path 5 is a cavity provided inside the clad portion 2 and extends in the same X-axis direction as the core portion 3 .
  • the flow path 5 penetrates the clad portion 2 in the X-axis direction.
  • the channel 5 may be defined as a side surface parallel to the X-axis direction.
  • the cross section of the channel 5 taken along a virtual plane orthogonal to the X-axis direction is rectangular.
  • the rectangular shape of the flow path 5 may be a different rectangular shape than the rectangular shape of the cross section of the core portion 3 on the same plane.
  • the rectangular shape of the flow path 5 has a larger area than the rectangular shape of the core portion 3 .
  • the cross-sectional shape and cross-sectional area of the flow path 5 are only examples, and the cross-section of the flow path 5 may have a shape other than a rectangle, and may not necessarily be larger than the cross-sectional area of the core portion 3. .
  • the channel 5 may be generated, for example, by forming a cavity inside the cladding portion 2 of the laser amplification medium 1 according to the first embodiment.
  • a fine processing technique such as ablation using a femtosecond laser is known.
  • FIG. 9 is a graph for explaining an example of a method for controlling the temperature of the laser amplification medium 1 by flowing a predetermined fluid through the laser amplification medium 1 using the channel 5 according to one embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the temperature of the laser amplification medium 1 .
  • T 0 the target temperature at which the laser gain medium 1 functions most efficiently
  • T min the minimum and maximum temperatures at which the laser gain medium 1 functions properly are represented by "T min " and "T max , respectively. ”.
  • a fluid whose temperature is equal to or lower than the target temperature T0 is caused to flow through the flow path 5 to cool the laser amplification medium 1. 1 can be brought closer to the target temperature T0 .
  • a fluid whose temperature is equal to or higher than the target temperature T0 is caused to flow through the flow path 5 to heat the laser amplification medium 1 H,
  • the temperature of the laser amplification medium 1 can be made close to the target temperature T0 .
  • This fluid may be liquid or gas. Helium gas may be used as an example of this fluid.
  • the scattering of the excitation light 4A, 4B, 4C inside the laser amplification medium 1 may be suppressed, or conversely may be assisted.
  • the scattering it is expected that the excitation lights 4A, 4B, and 4C reach the far core portion 3 more easily.
  • the scattering is assisted, it is expected that the excitation light beams 4A, 4B, and 4C reach the core portions 3 hidden behind the other core portions 3 more easily.
  • FIG. 10A is a cross-sectional view showing one configuration example of the laser amplification medium 1 according to one embodiment.
  • FIG. 10B is a cross-sectional view showing another configuration example of the laser amplification medium 1 according to one embodiment.
  • the core portions 3 of the laser amplification medium 1 shown in FIG. is obtained by increasing the number of flow paths 5 shown in FIG.
  • the laser amplification medium 1 of FIG. 10B has a total of 24 flow paths 5 and a total of 18 core portions 3 of the laser amplification medium 1 of FIG. and the core portions 3 are arranged in a two-dimensional array of 6 ⁇ 7 in a cross section along a virtual plane perpendicular to the X-axis direction.
  • the channels 5 and the core portions 3 are arranged alternately in the Z-axis direction, and six channels 5 and six core portions 3 are arranged in the Y-axis direction. Focusing on the core portion 3 at this time, it is arranged in a two-dimensional array of 6 ⁇ 3. Focusing on the channels 5, they are arranged in a two-dimensional array of 6 ⁇ 4.
  • thermal resistance R1 between core portion 3A and channel 5 and thermal resistance R2 between core portion 3B and channel 5 are considered.
  • the core portion 3A is located outside the 4 ⁇ 4 two-dimensional array. Therefore, there is no other core portion 3 between the core portion 3A and the channel 5A having the shortest distance from the core portion 3A.
  • the core portion 3B is located inside the 4 ⁇ 4 two-dimensional array. Therefore, another core portion 3 exists between the core portion 3B and the channel 5B having the shortest distance from the core portion 3B. Therefore, the thermal resistance R2 is considered to be greater than the thermal resistance R1.
  • the thermal resistance R3 between the core portion 3C and the flow channel 5 and the thermal resistance R4 between the core portion 3D and the flow channel 5 are considered.
  • the core portion 3C is located outside the 6 ⁇ 3 two-dimensional array.
  • the core part 3D is located inside in the same two-dimensional array.
  • other core portions 3 do not exist between the core portion 3C and the flow paths 5C and 5D that are closest to the core portion 3C.
  • thermal resistance R3 and thermal resistance R4 are considered to be the same.
  • a temperature difference is less likely to occur between the core portion 3C and the core portion 3D.
  • FIG. 11 is a cross-sectional view showing still another configuration example of the laser amplification medium 1 according to one embodiment.
  • a plurality of flow paths 5 and a plurality of core portions 3 are arranged in a so-called checker array.
  • the channel 5 and the core portion 3 are arranged in a two-dimensional array in a cross section along a virtual plane orthogonal to the X-axis direction, where the Y-axis direction and the Z-axis direction of the channel 5 are
  • the core portions 3 are adjacent to each other, and the flow paths 5 are adjacent to the core portions 3 in the Y-axis direction and the Z-axis direction.
  • FIG. 12 is a cross-sectional view showing one configuration example of the laser amplification medium 1 according to one embodiment.
  • the laser amplification medium 1 of FIG. 12 is obtained, for example, by increasing the number of core portions 3 of the laser amplification medium 1 of FIG.
  • the remaining ten core portions 3 and fifteen stress-applying portions 7 each have a rectangular parallelepiped shape extending in the X-axis direction.
  • the core portions 3 and the stress applying portions 7 are arranged in a 5 ⁇ 5 two-dimensional array.
  • the stress-applying portions 7 and the core portions 3 are alternately arranged in the Y-axis direction.
  • five stress-applying portions 7 and five core portions 3 are arranged in a row.
  • the stress applying portions 7 are arranged on both sides in the Y-axis direction for each of the plurality of core portions 3 .
  • the stress-applying portion 7 may be formed, for example, by a method similar to that of the core portion 3, or may be formed by opening a flow path 5 inside the clad portion 2 and pouring and hardening an appropriate material into the internal space. Also good. In either case, the core portion 3 receives stress from both sides in the Y-axis direction, so that the polarization direction of light propagating in the X-axis direction inside the core portion 3 is controlled to approach the Z-axis direction. This leads to the laser amplification medium 1 being able to output laser light of higher quality. It may also be used in applications such as beam coupling using linearly polarized light and harmonic generation using nonlinear optical phenomena.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

製造が容易なレーザ増幅媒体と、実現が容易なレーザ増幅媒体の製造方法とを提供する。 レーザ増幅媒体は、クラッド部と、第1コア部および第2コア部と、仮想的な第1層、第2層および第3層とを備える。第1コア部および第2コア部は、軸方向に平行に延在し、クラッド部によって側面が被覆されている。第1層は、クラッド部の一部、第1コア部および第2コア部を含む。第2層および第3層は、クラッド部の一部を含む。第1層は、第2層および第3層の間に、軸方向に直交する積層方向に積層および接合されている。第1コア部および第2コア部のそれぞれにおける側面は、第1平面部分および第2平面部分を備える。第1平面部分は、第1層の、第2層との仮想的な接合面である第1表面に含まれる。第2平面部分は、第1層の、第3層との仮想的な接合面である第2表面に含まれる。

