WO2022259552A1 - 車両制御方法及び車両制御装置 - Google Patents

車両制御方法及び車両制御装置 Download PDF

Info

Publication number
WO2022259552A1
WO2022259552A1 PCT/JP2021/022404 JP2021022404W WO2022259552A1 WO 2022259552 A1 WO2022259552 A1 WO 2022259552A1 JP 2021022404 W JP2021022404 W JP 2021022404W WO 2022259552 A1 WO2022259552 A1 WO 2022259552A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
vehicle
steering angle
gradient
target
Prior art date
Application number
PCT/JP2021/022404
Other languages
English (en)
French (fr)
Inventor
信弥 齋藤
大輔 武井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2021/022404 priority Critical patent/WO2022259552A1/ja
Priority to CN202180099067.3A priority patent/CN117425588A/zh
Priority to EP21944436.1A priority patent/EP4353556A1/en
Priority to JP2023526830A priority patent/JPWO2022259552A1/ja
Priority to MX2023014602A priority patent/MX2023014602A/es
Priority to BR112023024847A priority patent/BR112023024847A2/pt
Publication of WO2022259552A1 publication Critical patent/WO2022259552A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0255Automatic changing of lane, e.g. for passing another vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel

Definitions

  • the present invention relates to a vehicle control method and a vehicle control device.
  • a feedforward control term, a feedback control term, and an integral control term are added to calculate a target rudder angle for the own vehicle to travel along the target travel line, and the rudder angle of the own vehicle reaches the target rudder angle.
  • a technique for performing steering assist control in which steering torque is applied to a steering mechanism so as to follow the steering mechanism (Patent Document 1).
  • Patent Document 1 The technique disclosed in Patent Document 1 is based on the amount of change per unit time in a cant index value representing the degree of lateral inclination of the road surface on which the vehicle is traveling. It is determined whether or not the road surface has changed from the normal to the cant road surface with a slope in the lateral direction.
  • Patent Document 1 After it is determined that the road surface on which the vehicle is traveling has changed to the cant road surface based on the cant index value of the road surface on which the vehicle is actually traveling, the change in the lateral gradient of the road surface on which the vehicle is traveling is determined. is executed. Therefore, in the technology of Patent Document 1, when a lane change is made from one's own lane to an adjacent lane that has a different gradient in the width direction than the own lane, the technique can cope with changes in the gradient in the width direction from one's own lane to the adjacent lane. However, there is a problem that the steering assist control is delayed, and a lateral deviation from the target travel trajectory of the own vehicle occurs based on the change in gradient between lanes.
  • the problem to be solved by the present invention is that even if the slopes in the width direction are different between the own lane and the adjacent lane to which the lane is to be changed, the slope of the own vehicle occurs based on the change in the slope between the lanes during the lane change. It is an object of the present invention to provide a vehicle control method and a vehicle control device capable of suppressing a lateral deviation from a target travel locus.
  • the present invention calculates a target rudder angle of the steered wheels of the own vehicle so that the own vehicle travels along a target travel locus for changing lanes, and calculates the gradient of the road surface in the width direction of the own lane on which the own vehicle is traveling.
  • the target rudder angle is corrected on the basis of the own lane gradient indicated and the adjacent lane gradient indicating the road surface gradient in the width direction of the adjacent lane to which the vehicle is to change lanes, and the steering angle of the steered wheels is corrected.
  • the above problem is solved by performing steering control so as to follow the target steering angle.
  • the change in the gradient between the lanes during the lane change may cause a change in the target travel trajectory of the own vehicle. Lateral deviation can be suppressed.
  • FIG. 1 is a block diagram showing an embodiment of a vehicle control device for a vehicle according to the present invention
  • FIG. FIG. 10 is a diagram showing a scene in which a lane change is performed between lanes with different road surface gradients in the width direction
  • FIG. 4 is a flow chart diagram showing a procedure of vehicle control according to the present embodiment
  • FIG. 4 is a diagram showing a subroutine of step 6 shown in FIG. 3;
  • FIG. 1 is a block diagram showing the configuration of a vehicle control device 1 for a vehicle (hereinafter also referred to as own vehicle) according to this embodiment.
  • a vehicle control device 1 of the present embodiment is one embodiment for carrying out a vehicle control method according to the present invention.
  • the vehicle control device 1 according to the present embodiment includes a sensor 11, a vehicle position detection device 12, a map database 13, an in-vehicle device 14, a navigation device 15, a presentation device 16, An input device 17 , a drive control device 18 and a control device 19 are provided. These devices are connected, for example, by CAN or other in-vehicle LAN in order to mutually transmit and receive information.
  • the vehicle control device 1 includes at least the control device 19, other configurations are not limited to the above configuration.
  • the map database 13 is not limited to being stored in the vehicle control device 1 and may be a database outside the vehicle control device 1 .
  • the sensor 11 detects the environment around the own vehicle.
  • the sensor 11 includes cameras such as a front camera that captures an image of the front of the vehicle, a rear camera that captures the image of the rear of the vehicle, and a side camera that captures the left and right sides of the vehicle.
  • the sensor 11 recognizes a lane boundary line or the like by image recognition from an image captured by a camera. Lane boundaries include white lines, yellow lines, broken lines, double lines, and the like.
  • the sensor 11 includes a front radar for detecting obstacles in front of the vehicle, a rear radar for detecting obstacles behind the vehicle, and a side radar for detecting obstacles on the left and right sides of the vehicle. Including radar such as.
  • the sensor 11 outputs a detection result regarding the surrounding environment of the own vehicle as surrounding environment information to the control device 19 at a predetermined cycle.
  • the sensor 11 detects the running state of the own vehicle.
  • sensor 11 includes a vehicle speed sensor that detects the vehicle speed of the host vehicle.
  • Sensor 11 includes a steering angle sensor that detects a steering angle.
  • the steering angle sensor uses the neutral position of the steering wheel as a reference, and the steering angle when the steering wheel is steered to the right with respect to the traveling direction of the own vehicle is a positive value.
  • the steering angle when steering in the direction is output as a negative value.
  • the neutral position is a reference position where the steering angle is zero, and is the position of the steering wheel when the vehicle is traveling straight ahead.
  • the output of the steering angle sensor is not limited to these. may be output as a positive value.
  • the sensor 11 includes a distance sensor that acquires the distance to the object.
  • Distance sensors include laser sensors, depth cameras, and the like.
  • the sensor 11 includes a yaw rate sensor that acquires the yaw rate around the center-of-gravity axis of the host vehicle.
  • the yaw rate sensor acquires the yaw rate generated when the own vehicle turns.
  • Sensor 11 includes a lateral acceleration sensor that detects lateral acceleration of the vehicle.
  • the sensor 11 recognizes the lane boundary line from an image of the outside of the vehicle captured by a side camera or the like, and measures the target distance, which is the distance between the vehicle and the lane boundary line.
  • the sensor 11 outputs a detection result regarding the running state of the own vehicle to the control device 19 at a predetermined cycle as running information.
  • one of the plurality of sensors described above may be used, or two or more types of sensors may be used in combination.
  • the vehicle position detection device 12 includes a GPS unit, a gyro sensor, a vehicle speed sensor, and the like.
  • the own vehicle position detection device 12 detects radio waves transmitted from a plurality of satellite communications by the GPS unit, and periodically acquires the position information of the target vehicle (own vehicle). Also, the vehicle position detection device 12 detects the current position of the target vehicle based on the acquired position information of the target vehicle, the angle change information acquired from the gyro sensor, and the vehicle speed acquired from the vehicle speed sensor.
  • the own vehicle position detection device 12 outputs the detected position information of the target vehicle to the control device 19 at a predetermined cycle.
  • the map database 13 is a database that stores map information including road information.
  • the map database 13 is stored in a memory accessible from the control device 19 .
  • points on the map such as intersections and branch points are stored as nodes, and road sections between nodes are stored as road links.
  • Road information includes road link information for each road link.
  • a road link is composed of one or more lanes, and a traffic direction is determined for each lane.
  • the road link information includes information such as the road type, width, number of lanes, curve road and the size of the curve (for example, curvature or radius of curvature) of the road link.
  • the road link information includes slope information.
  • the slope information includes at least information about the slope of the road surface in the width direction of the lane, and specifically, information indicating the magnitude and direction of the slope of the road surface in the width direction of the lane.
  • the magnitude of the gradient is, for example, a value obtained by dividing the height difference between the left end and the right end of the lane in the width direction of the lane by the width of the lane. Gradient magnitudes are expressed in %. For example, when the right edge of the lane is higher than the left edge of the lane in the width direction of the lane, the direction of the slope is a leftward slope, and when the left edge of the lane is higher than the right edge of the lane in the width direction of the lane indicates a rightward slope.
  • the slope information may be, for example, the average slope in the width direction of the lane.
  • the slope information included in the road link includes information regarding the slope of the road surface in the width direction of each lane.
  • the slope of the road surface in the width direction of the lane includes, for example, a cant installed on a curve.
  • the in-vehicle device 14 is various devices mounted in the vehicle, and is operated by the driver's operation. Such in-vehicle devices include steering wheels, accelerator pedals, brake pedals, direction indicators, wipers, lights, horns, and other specific switches. The in-vehicle device 14 outputs the operation information to the control device 19 when operated by the driver.
  • the navigation device 15 acquires the current position information of the vehicle from the vehicle position detection device 12, and displays the position of the vehicle on the map information for navigation on a display or the like. Further, the navigation device 15 has a navigation function of setting a route to the destination when the destination is set and guiding the set route to the driver. This navigation function shows the route on the map on the display and informs the driver of the route by voice.
  • the presentation device 16 includes, for example, a display included in the navigation device 15, a display built into the rearview mirror, a display built into the meter section, and various displays such as a head-up display projected onto the windshield. Also, the presentation device 16 includes devices other than the display, such as a speaker of an audio device, a seat device in which a vibrating body is embedded, and the like. The presentation device 16 informs the driver of various presentation information under the control of the control device 19 .
  • the input device 17 is, for example, a device such as a button switch that allows manual input by the driver, a touch panel arranged on the display screen, or a microphone that allows input by the driver's voice.
  • the driver can input setting information for the presentation information presented by the presentation device 16 by operating the input device 17 .
  • the input device 17 includes switches used by the driver to set ON/OFF of the autonomous speed control function and the autonomous steering control function provided in the control device 19 .
  • switches for autonomous steering control functions include lane change switches for performing lane change control functions.
  • the lane change switch is a button switch for the driver to instruct (accept) the start of the lane change when the control device 19 confirms the start of the lane change with the driver. After the driver approves the start of the lane change, the driver can cancel the approval of the lane change proposal by the control device 19 by operating the lane change switch for longer than a predetermined time.
  • a direction indicator lever of a direction indicator or other switches of the in-vehicle device 14 may be used as the input device 17.
  • the control device 19 suggests to the driver whether or not to automatically change lanes
  • the host vehicle changes lanes in the direction in which the direction indicator lever is operated. conduct.
  • the input device 17 outputs the input setting information to the control device 19 .
  • the direction in which the vehicle changes lanes is not particularly limited. shall be subject to change.
  • the drive control device 18 controls travel of the own vehicle based on the target speed and target steering angle output from the control device 19 .
  • the contents of control executed by the drive control device 18 include autonomous speed control and autonomous steering control.
  • Autonomous steering control includes lane keeping control, lane change control, and overtaking control. For example, when the self-vehicle runs at a target speed under autonomous speed control, the drive control device 18 accelerates, decelerates, and maintains the running speed so that the self-vehicle reaches the target speed. Controls the operation of the mechanism and the operation of the brakes. Further, the drive control device 18 similarly controls the operation of the drive mechanism and the brake when the own vehicle follows the preceding vehicle by autonomous speed control.
  • the operation control of the drive mechanism includes the operation of the internal combustion engine in an engine vehicle, and the operation of a driving motor in an electric vehicle. In a hybrid vehicle, it also includes torque distribution between the internal combustion engine and the driving motor.
  • the drive control device 18 controls the operation of the steering actuator through autonomous steering control so that the steering angle of the steered wheels of the host vehicle follows the target steering angle.
  • Steering control of the own vehicle is executed so as to For example, when executing lane keeping control by autonomous steering control, the drive control device 18 executes steering control so that the vehicle travels along the target travel locus along the own lane, and travels in the width direction of the own vehicle. Control the position (horizontal position).
  • the lateral position of the own vehicle is the position of the own vehicle in the width direction of the lane (the width direction of the own vehicle).
  • the lateral position of the own vehicle includes the lateral position of the own vehicle with respect to the lane boundary line and the lateral position of the own vehicle with respect to the target travel trajectory.
  • the lateral position of the own vehicle may be any position of the own vehicle, for example, the position of the center of gravity of the own vehicle in the width direction of the lane.
  • the drive control device 18 performs steering control so that the vehicle travels along a target travel locus for changing lanes, and controls the lateral position of the vehicle when changing lanes by autonomous steering control. do. Other known methods can also be used as the vehicle control method by the drive control device 18 .
  • the control device 19 includes a ROM that stores a program for controlling the running of the own vehicle, a CPU that executes the program stored in the ROM, and a RAM that functions as an accessible storage device.
  • a ROM that stores a program for controlling the running of the own vehicle
  • a CPU that executes the program stored in the ROM
