WO2022257221A1 - 超薄玻璃掩膜及其制造方法 - Google Patents

超薄玻璃掩膜及其制造方法 Download PDF

Info

Publication number
WO2022257221A1
WO2022257221A1 PCT/CN2021/106171 CN2021106171W WO2022257221A1 WO 2022257221 A1 WO2022257221 A1 WO 2022257221A1 CN 2021106171 W CN2021106171 W CN 2021106171W WO 2022257221 A1 WO2022257221 A1 WO 2022257221A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
thin glass
glass body
edge
mask
Prior art date
Application number
PCT/CN2021/106171
Other languages
English (en)
French (fr)
Inventor
蒋承忠
Original Assignee
蒋承忠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒋承忠 filed Critical 蒋承忠
Publication of WO2022257221A1 publication Critical patent/WO2022257221A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the invention relates to the field of equipment in the vapor deposition process, in particular to an ultra-thin glass mask and a manufacturing method thereof.
  • Organic light-emitting diode Organic Light-Emitting Diode
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • FMM Frequency Metal Mask
  • CMM Common Metal Mask
  • FMM uses Invar metal strips to stretch the net on the upper surface of the metal frame. Normally, 3 or 6 evaporation areas are used on one Invar metal strip, and there are also support bars in the middle, and the evaporation area is individually stretched. It is to reduce the deformation of the evaporation pattern caused by the Invar metal strip when stretching the net. The deformation of the vapor deposition pattern is currently the second largest factor in the high cost of FMM. The process requirements are very high, and it is very easy to scrap the Invar metal strip.
  • the evaporation surface of the OLED substrate is bonded to the Invar metal strip. The smaller the bonding gap, the more accurate the evaporation pattern is.
  • the evaporation source is below to atomize the material and evaporate it to the OLED through the through hole of the evaporation pattern. Target position of the substrate.
  • the object of the present invention is to provide an ultra-thin glass mask and a manufacturing method thereof, which overcomes the difficulties of the prior art, and can use ultra-thin glass to manufacture a mask for evaporation, which greatly reduces the cost of the mask.
  • the overall cost is improved, the precision of evaporation is improved, the total time of evaporation process is shortened, and the production efficiency is improved.
  • Embodiments of the present invention provide an ultra-thin glass mask, comprising:
  • An ultra-thin glass body forming a plurality of through holes through the ultra-thin glass body through one of laser, etching or drilling in at least one substrate region of the ultra-thin glass body along the thickness direction based on a preset evaporation pattern
  • a chamfer is formed between the inner wall of each through-hole and the surface of the ultra-thin glass body.
  • the edge of at least one side of the ultra-thin glass body forms a stress dissipation edge, and the stress dissipation edge and the through hole are obtained based on the same etching process.
  • the thickness of the ultra-thin glass body is 10 ⁇ m to 50 ⁇ m
  • the stress dissipation edge surrounds the edge of the ultrathin glass body
  • the width of the stress dissipation edge is 5 ⁇ m to 300 ⁇ m.
  • the stress dissipating edge is an arc-shaped edge, a blade edge or a polygonal edge, and the blade edge or the polygonal edge includes at least one hypotenuse or an arc-shaped hypotenuse, and the hypotenuse and the super
  • the angle range of the thin glass body is (15°, 90°).
  • At least one side of the upper and lower surfaces of the ultra-thin glass body is provided with a functional layer, the through hole is exposed to the functional layer, and the functional layer includes a stacked polymer reinforcing layer, At least one of an explosion-proof film, a magnetic material layer and an anti-release film.
  • the composition of the polymer reinforcement layer includes acrylic, silicon-containing organic polymer materials, epoxy resin, fluororesin, polyamide, polyimide, polycarbonate, polyparaphenylene Ethylene glycol dicarboxylate and polyethylene-1,4-cyclohexanedimethylene terephthalate.
  • the ultra-thin glass body includes a plurality of substrate regions arranged in a straight line, and adjacent substrate regions are separated by skeleton regions.
  • the ultra-thin glass body only includes a substrate area, and one edge of the ultra-thin glass body is provided with a supporting boss and a supporting rib surrounding the substrate area.
  • Embodiments of the present invention also provide a method for manufacturing an ultra-thin glass mask, comprising the following steps:
  • the step S130 includes, when etching the skeleton region of the glass base material, separating the substrate region from the glass base material, and forming a stress dissipation edge at an edge of the substrate region.
  • Embodiments of the present invention also provide another method for manufacturing an ultra-thin glass mask, comprising the following steps:
  • the purpose of the present invention is to provide an ultra-thin glass mask, which can use ultra-thin glass to manufacture the mask used for evaporation, which greatly reduces the overall cost of the mask. Since the ultra-thin glass itself has better rigidity than the metal mask, The ultra-thin glass mask of the present invention is more suitable for vapor deposition of special-shaped vapor deposition patterns, and, since the mask of the present invention does not require a netting step, the precision of vapor deposition is improved, and the total duration of the vapor deposition process is also shortened. Increased production efficiency.
  • FIG. 1 is a schematic diagram of the first ultra-thin glass mask of the present invention.
  • Fig. 2 is an enlarged view of area E in Fig. 1 .
  • Fig. 3 is a schematic diagram of the second ultra-thin glass mask of the present invention.
  • Fig. 4 is a cross-sectional view of the second ultra-thin glass mask of the present invention.
  • Fig. 5 is a flow chart of the first manufacturing method of the ultra-thin glass mask of the present invention.
  • 6 to 13 are schematic diagrams of the manufacturing process of the third ultra-thin glass mask of the present invention.
  • Fig. 14 is a schematic diagram of a mask plate with a third ultra-thin glass mask of the present invention.
  • Fig. 15 is a schematic diagram of the bonding of the third ultra-thin glass mask and the mask plate of the present invention.
  • Fig. 16 is a schematic diagram of laser welding of the third ultra-thin glass mask and mask plate of the present invention.
  • Fig. 17 is a sectional view of the fourth ultra-thin glass mask of the present invention.
  • Fig. 18 is a cross-sectional view of the fifth ultra-thin glass mask of the present invention.
  • Fig. 19 is a schematic diagram of the combination of the fifth ultra-thin glass mask and mask plate of the present invention.
  • Fig. 20 is a schematic diagram of evaporation of the sixth ultra-thin glass mask of the present invention.