Description

レーザ増幅媒体およびレーザ増幅媒体の製造方法
 本発明はレーザ増幅媒体およびレーザ増幅媒体の製造方法に関する。
 高品質かつ高出力なレーザが、レーザ加工、科学研究、核融合、宇宙デブリ除去、安全補償などの分野で必要とされている。このようなレーザを実現する方法として、多くの場合、固体レーザおよびファイバレーザが検討される。
 このうち、ファイバレーザでは、導波路の面積が比較的小さいため、導波路内部のパワー密度が比較的大きくなる傾向がある。このことは、特に、パルスレーザの場合に顕著である。その結果、光ファイバなどの材料にダメージが発生したり、非線形光学効果による特性の劣化が発生したりするなどの問題が知られている。
 そこで、それぞれの出力パワーが小さい多数のファイバレーザを結合することによって大きい出力パワーを得る技術が提案されている。
 上記に関連して、非特許文献1(R. Soulard et al.著、「ICAN:A novel laser architecture for space debris removal」、Acta Astronautica 105、2014年発行、pp.192-200)および非特許文献2(T. Ebisuzaki et al.著、「Demonstration designs for the remediation of space debris from the International Space Station」、Acta Astronautica 112、2015年発行、pp.102-113)では、CAN(Coherent Amplification Network:コヒーレント増幅ネットワーク)と呼ばれる多数(例えば、1万本)のファイバレーザを結合することが提案されている。
 また、特許文献1(特開2013-148769号公報)には、複数ビーム結合装置が開示されている。この複数ビーム結合装置は、位相シフト部と、重ね合わせ部と、観測部と、位相制御部とを備える。位相シフト部は、複数のレーザ光のそれぞれの位相をシフトさせることによって複数のシフトレーザ光を生成する。重ね合わせ部は、複数のシフトレーザ光のそれぞれと参照光とを重ね合わせることによって複数の重ね合わせレーザ光を生成する。観測部は、複数の重ね合わせレーザ光の各々を観測した際に現れる空間的な干渉パターンに関する干渉パターン情報を生成する。位相制御部は、複数の重ね合わせレーザ光毎に得られた干渉パターン情報に基づいて、位相シフト部による位相シフトをフィードバック制御し、それにより、複数のシフトレーザ光を所望の状態に設定する。
特開2013-148769号公報
R. Soulard et al.著、「ICAN:A novel laser architecture for space debris removal」、Acta Astronautica 105、2014年発行、pp.192-200 T. Ebisuzaki et al.著、「Demonstration designs for the remediation of space debris from the International Space Station」、Acta Astronautica 112、2015年発行、pp.102-113
 製造が容易なレーザ増幅媒体と、実現が容易なレーザ増幅媒体の製造方法とを提供する。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態によれば、レーザ増幅媒体は、クラッド部と、第1コア部および第2コア部と、仮想的な第1層と、仮想的な第2層および仮想的な第3層とを備える。クラッド部は、所定の第1屈折率を有する。第1コア部および第2コア部は、第1屈折率より高い第2屈折率をそれぞれ有し、所定の軸方向に対して平行にそれぞれ延在し、クラッド部によってそれぞれの側面が被覆されている。仮想的な第1層は、クラッド部の一部、第1コア部および第2コア部を含む。仮想的な第2層および仮想的な第3層は、クラッド部の別の一部をそれぞれ含む。第1層は、第2層および第3層の間に、軸方向に直交する所定の積層方向に積層および接合されている。第1コア部および第2コア部のそれぞれにおいて、側面は、第1平面部分と、第2平面部分とを備える。第1平面部分は、第1層の、第2層との仮想的な接合面であり積層方向に直交する仮想的な第1表面に含まれる。第2平面部分は、第1層の、第3層との仮想的な接合面であり積層方向に直交する仮想的な第2表面に含まれ、第1平面部分に対向している。
 一実施の形態によれば、レーザ増幅媒体の製造方法は、所定の第1屈折率を有する複数の第1領域と、第1屈折率より大きい第2屈折率を有する複数の第2領域とを含む第1層を生成することと、第1屈折率を有する第2層および第3層を生成することと、第2層、第1層および第3層をこの順に、所定の積層方向に積層することとを含む。積層することは、複数の第1領域および第2層を接合するように、第1層の、積層方向に直交する第1表面に、第2層を接合することと、複数の第1領域および第3層を接合するように、第1層の、第1表面に対向する第2表面に、第3層を接合することとを含む。第1層を生成することは、複数の第2領域が、第1表面に対して平行な所定の軸方向に対して平行にそれぞれ延在し、第1表面に含まれる第1平面部分と、第2表面に含まれる第2平面部分とを含む側面をそれぞれ有する、第1コア部および第2コア部を備えるように、複数の第2領域を生成することを含む。第2層、第1層および第3層を積層することは、一体化された複数の第1領域、第2層および第3層が、第1コア部および第2コア部のそれぞれにおいて側面を被覆するクラッド部として機能するように、第2層、第1層および第3層を積層することを含む。
 前記一実施の形態によれば、製造が容易なレーザ増幅媒体と、実現が容易なレーザ増幅媒体の製造方法とを提供することが出来る。
図1Aは、一実施形態によるレーザ増幅媒体の一構成例を示す俯瞰図である。 図1Bは、図1Aのレーザ増幅媒体の一部を抜き出した場合に得られる仮想的な単位レーザ増幅媒体の一構成例を示す透過俯瞰図である。 図2は、図1Bの単位レーザ増幅媒体の、コア部の光軸を通る任意の断面による断面図である。 図3Aは、図1Aのレーザ増幅媒体の各コア部の端面から励起光を入射する方法の一例を示す透過俯瞰図である。 図3Bは、図1Aのレーザ増幅媒体の各コア部の側面から励起光を入射する方法の一例を示す透過俯瞰図である。 図3Cは、図1Aのレーザ増幅媒体の一変形例の構成と、この変形例によるレーザ増幅媒体に励起光を入射する方法の一例を示す透過俯瞰図である。 図4Aは、図1Aのレーザ増幅媒体の別の変形例の構成と、この変形例によるレーザ増幅媒体に励起光を入射する方法の一例を示す透過俯瞰図である。 図4Bは、図4Aの励起光用光路の端部から入射した励起光が、励起光用光路の側面から外部に漏れ出る様子の一例を示す俯瞰図である。 図5は、一実施形態によるレーザ増幅媒体の製造方法の一構成例を示すフローチャートである。 図6Aは、図1Aのレーザ増幅媒体が、第1基板および第2基板を積層することで製造可能であることを示す断面図である。 