  • a RAM that functions as an accessible storage device.
  • an MPU, DSP, ASIC, FPGA, or the like can be used instead of or together with the CPU.
  • the control device 19 controls traveling of the own vehicle by an autonomous speed control function and an autonomous steering control function. Autonomous steering control functions include, for example, lane keeping functions, lane changing functions, and overtaking functions.
  • the control device 19 executes each function through the cooperation of hardware and software for realizing each function or executing each process.
  • the control device 19 generates a target travel trajectory along which the vehicle travels, calculates a target speed and a target steering angle so that the vehicle travels along the target travel trajectory, and calculates the calculated target speed and target steering angle. Output to the drive control device 18 .
  • the control device 19 executes autonomous driving or driving assistance of the host vehicle.
  • the control device 19 executes steering angle correction control for correcting the target steering angle using the autonomous steering control function.
  • the control device 19 includes, as functional blocks, a gradient information acquisition unit 100, a determination unit 101, a running locus generation unit 102, a steering angle calculation unit 103, a steering angle correction unit 104, and a steering control unit 105. Configured. First, the control device 19 determines the own lane gradient indicating the road surface gradient in the width direction of the own lane on which the own vehicle is traveling, and the adjacent lane gradient indicating the road surface gradient in the width direction of the adjacent lane adjacent to the own lane. to get Next, the control device 19 determines whether or not the lane change start condition is satisfied.
  • the control device 19 When it is determined that the lane change start condition is satisfied, the control device 19 generates a target travel locus for the lane change, and the host vehicle generates a target travel locus for the lane change. calculates the target rudder angle so that the runs on the target travel locus. The control device 19 corrects the target steering angle based on the own lane gradient and the adjacent lane gradient. Then, the control device 19 performs steering control so that the steering angle of the steered wheels follows the corrected target steering angle.
  • the functions of the control device 19 are divided into six blocks, and the functions of each functional block will be described. It may be divided into the following functional blocks, or seven or more functional blocks.
  • the gradient information acquisition unit 100 acquires gradient information of the own lane gradient and the adjacent lane gradient.
  • the gradient information acquisition unit 100 refers to the map database 13 to acquire the own lane gradient and the adjacent lane gradient within a predetermined distance (for example, 2 km) along the traveling direction from the current position of the own vehicle.
  • the gradient information acquisition unit 100 acquires the own lane gradient and the adjacent lane gradient at a predetermined cycle while the vehicle is running.
  • the slope information acquisition unit 100 acquires the slope of the own lane by regarding the lane in which the own vehicle is traveling as the own lane before starting the lane change.
  • the gradient information acquisition unit 100 acquires the own lane gradient by regarding the lane in which the vehicle is traveling when the lane change is started as the own lane from when the lane change is started to when the lane change is finished. Then, the lane to which the lane is changed is regarded as the adjacent lane, and the adjacent lane slope is obtained. For example, as an example of a scene from when the lane change is started to when the lane change is finished, the vehicle edge of the own vehicle on the adjacent lane side of the lane change destination crosses the lane boundary line during the lane change, There is a situation in which part of the own vehicle is positioned on the adjacent lane and the other part of the own vehicle is positioned on the own lane.
  • the gradient information acquisition unit 100 regards the lane in which the vehicle is traveling when the lane change is started as the own lane, acquires the own lane gradient, and regards the lane to which the lane is to be changed as the adjacent lane. to get the adjacent lane slope. Then, when the lane change is completed, the gradient information acquisition unit 100 acquires the own lane gradient by regarding the adjacent lane of the lane change destination, that is, the lane that was regarded as the adjacent lane before the lane change, as the own lane. .
  • the determination unit 101 determines whether or not the lane change start condition is satisfied. For example, the determination unit 101 determines whether or not a lane change start condition is satisfied based on the surrounding environment information of the own vehicle acquired by the sensor 11 and the position information of the own vehicle acquired by the own vehicle position detection device 12 . do. Specifically, based on the sensor 11 detecting an obstacle on the adjacent lane to which the lane is to be changed, the determination unit 101 determines whether there is a space in the adjacent lane that allows the lane change. It is determined that the start condition is satisfied. Further, based on the position information of the vehicle detected by the vehicle position detection device 12, the determination unit 101 determines whether the position of the vehicle reaches the lane change start position set on the route.
  • the determination unit 101 may determine that the lane change start condition is satisfied when an instruction input to start the lane change is received from the driver via the input device 17 . Further, the determination unit 101 may determine that the lane change start condition is satisfied when the operation information is acquired by the driver operating the direction indicator lever.
  • the determination unit 101 determines whether or not the vehicle has started to change lanes.
  • determination unit 101 determines whether the own vehicle It is determined that the lane change has started. For example, the determination unit 101 determines that the vehicle has started to change lanes when the lateral position of the vehicle moves by a predetermined distance or more within a predetermined time from a predetermined determination start timing.
  • the predetermined determination start timing is, for example, when it is determined that the lane change start condition is satisfied, or when the target speed and target steering angle for lane change are output to the drive control device 18 .
  • the determination unit 101 also determines whether or not the vehicle edge of the own vehicle has reached the lane boundary line between the own lane and the adjacent lane. For example, the determination unit 101 recognizes the position of the lane boundary line by the side camera of the sensor 11 or the like, and when the side of the own vehicle on the adjacent lane side of the lane change destination reaches the lane boundary line, the vehicle of the own vehicle Determine that the edge has reached the lane boundary.
  • the determination unit 101 determines whether or not the vehicle has finished changing lanes. The determination unit 101 determines that the lane change of the vehicle to the adjacent lane is completed when the lateral position of the vehicle reaches the center line in the width direction of the adjacent lane to which the vehicle is to change lanes. Further, when the side surface of the own vehicle on the side opposite to the adjacent lane side of the lane change destination reaches the lane boundary line between the own lane and the adjacent lane, the determination unit 101 determines that the lane change to the adjacent lane is not possible. You may judge that it ended.
  • the traveling locus generating unit 102 generates a target traveling locus for the own vehicle to travel based on the own vehicle's position information, the map information, the surrounding environment information of the own vehicle, and the own vehicle's traveling information. For example, when the drive control device 18 executes lane keeping control, the running locus generator 102 generates a target running locus for the own vehicle to run on the center line of its own lane. Further, when the drive control device 18 executes lane change control, the running locus generator 102 generates a target running locus for changing lanes. Specifically, when the determination unit 101 determines that the lane change start condition is satisfied, the travel locus generation unit 102 provides a route for the vehicle to travel from the current position of the vehicle to the center line of the adjacent lane.
  • the traveling locus generation unit 102 changes the adjacent lane to the lane change destination, that is, the lane considered as the adjacent lane before the lane change to the own lane. , and generates a target travel locus for traveling on the center line of the own lane.
  • the steering angle calculation unit 103 calculates the target steering angle of the steered wheels of the own vehicle so that the own vehicle travels along the target travel locus. For example, the steering angle calculator 103 calculates the target steering angle based on the target travel locus and the current position of the vehicle (lateral position of the vehicle).
  • a steering angle correction unit 104 corrects the target steering angle calculated by the steering angle calculation unit 103 .
  • the steering angle correction unit 104 uses the lane keeping function to calculate the steering angle correction amount according to the slope of the own lane while the vehicle is traveling along the own lane, and calculates the steering angle correction amount based on the calculated steering angle correction amount. to correct the target rudder angle.
  • the greater the gradient of the road surface in the width direction of the lane the greater the horizontal component of gravity acting on the vehicle on the sloping road surface, causing a greater lateral deviation in the lateral position of the vehicle relative to the target trajectory. It is thought that The lateral deviation is the amount of deviation between the lateral position of the vehicle and the target travel locus.
  • the steering angle correction amount is a correction amount for reducing the lateral deviation caused by the slope of the road surface in the width direction of the lane.
  • the lateral deviation caused by the slope of the road surface in the width direction of the lane is determined in which direction, left or right, with respect to the target travel locus, depending on the direction of the slope. For example, when the direction of the gradient in the width direction of the lane is to the left, the lateral position of the vehicle produces a lateral deviation in the left direction with respect to the target travel locus. Further, when the direction of the gradient in the width direction of the lane is rightward, the lateral position of the host vehicle produces a rightward lateral deviation with respect to the target travel locus.
  • the steering angle correction amount corresponding to the slope of the road surface in the width direction of the lane is set in advance in the map.
  • the map shows the relationship between the magnitude and direction of the road surface gradient in the width direction of the lane and the steering angle correction amount.
  • the magnitude (absolute value) of the steering angle correction amount is set according to the magnitude of the road surface gradient in the width direction of the lane, and the steering angle correction amount is determined according to the direction of the road surface gradient in the width direction of the lane. or a negative value is set.
  • the steering angle correction amount is set as a positive value, and when the road surface gradient in the lane width direction is to the right, The steering angle correction amount is set as a negative value. Further, in this map, the steering angle correction amount is set to zero when the magnitude of the road surface gradient in the width direction of the lane is zero.
  • the steering angle correction unit 104 refers to the map and calculates a steering angle correction amount according to the own lane gradient (magnitude and direction of the own lane gradient). Then, the steering angle correction unit 104 corrects the target steering angle by adding the calculated steering angle correction amount to the target steering angle.
  • the relation between the direction of the gradient and the positive/negative of the steering angle correction amount is an example, and the relation between the direction of the gradient and the positive/negative of the steering angle correction amount is not limited.
  • the steering angle correction amount is set as a negative value when the gradient is directed leftward, and the steering angle correction amount is set as a positive value when the gradient is directed rightward.
  • the steering angle correction unit 104 corrects the target steering angle based on the slope of the own lane and the slope of the adjacent lane until the vehicle edge of the own vehicle reaches the lane boundary after the own vehicle starts changing lanes. do.
  • the steering angle correction unit 104 calculates the target distance between the vehicle and the lane boundary line between the vehicle's own lane and the adjacent lane at a predetermined cycle after the vehicle starts changing lanes. .
  • the steering angle correction unit 104 calculates the object distance from the outside image captured by the side camera of the sensor 11 at a predetermined cycle from the time when the vehicle starts to move in the lateral direction to change lanes. Calculate
  • the target distance is, for example, the distance between the lane boundary line and the side of the vehicle on the adjacent lane side of the lane change destination.
  • the target distance may be the distance between the lane boundary line and the center of gravity of the host vehicle.
  • the steering angle correction unit 104 determines weighting for the own lane gradient and weighting for the adjacent lane gradient, respectively, according to the calculated target distance. For example, the rudder angle correction unit 104 determines the weighting of the own lane gradient as ⁇ (0 ⁇ 1) and the weighting of the adjacent lane gradient as 1 ⁇ .
  • the value of ⁇ is a value determined according to the target distance, and is set to a smaller value as the target distance is shorter. That is, the closer the vehicle is to the lane boundary, the steering angle correction unit 104 sets a smaller weight for the own lane gradient and a larger weight for the adjacent lane gradient.
  • the rudder angle correction unit 104 sets the weighting for each of the own lane gradient and the adjacent lane gradient according to the target distance each time the target distance is calculated. is set smaller as the target distance becomes shorter due to the vehicle's approach to the lane boundary line, and the weighting for the adjacent lane gradient is set larger.
  • the steering angle correction unit 104 weights the obtained own lane gradient (X a ) and the adjacent lane gradient (X b ) to calculate a weighted gradient (X c ). That is, the weighting gradient (X c ) is obtained as shown by the following formula (1).
  • the steering angle correction unit 104 calculates the steering angle correction amount based on the weighting gradient.
  • the steering angle correction amount based on the weighting gradient is calculated by the same method as the steering angle correction amount described above.
  • the direction of the weighting gradient is set according to the target distance.
  • priority is given to steering control corresponding to the slope of the lane, and the direction of the weighted gradient is set to the direction of the slope of the lane.
  • priority is given to the operation control corresponding to the adjacent lane gradient, and the direction of the weighted gradient is set to the direction of the adjacent lane gradient.
  • the steering angle correction unit 104 sets the direction of the weighted gradient to the same direction as the adjacent lane gradient, and the value of ⁇ is greater than or equal to 0.5, the direction of the weighting gradient is set to be the same as that of the own lane gradient.
  • the steering angle correction unit 104 adjusts , the direction of the weighting gradient is set to the direction of the own lane gradient (rightward), and the steering angle correction amount is set as a negative value. Then, when the value of ⁇ is less than 0.5, the steering angle correction unit 104 sets the direction of the weighted gradient to the direction of the adjacent lane gradient (leftward), and sets the steering angle correction amount to a positive value. set as When the steering angle correction amount based on the weighting gradient is calculated, the steering angle correction unit 104 corrects the target steering angle by adding the calculated steering angle correction amount to the target steering angle.
  • the target steering angle is calculated using the adjacent lane gradient in addition to the own lane gradient. and perform steering control.