  • Fig. 21 is a schematic diagram of evaporation of the seventh ultra-thin glass mask of the present invention. as well as
  • Fig. 22 is a schematic diagram of evaporation of the eighth ultra-thin glass mask of the present invention.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the example embodiments to those skilled in the art.
  • the same reference numerals denote the same or similar structures in the drawings, and thus their repeated descriptions will be omitted.
  • FIG. 1 is a schematic diagram of the first ultra-thin glass mask 41 of the present invention.
  • Fig. 2 is an enlarged view of area E in Fig. 1 .
  • the first ultra-thin glass mask 41 of the present invention includes: an ultra-thin glass body 14, which is formed along at least one substrate region 11 of the above-mentioned ultra-thin glass body 14 based on a preset evaporation pattern.
  • a plurality of through-holes 15 through the above-mentioned ultra-thin glass body 14 are formed in the thickness direction by one of laser, etching or drilling, and a chamfer is formed between the inner wall of each of the above-mentioned through-holes 15 and the surface of the above-mentioned ultra-thin glass body 14 23.
  • the through hole 15 allows the evaporation medium to pass through the ultra-thin glass body 14 to reach the evaporation object.
  • the first ultra-thin glass mask in this embodiment only includes a substrate region 11, which can be evaporated with the mask frame. Since the ultra-thin glass itself has better rigidity than the metal mask, it can be used without a net The operation improves the precision of the vapor deposition, shortens the total time of the vapor deposition process, and improves the production efficiency.
  • the edge of at least one side of the ultra-thin glass body 14 forms a stress dissipation edge 13, and the stress dissipation edge 13 and the through hole 15 are obtained based on the same etching, but not limited thereto.
  • the stress dissipating edge 13 may also be an arc-shaped edge, so as to dissipate stresses in multiple different directions and improve the ability of the ultra-thin glass body 14 to resist breakage.
  • the stress dissipating edge 13 may also be a triangular edge, so as to dissipate stresses in multiple different directions and improve the ability of the ultra-thin glass body 14 to resist breakage.
  • the thickness of the ultra-thin glass body 14 is 10 microns to 50 microns
  • the stress dissipation edge 13 surrounds the edge of the ultra-thin glass body 14, and the stress dissipation edge 13 has a width of 5 um to 300 um, but not This is the limit.
  • the above-mentioned stress dissipating edge 13 is an arc-shaped edge, a blade edge or a polygonal edge.
  • the angle range of 14 is (15°, 90°), but not limited thereto.
  • FIG. 3 is a schematic diagram of the second ultra-thin glass mask 42 of the present invention.
  • FIG. 4 is a cross-sectional view of the second ultra-thin glass mask 42 of the present invention.
  • the second ultra-thin glass mask of the present invention includes: an ultra-thin glass body, which passes through at least one substrate region 11 of the above-mentioned ultra-thin glass body along the thickness direction based on a preset evaporation pattern One of laser, etching or drilling forms a plurality of through holes 15 through the above-mentioned ultra-thin glass body, and a chamfer 23 is formed between the inner wall of each of the above-mentioned through-holes 15 and the surface of the above-mentioned ultra-thin glass body.
  • the above-mentioned through hole 15 allows the evaporation medium to pass through the above-mentioned ultra-thin glass body to reach the evaporation object.
  • the ultra-thin glass body only includes a substrate area 11 , and a support boss 16 and support ribs (not shown in the figure) surrounding the substrate area 11 are provided on one edge of the ultra-thin glass body.
  • the ultra-thin glass body, the supporting boss 16 and the supporting ribs are integrally formed, but not limited thereto.
  • the second ultra-thin glass mask in the present embodiment has the support boss 16 and the support ribs so that the second ultra-thin glass mask itself has the state after the mask and the mask frame are combined, and can be used directly , further shortening the time of evaporation, improving the precision of evaporation, shortening the total time of evaporation process, and improving production efficiency.
  • the edge of at least one side of the ultra-thin glass body forms a stress dissipation edge 13, and the stress dissipation edge 13 and the through hole 15 are obtained based on the same etching, but not limited thereto.
  • the thickness of the ultra-thin glass body is 10 microns to 50 microns
  • the stress dissipation edge 13 surrounds the edge of the ultra-thin glass body
  • the stress dissipation edge 13 has a width of 5um to 300um, but not limit.
  • the above-mentioned stress dissipating edge 13 is an arc-shaped edge, a blade edge or a polygonal edge.
  • the range of angles is (15°, 90°), but not limited thereto.
  • Fig. 5 is a flow chart of the first manufacturing method of the ultra-thin glass mask of the present invention. As shown in Figure 5, the first manufacturing method of the ultra-thin glass mask of the present invention comprises the following steps:
  • the step S130 includes etching the skeleton region 12 of the glass base material 1 , detaching the substrate region 11 from the glass base material 1 , and forming a stress dissipation edge 13 on the edge of the substrate region 11 , but not limited to this.
  • the second manufacturing method of the ultra-thin glass mask that the present invention also provides comprises the following steps:
  • the glass base material 1 presets a substrate region 11 .
  • FIGS 6 to 13 are schematic diagrams of the manufacturing process of the third ultra-thin glass mask of the present invention. As shown in Figures 6 to 13, the manufacturing process of the third ultra-thin glass mask 43 of the present invention is as follows:
  • a glass base material 1 is provided.
  • FIGS. 7 and 8 wherein FIG. 8 is a cross-sectional view along A-A in FIG. 7 ), several substrate regions 11 and skeleton regions 12 surrounding the substrate regions 11 are preset on the above-mentioned glass base material 1 .
  • Etching protective layers 20, 22 are respectively formed on the upper and lower surfaces of the above-mentioned substrate region 11 of the above-mentioned glass base material 1.
  • the etching protective layers 20, 22 are provided with a number of through holes 21 based on the preset evaporation pattern, and the glass is exposed through the through holes 21. Local area of base metal 1.
  • FIGS. 9 and 10 wherein FIG. 10 is a cross-sectional view of B-B direction in FIG. 9 , etching the skeleton region 12 of the above-mentioned glass base material 1 and the substrate region 11 exposed by the above-mentioned through hole 21 and exposed to the etching protection layer 20, 22 edges.