図6Bは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Cは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Dは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Eは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Fは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Gは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図6Hは、レーザ増幅媒体の製造途中における状態の一例を示す断面図である。 図7は、一実施形態によるレーザ増幅媒体の一構成例の断面図である。 図8は、一実施形態によるレーザ増幅媒体の一構成例を示す透過俯瞰図である。 図9は、一実施形態による流路を用いたレーザ増幅媒体に所定の流体を流してレーザ増幅媒体の温度を制御する方法の一例について説明するためのグラフである。 図10Aは、一実施形態によるレーザ増幅媒体の一構成例を示す断面図である。 図10Bは、一実施形態によるレーザ増幅媒体の別の一構成例を示す断面図である。 図11は、一実施形態によるレーザ増幅媒体のさらに別の一構成例を示す断面図である。 図12は、一実施形態によるレーザ増幅媒体の一構成例を示す断面図である。
 添付図面を参照して、本発明によるレーザ増幅媒体およびレーザ増幅装置の製造方法を実施するための形態を以下に説明する。
 (第1の実施形態)
 図1Aを参照して、本実施形態によるレーザ増幅媒体1の一構成例について説明する。図1Aは、一実施形態によるレーザ増幅媒体1の一構成例を示す透過俯瞰図である。
 図1Aのレーザ増幅媒体1の構成要素について説明する。図1Aのレーザ増幅媒体1は、クラッド部2と、複数のコア部3とを備える。図1Aの例では、コア部3の総数は16であるが、これはあくまでも一例にすぎず、本実施形態を限定しない。その一方で、クラッド部2は単独であることが好ましい。
 コア部3は一方向に延在し、対向する側面に平面を有する形状に形成されている。例えば、図1Aの例では、それぞれのコア部3は同一の直方体の形状を有している。また、クラッド部2も直方体の形状を有しているが、その寸法はコア部3とは異なる。ただし、これらはあくまでも一例にすぎず、本実施形態を限定しない。例えば、コア部3は、その延在方向に直交する断面の形状が六角形である六角柱の形状を有していてもよい。
 図1Aのレーザ増幅媒体1の構成要素の位置関係について説明する。図1Aの例では、合計16のコア部3が同一の方向に延在している。この延在方向をX軸方向と呼ぶ。また、クラッド部2も同じX軸方向に延在している。コア部3にはレーザ利得媒質がドーピングされており、後述するように励起光と種光を入射させることで種光を増幅した増幅光を出射させることができる。
 ここで、レーザ増幅媒体1の、X軸方向に直交する仮想的な平面による断面を考える。この断面の構成は、レーザ増幅媒体1の両端面の構成と同じである。言い換えれば、X軸方向において、クラッド部2の長さと、それぞれのコア部3の長さは、同じである。さらに言い換えれば、X軸方向において、それぞれのコア部3の各端面は、クラッド部2の各端面に対して面一に露出している。ただし、この構成は実施形態説明のための一例であり、コア部3の端面は必ずしもX軸に直交しなくてもよい。これにより、出射方向の調整や戻り光の防止効果を付与することができ得る。また、コア部3の端面に無反射コーティング等のコーティングを付加してもよい。
 コア部3の側面は、X軸方向に平行に延在する対向した平面を有する形状に形成されている。例えば、図1Aの例では、上記の断面または端面において、それぞれのコア部3の側面は、矩形の形状を有している。図1Aの例では、コア部3の側面とは、直方体の6面のうち、X軸方向に対して平行な4面を指す。また、上記の断面または端面において、合計16のコア部3の側面は、4×4の二次元配列状に配置されている。この二次元配列に係る2つの方向を、それぞれ、Y軸方向およびZ軸方向と呼ぶ。さらに、各コア部3の側面は、Y軸方向またはZ軸方向に対して平行であることが好ましい。
 図1Aのレーザ増幅媒体1は、X軸方向に平行に延在するクラッド部の内部にX軸方向に平行に延在するコア部3が配列された構造を有しており、コア部3の側面はX軸方向に平行に延在する対向する平面を有するように形成されている。例えば、本実施形態によるコア部3は四角柱または直方体の形状を有している。さらに、本実施形態では、それぞれのコア部3の幅方向の寸法が、一般的な光ファイバのコアの直径の約5倍~10倍程度であることが好ましい。言い換えれば、本実施形態によるコア部3の断面積は、一般的な光ファイバのコアの直径の約25倍~100倍程度であることが好ましい。ただし、これらの数値はあくまでも一例にすぎず、本実施形態を限定しない。
 図1Aの各コア部3は、その側面が、クラッド部2によって被覆されている。言い換えれば、隣接する2つのコア部3の間には、クラッド部2が存在する。
 図1Bを参照して、図1Aの各コア部3と、その側面を被覆するクラッド部2とが、光導波路としても機能し得ることについて説明する。図1Bは、図1Aのレーザ増幅媒体1の一部を抜き出した場合に得られる仮想的な単位レーザ増幅媒体10の一構成例を示す透過俯瞰図である。
 図1Bの単位レーザ増幅媒体10は、1つのコア部3と、その側面を被覆するクラッド部2とを備えている。ここで、コア部3の屈折率は、クラッド部2の屈折率よりも高い。コア部3の一方の端面から入射するレーザ光は、その入射角度が所定の条件を満たすことで、コア部3からクラッド部2に漏出しないことが期待される。
 図1Bの単位レーザ増幅媒体10を合計16本用意して、4×4の二次元配列に配置して接合し、全てのクラッド部2を光学的に一体化させることによって、図1Aのレーザ増幅媒体1を得ることができる、とも言える。
 図2、図3A、図3B、図3C、図4Aおよび図4Bを参照して、本実施形態によるレーザ増幅媒体1に励起光4A、4B、4C、4Dを入射する複数の方法について説明する。図2は、図1Bの単位レーザ増幅媒体10の、コア部3の光軸31を通る任意の断面による断面図である。なお、本明細書の全ての図において、光軸方向はX軸方向に統一している。
 図2の例では、大別して2種類の方法により、励起光4A、4Bを単位レーザ増幅媒体10に入射している。第1の方法では、励起光4Aをコア部3の端面から入射している。ただし、励起光4Aは、コア部3の光軸31に対して必ずしも平行に入射しなくても良いし、必ずしも両方の端面から入射しなくても良い。第2の方法では、励起光4Bをコア部3の側面32から入射している。ここで、励起光4Bは、コア部3の側面32に対して必ずしも垂直に入射しなくても良いし、必ずしも複数の方向から入射しなくても良い。なお、これら2つの方法を組み合わせて、コア部3の端面および側面32の両方から励起光4A、4Bを入射することも可能である。いずれの場合も、励起光4A、4Bのエネルギーによって増幅される種光は、コア部3の端面から入射されることが好ましい。
 図3Aは、図1Aのレーザ増幅媒体1の各コア部3の端面から励起光4Aを入射する方法の一例を示す透過俯瞰図である。図3Aに示した励起光4Aは、図2の励起光4Aに対応している。図3Aでは見やすさのために一部のコア部3については励起光4Aの入射位置を省略しているが、実際には全てのコア部3に励起光4Aをそれぞれ入射することが好ましい。