  • the steering angle correction amount can be brought closer to the steering angle correction amount for reducing the lateral deviation caused by the adjacent lane gradient through the weighting process.
  • the weighting is not limited to the road surface gradient in the lane width direction.
  • the correction amount may be weighted.
  • the steering angle correction unit 104 first calculates a steering angle correction amount based on the own lane gradient and a steering angle correction amount based on the adjacent lane gradient. Next, the steering angle correction unit 104 performs a weighting process that weights the steering angle correction amount based on the own lane gradient and the steering angle correction amount based on the adjacent lane gradient according to the target distance. Then, the steering angle correction unit 104 corrects the target steering angle by adding the steering angle correction amount based on the weighted own lane gradient and the steering angle correction amount based on the adjacent lane gradient to the target steering angle.
  • the steering angle correction unit 104 corrects the target steering angle based on the adjacent lane gradient.
  • the steering angle correction amount based on the adjacent lane gradient is calculated by a method similar to the method for calculating the steering angle correction amount described above.
  • a steering angle correction unit 104 corrects the target steering angle by adding the calculated steering angle correction amount to the target steering angle. Further, the method of correcting the target steering angle is not limited to the above method.
  • the steering angle correction unit 104 adjusts the angle based on the own lane gradient and the adjacent lane gradient. Then, the target rudder angle may be corrected. That is, unlike the method described above, it is not necessary to change the gradient information used to correct the target steering angle according to the position of the host vehicle.
  • the steering angle correction unit 104 determines whether the vehicle is traveling in the lane considered as the adjacent lane before the lane change, that is, after the lane change.
  • the current lane is regarded as the own lane
  • the own lane gradient is acquired, and the target steering angle is corrected based on the acquired own lane gradient.
  • the steering angle correction unit 104 acquires the gradient information acquired as the adjacent lane gradient as the own lane gradient, and calculates the steering angle correction amount based on the own lane gradient.
  • the steering angle correction unit 104 corrects the target steering angle by adding the calculated steering angle correction amount to the target steering angle. Further, the steering angle correction unit 104 is not limited to when it is determined that the lane change of the own vehicle has ended, and when the lane that was regarded as the adjacent lane before the lane change is regarded as the own lane. A lane gradient may also be used.
  • the steering control unit 105 performs steering control so that the steering angle of the steered wheels of the own vehicle follows the target steering angle calculated by the steering angle calculation unit 103 . Further, when the target steering angle is corrected by the steering angle correction unit 104, the steering control unit 105 performs steering control so that the steering angle of the steered wheels of the own vehicle follows the corrected target steering angle. . Specifically, the steering control unit 105 outputs a steering control instruction to the drive control device 18 to cause the steering angle of the steered wheels of the host vehicle to follow the target steering angle.
  • the steering control unit 105 executes, as feedforward control, running control based on the target steering angle corrected by the steering angle correction unit 104, and the road surface in the width direction of the lane acquired from the map database 13. and the actual road surface gradient in the width direction of the lane.
  • the steering angle correction amount is calculated based on the gradient information acquired from the map database 13, and the target steering angle is corrected using the calculated steering angle correction amount. For this reason, if there is a difference between the gradient information acquired from the map database 13 and the actual road gradient information in the width direction of the lane, after the feedforward control, the lateral direction of the vehicle with respect to the target travel locus caused by the difference is calculated after the feedforward control. Deviations may remain.
  • the steering control unit 105 corrects the lateral deviation by feedback control.
  • FIG. 2 is a diagram showing a scene of changing lanes between lanes with different slopes.
  • FIG. 2 shows a scene in which the vehicle V changes lanes from its own lane L1 to the adjacent lane L2.
  • the depth direction of the drawing is the traveling direction of the vehicle V
  • the vehicle V starts changing lanes leftward with respect to the traveling direction from the vehicle position P1 on the own lane L1.
  • the lateral position of the vehicle V moves upward with respect to the own lane gradient, and the vehicle edge of the vehicle V reaches the lane boundary line B at the vehicle position P2.
  • the lateral position of the vehicle V moves downward with respect to the slope of the adjacent lane to the vehicle position P3.
  • the vehicle V moves to the vehicle position P3, the lane change ends.
  • the vehicle edge of the vehicle V for example, the wheel on the adjacent lane side
  • the road surface in the width direction of the lane in which the vehicle V is traveling slope changes.
  • the target steering angle is corrected using the gradient information of the adjacent lane L2, which is the destination of the lane change. That is, according to the vehicle control method according to the present embodiment, before the lane gradient changes, the target steering angle is corrected using the own lane gradient before the change and the adjacent lane gradient after the change. Even if the slope of the road surface in the width direction of the lane changes, steering control corresponding to the slope of the adjacent lane L2 after the change can be performed.
  • the vehicle control device can stably perform the steering control of the own vehicle and improve the ride comfort of the own vehicle.
  • FIG. 3 is a flow chart showing the procedure of vehicle control according to this embodiment.
  • the control device 19 starts the flow from step S1.
  • a scene is assumed in which a target trajectory for the vehicle to travel and a target steering angle are set so that the vehicle travels along the target trajectory, and the vehicle starts traveling along the target trajectory.
  • the control device 19 acquires gradient information regarding the own lane gradient of the own lane on which the own vehicle is traveling and the adjacent lane gradient of the adjacent lane adjacent to the own lane.
  • the control device 19 uses the map information stored in the map database 13 to acquire each slope information.
  • step S2 the control device 19 determines whether or not a lane change start condition is satisfied. For example, the control device 19 detects an obstacle on the adjacent lane to which the lane is to be changed by the sensor 11, and determines whether or not there is a space in the adjacent lane in which the lane can be changed. Determine whether or not the start condition is satisfied.
  • control device 19 determines that the lane change start condition is satisfied, the control device 19 proceeds to step S3. If the control device 19 does not determine that the lane change start condition is satisfied, the control device 19 proceeds to step S14.
  • the control device 19 when the own vehicle does not change lanes, the control device 19 corrects the target steering angle using the own lane gradient without using the adjacent lane gradient.
  • the control device 19 generates a target travel locus for lane change.
  • the control device 19 calculates a target control amount including the target steering angle so that the host vehicle travels along the target travel locus generated at step S3. After calculating the target control amount including the target steering angle, the control device 19 outputs the target control amount including the target steering angle to the drive control device 18 .
  • step S5 the control device 19 determines whether or not the host vehicle will start changing lanes. For example, the control device 19 determines whether the vehicle has started lateral movement for lane change, that is, whether the lateral position of the vehicle has started to move along the target travel locus for lane change. It is determined whether or not the vehicle has started to change lanes.
  • the process proceeds to step S6. If the control device 19 does not determine that the lane change has started, the process proceeds to step S14.
  • step S6 the control device 19 performs steering angle correction control to correct the target steering angle. A specific procedure of steering angle correction control will be described later with reference to FIG.
  • step S7 the control device 19 performs steering control of the host vehicle.
  • control device 19 outputs a steering control instruction to the drive control device 18 so that the steering angle of the steered wheels of the host vehicle follows the target steering angle corrected in step S6.
  • the drive control device 18 controls the operation of the steering actuator based on the steering control instruction.
  • step S8 the control device 19 determines whether the vehicle edge of the own vehicle has reached the lane boundary line. If the control device 19 determines that the vehicle edge of the own vehicle has reached the lane boundary line, the process proceeds to step S9. If the control device 19 does not determine that the vehicle edge of the host vehicle has reached the lane boundary line, the process returns to step S6, and the control device 19 repeats steps S6 to S8 until an affirmative determination is made in step S8. Repeat process.
  • step S9 the control device 19 corrects the target steering angle based on the adjacent lane gradient.
  • step S10 the control device 19 performs steering control so that the steering angle of the steered wheels of the host vehicle follows the target steering angle corrected in step S9.
  • step S11 the control device 19 determines whether or not the vehicle change has ended. For example, the control device 19 determines whether the lane change to the adjacent lane of the vehicle has been completed based on whether the lateral position of the vehicle has reached the center line in the width direction of the adjacent lane of the lane change destination. determine whether When the control device 19 determines that the vehicle change has ended, the process proceeds to step S12. If the control device 19 does not determine that the vehicle change has ended, the process returns to step S9, and the control device 19 repeats the processing of steps S9 to S11 until a positive determination is made in step S11.
  • step S12 the control device 19 determines that the lane change is completed, so the lane that was regarded as the adjacent lane before the lane change is regarded as the own lane, and the target travel locus along the own lane is generated. .
  • the control device 19 regards the lane, which was regarded as the adjacent lane before the lane change, as the own lane.
  • step S13 the control device 19 calculates a target steering angle so that the vehicle travels along the target travel locus generated in step S12.
  • step S14 the control device 19 corrects the target steering angle calculated in step S13 based on the own lane gradient.
  • step S15 the control device 19 performs steering control so that the steering angle of the steered wheels of the host vehicle follows the target steering angle corrected in step S14.
  • FIG. 4 is a diagram showing a steering angle correction control subroutine in step S6 shown in FIG.
  • the control device 19 determines that the host vehicle starts changing lanes in step S5 of FIG. 3, the control device 19 first proceeds to step S61.
  • the control device 19 calculates the target distance between the vehicle and the lane boundary line between the own lane and the adjacent lane.
  • the control device 19 determines weights for the own lane gradient and the adjacent lane gradient acquired in step S1 of FIG. 3, according to the target distance calculated in step S61.
  • the control device 19 sets a smaller weight to the own lane gradient and a larger weight to the adjacent lane gradient as the target distance is shorter, that is, closer to the lane boundary line.
  • the control device 19 calculates a steering angle correction amount for correcting the target steering angle calculated at step S4 of FIG.
  • the control device 19 weights the own lane gradient and the adjacent lane gradient to calculate a weighted gradient, and calculates a steering angle correction amount based on the weighted gradient.
  • the control device 19 corrects the target steering angle by adding the steering angle correction amount calculated in step S63 to the target steering angle.
  • the control device 19 calculates the target rudder angle of the steered wheels of the vehicle so that the vehicle travels along the target travel locus for changing lanes.
  • the target rudder angle is corrected based on the own lane gradient, which indicates the road surface gradient in the width direction of the current lane, and the adjacent lane gradient, which indicates the road surface gradient in the width direction of the adjacent lane to which the vehicle is changing lanes.
  • steering control is performed so that the steering angle of the steered wheels follows the corrected target steering angle.
  • the control device 19 calculates the target distance between the vehicle and the lane boundary line between the own lane and the adjacent lane at a predetermined cycle, and calculates the target distance according to the calculated target distance. to determine the weights for the own lane gradient and the adjacent lane gradient, respectively, and correct the target steering angle based on the weighted own lane gradient and the adjacent lane gradient. As a result, the weighting of the slope of the own lane and the slope of the adjacent lane changes according to the distance to the adjacent lane. Lateral deviation of the trajectory can be suppressed.
  • control device 19 uses map information to acquire information on the own lane gradient and the adjacent lane gradient. As a result, not only the slope of the lane on which the vehicle is actually traveling, but also the slope of the adjacent lane can be acquired in advance before traveling in the adjacent lane.
  • the control device 19 calculates the target distance at a predetermined cycle from the time when the host vehicle starts to move in the lateral direction for changing lanes.
  • the steering angle can be controlled with consideration given to the gradient of the adjacent lane, so that the gradient of the lane in which the vehicle is traveling will not change. Also, it is possible to suppress the lateral deviation of the own vehicle with respect to the target travel locus that occurs at the time of change.
  • the control device 19 determines whether or not the lane change of the own vehicle has finished, and if it is determined that the lane change of the own vehicle has finished, the lane is regarded as an adjacent lane before the lane change.
  • the target rudder angle is calculated so that the vehicle travels along the target trajectory along the lane it was in, and the target rudder angle is calculated based on the slope of the road surface in the width direction of the lane that was regarded as the adjacent lane before the lane change. correct.
  • the steering angle can be controlled according to the slope of the lane on which the vehicle is traveling.
  • the correction of the target steering angle using the gradient of the own lane and the gradient of the adjacent lane has been described during the lane change. If there is no road surface gradient in the width direction, that is, if it is zero, the target steering angle may be corrected using the adjacent lane gradient without using the own lane gradient. In this case, according to the target distance between the vehicle and the lane boundary line, the control device 19 determines the weighting of the adjacent lane gradient to be larger as the target distance becomes shorter, and the weighted adjacent lane gradient is Based on this, the steering angle correction amount is calculated.
  • the target lane gradient is used without using the adjacent lane gradient. It is also possible to correct the steering angle.
  • the control device 19 determines a smaller value for the weight of the own lane gradient as the target distance becomes shorter. Based on this, the steering angle correction amount is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両制御装置は、自車両が車線変更のための走行軌跡を走行するように自車両の操舵輪の目標舵角を演算する舵角演算部(103)と、自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、自車両の車線変更先となる隣接車線の幅方向における路面の勾配を示す隣接車線勾配とに基づいて、目標舵角を補正する舵角補正部(104)と、操舵輪の舵角が、補正された目標舵角に追従するように操舵制御を行う操舵制御部(105)と、を備える。