  • FIGS. 11 and 12 wherein FIG. 12 is a cross-sectional view in the direction of C-C in FIG. 11
  • an independent substrate region 11 is obtained by etching.
  • Direction runs through several through holes 15 of the ultra-thin glass body.
  • Fig. 14 is a schematic diagram of a mask plate with a third ultra-thin glass mask of the present invention.
  • Fig. 15 is a schematic diagram of the bonding of the third ultra-thin glass mask and the mask plate of the present invention.
  • the third ultra-thin glass mask 43 of the present invention can be combined with the mask frame 51 of the grid structure by means of gluing, and is arranged on the top of the evaporation source 6 to carry out Evaporation.
  • Fig. 16 is a schematic diagram of laser welding of the third ultra-thin glass mask and mask plate of the present invention.
  • the third ultra-thin glass mask 43 of the present invention can be integrated with the mask frame 51 of the grid structure by laser welding, and is arranged above the evaporation source 6 for evaporation .
  • Fig. 17 is a sectional view of the fourth ultra-thin glass mask of the present invention.
  • the present invention also provides a fourth ultra-thin glass mask 44, including: an ultra-thin glass body, which passes through at least one substrate region 11 of the ultra-thin glass body in the thickness direction based on a preset evaporation pattern One of laser, etching or drilling forms a plurality of through holes 15 through the above-mentioned ultra-thin glass body, and a chamfer 23 is formed between the inner wall of each of the above-mentioned through-holes 15 and the surface of the above-mentioned ultra-thin glass body.
  • the above-mentioned through hole 15 allows the evaporation medium to pass through the above-mentioned ultra-thin glass body to reach the evaporation object.
  • At least one side of the upper and lower surfaces of the ultra-thin glass body is provided with a functional layer, the above-mentioned through hole is exposed to the above-mentioned functional layer 15, and the above-mentioned functional layer includes a polymer reinforcement layer 31, an explosion-proof film 33, a magnetic material layer (not shown in the figure) and at least one of the anti-release film 32.
  • the components of the polymer reinforcing layer include acrylic, silicon-containing organic polymer materials, epoxy resin, fluororesin, polyamide, polyimide, polycarbonate, polyethylene terephthalate esters and poly(1,4-cyclohexanedimethylene terephthalate).
  • the edge of at least one side of the ultra-thin glass body forms a stress dissipation edge 13, and the stress dissipation edge 13 and the through hole 15 are obtained based on the same etching, but not limited thereto.
  • the stress dissipating edge 13 may also be an arc-shaped edge, so as to dissipate stresses in multiple different directions and improve the crack resistance of the ultra-thin glass body.
  • the stress dissipating edge 13 may also be a triangular edge, so as to dissipate stresses in multiple different directions and improve the crack resistance of the ultra-thin glass body.
  • the thickness of the ultra-thin glass body is 10 microns to 50 microns
  • the stress dissipation edge 13 surrounds the edge of the ultra-thin glass body
  • the stress dissipation edge 13 has a width of 5um to 300um, but not limit.
  • the above-mentioned stress dissipating edge 13 is an arc-shaped edge, a blade edge or a polygonal edge.
  • the range of angles is (15°, 90°), but not limited thereto.
  • Fig. 18 is a cross-sectional view of the fifth ultra-thin glass mask of the present invention.
  • the present invention also provides a fifth ultra-thin glass mask 45, including: an ultra-thin glass body, based on a preset evaporation pattern, a plurality of substrate regions 11 arranged in a straight line are arranged on the ultra-thin glass body , the adjacent substrate regions are separated by the skeleton region 12 .
  • a plurality of through-holes 15 penetrating the above-mentioned ultra-thin glass body are formed by one of laser, etching or drilling along the thickness direction, and the inner wall of each of the above-mentioned through-holes 15 is in contact with the surface of the above-mentioned ultra-thin glass body.
  • a chamfer 23 is formed between them, and when the ultra-thin glass body is used as a mask for evaporation, the above-mentioned through hole 15 allows the evaporation medium to pass through the above-mentioned ultra-thin glass body to reach the evaporation object.
  • the edge of at least one side of the ultra-thin glass body forms a stress dissipation edge 13, and the stress dissipation edge 13 and the through hole 15 are obtained based on the same etching, but not limited thereto.
  • the stress dissipating edge 13 may also be an arc-shaped edge, so as to dissipate stresses in multiple different directions and improve the crack resistance of the ultra-thin glass body.
  • the stress dissipating edge 13 may also be a triangular edge, so as to dissipate stresses in multiple different directions and improve the crack resistance of the ultra-thin glass body.
  • the thickness of the ultra-thin glass body is 10 microns to 50 microns
  • the stress dissipation edge 13 surrounds the edge of the ultra-thin glass body
  • the stress dissipation edge 13 has a width of 5um to 300um, but not limit.
  • the above-mentioned stress dissipating edge 13 is an arc-shaped edge, a blade edge or a polygonal edge.
  • the range of angles is (15°, 90°), but not limited thereto.
  • Fig. 19 is a schematic diagram of the combination of the fifth ultra-thin glass mask and mask plate of the present invention.
  • Figure 19 adopt the fifth kind of ultra-thin glass mask 45 in a plurality of Figure 18 to be arranged in parallel on the frame-shaped mask frame 52 along the same direction, the two ends of the fifth kind of ultra-thin glass mask 45 It is fixed to a pair of opposite sides of the mask frame 52 to form an integral body, and vapor deposition is performed.
  • Fig. 20 is a schematic diagram of evaporation of the sixth ultra-thin glass mask of the present invention.
  • the edge of each through-hole 15 of the six kinds of ultra-thin glass masks of the present invention forms a first chamfer 231 with the surface of the ultra-thin glass mask, so that the through-hole 15 is an inverted funnel-shaped through-hole. hole.
  • the angle range a of the first chamfer 231 is 15° to 90°, but not limited thereto.
  • Through-hole 15 is larger than the aperture aperture toward vapor-deposition object 7 one side toward the aperture aperture of vapor deposition source 6 one side, and through-hole 15 is along the thickness direction of ultra-thin glass mask (from vapor deposition source 6 to vapor deposition object 7) the pore diameter gradually increases, but not limited thereto.
  • Fig. 21 is a schematic diagram of evaporation of the seventh ultra-thin glass mask of the present invention.