 図3Bは、図1Aのレーザ増幅媒体1の各コア部3の側面32から励起光4Bを入射する方法の一例を示す透過俯瞰図である。図3Bに示した励起光4Bは、図2の励起光4Bに対応している。図3Bでは、クラッド部2の側面から励起光4Bを入射することで、コア部3の内部にもコア部3の側面32から励起光4Bが入射する。したがって、図3Bの場合は、図3Aの場合とは異なり、励起光4Bをクラッド部2の側面から一度に入射するだけで全てのコア部3の内部に存在する種光を増幅できる。なお、一部のコア部3が、幾何的に他のコア部3の影になっている場合もあり得るが、励起光4Bの方向に対するコア部3の距離は短いため、吸収されなかった励起光4Bが影になっているコア部3で吸収されるという構成をとることは可能である。
 図3Cは、図1Aのレーザ増幅媒体1の一変形例の構成と、この変形例によるレーザ増幅媒体1に励起光4Cを入射する方法の一例を示す透過俯瞰図である。図3Cの変形例によるレーザ増幅媒体1は、図1Aのレーザ増幅媒体1にダブルクラッド構造を適用することで得られる。言い換えれば、図1Aのレーザ増幅媒体1のクラッド部2を、内部クラッド部2Aおよび外部クラッド部2Bに置き換えることで、図3Cのレーザ増幅媒体1が得られる。もしくは、図1Aのレーザ増幅媒体1のクラッド部2を内部クラッド部2Aと呼び換え、その側面の外側に外部クラッド部2Bを追加することでも図3Cのレーザ増幅媒体1が得られる。
 図3Cの場合には、例えば、内部クラッド部2Aの端面に励起光4Cを適宜な入射角度で入射することによって、励起光4Cは内部クラッド部2Aおよび外部クラッド部2Bの間の境界面で全反射を繰り返し、その間にコア部3の内部にもコア部3の側面32から励起光4Cは入射する。このとき、外部クラッド部2Bの屈折率は、内部クラッド部2Aの屈折率より小さくても良い。図3Cの場合も、図3Aの場合とは異なり、励起光4Cを内部クラッド部2Aの端面から一度に入射するだけで全てのコア部3の内部に存在する種光を増幅できる。
 図4Aは、図1Aのレーザ増幅媒体1の別の変形例の構成と、この変形例によるレーザ増幅媒体1に励起光4Dを入射する方法の一例を示す透過俯瞰図である。図4Aの変形例によるレーザ増幅媒体1は、図1Aのレーザ増幅媒体1のうち、一部のコア部3を、レーザ利得媒質をドーピングしない励起光用光路6に置き換えることで得られる。
 図4Bは、図4Aの励起光用光路6の端部から入射した励起光4Dが、励起光用光路6の側面から外部に漏れ出る様子の一例を示す俯瞰図である。図4Bの例では、励起光用光路6は入射した光を励起光用光路6の外へ漏出させる機能を備えている。例えば、励起光用光路6は入射光を散乱させる散乱源、あるいは乱反射させる乱反射源を含む。これにより、励起光用光路6の端部から入射した励起光4Dは、励起光用光路6の側面のあらゆる方向に向けて漏れ出る。励起光用光路6の側面から漏れ出した励起光4Dは、全てのコア部3の内部に、コア部3の側面32から入射する。ここで、励起光用光路6の側面は、この側面を被覆するクラッド部2に向けて励起光4Dが漏れ出し易いように、適宜な加工が施されていても良い。
 上記に説明した励起光4A、4B、4C、4Dは、例えば、レーザ利得媒質の吸収波長を有する半導体レーザ光であっても良い。
 このように、図4Aおよび図4Bのレーザ増幅媒体1では、励起光用光路6の内部にその端面から励起光4Dを入射することで、全てのコア部3の内部に存在する種光を増幅することができる。したがって、図4Aおよび図4Bの場合も、図3Aの場合とは異なり、励起光4Dを励起光用光路6の端面から一度に入射するだけで全てのコア部3の内部に存在する種光を増幅できる。
 以上に説明したように、本実施形態によるレーザ増幅媒体1は、励起光4B、4Cまたは4Dを一度に入射することで、全てのコア部3の内部に存在する種光を増幅することができる。
 図5および図6A~図6Hを参照して、図1Aに示したレーザ増幅媒体1を容易に製造する方法、すなわち本実施形態によるレーザ増幅媒体1の製造方法、の一例について説明する。図5は、一実施形態によるレーザ増幅媒体1の製造方法の一構成例を示すフローチャートである。図6Aは、図1Aのレーザ増幅媒体1が、第1基板11および第2基板12を積層することで製造可能であることを示す断面図である。図6B~図6Hは、レーザ増幅媒体1の製造途中における状態の一例を示す断面図である。なお、本明細書の全ての図において、積層方向はZ軸方向に統一している。
 図5のフローチャートは、第1ステップS1から第4ステップS4までの合計4のステップを含んでいる。図5のフローチャートが開始すると、第1ステップS1が実行される。
 第1ステップS1では、第1基板11を生成する。ここで、第1基板11は、第1部分20を備える。第1基板11は、第1部分20だけで構成されていても良い。第1部分20は、レーザ増幅媒体1のクラッド部2を構成する第1材質で構成されており、この第1材質は、例えば、所定の特性を有するガラスまたはYAG(Yttrium Aluminum Garnet:イットリウム・アルミニウム・ガーネット)結晶またはYAGセラミックスであっても良い。第1材質は、クラッド部2と同じ屈折率を有する。
 図6Bは、所望の厚さより厚い第1基板110の断面を示している。第1ステップS1では、まず所望の厚さより厚い第1基板110を生成し、その両面または片面から第1基板110の一部を削り取ることによって所望の厚さの第1基板11を生成しても良い。削り取る方法としては、例えば、半導体の製造方法で使用されるCMP(Chemical Mechanical Polishing:化学機械研磨)などが知られている。
 この削り取るステップは、第1ステップS1の一部として実行されても良いし、第1ステップS1とは別のステップとして実行されても良い。後者の場合、第1ステップS1では、所望する厚さを有する第1基板11を生成する代わりに、より厚い第1基板110を生成しても良い。
 第1ステップS1では、必要な枚数の第1基板11、110をまとめて生成しても良い。また、第1ステップS1をその他のステップの前後に複数回実行することで必要な枚数の第1基板11、110を少しずつ生成しても良い。
 第1ステップS1の次には、第2ステップS2が実行される。第2ステップS2では、第2基板12を生成する。ここで、第2基板12は、第1部分20および第2部分30を備える。第2基板12は、第1部分20および第2部分30だけで構成されていても良い。第2部分30は、第2材質で構成されていても良い。第2材質は、レーザ増幅媒体1のコア部3を構成する材質であり、例えば、ガラスまたはYAG結晶またはYAGセラミックスに適切な活性元素のイオンをレーザ利得媒質としてドーピングすることで得られる。この活性元素は、例えば、ネオジム、イッテルビウム、エルビウムなどであっても良い。
 第2材質は、コア部3と同じ屈折率を有することが好ましい。ただし、コア部3の屈折率は、その全域において均一であっても良いし、光軸31からラジアル方向の距離に応じて連続的に変化しても良い。
 イオンのドーピングによって形成される複数の第2部分30は、製造誤差などの要因によって、必ずしも理想的な形状を有するとは限らない。ここで、理想的な形状とは、図1Aのコア部3のような、同じ方向に延在する直方体である。しかし、本実施形態では、たとえ現実的な製造誤差を含んでいたとしても、コア部3が実用上十分な精度を有する形状を有していれば、これを単に「直方体」と呼ぶ。その他の幾何学的定義についても同様である。