Description

車両制御方法及び車両制御装置
 本発明は、車両制御方法および車両制御装置に関するものである。
 フィードフォワード制御項と、フィードバック制御項と、積分制御項とを加算して、自車両が目標走行ラインに沿って走行するための目標舵角を演算し、自車両の舵角が目標舵角に追従するようにステアリング機構に操舵トルクを付与する操舵支援制御を行う技術が知られている(特許文献1)。
 特許文献1の技術は、自車両の走行路面の横方向の傾斜度合を表すカント指標値の単位時間当たりの変化量に基づいて、自車両の走行路面が、横方向に傾斜のない非カント路面から横方向に傾斜のあるカント路面に切り替わったか否かを判定し、切り替わったと判定された場合、積分制御項の制御ゲインを、通常値よりも高い値に設定する。
特開2020-040524号公報
 特許文献1の技術では、自車両が実際に走行している路面のカント指標値に基づき、自車両の走行路面がカント路面に切り替わったと判定がされてから、走行路面の横方向の勾配の変化に対応する操舵支援制御が実行される。そのため、特許文献1の技術では、自車線から、自車線とは幅方向の勾配が異なる隣接車線への車線変更が行われる場面で、自車線から隣接車線への幅方向の勾配の変化に対応する操舵支援制御が遅れ、車線間における勾配の変化に基づく、自車両の目標走行軌跡に対する横偏差が発生するという問題がある。
 本発明が解決しようとする課題は、自車線と車線変更先の隣接車線とで幅方向の勾配が異なっていても、車線変更中に車線間における勾配の変化に基づいて発生する、自車両の目標走行軌跡に対する横偏差を抑制できる車両制御方法及び車両制御装置を提供することである。
 本発明は、自車両が車線変更のための目標走行軌跡を走行するように自車両の操舵輪の目標舵角を演算し、自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、自車両の車線変更先となる隣接車線の幅方向における路面の勾配を示す隣接車線勾配とに基づいて、目標舵角を補正し、操舵輪の舵角が、補正された目標舵角に追従するように操舵制御を行うことによって上記課題を解決する。
 本発明によれば、自車線と車線変更先の隣接車線とで幅方向の勾配が異なっていても、車線変更中に車線間における勾配の変化に基づいて発生する、自車両の目標走行軌跡に対する横偏差を抑制できる。
本発明に係る車両の車両制御装置の一の実施形態を示すブロック図である。 幅方向の路面の勾配が異なる車線間の車線変更を行う場面を示す図である。 本実施形態に係る車両制御の手順を示すフローチャート図である。 図3に示すステップ6のサブルーチンを示す図である。
 図1は、本実施形態に係る車両(以下、自車両ともいう)の車両制御装置1の構成を示すブロック図である。本実施形態の車両制御装置1は、本発明に係る車両制御方法を実施する一の実施形態である。図1に示すように、本実施形態に係る車両制御装置1は、センサ11と、自車位置検出装置12と、地図データベース13と、車載機器14と、ナビゲーション装置15と、提示装置16と、入力装置17と、駆動制御装置18と、制御装置19と、を備える。これらの装置は、相互に情報の送受信を行うために、例えばCANその他の車載LANによって接続されている。なお、本実施形態では、車両制御装置1は、少なくとも制御装置19を備えていれば、他の構成は上記構成に限定されない。例えば、地図データベース13は、車両制御装置1に格納されていることに限らず、車両制御装置1の外部のデータベースであってもよい。
 センサ11は、自車両の周囲の環境を検出する。例えば、センサ11は、自車両の前方を撮像する前方カメラ、自車両の後方を撮像する後方カメラ、自車両の左右の側方を撮像する側方カメラ等のカメラを含む。本実施形態では、センサ11は、カメラによって撮像された画像から、画像認識により、車線境界線等を認識する。車線境界線は、白線、黄線、破線及び二重線等を含む。また、センサ11は、自車両の前方の障害物を検出する前方レーダー、自車両の後方の障害物を検出する後方レーダー、自車両の左右の側方に存在する障害物を検出する側方レーダー等のレーダーを含む。センサ11は、自車両の周囲環境に関する検出結果を周囲環境情報として所定の周期で制御装置19に出力する。
 さらに、センサ11は、自車両の走行状態を検出する。例えば、センサ11は、自車両の車速を検出する車速センサを含む。センサ11は、ステアリングの舵角を検出する操舵角センサを含む。本実施形態では、操舵角センサは、ステアリングホイールの中立位置を基準として、自車両の進行方向に対して右方向に操舵する時の操舵角を正の値、自車両の進行方向に対して左方向に操舵する時の操舵角を負の値として出力する。中立位置とは、操舵角がゼロとなる基準位置であり、自車両が直進走行する際のステアリングホイールの位置である。なお、操舵角センサの出力は、これらに限らず、自車両の進行方向に対して右方向に操舵する時の操舵角を負の値、自車両の進行方向に対して左方向に操舵する時の操舵角を正の値として出力することとしてもよい。
 また、センサ11は、対象物との距離を取得する距離センサを含む。距離センサは、レーザーセンサやデプスカメラ等を含む。センサ11は、自車両の重心軸周りのヨーレートを取得するヨーレートセンサを含む。ヨーレートセンサは、自車両の旋回時に発生するヨーレートを取得する。センサ11は、車両の横方向の加速度を検出する横加速度センサを含む。本実施形態では、センサ11は、側方カメラ等によって撮像される車外の画像から車線境界線を認識し、自車両と車線境界線との間の距離である対象距離を測定する。センサ11は、自車両の走行状態に関する検出結果を走行情報として所定の周期で制御装置19に出力する。なお、センサ11として、上述した複数のセンサのうち1つを用いる構成としてもよいし、2種類以上のセンサを組み合わせて用いる構成としてもよい。
 自車位置検出装置12は、GPSユニット、ジャイロセンサ、および車速センサなどを備える。自車位置検出装置12は、GPSユニットにより複数の衛星通信から送信される電波を検出し、対象車両(自車両)の位置情報を周期的に取得する。また、自車位置検出装置12は、取得した対象車両の位置情報と、ジャイロセンサから取得した角度変化情報と、車速センサから取得した車速とに基づいて、対象車両の現在位置を検出する。自車位置検出装置12は、検出した対象車両の位置情報を、所定の周期で制御装置19に出力する。
 地図データベース13は、道路情報を含む地図情報を格納するデータベースである。地図データベース13は、制御装置19からアクセス可能とされたメモリに記憶されている。道路情報には、交差点や分岐点等の地図上の各地点がノードとして、ノードとノードとの間の道路区間が道路リンクとして保存されている。道路情報は、道路リンクごとの道路リンク情報を含む。道路リンクは、1又は複数の車線によって構成され、車線ごとに通行方向が定められている。道路リンク情報は、道路リンクの道路種別、幅員、車線数、カーブ路及びそのカーブの大きさ(例えば曲率又は曲率半径)等の情報を含む。また、道路リンク情報は、勾配情報を含む。勾配情報には、少なくとも車線の幅方向における路面の勾配に関する情報を含み、具体的には、車線の幅方向における路面の勾配の大きさと勾配の向きを示す情報である。勾配の大きさは、例えば、車線の幅方向における車線の左端と右端との高低差を、車線の幅の長さで除算して得られた値である。勾配の大きさは、%で表される。勾配の向きは、例えば、車線の幅方向において車線の左端より車線の右端が高い位置にある場合には、左向きの勾配、車線の幅方向において車線の右端より車線の左端が高い位置にある場合には、右向きの勾配を示す。勾配情報は、例えば、車線の幅方向における平均勾配を用いることとしてもよい。道路リンクの車線数が2以上である場合には、当該道路リンクに含まれる勾配情報には、車線ごとに、車線の幅方向における路面の勾配に関する情報が含まれる。車線の幅方向における路面の勾配には、例えば、カーブに設置されたカント等を含む。
 車載機器14は、車両に搭載された各種機器であり、ドライバーの操作により動作する。このような車載機器としては、ハンドル、アクセルペダル、ブレーキペダル、方向指示器、ワイパー、ライト、クラクション、その他の特定のスイッチなどが挙げられる。車載機器14は、ドライバーにより操作された場合に、その操作情報を制御装置19に出力する。
 ナビゲーション装置15は、自車位置検出装置12から自車両の現在の位置情報を取得し、ナビゲーション用の地図情報に自車両の位置を重ね合わせてディスプレイなどに表示する。また、ナビゲーション装置15は、目的地が設定された場合に、その目的地までのルートを設定し、設定したルートをドライバーに案内するナビゲーション機能を備える。このナビゲーション機能は、ディスプレイの地図上にルートを表示し、音声等によってルートをドライバーに知らせる。
 提示装置16は、例えば、ナビゲーション装置15が備えるディスプレイ、ルームミラーに組み込まれたディスプレイ、メーター部に組み込まれたディスプレイ、フロントガラスに映し出されるヘッドアップディスプレイ等の各種ディスプレイを含む。また、提示装置16は、オーディオ装置のスピーカー、振動体が埋設された座席シート装置など、ディスプレイ以外の装置を含む。提示装置16は、制御装置19の制御に従って、各種の提示情報をドライバーに報知する。
 入力装置17は、例えば、ドライバーの手動操作による入力が可能なボタンスイッチ、ディスプレイ画面上に配置されたタッチパネル、又はドライバーの音声による入力が可能なマイクなどの装置である。本実施形態では、ドライバーが入力装置17を操作することで、提示装置16により提示された提示情報に対する設定情報を入力することができる。入力装置17は、制御装置19が備える自律速度制御機能や自律操舵制御機能のON/OFF等をドライバーが設定する際に使用するスイッチを備える。例えば、自律操舵制御機能のためのスイッチには、車線変更制御機能を実行するための車線変更スイッチが含まれる。車線変更スイッチは、制御装置19が車線変更の開始をドライバーに確認した場合にドライバーが車線変更の開始を指示する(承諾する)ためのボタンスイッチである。なお、ドライバーが車線変更の開始を承諾した後に、ドライバーは、車線変更スイッチを所定時間よりも長く操作することで、制御装置19による車線変更の提案の承諾を取り消すことができる。