  • the edge of each through-hole 15 of the seventh ultra-thin glass mask of the present invention forms a second chamfer 232 with the surface of the ultra-thin glass mask, so that the through-hole 15 is a vertically symmetrical Hourglass-shaped through hole.
  • the opening diameter of the through hole 15 facing the vapor deposition source 6 is equal to the opening diameter of the through hole 15 facing the vapor deposition target 7 side.
  • the angle range of the angle b between the edge of the through hole 15 and the upper surface of the ultra-thin glass mask is 15° to 90°
  • the angle range of the angle c between the edge of the through hole 15 and the lower surface of the ultra-thin glass mask is 15° to 90°
  • the included angle b is equal to the included angle c, but not limited thereto.
  • Fig. 22 is a schematic diagram of evaporation of the eighth ultra-thin glass mask of the present invention.
  • the edge of each through-hole 15 of the seventh ultra-thin glass mask of the present invention forms a third chamfer 233 with the surface of the ultra-thin glass mask, so that the through-hole 15 is an upper small, Large hourglass-shaped through hole in the lower part.
  • the aperture diameter of the through hole 15 on the side facing the vapor deposition source 6 is larger than the aperture diameter on the side facing the vapor deposition object 7 .
  • the upper part of the hourglass-shaped through hole corresponds to a local thickness h of the ultra-thin glass mask, and the upper part of the hourglass-shaped through hole corresponds to a local thickness g of the ultra-thin glass mask, where h ⁇ g.
  • the angle range of the angle b between the edge of the through hole 15 and the upper surface of the ultra-thin glass mask is 15° to 90°
  • the angle range of the angle c between the edge of the through hole 15 and the lower surface of the ultra-thin glass mask is 15° to 90°
  • the included angle b is greater than the included angle c, but not limited thereto.
  • the purpose of the present invention is to provide an ultra-thin glass mask, which can use ultra-thin glass to manufacture the mask used for evaporation, greatly reducing the overall cost of the mask, because the ultra-thin glass itself has better properties than metal masks.
  • the rigidity makes the ultra-thin glass mask of the present invention more suitable for vapor deposition of special-shaped vapor deposition patterns, and, because the mask of the present invention does not need a netting step, the precision of vapor deposition is improved, and the time limit of the vapor deposition process is also shortened. total time, improving production efficiency.

Abstract

本发明提供了超薄玻璃掩膜及其制造方法,其中,超薄玻璃掩膜包括:一超薄玻璃本体,基于预设蒸镀图案在超薄玻璃本体的至少一基板区域沿厚度方向形成贯穿超薄玻璃本体的若干贯通孔,每个贯通孔的内壁与超薄玻璃本体的表面之间形成倒角,当超薄玻璃本体作为掩膜进行蒸镀时,贯通孔供蒸镀介质通过超薄玻璃本体到达蒸镀对象。本发明能够采用超薄玻璃制造蒸镀所用的掩膜,大大降低了掩膜的整体成本,由于超薄玻璃本身相比金属掩膜具有更好的刚性,使得本发明的超薄玻璃掩膜更适用于蒸镀异形蒸镀图案,并且,由于本发明的掩膜不需要张网步骤,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。

Description

超薄玻璃掩膜及其制造方法 技术领域