 図6Cは、所望の厚さより厚い第2基板120の断面を示している。第2ステップS2では、第1ステップS1の場合と同様に、まず所望の厚さより厚い第2基板120を生成し、その両面または片面を削り取ることで所望の厚さの第2基板12を生成しても良い。そして、この削り取るステップは、第2ステップS2の一部として実行されても良いし、第2ステップS2とは別のステップとして実行されても良い。このことに関連して、第2部分30は、第2基板120の一方の表面に露出している一方で、必ずしも他方の表面まで達していていなくても良い。
 第2ステップS2では、必要な枚数の第2基板12、120をまとめて生成しても良い。また、第2ステップS2をその他のステップの前後に複数回実行することで必要な枚数の第2基板12、120を少しずつ生成しても良い。
 第2ステップS2の次には、第3ステップS3が実行される。第3ステップS3では、第1基板11、110および第2基板12、120を積層する。このとき、第1基板11、110の一方の表面に、第2基板12、120の一方の表面が接合される。この接合では、双方の第1部分20が光学的に一体化するように接合されることが好ましい。ここで、光学的に一体化するような接合とは、例えば、この接合面を光が通過するときに屈折、反射、回折、散乱などの所望しない現象が発生しない、または、発生しても実用的に無視できる程度であるような接合を意味する。光学的に一体化された後の第1基板11、110および第2基板12、120のそれぞれは、仮想的な基板、仮想的な層、などと呼んでも良い。また、光学的に一体化された後の接合面は、仮想的な表面、仮想的な平面、仮想的な接合面、などと呼んでも良い。
 このような接合を実現する方法としては、例えば、常温接合が知られている。いずれの場合も、接合を行う前に、接合する表面に対して、研磨などの加工を行うことが好ましい。
 図6Dでは、第1基板110の表面に、第2基板120の、第2部分30が露出している方の表面が接合されている。この後、第2基板120のうち、接合されていない方の表面から所定の厚さまでの削り取り部分121を削り取ることで、所望の厚さを有する第2基板12を生成することができる。図6Eでは、図6Dの削り取り部分121を削り取った後の、第1基板110および第2基板12の接合体を示している。図6Eに示した状態において、将来的にコア部3として用いられる第2部分30の側面が、少なくとも+Z軸方向の平面部分と、-Z軸方向の平面部分とを備え、両方ともXY平面に対して平行であり、つまり互いに平行であることが好ましい。言い換えれば、本実施形態によるレーザ増幅媒体1の各コア部3の側面32は、第1基板11および第2基板12の仮想的な接合面に、Z軸方向に対向する2枚の平面部分を少なくとも含むことが好ましい。
 第3ステップS3は、必要な回数の積層を、まとめて繰り返しても良いし、第1基板11、110を生成する第1ステップS1と、第2基板12、120を生成する第2ステップS2を実行するタイミングに合わせて少しずつ繰り返しても良い。
 図6Fでは、第1基板110に積層された第2基板12の表面に、新たな第1基板110をさらに積層している。この後、新たな第1基板110のうち、接合されていない方の表面から所定の厚さまでの削り取り部分111を削り取ることで、所望の厚さを有する第1基板11を生成することができる。図6Gでは、図6Fの削り取り部分111を削り取った後の、第1基板110、第2基板12および新たな第1基板11の接合体を示している。
 図6Hでは、図1Aのレーザ増幅媒体1を生成するために必要な回数だけ第1基板11、110および第2基板12を積層した積層体を示している。この後、最下層および最上層の第1基板110のそれぞれから削り取り部分111を削り取ることで、最下層の予備最上層のそれぞれに所望の厚さを有する第1基板11が生成され、図6Aのレーザ増幅媒体1が生成され、すなわち図1Aのレーザ増幅媒体1が生成される。
 第3ステップS3の次には、第4ステップS4が実行される。第4ステップS4では、仕上げが行われる。ここで行う仕上げとしては、例えば、図6Aのレーザ増幅媒体1のX軸方向および/またはY軸方向の端面に、例えば研磨などの加工を行っても良い。
 特に、レーザ増幅媒体1のX軸方向の一方の端面は、増幅する対象となる種光を各コア部3に入射するための前段装置を光学的に接続するに適した状態に加工することが好ましい。また、レーザ増幅媒体1のX軸方向の他方の端面は、それぞれのコア部3で増幅されたレーザ光を外部に出射するに適した状態に加工することが好ましい。もしくは、レーザ増幅媒体1のX軸方向の他方の端面は、複数のコア部3でそれぞれ増幅された複数のレーザ光を1つの高出力レーザ光に結合するための後段装置を光学的に接続するに適した状態に加工することが好ましい。
 第4ステップS4が終了すると、図5のフローチャートも終了する。
 本実施形態によるレーザ増幅媒体1の製造方法では、上記に説明した図5のフローチャートに、様々な変更を加えることができる。例えば、第2ステップS2において、第1部分20および第2部分30を別々に生成し、所望の形状に加工した後、交互に接合することで、第2基板12を生成しても良い。この場合は、コア部3の形状を理想的な直方体により近づけることが可能となると期待される。
 図7を参照して、本実施形態によるレーザ増幅媒体1の、積層に係る変形例について説明する。図7は、一実施形態によるレーザ増幅媒体1の一構成例の断面図である。
 図7の変形例では、複数の第1基板11および複数の第2基板12が、交互に、Z軸方向に積層されている。ただし、積層された複数の第2基板12のうち、1枚の第1基板11を挟んで互いに最も近い2枚の第2基板12の任意の組み合わせにおいて、Y軸方向における複数のコア部3の配置が互い違いになっている。言い換えれば、任意のコア部3と、この任意のコア部3から+Z軸方向または-Z軸方向に最も近いコア部3との間には、2枚の第1基板11および1枚の第2基板12が挟まれている。さらに言い換えれば、図7の変形例では、レーザ増幅媒体1の、X軸方向に直交する仮想的な平面による断面において、複数のコア部3はいわゆる千鳥配列(Straggered array)で配置されている。
 このように、本実施形態によるレーザ増幅媒体1は、第1基板11および第2基板12を交互に積層して製造することが可能であるので、図7のような変形例を容易に採用することも可能である。このような変形例は、例えば、図3Bに示したように、励起光4Bをクラッド部2の側面から入射する場合に、励起光4Bが全てのコア部3により均一に入射させるために有利となる可能性が期待される。
 (第2実施形態)
 図8を参照して、別の実施形態によるレーザ増幅媒体1の一構成例について説明する。図8は、一実施形態によるレーザ増幅媒体1の部分的な一構成例を示す透過俯瞰図である。
 図8のレーザ増幅媒体1は、クラッド部2と、コア部3と、複数の流路5とを備えている。図8の例では、流路5の総数は8であり、コア部3の総数は1であるが、これらの数値はあくまでも一例にすぎず、本実施形態を限定しない。その一方で、クラッド部2は単独であることが好ましい。
 流路5は、クラッド部2の内部に設けられた空洞であり、コア部3と同じX軸方向に延在している。
流路5は、クラッド部2をX軸方向に貫通している。流路5は、X軸方向に対して平行な側面として定義されても良い。
 図8の例では、流路5の、X軸方向に直交する仮想的な平面による断面は、矩形である。流路5の矩形は、コア部3の同じ平面による断面の形状である矩形とは別の矩形であっても良い。図8の例では、流路5の矩形は、コア部3の矩形よりもその面積が大きい。ここで、流路5の断面形状および断面積はあくまでも一例であり、流路5の断面は矩形以外の形状を有していても良いし、コア部3の断面積より必ずしも大きくなくても良い。