 なお、方向指示器の方向指示レバーやその他の車載機器14のスイッチを入力装置17として用いることとしてもよい。例えば、制御装置19からドライバーに自動で車線変更を行うか否かを提案された場合に、ドライバーが方向指示レバーを操作すると、自車両は方向指示レバーが操作された方向に向かって車線変更を行う。入力装置17は、入力された設定情報を制御装置19に出力する。なお、本実施形態において、自車両が車線変更する方向は特に限定されず、自車両は、進行方向に対して右側に位置する隣接車線、又は進行方向に対して左側に位置する隣接車線に車線変更できるものとする。
 駆動制御装置18は、制御装置19から出力される目標速度及び目標舵角に基づいて、自車両の走行を制御する。駆動制御装置18が実行する制御内容は、自律速度制御及び自律操舵制御を含む。また、自律操舵制御は、レーンキープ制御、車線変更制御、及び追越制御を含む。例えば、駆動制御装置18は、自律速度制御により自車両が目標速度で定速走行する場合には、自車両が目標速度となるように、加速および減速、並びに走行速度を維持するために、駆動機構の動作およびブレーキの動作を制御する。また、駆動制御装置18は、自律速度制御により自車両が先行車両に追従走行する場合にも、同様に駆動機構及びブレーキの動作を制御する。なお、駆動機構の動作制御は、エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては走行用モータの動作を含む。また、ハイブリッド自動車にあっては、内燃機関と走行用モータとのトルク配分を含む。
 また、駆動制御装置18は、自律操舵制御により、上述した駆動機構とブレーキの動作制御に加えて、ステアリングアクチュエータの動作を制御することで、自車両の操舵輪の舵角が目標舵角に追従するように自車両の操舵制御を実行する。例えば、駆動制御装置18は、自律操舵制御によりレーンキープ制御を実行する場合に、自車両が自車線に沿った目標走行軌跡を走行するように操舵制御を実行し、自車両の幅員方向における走行位置(横位置)を制御する。自車両の横位置は、車線の幅方向(自車両の幅員方向)における自車両の位置である。本実施形態では、自車両の横位置は、車線境界線に対する自車両の横位置及び目標走行軌跡に対する自車両の横位置を含む。自車両の横位置は、自車両のいずれの位置でもよいが、例えば、車線の幅方向における自車両の重心の位置である。また、駆動制御装置18は、自律操舵制御により、車線変更を実行する場合に、車線変更のための目標走行軌跡を自車両が走行するように操舵制御を実行し、自車両の横位置を制御する。また、駆動制御装置18による車両制御方法として、その他の公知の方法を用いることもできる。
 制御装置19は、自車両の走行を制御するためのプログラムを格納したROMと、このROMに格納されたプログラムを実行するCPUと、アクセス可能な記憶装置として機能するRAM等を備える。なお、動作回路としては、CPUに代えて又はこれとともに、MPU、DSP、ASIC、FPGAなどを用いることができる。制御装置19は、自律速度制御機能及び自律操舵制御機能により、自車両の走行を制御する。自律操舵制御機能は、例えば、レーンキープ機能、車線変更機能、追い越し機能を含む。制御装置19は、上記各機能を実現する又は各処理を実行するためのソフトウェアと、ハードウェアとの協働により各機能を実行する。制御装置19は、自車両が走行する目標走行軌跡を生成し、自車両が目標走行軌跡に沿って走行するように目標速度及び目標舵角を演算し、演算された目標速度及び目標舵角を駆動制御装置18に出力する。本実施形態では、制御装置19は、自車両の自律走行又は運転支援を実行する。
 本実施形態では、制御装置19は、自律操舵制御機能により、目標舵角を補正する舵角補正制御を実行する。制御装置19は、機能ブロックとして、勾配情報取得部100と、判定部101と、走行軌跡生成部102と、舵角演算部103と、舵角補正部104と、操舵制御部105とを含んで構成される。まず、制御装置19は、自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、自車線に隣接する隣接車線の幅方向における路面の勾配を示す隣接車線勾配とを取得する。次に、制御装置19は、車線変更開始条件を満たすか否かの判定を行い、車線変更開始条件を満たすと判定される場合には、車線変更のための目標走行軌跡を生成し、自車両が目標走行軌跡を走行するように目標舵角を演算する。制御装置19は、自車線勾配と隣接車線勾配とに基づいて、目標舵角を補正する。そして、制御装置19は、操舵輪の舵角を、補正された目標舵角に追従するように操舵制御を行う。なお、本実施形態では、制御装置19が有する機能を6つのブロックとして分けた上で、各機能ブロックの機能を説明するが、制御装置19の機能は必ずしも6つのブロックに分ける必要はなく、5以下の機能ブロック、あるいは、7つ以上の機能ブロックで分けてもよい。
 勾配情報取得部100は、自車線勾配及び隣接車線勾配の勾配情報を取得する。勾配情報取得部100は、地図データベース13を参照して、自車両の現在位置から進行方向に沿って所定距離(例えば、2km)以内の自車線勾配及び隣接車線勾配を取得する。例えば、勾配情報取得部100は、走行中に、所定の周期で、自車線勾配及び隣接車線勾配を取得する。また、勾配情報取得部100は、車線変更の開始前には自車両が走行している車線を自車線として見なして自車線勾配を取得する。勾配情報取得部100は、車線変更を開始した時から車線変更を終了する時までの間は、車線変更を開始した時に自車両が走行している車線を自車線と見なして自車線勾配を取得し、車線変更先の車線を隣接車線と見なして隣接車線勾配を取得する。例えば、車線変更を開始した時から車線変更を終了する時までの間における場面の例としては、車線変更中に車線変更先の隣接車線側における自車両の車両端が車線境界線を超えて、自車両の一部が隣接車線上に位置し、自車両のその他の部分が自車線上に位置するという場面が挙げられる。このような場面で、勾配情報取得部100は、車線変更を開始した時に自車両が走行している車線を自車線と見なして自車線勾配を取得し、車線変更先の車線を隣接車線と見なして隣接車線勾配を取得する。そして、勾配情報取得部100は、車線変更が終了した場合には、車線変更先の隣接車線、すなわち、車線変更前に隣接車線として見なしていた車線を自車線と見なして自車線勾配を取得する。
 判定部101は、車線変更開始条件を満たすか否かを判定する。例えば、判定部101は、センサ11によって取得された自車両の周囲環境情報及び自車位置検出装置12によって取得された自車両の位置情報に基づいて、車線変更開始条件を満たすか否かを判定する。具体的には、判定部101は、センサ11によって、車線変更先の隣接車線上の障害物を検出した検出結果に基づいて、隣接車線上に車線変更可能なスペースがある場合には、車線変更開始条件を満たすと判定する。また、判定部101は、自車位置検出装置12によって検出された自車両の位置情報に基づいて、自車両の位置が、ルート上に設定された車線変更開始位置に到達した場合には、車線変更開始条件を満たすと判定する。また、判定部101は、入力装置17を介してドライバーから車線変更開始の指示入力を取得した場合には、車線変更開始条件を満たすと判定してもよい。また、判定部101は、ドライバーが方向指示レバーを操作したことで、操作情報を取得した場合に、車線変更開始条件を満たすと判定してもよい。
 また、判定部101は、自車両が車線変更を開始したか否かを判定する。判定部101は、自車両が車線変更のための横方向の移動を開始した場合、すなわち、車線変更のための目標走行軌跡に沿って自車両の横位置が移動を開始した場合、自車両の車線変更を開始したと判定する。例えば、判定部101は、所定の判定開始タイミングから所定時間以内に自車両の横位置が所定距離以上移動した場合に、自車両が車線変更を開始したと判定する。所定の判定開始タイミングは、例えば、車線変更開始条件を満たすと判定された時、又は車線変更のための目標速度及び目標舵角が駆動制御装置18に出力された時である。
 また、判定部101は、自車両の車両端が自車線と隣接車線との間の車線境界線に到達したか否かを判定する。例えば、判定部101は、センサ11の側方カメラ等によって車線境界線の位置を認識し、車線変更先の隣接車線側における自車両の側面が車線境界線に到達した場合に、自車両の車両端が車線境界線に到達したと判定する。
 また、判定部101は、自車両の車線変更が終了したか否かを判定する。判定部101は、自車両の横位置が、車線変更先の隣接車線における幅方向の中心線に到達した場合に、自車両の隣接車線への車線変更が終了したと判定する。また、判定部101は、車線変更先の隣接車線側とは反対側の自車両の側面が、自車線と隣接車線との間の車線境界線に到達した場合に、隣接車線への車線変更が終了したと判定してもよい。
 走行軌跡生成部102は、自車両の位置情報と、地図情報と、自車両の周囲環境情報と、自車両の走行情報とに基づいて、自車両が走行するための目標走行軌跡を生成する。走行軌跡生成部102は、例えば、駆動制御装置18がレーンキープ制御を実行する場合には、自車両が自車線の中心線上を走行するための目標走行軌跡を生成する。また、走行軌跡生成部102は、駆動制御装置18が車線変更制御を実行する場合には、車線変更するための目標走行軌跡を生成する。具体的には、走行軌跡生成部102は、判定部101によって、車線変更開始条件を満たすと判定された場合には、自車両の現在位置から隣接車線の中心線上まで自車両が走行するための目標走行軌跡を生成する。また、走行軌跡生成部102は、判定部101によって、車線変更が終了したと判定された場合には、車線変更先の隣接車線、すなわち、車線変更前に隣接車線として見なしていた車線を自車線として見なして、自車線の中心線上を走行するための目標走行軌跡を生成する。
 舵角演算部103は、自車両が目標走行軌跡に沿って走行するように自車両の操舵輪の目標舵角を演算する。例えば、舵角演算部103は、目標走行軌跡と自車両の現在位置(自車両の横位置)とに基づいて、目標舵角を演算する。
 舵角補正部104は、舵角演算部103によって演算された目標舵角を補正する。舵角補正部104は、レーンキープ機能により、自車両が自車線に沿って走行している間、自車線勾配に応じて舵角補正量を演算して、演算された舵角補正量に基づいて、目標舵角を補正する。例えば、車線の幅方向における路面の勾配が大きくなるほど、傾斜路面上の車両には、重力の路面水平方向の成分がより大きく作用し、自車両の目標走行軌跡に対する横位置により大きい横偏差が発生すると考えられる。横偏差は、自車両の横位置と目標走行軌跡との間のズレ量である。舵角補正量は、車線の幅方向における路面の勾配によって生じる横偏差を低減するための補正量である。また、車線の幅方向における路面の勾配によって生じる横偏差は、勾配の向きに応じて、目標走行軌跡に対して左右いずれの方向に生じるかが決まる。例えば、車線の幅方向における勾配の向きが左向きである場合には、自車両の横位置には、目標走行軌跡に対して左方向に横偏差が生じる。また、車線の幅方向における勾配の向きが右向きである場合には、自車両の横位置には、目標走行軌跡に対して右方向に横偏差が生じる。