本发明涉及蒸镀工艺中的设备领域,具体地说,涉及超薄玻璃掩膜及其制造方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,在中小尺寸显示领域更有取代液晶显示器(Liquid Crystal Display,LCD)的趋势,现阶段中小尺寸的OLED面板大多依赖蒸镀制程,其中在蒸镀制程中用于图形定义的治具为金属掩模版,可分为精密金属掩膜板(Fine Metal Mask,FMM)和通用金属掩模版(Common Metal Mask,CMM)。FMM用于RGB像素定义,主要用于R、G、B发光层和掺杂材料蒸镀,CMM主要作为共通层图形定义装置。
当前主流的OLED生产工艺中,需要使用多套FMM来完成OLED的制备。目前FMM采用的是Invar金属条张网在金属外框的上表面,正常都采用一条Invar金属条上3块或6块蒸镀区域,也有中间加支撑横杠,蒸镀区域单个张网,目的是减小Invar金属条在张网的时候导致蒸镀图案的形变。蒸镀图案的形变是目前FMM成本高的第二大因素,工艺要求非常高,非常容易报废Invar金属条。在蒸镀的时候,OLED基板的蒸镀面与Invar金属条贴合,贴合缝隙越小蒸镀图案越精准,蒸镀源在下方使材料雾化向上通过蒸镀图案通孔蒸镀到OLED基板的目标位置。
而FMM的制作、运输、清洗、维护成本都较为高昂,同时高解析度的FMM的制作方法只掌握在少数厂商之中且产能有限。特别是FMM所使用的关键材料Invar材料,目前完全掌握在国外企业手中,对于国内FMM制作企业是“卡脖子”材料。也是FMM成本居高不下的重要原因。
发明内容
针对现有技术中的问题,本发明的目的在于提供超薄玻璃掩膜及其制造方法, 克服了现有技术的困难,能够采用超薄玻璃制造蒸镀所用的掩膜,大大降低了掩膜的整体成本,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。
本发明的实施例提供一种超薄玻璃掩膜,包括:
一超薄玻璃本体,基于预设蒸镀图案在所述超薄玻璃本体的至少一基板区域沿厚度方向通过激光、刻蚀或者钻孔中的一种形成贯穿所述超薄玻璃本体的若干贯通孔,每个所述贯通孔的内壁与所述超薄玻璃本体的表面之间形成倒角,当超薄玻璃本体作为掩膜进行蒸镀时,所述贯通孔供蒸镀介质通过所述超薄玻璃本体到达蒸镀对象。
在一些实施例中,所述超薄玻璃本体至少一侧的边沿形成应力消散边缘,所述应力消散边缘与所述贯通孔基于同一次刻蚀获得。
在一些实施例中,所述超薄玻璃本体的厚度为10微米至50微米,所述应力消散边缘环绕所述超薄玻璃本体的边沿,所述应力消散边缘的宽度为5um至300um。
在一些实施例中,所述应力消散边缘为圆弧形边缘、刀锋边缘或者多边形边缘,所述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,所述斜边与所述超薄玻璃本体的角度范围为(15°,90°)。
在一些实施例中,在所述超薄玻璃本体的上下表面中的至少一侧设有功能层,所述贯通孔露出于所述功能层,所述功能层包括层叠设置高分子补强层、防爆膜、磁性材料层以及防脱膜中的至少一种。
在一些实施例中,所述高分子补强层的组分包括亚克力、含硅的有机高分子材料、环氧树脂、氟树脂、聚醯胺、聚醯亚胺、聚碳酸酯、聚对苯二甲酸乙二醇酯以及聚对苯二甲酸-1,4-环己二甲酯。
在一些实施例中,所述超薄玻璃本体包括直线排列的多个基板区域,相邻的所述基板区域之间通过骨架区域分隔。
在一些实施例中,所述超薄玻璃本体只包括一基板区域,所述超薄玻璃本体的一侧的边沿设有环绕所述基板区域的支撑凸台以及支撑肋。
本发明的实施例还提供一种超薄玻璃掩膜的制造方法,包括以下步骤:
S110、提供一玻璃母材,所述玻璃母材上预设若干个基板区域和围绕所述基板 区域的骨架区域;
S120、至少在所述玻璃母材的所述基板区域的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔;
S130、刻蚀所述玻璃母材的骨架区域和被所述通孔露出的基板区域,在所述基板区域形成沿厚度方向贯穿所述超薄玻璃本体的若干贯通孔;以及
S140、去除所述刻蚀保护层获得若干个独立的超薄玻璃本体掩膜。
在一些实施例中,所述步骤S130中包括刻蚀所述玻璃母材的骨架区域时,令所述基板区域自所述玻璃母材脱离,并且在所述基板区域的边沿形成应力消散边缘。
本发明的实施例还提供另一种超薄玻璃掩膜的制造方法,包括以下步骤:
S210、提供一玻璃母材,所述玻璃母材预设一基板区域;
S220、通过第一次刻蚀所述玻璃母材的一侧形成环绕所述基板区域的支撑凸台以及支撑肋;
S230、至少在所述玻璃母材的所述基板区域的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔;以及
S240、刻蚀被所述通孔露出的基板区域,在所述基板区域形成沿厚度方向贯穿所述超薄玻璃本体的若干贯通孔。
本发明的目的在于提供超薄玻璃掩膜,能够采用超薄玻璃制造蒸镀所用的掩膜,大大降低了掩膜的整体成本,由于超薄玻璃本身相比金属掩膜具有更好的刚性,使得本发明的超薄玻璃掩膜更适用于蒸镀异形蒸镀图案,并且,由于本发明的掩膜不需要张网步骤,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1是本发明的第一种超薄玻璃掩膜的示意图。
图2是图1中E区域的放大图。
图3是本发明的第二种超薄玻璃掩膜的示意图。
图4是本发明的第二种超薄玻璃掩膜的剖面图。
图5是本发明的超薄玻璃掩膜的第一种制造方法的流程图。
图6至13是本发明的第三种超薄玻璃掩膜的制程过程的示意图。
图14是具有本发明的第三种超薄玻璃掩膜的掩膜板的示意图。
图15是本发明的第三种超薄玻璃掩膜与掩膜板胶粘的示意图。
图16是本发明的第三种超薄玻璃掩膜与掩膜板激光焊接的示意图。
图17是本发明的第四种超薄玻璃掩膜的剖面图。
图18是本发明的第五种超薄玻璃掩膜的剖面图。
图19是本发明的第五种超薄玻璃掩膜与掩膜板结合的示意图。
图20是本发明的第六种超薄玻璃掩膜进行蒸镀的示意图。
图21是本发明的第七种超薄玻璃掩膜进行蒸镀的示意图。以及
图22是本发明的第八种超薄玻璃掩膜进行蒸镀的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
图1是本发明的第一种超薄玻璃掩膜41的示意图。图2是图1中E区域的放大图。如图1和2所示,本发明的第一种超薄玻璃掩膜41,包括:一超薄玻璃本体14,基于预设蒸镀图案在上述超薄玻璃本体14的至少一基板区域11沿厚度方向通过激光、刻蚀或者钻孔中的一种形成贯穿上述超薄玻璃本体14的若干贯通孔15,每个上述贯通孔15的内壁与上述超薄玻璃本体14的表面之间形成倒角23,当超薄玻璃本体14作为掩膜进行蒸镀时,上述贯通孔15供蒸镀介质通过上述超薄玻璃本体14到达蒸镀对象。本实施例中的第一种超薄玻璃掩膜只包括一基板区域11,可以配合掩膜框架进行蒸镀,由于超薄玻璃本身相比金属掩膜具有更好的刚性,所以 能够无需张网操作,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。
在一个优选例中,上述超薄玻璃本体14至少一侧的边沿形成应力消散边缘13,上述应力消散边缘13与上述贯通孔15基于同一次刻蚀获得,但不以此为限。