 流路5の製造方法の一例について説明する。流路5は、例えば、第1実施形態によるレーザ増幅媒体1のクラッド部2の内部に空洞を形成することによって生成しても良い。その為の具体的な手法としては、例えば、フェムト秒レーザを用いたアブレーションなどの微細加工技術などが知られている。
 図9を参照して、本実施形態による流路5の使用方法の一例について説明する。図9は、一実施形態による流路5を用いたレーザ増幅媒体1に所定の流体を流してレーザ増幅媒体1の温度を制御する方法の一例について説明するためのグラフである。
 図9のグラフにおいて、横軸は時間を表しており、縦軸はレーザ増幅媒体1の温度を表している。縦軸において、レーザ増幅媒体1が最も効率よく機能する目標温度を「T」で表しており、レーザ増幅媒体1が適切に機能する最低温度および最高温度をそれぞれ「Tmin」および「Tmax」で表している。
 レーザ増幅媒体1の温度が最高温度Tmaxを上回った場合には、温度が目標温度T以下である流体を流路5に流すことで、レーザ増幅媒体1の冷却Cを行い、レーザ増幅媒体1の温度を目標温度Tに近づけることができる。反対に、レーザ増幅媒体1の温度が最低温度Tminを下回った場合には、温度が目標温度T以上である流体を流路5に流すことで、レーザ増幅媒体1の加熱Hを行い、レーザ増幅媒体1の温度を目標温度Tに近づけることができる。この流体は、液体であっても良いし、気体であっても良い。この流体の一例として、ヘリウムガスを用いても良い。所望の屈折率を有する流体を用いることによって、レーザ増幅媒体1の内部における励起光4A、4B、4Cの散乱を抑制しても良いし、反対に散乱を助けても良い。散乱を抑制した場合は、励起光4A、4B、4Cがより遠いコア部3まで到達しやすくなることが期待される。反対に、散乱を助けた場合は、励起光4A、4B、4Cが他のコア部3の後に隠れているコア部3まで到達しやすくなることが期待される。
 図10Aおよび図10Bを参照して、複数のコア部3および複数の流路5を備えるレーザ増幅媒体1の構成例について説明する。図10Aは、一実施形態によるレーザ増幅媒体1の一構成例を示す断面図である。図10Bは、一実施形態によるレーザ増幅媒体1の別の一構成例を示す断面図である。
 図10Aのレーザ増幅媒体1は、例えば、図8に示したレーザ増幅媒体1のコア部3を合計16本に増やして図1Aの場合と同様に4×4の2次元配列に配置し、かつ、図8に示した流路5を合計20本に増やして16本のコア部3の周囲に配置することで得られる。
 図10Bのレーザ増幅媒体1は、例えば、図10Aのレーザ増幅媒体1の流路5を合計24本に、コア部3を合計18本にそれぞれ変更し、かつ、これら合計42本の流路5およびコア部3を、X軸方向に直交する仮想的な平面による断面において6×7の二次元配列に配置することで得られる。ただし、この二次元配列において、Z軸方向には流路5およびコア部3を交互に配置し、Y軸方向には流路5およびコア部3をそれぞれ6本ずつ配置する。このとき、コア部3に注目すると、6×3の二次元配列に配置されている。また、流路5に注目すると、6×4の二次元配列に配置されている。
 図10Aにおいて、コア部3Aおよび流路5の間の熱抵抗R1と、コア部3Bおよび流路5の間の熱抵抗R2とについて考える。コア部3Aは、4×4の二次元配列における外側に位置している。その為、コア部3Aと、コア部3Aとの距離が最も短い流路5Aとの間には、他のコア部3が存在しない。その一方で、コア部3Bは、4×4の二次元配列における内側に位置している。その為、コア部3Bと、コア部3Bとの距離が最も短い流路5Bとの間には、他のコア部3が存在する。したがって、熱抵抗R2は熱抵抗R1よりも大きくなると考えられる。言い換えれば、全ての流路5に同じ流体を同じ条件で流した場合に、コア部3Aよりもコア部3Bの方が温度の制御をしにくい。さらに言い換えれば、コア部3Aおよびコア部3Bの間で温度差が発生しやすい。
 同様に、図10Bにおいて、コア部3Cおよび流路5の間の熱抵抗R3と、コア部3Dおよび流路5の間の熱抵抗R4とについて考える。コア部3Cは、6×3の二次元配列における外側に位置している。その一方で、コア部3Dは、同じ二次元配列における内側に位置している。ここで、コア部3Cと、コア部3Cとの距離が最も近い流路5C、5Dとの間には、他のコア部3が存在しない。同様に、コア部3Dと、コア部3Dとの距離が最も近い流路5E、5Fとの間にも、他のコア部3が存在しない。したがって、熱抵抗R3および熱抵抗R4は、同じになると考えられる。言い換えれば、コア部3Cおよびコア部3Dの間で温度差が発生しにくい。さらに言い換えれば、図10Aの場合と比較して、図10Bの場合では、複数のコア部3の温度を均一に制御しやすいと考えられる。このことは、レーザ増幅媒体1がより高品質なレーザ光を出力できることに繋がる。
 このような考え方をさらに進めて、流路5およびコア部3を図11のように配置しても良い。図11は、一実施形態によるレーザ増幅媒体1のさらに別の一構成例を示す断面図である。図11において、複数の流路5および複数のコア部3は、いわゆる市松配列(Checker array)に配置されている。言い換えれば、流路5およびコア部3は、X軸方向に直交する仮想的な平面による断面において二次元配列に配置されており、ここで、流路5のY軸方向およびZ軸方向にはコア部3が隣接しており、かつ、コア部3のY軸方向およびZ軸方向には流路5が隣接している。
 (第3実施形態)
 図12を参照して、偏光制御が可能なレーザ増幅媒体1について説明する。図12は、一実施形態によるレーザ増幅媒体1の一構成例を示す断面図である。
 図12のレーザ増幅媒体1は、例えば、図1Aのレーザ増幅媒体1のコア部3を合計25本に増やし、そのうちの15本を応力付与部7に変更することで得られる。ここで、残る10本のコア部3と、15本の応力付与部7とは、それぞれ、X軸方向に延在する直方体の形状を有している。X軸方向に直交する仮想的な平面による断面において、コア部3および応力付与部7は、5×5の二次元配列に配置されている。ここで、Y軸方向において、応力付与部7およびコア部3は交互に配置されている。また、Z軸方向において、応力付与部7およびコア部3のそれぞれは、5本ずつ一列に配置されている。言い換えれば、図12のレーザ増幅媒体1では、複数のコア部3のそれぞれについて、Y軸方向の両側に応力付与部7が配置されている。
 応力付与部7は、例えば、コア部3と同様の方法で形成しても良いし、クラッド部2の内部に流路5を空けてその内部空間に適宜な材質を流し固めることで形成しても良い。いずれの場合も、コア部3がY軸方向の両側から応力を受けることによって、コア部3の内部をX軸方向に伝搬する光の偏波方向がZ軸方向に近づくように制御される。このことは、レーザ増幅媒体1がより高品質なレーザ光を出力できることに繋がる。また、直線偏光を利用したビーム結合や、非線形光学現象を利用した高調波発生などのアプリケーションに使用することも可能となり得る。
 以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、前記実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。
 本出願は、2021年6月11日に出願された日本国特許出願2021-97759を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (10)