 例えば、車線の幅方向における路面の勾配に応じた舵角補正量が予めマップに設定されている。マップは、車線の幅方向における路面の勾配の大きさ及び向きと、舵角補正量との関係を示す。当該マップでは、車線の幅方向における路面の勾配の大きさによって、舵角補正量の大きさ(絶対値)が設定され、車線の幅方向における路面の勾配の向きによって、舵角補正量が正の値か負の値かが設定されている。車線の幅方向における路面の勾配の向きが、左向きである場合には、舵角補正量は正の値として設定され、車線の幅方向における路面の勾配の向きが、右向きである場合には、舵角補正量は負の値として設定される。また、当該マップでは、車線の幅方向における路面の勾配の大きさがゼロである場合には、舵角補正量はゼロに設定される。舵角補正部104は、当該マップを参照して、自車線勾配(自車線の勾配の大きさ及び向き)に応じて、舵角補正量を演算する。そして、舵角補正部104は、演算された舵角補正量を目標舵角に加算することで目標舵角を補正する。なお、勾配の向きと舵角補正量の正負との関係は一例であって、勾配の向きと舵角補正量の正負との関係を限定するものではない。例えば、本実施形態とは反対に、勾配の向きが左向きの場合、舵角補正量は負の値として設定され、また勾配の向きが右向きの場合、舵角補正量は正の値として設定されてもよい。
 また、舵角補正部104は、自車両が車線変更を開始した後、自車両の車両端が車線境界線に到達するまで、自車線勾配と隣接車線勾配とに基づいて、目標舵角を補正する。まず、舵角補正部104は、自車両が車線変更を開始した時から、所定の周期で、自車線と隣接車線との間の車線境界線と、自車両との間の対象距離を算出する。具体的には、舵角補正部104は、自車両が車線変更のための横方向の移動を開始する時から、所定の周期で、センサ11の側方カメラによって撮像された車外画像から対象距離を算出する。対象距離は、例えば、車線境界線と、車線変更先の隣接車線側における自車両の側面との距離である。対象距離は、車線境界線と自車両の重心との間の距離であってもよい。
 次に、舵角補正部104は、算出された対象距離に応じて、自車線勾配に対する重みづけ及び隣接車線勾配に対する重みづけをそれぞれ決定する。例えば、舵角補正部104は、自車線勾配に対する重みづけをα(0<α<1)として、隣接車線勾配に対する重みづけを1-αとして決定する。αの値は、対象距離に応じて決定される値であり、対象距離が短いほど小さい値に設定される。すなわち、舵角補正部104は、自車両が車線境界線に近いほど、自車線勾配に対する重みづけを小さく設定し、隣接車線勾配に対する重みづけを大きく設定する。本実施形態では、舵角補正部104は、対象距離が算出されるたびに、対象距離に応じて、自車線勾配及び隣接車線勾配のそれぞれに対する重みづけを設定するため、自車線勾配に対する重みづけは、自車両の車線境界線への接近によって対象距離が短くなるほど、小さく設定され、隣接車線勾配に対する重みづけは、大きく設定される。舵角補正部104は、取得された自車線勾配(X)と隣接車線勾配(X)とにそれぞれ重みづけして重みづけ勾配(X)を算出する。すなわち、重みづけ勾配(X)は、下記式(1)で示されるように求められる。
Figure JPOXMLDOC01-appb-M000001
 そして、舵角補正部104は、重みづけ勾配に基づいて、舵角補正量を演算する。重みづけ勾配に基づく舵角補正量は、前述の舵角補正量の演算方法と同様の方法で演算される。このとき、重みづけ勾配の向きは、対象距離に応じて設定される。自車両が車線境界線から所定の距離以上離れている場合には、自車線勾配に対応した操舵制御を優先して、重みづけ勾配の向きは、自車線勾配の向きに設定される。また、自車両が車線境界線に所定の距離未満まで近づいている場合には、隣接車線勾配に対応する操作制御を優先して、重みづけ勾配の向きは、隣接車線勾配の向きに設定される。例えば、舵角補正部104は、対象距離に応じて決定されるαの値が0.5未満である場合には、重みづけ勾配の向きを隣接車線勾配と同じ向きに設定し、αの値が0.5以上である場合には、重みづけ勾配の向きを自車線勾配と同じ向きに設定する。
 例えば、自車線勾配の向きが右向きで、隣接車線勾配の向きが左向きである場合には、舵角補正部104は、対象距離が短くなることによってαの値が0.5未満になるまでは、重みづけ勾配の向きを自車線勾配の向き(右向き)に設定し、舵角補正量を負の値として設定する。そして、舵角補正部104は、αの値が0.5未満になった場合には、重みづけ勾配の向きを隣接車線勾配の向き(左向き)に設定し、舵角補正量を正の値として設定する。舵角補正部104は、重みづけ勾配に基づく舵角補正量が演算されると、演算された舵角補正量を目標舵角に加算することで目標舵角を補正する。本実施形態では、自車両が自車線を走行している間に、すなわち、自車両が隣接車線に進入する前に、自車線勾配に加えて、隣接車線勾配を用いて、目標舵角を演算して操舵制御を行う。特に、自車両が隣接車線に近づくにつれて、舵角補正量を、重みづけ処理によって、隣接車線勾配によって生じる横偏差を低減させるための舵角補正量に近づけていくことができる。これにより、自車線と隣接車線とで幅方向における路面の勾配が異なっていても、隣接車線勾配に対応する操舵制御を行うことができる。
 なお、本実施形態では、車線の幅方向における路面の勾配に対して重みづけをすることに限らず、車線の幅方向における路面の勾配に基づいて、舵角補正量を演算した後、舵角補正量に対して重みづけをすることとしてもよい。舵角補正部104は、まず、自車線勾配に基づく舵角補正量と、隣接車線勾配に基づく舵角補正量とを演算する。次に、舵角補正部104は、自車線勾配に基づく舵角補正量と隣接車線勾配に基づく舵角補正量に対して、対象距離に応じてそれぞれ重みづけする重みづけ処理を実行する。そして、舵角補正部104は、重みづけされた自車線勾配に基づく舵角補正量と隣接車線勾配に基づく舵角補正量とを目標舵角に加算することで目標舵角を補正する。
 また、舵角補正部104は、判定部101によって、自車両の車両端が車線境界線に到達したと判定された場合には、隣接車線勾配に基づいて、目標舵角を補正する。隣接車線勾配に基づく舵角補正量は、前述の舵角補正量の演算方法と同様の方法で演算される。舵角補正部104は、演算された舵角補正量を目標舵角に加算することで目標舵角を補正する。また、目標舵角の補正方法は、上述の方法に限定されない。例えば、自車両の車両端が車線境界線に到達したと判定されてから自車両の車線変更が終了したと判定されるまで、舵角補正部104は、自車線勾配と隣接車線勾配とに基づいて、目標舵角を補正してもよい。すなわち、上述の方法のように、目標舵角を補正するために使用する勾配情報を、自車両の位置に応じて変更しなくてもよい。
 また、舵角補正部104は、判定部101によって、自車両の車線変更が終了したと判定された場合、車線変更前に隣接車線として見なされていた車線、すなわち、車線変更後に自車両が走行している車線を自車線と見なして自車線勾配を取得し、取得された自車線勾配に基づいて、目標舵角を補正する。本実施形態では、車線変更が終了したと判定されると、車線変更前には隣接車線として見なされていた車線が自車線と見なされる。そのため、これに合わせて、舵角補正部104は、隣接車線勾配として取得していた勾配情報を自車線勾配として取得し、自車線勾配に基づいて、舵角補正量を演算する。そして、舵角補正部104は、演算された舵角補正量を目標舵角に加算して目標舵角を補正する。また、舵角補正部104は、自車両の車線変更が終了したと判定された場合に限らず、車線変更前には隣接車線と見なされていた車線が自車線として見なされた場合に、自車線勾配を用いることとしてもよい。
 操舵制御部105は、自車両の操舵輪の舵角が、舵角演算部103によって演算された目標舵角に追従するように操舵制御を行う。また、舵角補正部104によって目標舵角が補正された場合には、操舵制御部105は、自車両の操舵輪の舵角が、補正された目標舵角に追従するように操舵制御を行う。具体的には、操舵制御部105は、自車両の操舵輪の舵角を目標舵角に追従させる操舵制御指示を駆動制御装置18に出力する。
 また、本実施形態では、操舵制御部105は、舵角補正部104によって補正された目標舵角に基づく走行制御をフィードフォワード制御として実行し、地図データベース13から取得される車線の幅方向における路面の勾配と、実際の車線の幅方向における路面の勾配との違いによって生じる自車両の目標走行軌跡に対する横偏差に対してフィードバック制御を実行することとしてもよい。本実施形態におけるフィードフォワード制御では、地図データベース13から取得された勾配情報に基づいて舵角補正量を演算し、演算された舵角補正量を用いて目標舵角を補正する。このため、地図データベース13から取得された勾配情報と実際の車線の幅方向における路面の勾配情報に違いがある場合には、フィードフォワード制御後に、当該違いに起因した自車両の目標走行軌跡に対する横偏差が残存する場合がある。操舵制御部105は、フィードバック制御によって当該横偏差を補正する。
 図2は、勾配の異なる車線間の車線変更を行う場面を示す図である。図2を用いて、本実施形態における車両制御方法の適用例を説明する。図2は、車両Vが自車線L1から隣接車線L2に車線変更を行う場面を示している。図2では、図面の奥行方向が車両Vの進行方向で、車両Vは、自車線L1上の車両位置P1から進行方向に対して左向きに車線変更を開始する。車線変更が開始されると、車両Vの横位置は、自車線勾配に対して上り方向に移動し、車両位置P2で、車両Vの車両端が車線境界線Bに到達する。さらに、車両Vの横位置は、隣接車線勾配に対して下り方向に移動し、車両位置P3まで移動する。車両Vが、車両位置P3まで移動すると、車線変更が終了する。図2で示されるような車線変更の場面において、車両Vの車両端(例えば、隣接車線側の車輪)が自車線から隣接車線に移る時に、車両Vが走行している車線の幅方向における路面の勾配が変化する。