在一个优选例中,应力消散边缘13也可以是圆弧形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体14防碎裂的能力。
在一个优选例中,应力消散边缘13也可以是三边形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体14防碎裂的能力。
在一个优选例中,上述超薄玻璃本体14的厚度为10微米至50微米,上述应力消散边缘13环绕上述超薄玻璃本体14的边沿,上述应力消散边缘13的宽度为5um至300um,但不以此为限。
在一个优选例中,上述应力消散边缘13为圆弧形边缘、刀锋边缘或者多边形边缘,上述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,上述斜边与上述超薄玻璃本体14的角度范围为(15°,90°),但不以此为限。
图3是本发明的第二种超薄玻璃掩膜42的示意图。图4是本发明的第二种超薄玻璃掩膜42的剖面图。如图3和4所示,本发明的第二种超薄玻璃掩膜,包括:一超薄玻璃本体,基于预设蒸镀图案在上述超薄玻璃本体的至少一基板区域11沿厚度方向通过激光、刻蚀或者钻孔中的一种形成贯穿上述超薄玻璃本体的若干贯通孔15,每个上述贯通孔15的内壁与上述超薄玻璃本体的表面之间形成倒角23,当超薄玻璃本体作为掩膜进行蒸镀时,上述贯通孔15供蒸镀介质通过上述超薄玻璃本体到达蒸镀对象。上述超薄玻璃本体只包括一基板区域11,上述超薄玻璃本体的一侧的边沿设有环绕上述基板区域11的支撑凸台16以及支撑肋(图中未示出)。本实施例中的超薄玻璃本体、支撑凸台16以及支撑肋一体成型,但不以此为限。本实施例中的第二种超薄玻璃掩膜具备了支撑凸台16以及支撑肋使得第二种超薄玻璃掩膜本身已尽具备了掩膜以及掩膜框架结合以后的状态,可以直接使用,进一步缩短了蒸镀的时长,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。
在一个优选例中,上述超薄玻璃本体至少一侧的边沿形成应力消散边缘13, 上述应力消散边缘13与上述贯通孔15基于同一次刻蚀获得,但不以此为限。
在一个优选例中,上述超薄玻璃本体的厚度为10微米至50微米,上述应力消散边缘13环绕上述超薄玻璃本体的边沿,上述应力消散边缘13的宽度为5um至300um,但不以此为限。
在一个优选例中,上述应力消散边缘13为圆弧形边缘、刀锋边缘或者多边形边缘,上述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,上述斜边与上述超薄玻璃本体的角度范围为(15°,90°),但不以此为限。
图5是本发明的超薄玻璃掩膜的第一种制造方法的流程图。如图5所示,本发明的超薄玻璃掩膜的第一种制造方法,包括以下步骤:
S110、提供一玻璃母材1,上述玻璃母材1上预设若干个基板区域11和围绕上述基板区域11的骨架区域12。
S120、至少在上述玻璃母材1的上述基板区域11的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔21。
S130、刻蚀上述玻璃母材1的骨架区域12和被上述通孔21露出的基板区域11,在上述基板区域11形成沿厚度方向贯穿上述超薄玻璃本体的若干贯通孔15。以及
S140、去除上述刻蚀保护层获得若干个独立的超薄玻璃本体掩膜。
在一个优选例中,上述步骤S130中包括刻蚀上述玻璃母材1的骨架区域12时,令上述基板区域11自上述玻璃母材1脱离,并且在上述基板区域11的边沿形成应力消散边缘13,但不以此为限。
本发明还提供的超薄玻璃掩膜的第二种制造方法,包括以下步骤:
S210、提供一玻璃母材1,上述玻璃母材1预设一基板区域11。
S220、通过第一次刻蚀上述玻璃母材1的一侧形成环绕上述基板区域11的支撑凸台16以及支撑肋(图中未示出)。
S230、至少在上述玻璃母材1的上述基板区域11的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔21。以及
S240、刻蚀被上述通孔21露出的基板区域11,在上述基板区域11形成沿厚 度方向贯穿上述超薄玻璃本体的若干贯通孔15。本实施例中采用化学蚀刻中的干法蚀刻或者湿法蚀刻。
图6至13是本发明的第三种超薄玻璃掩膜的制程过程的示意图。如图6至13所示,本发明的第三种超薄玻璃掩膜43的制程过程如下:
参见图6,提供一玻璃母材1。
参见图7、8(其中图8为图7中A-A向的剖视图),在上述玻璃母材1上预设若干个基板区域11和围绕上述基板区域11的骨架区域12。在上述玻璃母材1的上述基板区域11的上下表面分别形成刻蚀保护层20、22,刻蚀保护层20、22基于预设蒸镀图案设有若干通孔21,通过通孔21露出玻璃母材1的局部区域。
参见图9、10(其中图10为图9中B-B向的剖视图),刻蚀上述玻璃母材1的骨架区域12和被上述通孔21露出的基板区域11以及露出于刻蚀保护层20、22的边缘。
参见图11、12(其中图12为图11中C-C向的剖视图),通过刻蚀获得独立的基板区域11,基板区域11的周边形成应力消散边缘13,并且,在上述基板区域11形成沿厚度方向贯穿上述超薄玻璃本体的若干贯通孔15。
参见图13,去除上述刻蚀保护层获得若干个独立的第三种超薄玻璃掩膜43。
图14是具有本发明的第三种超薄玻璃掩膜的掩膜板的示意图。图15是本发明的第三种超薄玻璃掩膜与掩膜板胶粘的示意图。如图14、15所示,本发明的第三种超薄玻璃掩膜43可以通过胶粘的方式,与网格结构的掩膜框架51结合为一体,设置在蒸镀源6的上方,进行蒸镀。
图16是本发明的第三种超薄玻璃掩膜与掩膜板激光焊接的示意图。如图16所示,本发明的第三种超薄玻璃掩膜43可以通过激光焊接的方式,与网格结构的掩膜框架51结合为一体,设置在蒸镀源6的上方,进行蒸镀。
图17是本发明的第四种超薄玻璃掩膜的剖面图。如图17所示,本发明还提供第四种超薄玻璃掩膜44,包括:一超薄玻璃本体,基于预设蒸镀图案在上述超薄玻璃本体的至少一基板区域11沿厚度方向通过激光、刻蚀或者钻孔中的一种形成贯 穿上述超薄玻璃本体的若干贯通孔15,每个上述贯通孔15的内壁与上述超薄玻璃本体的表面之间形成倒角23,当超薄玻璃本体作为掩膜进行蒸镀时,上述贯通孔15供蒸镀介质通过上述超薄玻璃本体到达蒸镀对象。在上述超薄玻璃本体的上下表面中的至少一侧设有功能层,上述贯通孔露出于上述功能层15,上述功能层包括层叠设置高分子补强层31、防爆膜33、磁性材料层(图中未示出)以及防脱膜32中的至少一种。其中,上述高分子补强层的组分包括亚克力、含硅的有机高分子材料、环氧树脂、氟树脂、聚醯胺、聚醯亚胺、聚碳酸酯、聚对苯二甲酸乙二醇酯以及聚对苯二甲酸-1,4-环己二甲酯。
在一个优选例中,上述超薄玻璃本体至少一侧的边沿形成应力消散边缘13,上述应力消散边缘13与上述贯通孔15基于同一次刻蚀获得,但不以此为限。
在一个优选例中,应力消散边缘13也可以是圆弧形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体防碎裂的能力。
在一个优选例中,应力消散边缘13也可以是三边形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体防碎裂的能力。