  1.  所定の第1屈折率を有するクラッド部と、
     前記第1屈折率より高い第2屈折率をそれぞれ有し、所定の軸方向に対して平行にそれぞれ延在し、前記クラッド部によってそれぞれの側面が被覆された第1コア部および第2コア部と、
     前記クラッド部の一部、前記第1コア部および前記第2コア部を含む仮想的な第1層と
     前記クラッド部の別の一部をそれぞれ含む仮想的な第2層および仮想的な第3層と
    を備え、
     前記第1層は、前記第2層および前記第3層の間に、前記軸方向に直交する所定の積層方向に積層および接合されており、
     前記第1コア部および前記第2コア部のそれぞれにおいて、前記側面は、
     前記第1層の、前記第2層との仮想的な接合面であり前記積層方向に直交する仮想的な第1表面に含まれる、第1平面部分と、
     前記第1層の、前記第3層との仮想的な接合面であり前記積層方向に直交する仮想的な第2表面に含まれ、前記第1平面部分に対向する第2平面部分と
    を備える
     レーザ増幅媒体。
  2.  請求項1に記載のレーザ増幅媒体において、
     前記第2屈折率をそれぞれ有し、前記軸方向に対して平行にそれぞれ延在し、前記クラッド部によってそれぞれの側面が被覆された第3コア部および第4コア部と、
     前記クラッド部の一部、前記第3コア部および前記第4コア部を含む仮想的な第4層と、
     前記クラッド部の別の一部を含む仮想的な第5層と
    をさらに備え、
     前記第4層は、前記第3層および前記第5層の間に、前記積層方向に積層および接合されており、
     前記第3コア部および前記第4コア部のそれぞれにおいて、前記側面は、
     前記第4層の、前記第3層との仮想的な接合面であり前記積層方向に直交する仮想的な第3表面に含まれる、第3平面部分と、
     前記第4層の、前記第5層との仮想的な接合面であり前記積層方向に直交する仮想的な第4表面に含まれ、前記第3平面部分に対向する第4平面部分と
    を備える
     レーザ増幅媒体。
  3.  請求項2に記載のレーザ増幅媒体において、
     前記軸方向に直交する仮想的な平面による断面において、前記第1コア部、前記第2コア部、前記第3コア部および前記第4コア部は、千鳥配列で配置されている
     レーザ増幅媒体。
  4.  請求項1~3のいずれか一項に記載のレーザ増幅媒体において、
     前記クラッド部は、
     外部から励起光が入射可能に構成された側面
    を備える
     レーザ増幅媒体。
  5.  請求項1~4のいずれか一項に記載のレーザ増幅媒体において、
     前記クラッド部は、
     外部から励起光が入射可能に構成された端面
    を備え、
     前記第1屈折率より低い第3屈折率を有し、前記クラッド部の側面を被覆する第2クラッド部
    をさらに備える
     レーザ増幅媒体。
  6.  請求項1~5のいずれか一項に記載のレーザ増幅媒体において、
     側面が前記クラッド部によって被覆されるように前記軸方向に延在する励起光用光路
    をさらに備え、
     前記励起光用光路の前記側面は、前記励起光用光路の端面から入射した励起光が前記側面を介して前記クラッド部に漏れ出るように構成されている
     レーザ増幅媒体。
  7.  請求項1~6のいずれか一項に記載のレーザ増幅媒体において、
     側面が前記クラッド部によって被覆されるように前記軸方向に延在し、内側を所定の流体が通過するように構成された流路
    をさらに備える
     レーザ増幅媒体。
  8.  請求項1~7のいずれか一項に記載のレーザ増幅媒体において、
     前記軸方向および前記積層方向の両方に直交する方向に、前記第1コア部に向けて両側から応力を付与して、前記第1コア部を伝搬する光の偏波を制御する応力付与部
    をさらに備える
     レーザ増幅媒体。
  9.  所定の第1屈折率を有する複数の第1領域と、前記第1屈折率より大きい第2屈折率を有する複数の第2領域とを含む第1層を生成することと、
     前記第1屈折率を有する第2層および第3層を生成することと、
     前記第2層、前記第1層および前記第3層をこの順に、所定の積層方向に積層することと
    を含み、
     前記積層することは、
     前記複数の第1領域および前記第2層を接合するように、前記第1層の、前記積層方向に直交する第1表面に、前記第2層を接合することと、
     前記複数の第1領域および前記第3層を接合するように、前記第1層の、前記第1表面に対向する第2表面に、前記第3層を接合することと
    を含み、
     前記第1層を生成することは、
     前記複数の第2領域が、前記第1表面に対して平行な所定の軸方向に対して平行にそれぞれ延在し、前記第1表面に含まれる第1平面部分と、前記第2表面に含まれる第2平面部分とを含む側面をそれぞれ有する、第1コア部および第2コア部を備えるように、前記複数の第2領域を生成すること
    を含み、
     前記第2層、前記第1層および前記第3層を積層することは、
     一体化された前記複数の第1領域、前記第2層および前記第3層が、前記第1コア部および前記第2コア部のそれぞれにおいて前記側面を被覆するクラッド部として機能するように、前記第2層、前記第1層および前記第3層を積層すること
    を含む
     レーザ増幅媒体の製造方法。
  10.  請求項9に記載のレーザ増幅媒体の製造方法において、
     前記第1屈折率を有する複数の第3領域と、前記第2屈折率を有する複数の第4領域とを含む第4層を生成することと、
     前記第1屈折率を有する第5層を生成することと、
     前記第3層、前記第4層および前記第5層をこの順に、前記積層方向に積層することと
    をさらに含み、
     前記第3層、前記第4層および前記第5層を積層することは、
     前記第4層の、前記積層方向に直交する第3表面に、前記第3層を接合して、前記複数の第3領域および前記第3層を光学的に一体化することと、
     前記第4層の、前記第3表面に対向する第4表面に、前記第5層を接合して、前記複数の第3領域および前記第5層を光学的に一体化することと
    を含み、
     前記第4層を生成することは、
     前記複数の第4領域が、前記軸方向にそれぞれ延在し、前記第3表面に含まれる第3平面部分と、前記第4表面に含まれる第4平面部分とを含む側面をそれぞれ有する、第3コア部および第4コア部を備えるように、前記複数の第4領域を生成すること
    を含み、
     前記第3層、前記第4層および前記第5層を積層することは、
     一体化された前記複数の第3領域、前記第3層および前記第5層が、前記第3コア部および前記第4コア部のそれぞれにおいて前記側面を被覆するクラッド部として機能するように、前記第3層、前記第4層および前記第5層を積層すること
    をさらに含む
     レーザ増幅媒体の製造方法。
     