 本実施形態に係る車両制御方法では、車両Vが自車線L1を走行している時点で、車線変更先である隣接車線L2の勾配情報を用いて目標舵角を補正する。すなわち、本実施形態に係る車両制御方法によれば、車線の勾配が変化する前に、変化前の自車線勾配と変化後の隣接車線勾配とを用いて目標舵角を補正するため、車線変更中に車線の幅方向における路面の勾配が変化したとしても、変化後の隣接車線L2の隣接車線勾配に対応した操舵制御を行うことができる。これにより、本実施形態では、自車線の幅方向における路面の勾配に対応した操舵制御を行う場合よりも、車線間における勾配の変化に基づいて発生する、自車両の目標走行軌跡に対する横偏差を抑制できる。したがって、本実施形態に係る車両制御装置は、自車両の操舵制御を安定的に実行でき、自車両の乗り心地を向上させる。
 次に、図3のフローチャートを用いて、本実施形態に係る車両制御を行う手順を説明する。図3は、本実施形態に係る車両制御の手順を示すフローチャート図である。本実施形態では、自車両が走行を開始すると、制御装置19は、ステップS1からフローを開始する。例えば、自車両が走行するための目標走行軌跡及び目標走行軌跡に沿って走行するように目標舵角が設定され、自車両が当該目標走行軌跡に沿って走行を開始した場面が想定される。ステップS1では、制御装置19は、走行中に、自車両が走行している自車線の自車線勾配及び自車線に隣接する隣接車線の隣接車線勾配に関する勾配情報を取得する。例えば、制御装置19は、地図データベース13に記憶されている地図情報を用いて、各勾配情報を取得する。ステップS2では、制御装置19は、車線変更開始条件を満たすか否かを判定する。例えば、制御装置19は、センサ11によって、車線変更先の隣接車線上の障害物を検出した検出結果に基づいて、隣接車線上に車線変更可能なスペースがあるか否かに基づいて、車線変更開始条件を満たすか否かを判定する。
 車線変更開始条件を満たすと制御装置19により判定された場合には、制御装置19は、ステップS3に進む。車線変更開始条件を満たすと制御装置19により判定されない場合には、制御装置19は、ステップS14に進む。本実施形態では、自車両が車線変更しない場合には、制御装置19は、隣接車線勾配を使用せずに、自車線勾配を使用して目標舵角を補正する。ステップS3では、制御装置19は、車線変更のための目標走行軌跡を生成する。ステップS4では、制御装置19は、ステップS3で生成された目標走行軌跡を自車両が走行するように目標舵角を含む目標制御量を演算する。目標舵角を含む目標制御量が演算されると、制御装置19は、目標舵角を含む目標制御量を駆動制御装置18に出力する。
 ステップS5では、制御装置19は、自車両が車線変更を開始するか否かを判定する。例えば、制御装置19は、自車両が車線変更のための横方向の移動を開始したか否か、すなわち、車線変更のための目標走行軌跡に沿って自車両の横位置が移動を開始したか否かによって、自車両の車線変更を開始したか否かを判定する。自車両が車線変更を開始すると制御装置19により判定された場合には、ステップS6に進む。車線変更を開始すると制御装置19により判定されない場合には、ステップS14に進む。ステップS6では、制御装置19は、舵角補正制御を行い、目標舵角を補正する。舵角補正制御の具体的な手順については、図4を用いて後述する。ステップS7では、制御装置19は、自車両の操舵制御を行う。具体的には、制御装置19は、自車両の操舵輪の舵角が、ステップS6で補正された目標舵角に追従するように操舵制御指示を駆動制御装置18に出力する。駆動制御装置18は、操舵制御指示に基づいて、ステアリングアクチュエータの動作を制御する。
 ステップS8では、制御装置19は、自車両の車両端が車線境界線に到達したか否かを判定する。自車両の車両端が車線境界線に到達したと制御装置19により判定された場合には、ステップS9に進む。自車両の車両端が車線境界線に到達したと制御装置19により判定されない場合には、ステップS6に戻り、制御装置19は、ステップS8で肯定的な判定がされるまでステップS6~ステップS8の処理を繰り返す。ステップS9では、制御装置19は、隣接車線勾配に基づいて、目標舵角を補正する。ステップS10では、制御装置19は、自車両の操舵輪の舵角が、ステップS9で補正された目標舵角に追従するように操舵制御を行う。
 ステップS11では、制御装置19は、車両変更を終了したか否かを判定する。例えば、制御装置19は、自車両の横位置が、車線変更先の隣接車線における幅方向の中心線に到達したか否かに基づいて、自車両の隣接車線への車線変更が終了したか否かを判定する。車両変更を終了したと制御装置19により判定された場合には、ステップS12に進む。車両変更を終了したと制御装置19により判定されない場合には、ステップS9に戻り、制御装置19は、ステップS11で肯定的な判定がされるまで、ステップS9~ステップS11の処理を繰り返す。ステップS12では、制御装置19は、車線変更が終了すると判定したため、車線変更前には隣接車線として見なしていた車線を自車線と見なしたうえで、自車線に沿った目標走行軌跡を生成する。以降のステップS12~ステップS15では、制御装置19は、車線変更前に隣接車線として見なしていた車線を自車線として見なす。ステップS13では、制御装置19は、ステップS12で生成された目標走行軌跡に沿って走行するように目標舵角を演算する。ステップS14では、制御装置19は、自車線勾配に基づいて、ステップS13で演算された目標舵角を補正する。ステップS15では、制御装置19は、自車両の操舵輪の舵角が、ステップS14で補正された目標舵角に追従するように操舵制御を行う。
 次に、図4のフローチャートを用いて、本実施形態における舵角補正制御のサブルーチンについて説明する。図4は、図3に示すステップS6での舵角補正制御のサブルーチンを示す図である。図3のステップS5で自車両が車線変更を開始すると制御装置19により判定された場合、制御装置19は、まず、ステップS61に進む。ステップS61では、制御装置19は、自車線と隣接車線との間の車線境界線と、自車両との間の対象距離を算出する。ステップS62では、制御装置19は、ステップS61で算出された対象距離に応じて、図3のステップS1で取得した自車線勾配と隣接車線勾配に対する重みづけをそれぞれ決定する。例えば、制御装置19は、対象距離が短い、すなわち、車線境界線に近いほど、自車線勾配に対する重みづけを小さく設定し、隣接車線勾配に対する重みづけを大きく設定する。ステップS63では、制御装置19は、図3のステップS4で演算された目標舵角を補正するための舵角補正量を演算する。例えば、制御装置19は、自車線勾配と隣接車線勾配に対して重みづけして重みづけ勾配を演算し、重みづけ勾配に基づく舵角補正量を演算する。ステップS64では、制御装置19は、ステップS63で演算された舵角補正量を目標舵角に加算することで目標舵角を補正する。ステップS64で、目標舵角が補正されると、図4に示すサブルーチンを抜け、図3のステップS7に進む。
 以上のように、本実施形態では、制御装置19により、自車両が車線変更のための目標走行軌跡を走行するように自車両の操舵輪の目標舵角を演算し、自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、自車両の車線変更先となる隣接車線の幅方向における路面の勾配を示す隣接車線勾配とに基づいて、目標舵角を補正し、操舵輪の舵角が、補正された目標舵角に追従するように操舵制御を行う。これにより、自車線と車線変更先の隣接車線とで幅方向の勾配が異なっていても、車線変更中に車線間の勾配差に基づいて発生する、自車両の目標走行軌跡に対する横偏差を抑制できる。
 また、本実施形態では、制御装置19により、所定の周期で、自車線と隣接車線との間の車線境界線と、自車両との間の対象距離を算出し、算出された対象距離に応じて、自車線勾配及び隣接車線勾配に対する重みづけをそれぞれ決定し、重みづけされた自車線勾配及び隣接車線勾配に基づいて、目標舵角を補正する。これにより、隣接車線までの距離に応じて自車線の勾配と隣接車線の勾配の重みづけが変化するため、車線間で幅方向の勾配が変化しても、変化時に発生する自車両の目標走行軌跡に対する横偏差を抑制できる。
 また、本実施形態では、制御装置19により、地図情報を用いて、自車線勾配及び隣接車線勾配の情報を取得する。これにより、自車両が実際に走行している車線の勾配のみならず、隣接車線の勾配を隣接車線走行前に予め取得できる。
 また、本実施形態では、制御装置19により、自車両が車線変更のための横方向の移動を開始する時から、所定の周期で、対象距離を算出する。これにより、自車両が車線変更のための横方向への移動を開始するときから、隣接車線の勾配を考慮した舵角制御ができるため、自車両が走行している車線の勾配が変化しても、変化時に発生する自車両の目標走行軌跡に対する横偏差を抑制できる。
 また、本実施形態では、制御装置19により、自車両の車線変更が終了したか否かを判定し、自車両の車線変更が終了したと判定された場合、車線変更前には隣接車線として見なしていた車線に沿った目標走行軌跡を自車両が走行するように目標舵角を演算し、車線変更前には隣接車線として見なしていた車線の幅方向における路面の勾配に基づいて、目標舵角を補正する。これにより、車線変更後は、自車両が走行している車線の勾配に応じた舵角制御ができる。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、本実施形態では、車線変更中には、自車線勾配と隣接車線勾配とを用いた目標舵角の補正を説明したが、これに限らず、車線変更中であっても、自車線に幅方向における路面の勾配がない、すなわち、ゼロである場合には、自車線勾配を用いず、隣接車線勾配を用いて目標舵角を補正することとしてもよい。この場合、制御装置19は、自車両と車線境界線との間の対象距離に応じて、対象距離が短くなるほど隣接車線勾配に対する重みづけを大きい値に決定し、重みづけされた隣接車線勾配に基づいて、舵角補正量を演算する。また、本実施形態では、車線変更中であっても、隣接車線に幅方向における路面の勾配がない、すなわち、ゼロである場合には、隣接車線勾配を用いず、自車線勾配を用いて目標舵角を補正することとしてもよい。この場合、制御装置19は、自車両と車線境界線との間の対象距離に応じて、対象距離が短くなるほど自車線勾配に対する重みづけを小さい値に決定し、重みづけされた自車線勾配に基づいて、舵角補正量を演算する。
1…車両制御装置
 11…センサ
 12…自車位置検出装置
 13…地図データベース
 18…駆動制御装置
 19…制御装置
  100…勾配情報取得部
  101…判定部
  102…走行軌跡生成部
  103…舵角演算部
  104…舵角補正部
  105…操舵制御部