在一个优选例中,上述超薄玻璃本体的厚度为10微米至50微米,上述应力消散边缘13环绕上述超薄玻璃本体的边沿,上述应力消散边缘13的宽度为5um至300um,但不以此为限。
在一个优选例中,上述应力消散边缘13为圆弧形边缘、刀锋边缘或者多边形边缘,上述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,上述斜边与上述超薄玻璃本体的角度范围为(15°,90°),但不以此为限。
图18是本发明的第五种超薄玻璃掩膜的剖面图。如图18所示,本发明还提供第五种超薄玻璃掩膜45,包括:一超薄玻璃本体,基于预设蒸镀图案在上述超薄玻璃本体设有直线排列的多个基板区域11,相邻的上述基板区域之间通过骨架区域12分隔。每个基板区域11中沿厚度方向通过激光、刻蚀或者钻孔中的一种形成贯穿上述超薄玻璃本体的若干贯通孔15,每个上述贯通孔15的内壁与上述超薄玻璃本体的表面之间形成倒角23,当超薄玻璃本体作为掩膜进行蒸镀时,上述贯通孔15供蒸镀介质通过上述超薄玻璃本体到达蒸镀对象。
在一个优选例中,上述超薄玻璃本体至少一侧的边沿形成应力消散边缘13, 上述应力消散边缘13与上述贯通孔15基于同一次刻蚀获得,但不以此为限。
在一个优选例中,应力消散边缘13也可以是圆弧形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体防碎裂的能力。
在一个优选例中,应力消散边缘13也可以是三边形边缘,以便对多个不同方向的应力进行消散,提升超薄玻璃本体防碎裂的能力。
在一个优选例中,上述超薄玻璃本体的厚度为10微米至50微米,上述应力消散边缘13环绕上述超薄玻璃本体的边沿,上述应力消散边缘13的宽度为5um至300um,但不以此为限。
在一个优选例中,上述应力消散边缘13为圆弧形边缘、刀锋边缘或者多边形边缘,上述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,上述斜边与上述超薄玻璃本体的角度范围为(15°,90°),但不以此为限。
图19是本发明的第五种超薄玻璃掩膜与掩膜板结合的示意图。如图19所示,采用多个图18中的第五种超薄玻璃掩膜45沿同一方向平行排列于框状的掩膜框架52上,将第五种超薄玻璃掩膜45的两端与掩膜框架52的一组对边固定,形成一体化,从而进行蒸镀。
图20是本发明的第六种超薄玻璃掩膜进行蒸镀的示意图。如图20所示,本发明的六种超薄玻璃掩膜的每个贯通孔15的边沿与超薄玻璃掩膜的表面形成第一倒角231,使得贯通孔15为一个倒置的漏斗型通孔。第一倒角231的角度范围a是15°到90°,但不以此为限。贯通孔15朝向蒸镀源6一侧的的开孔孔径大于朝向蒸镀对象7一侧的开孔孔径,贯通孔15沿超薄玻璃掩膜的厚度方向(自蒸镀源6到蒸镀对象7的方向)孔径逐渐增大,但不以此为限。
图21是本发明的第七种超薄玻璃掩膜进行蒸镀的示意图。如图21所示,本发明的第七种超薄玻璃掩膜的的每个贯通孔15的边沿与超薄玻璃掩膜的表面形成第二倒角232,使得贯通孔15为一个上下对称的沙漏型通孔。贯通孔15朝向蒸镀源6一侧的开孔孔径与朝向蒸镀对象7一侧的开孔孔径相等。贯通孔15的边沿与超薄玻璃掩膜的上表面的夹角b的角度范围是15°到90°,贯通孔15的边沿与超薄玻璃掩膜的下表面的夹角c的角度范围是15°到90°,夹角b等于夹角c,但不以此为限。
图22是本发明的第八种超薄玻璃掩膜进行蒸镀的示意图。如图22所示,本发明的第七种超薄玻璃掩膜的的每个贯通孔15的边沿与超薄玻璃掩膜的表面形成第三倒角233,使得贯通孔15为一个上部小、下部大的沙漏型通孔。贯通孔15朝向蒸镀源6一侧的的开孔孔径大于朝向蒸镀对象7一侧的开孔孔径。沙漏型通孔的上部对应的超薄玻璃掩膜的局部厚度h,沙漏型通孔的上部对应的超薄玻璃掩膜的局部厚度g,h<g。贯通孔15的边沿与超薄玻璃掩膜的上表面的夹角b的角度范围是15°到90°,贯通孔15的边沿与超薄玻璃掩膜的下表面的夹角c的角度范围是15°到90°,夹角b大于夹角c,但不以此为限。
综上,本发明的目的在于提供超薄玻璃掩膜,能够采用超薄玻璃制造蒸镀所用的掩膜,大大降低了掩膜的整体成本,由于超薄玻璃本身相比金属掩膜具有更好的刚性,使得本发明的超薄玻璃掩膜更适用于蒸镀异形蒸镀图案,并且,由于本发明的掩膜不需要张网步骤,提高了蒸镀的精度,也缩短了蒸镀工艺的总时长,提高了生产效率。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种超薄玻璃掩膜,其特征在于,包括:
    一超薄玻璃本体,基于预设蒸镀图案在所述超薄玻璃本体的至少一基板区域沿厚度方向形成贯穿所述超薄玻璃本体的若干贯通孔,每个所述贯通孔的内壁与所述超薄玻璃本体的表面之间形成倒角,当超薄玻璃本体作为掩膜进行蒸镀时,所述贯通孔供蒸镀介质通过所述超薄玻璃本体到达蒸镀对象。
  2. 根据权利要求1所述的超薄玻璃掩膜,其特征在于,所述超薄玻璃本体至少一侧的边沿形成应力消散边缘,所述应力消散边缘与所述贯通孔基于同一次刻蚀获得。
  3. 根据权利要求2所述的超薄玻璃掩膜,其特征在于,所述超薄玻璃本体的厚度为10微米至50微米,所述应力消散边缘环绕所述超薄玻璃本体的边沿,所述应力消散边缘的宽度为5um至300um。
  4. 根据权利要求2所述的超薄玻璃掩膜,其特征在于,所述应力消散边缘为圆弧形边缘、刀锋边缘或者多边形边缘,所述刀锋边缘或者多边形边缘中包括至少一斜边或弧形斜边,所述斜边与所述超薄玻璃本体的角度范围为(15°,90°)。
  5. 根据权利要求1所述的超薄玻璃掩膜,其特征在于,在所述超薄玻璃本体的上下表面中的至少一侧设有功能层,所述贯通孔露出于所述功能层,所述功能层包括层叠设置高分子补强层、防爆膜、磁性材料层以及防脱膜中的至少一种。
  6. 根据权利要求1所述的超薄玻璃掩膜,其特征在于,所述超薄玻璃本体包括直线排列的多个基板区域,相邻的所述基板区域之间通过骨架区域分隔。
  7. 根据权利要求1所述的超薄玻璃掩膜,其特征在于,所述超薄玻璃本体只包括一基板区域,所述超薄玻璃本体的一侧的边沿设有环绕所述基板区域的支撑凸台以及支撑肋。
  8. 一种超薄玻璃掩膜的制造方法,其特征在于,包括以下步骤:
    S110、提供一玻璃母材,所述玻璃母材上预设若干个基板区域和围绕所述基板区域的骨架区域;
    S120、至少在所述玻璃母材的所述基板区域的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔;
    S130、刻蚀所述玻璃母材的骨架区域和被所述通孔露出的基板区域,在所述基 板区域形成沿厚度方向贯穿所述超薄玻璃本体的若干贯通孔;以及
    S140、去除所述刻蚀保护层获得若干个独立的超薄玻璃本体掩膜。
  9. 根据权利要求8所述的超薄玻璃掩膜的制造方法,其特征在于,所述步骤S130中包括刻蚀所述玻璃母材的骨架区域时,令所述基板区域自所述玻璃母材脱离,并且在所述基板区域的边沿形成应力消散边缘。
  10. 一种超薄玻璃掩膜的制造方法,其特征在于,包括以下步骤:
    S210、提供一玻璃母材,所述玻璃母材预设一基板区域;