PCT/JP2022/005808 2021-06-11 2022-02-15 レーザ増幅媒体およびレーザ増幅媒体の製造方法 WO2022259622A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22819813.1A EP4336679A1 (en) 2021-06-11 2022-02-15 Laser amplification medium and laser amplification medium manufacturing method
US18/568,008 US20240291222A1 (en) 2021-06-11 2022-02-15 Laser amplification medium and laser amplification medium manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097759A JP2022189265A (ja) 2021-06-11 2021-06-11 レーザ増幅媒体およびレーザ増幅媒体の製造方法
JP2021-097759 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022259622A1 true WO2022259622A1 (ja) 2022-12-15

Family

ID=84425144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005808 WO2022259622A1 (ja) 2021-06-11 2022-02-15 レーザ増幅媒体およびレーザ増幅媒体の製造方法

Country Status (4)

Country Link
US (1) US20240291222A1 (ja)
EP (1) EP4336679A1 (ja)
JP (1) JP2022189265A (ja)
WO (1) WO2022259622A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521827A (ja) * 1998-07-23 2002-07-16 モレキュラー オプトエレクトロニクス コーポレイション 異なるコア材料とクラッド材料とを有する光導波路、およびそれを使用した発光デバイス
JP2002323636A (ja) * 2001-03-16 2002-11-08 Imra America Inc 単一偏光高パワーファイバレーザ及び増幅器
JP2006287038A (ja) * 2005-04-01 2006-10-19 Sumitomo Electric Ind Ltd 光導波路及び光増幅器
WO2011086885A1 (ja) * 2010-01-12 2011-07-21 パナソニック株式会社 レーザ光源、波長変換レーザ光源及び画像表示装置
JP2012129426A (ja) * 2010-12-16 2012-07-05 Fujikura Ltd マルチポートカプラ、及び、それを用いた光ファイバ増幅器及びファイバレーザ装置及び共振器
JP2013148769A (ja) 2012-01-20 2013-08-01 Mitsubishi Heavy Ind Ltd 複数ビーム結合装置
US20170302047A1 (en) * 2014-10-01 2017-10-19 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Optical Waveguide
JP2021097759A (ja) 2019-12-20 2021-07-01 京楽産業.株式会社 遊技機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521827A (ja) * 1998-07-23 2002-07-16 モレキュラー オプトエレクトロニクス コーポレイション 異なるコア材料とクラッド材料とを有する光導波路、およびそれを使用した発光デバイス
JP2002323636A (ja) * 2001-03-16 2002-11-08 Imra America Inc 単一偏光高パワーファイバレーザ及び増幅器
JP2006287038A (ja) * 2005-04-01 2006-10-19 Sumitomo Electric Ind Ltd 光導波路及び光増幅器
WO2011086885A1 (ja) * 2010-01-12 2011-07-21 パナソニック株式会社 レーザ光源、波長変換レーザ光源及び画像表示装置
JP2012129426A (ja) * 2010-12-16 2012-07-05 Fujikura Ltd マルチポートカプラ、及び、それを用いた光ファイバ増幅器及びファイバレーザ装置及び共振器
JP2013148769A (ja) 2012-01-20 2013-08-01 Mitsubishi Heavy Ind Ltd 複数ビーム結合装置
US20170302047A1 (en) * 2014-10-01 2017-10-19 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Optical Waveguide
JP2021097759A (ja) 2019-12-20 2021-07-01 京楽産業.株式会社 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. SOULARD ET AL.: "ICAN: A novel laser architecture for space debris removal", ACTA ASTRONAUTICA, vol. 105, 2014, pages 192 - 200, XP055166497, DOI: 10.1016/j.actaastro.2014.09.004
T. EBISUZAKI ET AL.: "Demonstration designs for the remediation of space debris from the International Space Station", ACTA ASTRONAUTICA, vol. 112, 2015, pages 102 - 113, XP055366862, DOI: 10.1016/j.actaastro.2015.03.004

Also Published As

Publication number Publication date
EP4336679A1 (en) 2024-03-13
US20240291222A1 (en) 2024-08-29
JP2022189265A (ja) 2022-12-22

Similar Documents

Publication Publication Date Title
JP6501869B2 (ja) 非対称冷却を有する非対称平面導波路
US20170358898A1 (en) Laser apparatus and manufacturing method thereof
CN102318151A (zh) 平面波导型激光装置
JP2010114162A (ja) レーザ利得媒質、レーザ発振器及びレーザ増幅器
JP2008241891A (ja) 2次元フォトニック結晶
US9780519B2 (en) Flat waveguide-type laser device
JPWO2009028079A1 (ja) 固体レーザ素子
JP6466035B2 (ja) 平面導波路型レーザ装置
JPWO2004113964A1 (ja) フォトニック結晶の構造
US7899289B2 (en) Optical fiber structure
JP6728339B2 (ja) ウェーブガイド形成方法及び装置
WO2022259622A1 (ja) レーザ増幅媒体およびレーザ増幅媒体の製造方法
JP2010185980A (ja) 高出力用光部品
JP2004170924A (ja) 導波路埋め込み型光回路及びこれに用いる光学素子
JP5645753B2 (ja) 平面導波路型レーザ装置
JP6502285B2 (ja) 単結晶ファイバの製造方法
CN109565142B (zh) 脊波导型激光装置
JP2010219319A (ja) 小型レーザ用光学素子
JP5987193B2 (ja) 光増幅器
JP2001015835A (ja) レーザ光発生装置及び光アンプ
US10486997B2 (en) Joining members using additive manufacturing
JP2023005437A (ja) 光学素子及びその製造方法並びに光アイソレータ、光伝送装置
WO2019116544A1 (ja) リッジ光導波路及びレーザ装置
JP3430049B2 (ja) 固体レーザ装置
JP2013089790A (ja) 平面導波路型レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18568008

Country of ref document: US

Ref document number: 2022819813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022819813

Country of ref document: EP

Effective date: 20231207

NENP Non-entry into the national phase

Ref country code: DE