Claims (6)

  1.  コントローラによって実行される車両制御方法であって、
     前記コントローラは、
     自車両が車線変更のための目標走行軌跡を走行するように前記自車両の操舵輪の目標舵角を演算し、
     前記自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、前記自車両の車線変更先となる隣接車線の幅方向における路面の勾配を示す隣接車線勾配とに基づいて、前記目標舵角を補正し、
     前記操舵輪の舵角が、補正された前記目標舵角に追従するように操舵制御を行う車両制御方法。
  2.  前記コントローラは、
     所定の周期で、前記自車線と前記隣接車線との間の車線境界線と、前記自車両との間の対象距離を算出し、
     算出された前記対象距離に応じて、前記自車線勾配及び前記隣接車線勾配に対する重みづけをそれぞれ決定し、
     重みづけされた前記自車線勾配及び前記隣接車線勾配に基づいて、前記目標舵角を補正する請求項1に記載の車両制御方法。
  3.  前記コントローラは、
     地図情報を用いて、前記自車線勾配及び前記隣接車線勾配の情報を取得する請求項1又は2に記載の車両制御方法。
  4.  前記コントローラは、
     前記自車両が前記車線変更のための横方向の移動を開始する時から、所定の周期で、前記対象距離を算出する請求項2に記載の車両制御方法。
  5.  前記コントローラは、
     前記自車両の前記車線変更が終了したか否かを判定し、
     前記自車両の前記車線変更が終了したと判定された場合、前記車線変更前には前記隣接車線として見なしていた車線に沿った前記目標走行軌跡を走行するように前記目標舵角を演算し、
     前記車線変更前には隣接車線として見なしていた車線の幅方向における路面の勾配に基づいて、前記目標舵角を補正する請求項1~4のいずれかに記載の車両制御方法。
  6.  自車両が車線変更のための走行軌跡を走行するように前記自車両の操舵輪の目標舵角を演算する舵角演算部と、
     前記自車両が走行している自車線の幅方向における路面の勾配を示す自車線勾配と、前記自車両の車線変更先となる隣接車線の幅方向における路面の勾配を示す隣接車線勾配とに基づいて、前記目標舵角を補正する舵角補正部と、
     前記操舵輪の舵角が、補正された前記目標舵角に追従するように操舵制御を行う操舵制御部と、を備える車両制御装置。
PCT/JP2021/022404 2021-06-11 2021-06-11 車両制御方法及び車両制御装置 WO2022259552A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2021/022404 WO2022259552A1 (ja) 2021-06-11 2021-06-11 車両制御方法及び車両制御装置
CN202180099067.3A CN117425588A (zh) 2021-06-11 2021-06-11 车辆控制方法及车辆控制装置
EP21944436.1A EP4353556A1 (en) 2021-06-11 2021-06-11 Vehicle control method and vehicle control device
JP2023526830A JPWO2022259552A1 (ja) 2021-06-11 2021-06-11
MX2023014602A MX2023014602A (es) 2021-06-11 2021-06-11 Metodo de control de vehiculo y dispositivo de control de vehiculo.
BR112023024847A BR112023024847A2 (pt) 2021-06-11 2021-06-11 Método de controle de veículo e dispositivo de controle de veículo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022404 WO2022259552A1 (ja) 2021-06-11 2021-06-11 車両制御方法及び車両制御装置

Publications (1)

Publication Number Publication Date
WO2022259552A1 true WO2022259552A1 (ja) 2022-12-15

Family

ID=84424531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022404 WO2022259552A1 (ja) 2021-06-11 2021-06-11 車両制御方法及び車両制御装置

Country Status (6)

Country Link
EP (1) EP4353556A1 (ja)
JP (1) JPWO2022259552A1 (ja)
CN (1) CN117425588A (ja)
BR (1) BR112023024847A2 (ja)
MX (1) MX2023014602A (ja)
WO (1) WO2022259552A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033807A (ja) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd 車線逸脱防止装置
JP2014139063A (ja) * 2012-12-21 2014-07-31 Nippon Soken Inc 車両制御装置
JP2018154304A (ja) * 2017-03-21 2018-10-04 株式会社Subaru 車両の走行制御装置
WO2019186617A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 経路生成装置、経路生成方法及び走行制御装置
JP2020506837A (ja) * 2017-01-04 2020-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 自動車線変更中の横方向位置偏差の低減
JP2020040524A (ja) 2018-09-11 2020-03-19 トヨタ自動車株式会社 車両用操舵支援装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612708B2 (ja) * 2016-10-05 2019-11-27 本田技研工業株式会社 車両制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033807A (ja) * 2006-07-31 2008-02-14 Nissan Motor Co Ltd 車線逸脱防止装置
JP2014139063A (ja) * 2012-12-21 2014-07-31 Nippon Soken Inc 車両制御装置
JP2020506837A (ja) * 2017-01-04 2020-03-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 自動車線変更中の横方向位置偏差の低減
JP2018154304A (ja) * 2017-03-21 2018-10-04 株式会社Subaru 車両の走行制御装置
WO2019186617A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 経路生成装置、経路生成方法及び走行制御装置
JP2020040524A (ja) 2018-09-11 2020-03-19 トヨタ自動車株式会社 車両用操舵支援装置

Also Published As

Publication number Publication date
CN117425588A (zh) 2024-01-19
EP4353556A1 (en) 2024-04-17
BR112023024847A2 (pt) 2024-02-20
JPWO2022259552A1 (ja) 2022-12-15
MX2023014602A (es) 2023-12-15

Similar Documents

Publication Publication Date Title
US20180297638A1 (en) Lane change assist apparatus for vehicle
JP3818653B2 (ja) 車両用走行支援装置
JP6323572B2 (ja) 目標車速生成装置および走行制御装置
EP2712780B1 (en) Method and apparatus for performing driving assistance
JP2017013749A (ja) 自動運転車両の制御装置
JP6952014B2 (ja) 車両制御装置、車両制御方法、及び車両制御システム
CN111132883A (zh) 车辆控制装置
JP2005014775A (ja) 車両用走行支援装置
US9031709B2 (en) Vehicle travel control apparatus and vehicle travel control method
CN111132882A (zh) 车辆控制装置
JP2014139063A (ja) 車両制御装置
WO2016110733A1 (ja) 目標経路生成装置およぴ走行制御装置
JP2020028151A (ja) 駆動力制御装置
JP2020119269A (ja) 車両制御装置
US10353391B2 (en) Travel control device
WO2019159724A1 (ja) 車両制御装置
JP7188236B2 (ja) 車両制御装置
KR20230009949A (ko) 경로 제어 모듈, 연관된 경로 제어 디바이스 및 연관된 방법
JP6330563B2 (ja) 走行支援装置及び走行支援方法
US20210061356A1 (en) Vehicle control device
CN109843681B (zh) 车辆控制装置
JP5045108B2 (ja) 走行支援装置
WO2022259552A1 (ja) 車両制御方法及び車両制御装置
WO2016110730A1 (ja) 目標車速生成装置および走行制御装置
WO2021171049A1 (ja) 車両制御方法及び車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526830

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024847

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202180099067.3

Country of ref document: CN

Ref document number: MX/A/2023/014602

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2021944436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021944436

Country of ref document: EP

Effective date: 20240111

ENP Entry into the national phase

Ref document number: 112023024847

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231128