    S220、通过第一次刻蚀所述玻璃母材的一侧形成环绕所述基板区域的支撑凸台以及支撑肋;
    S230、至少在所述玻璃母材的所述基板区域的上下表面分别形成刻蚀保护层,其中至少一刻蚀保护层基于预设蒸镀图案设有若干通孔;以及
    S240、刻蚀被所述通孔露出的基板区域,在所述基板区域形成沿厚度方向贯穿所述超薄玻璃本体的若干贯通孔。
PCT/CN2021/106171 2021-06-10 2021-07-14 超薄玻璃掩膜及其制造方法 WO2022257221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110649392.4A CN113235043A (zh) 2021-06-10 2021-06-10 超薄玻璃掩膜及其制造方法
CN202110649392.4 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022257221A1 true WO2022257221A1 (zh) 2022-12-15

Family

ID=77139599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106171 WO2022257221A1 (zh) 2021-06-10 2021-07-14 超薄玻璃掩膜及其制造方法

Country Status (2)

Country Link
CN (1) CN113235043A (zh)
WO (1) WO2022257221A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804645B (zh) * 2022-05-30 2023-11-24 江西沃格光电股份有限公司 一种大尺寸超薄玻璃基板的通孔蚀刻方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200611987A (en) * 2004-10-01 2006-04-16 Onano Ind Corp Evaporation mask
CN102492920A (zh) * 2011-12-21 2012-06-13 信利半导体有限公司 一种制作掩膜板的方法和掩膜板
KR20200011859A (ko) * 2018-07-25 2020-02-04 주식회사 야스 유리 마스크
CN112266176A (zh) * 2020-10-26 2021-01-26 恩利克(浙江)显示科技有限公司 超薄玻璃基板制程方法以及显示面板制程方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200611987A (en) * 2004-10-01 2006-04-16 Onano Ind Corp Evaporation mask
CN102492920A (zh) * 2011-12-21 2012-06-13 信利半导体有限公司 一种制作掩膜板的方法和掩膜板
KR20200011859A (ko) * 2018-07-25 2020-02-04 주식회사 야스 유리 마스크
CN112266176A (zh) * 2020-10-26 2021-01-26 恩利克(浙江)显示科技有限公司 超薄玻璃基板制程方法以及显示面板制程方法

Also Published As

Publication number Publication date
CN113235043A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US10934613B2 (en) Mask plate, mask plate assembly including mask plate and method for manufacturing same
KR101257734B1 (ko) 유기전계발광 표시장치
KR101135544B1 (ko) 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치
US10982315B2 (en) Mask plate for evaporation
US8404125B2 (en) Metal processing method, manfacturing method of metal mask and manufacturing method of organic light emitting display device
CN108699670B (zh) 蒸镀掩模、蒸镀掩模的制造方法及有机el显示设备的制造方法
US10084133B2 (en) Mask
KR102315759B1 (ko) 플렉시블 디스플레이 패널의 제조 방법 및 플렉시블 디스플레이 패널
WO2011148750A1 (ja) 蒸着マスク及びこれを用いた有機el素子の製造方法と製造装置
US7737631B2 (en) Flat panel display with repellant and border areas and method of manufacturing the same
CN109487206B (zh) 掩膜版及采用该掩膜版的掩膜装置
KR20160127290A (ko) 마스크 프레임 조립체, 그 제조 방법 및 표시 장치의 제조 방법
CN103981485B (zh) 掩膜板及其制造方法
US10236279B2 (en) Emissive display with light management system
WO2022257221A1 (zh) 超薄玻璃掩膜及其制造方法
KR20170053779A (ko) 마스크 프레임 조립체, 이를 포함하는 증착 장치 및 표시 장치의 제조 방법
WO2015096351A1 (zh) 有机发光二极管显示面板及其制作方法
JP6977140B2 (ja) マスク及びその製作方法
US20060220016A1 (en) Light emitting display and method of manufacturing the same
JP6658790B2 (ja) 蒸着マスク、フレーム付き蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、有機半導体素子の製造方法、有機elディスプレイの製造方法、及びパターンの形成方法
KR20100101919A (ko) 박막 증착용 마스크 프레임 조립체 및 이를 이용한 유기 발광 표시 장치의 제조 방법
WO2018036258A1 (zh) Oled器件及制作方法、显示面板以及显示装置
CN108710242A (zh) 一种显示面板和显示装置
CN203159698U (zh) 一种用于制造有机发光显示器的掩模板
KR20220043998A (ko) 마스크-프레임 어셈블리 및 이를 이용한 유기발광 디스플레이 장치 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE