WO2022255231A1 - 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法 - Google Patents

変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法 Download PDF

Info

Publication number
WO2022255231A1
WO2022255231A1 PCT/JP2022/021654 JP2022021654W WO2022255231A1 WO 2022255231 A1 WO2022255231 A1 WO 2022255231A1 JP 2022021654 W JP2022021654 W JP 2022021654W WO 2022255231 A1 WO2022255231 A1 WO 2022255231A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
modified epoxy
resin
resin composition
Prior art date
Application number
PCT/JP2022/021654
Other languages
English (en)
French (fr)
Inventor
圭太 秋葉
洋 佐藤
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2023525777A priority Critical patent/JPWO2022255231A1/ja
Publication of WO2022255231A1 publication Critical patent/WO2022255231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention provides a modified epoxy resin having excellent dielectric properties, thermal conductivity and fluidity, a resin composition containing this modified epoxy resin and a curing agent, a cured product thereof having excellent dielectric properties and thermal conductivity, and the resin.
  • the present invention relates to laminates for electric/electronic circuits using the composition.
  • Epoxy resins have excellent heat resistance, adhesiveness, chemical resistance, water resistance, mechanical strength, electrical properties, etc., so they are widely used in fields such as paints, civil engineering, adhesion, and electrical material applications. Film formability is imparted by increasing the molecular weight by various methods.
  • the high molecular weight epoxy resins are called phenoxy resins.
  • bisphenol A type phenoxy resins are mainly used as base resins for paint varnishes, base resins for film molding, or added to epoxy resin varnishes to adjust fluidity, improve toughness when cured, and improve adhesiveness. Used for improvement purposes. Further, those having a phosphorus atom or a bromine atom in the skeleton are used as flame retardants blended in epoxy resin compositions and thermoplastic resins.
  • Epoxy resins which are used as electrical materials such as laminates for electrical and electronic circuits, are required to have solvent solubility and resin compatibility in addition to heat resistance.
  • the miniaturization and performance enhancement of information equipment have progressed rapidly, and along with this, materials used in the fields of semiconductors and electronic components are required to have higher performance than ever before, especially thinner substrates. And excellent dielectric properties and thermal conductivity are required along with high functionality.
  • Patent Document 1 discloses that a phenoxy resin obtained by reacting a difunctional epoxy resin and a diester compound and a cured product thereof have excellent dielectric properties, but the thermal conductivity is still insufficient.
  • Patent Document 2 discloses a method for improving both dielectric properties and thermal conductivity by introducing a rigid site such as a biphenyl structure into the main skeleton and converting the side chain hydroxyl groups of the phenoxy resin into esters. exemplified.
  • a rigid site such as a biphenyl structure
  • the fluidity of the phenoxy resin is significantly deteriorated, so that impregnation failure occurs when impregnating glass cloth or the like with the phenoxy resin composition.
  • the present inventors have made intensive studies on epoxy resins, and have found that epoxy resins having a specific structure are excellent in dielectric properties, thermal conductivity and fluidity.
  • the inventors have found that a cured product obtained by curing the composition has excellent dielectric properties and thermal conductivity, and completed the present invention.
  • the present invention is represented by the following formula (1) and has an epoxy equivalent of 250 to 50,000 g/eq. is a modified epoxy resin.
  • X is a divalent group and has at least a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group.
  • the phenylene group, biphenylene group, and naphthylene group may each have a substituent on each aromatic ring.
  • Y is independently a hydrogen atom, an acyl group having 2 to 20 carbon atoms, or a glycidyl group.
  • Z is an acyl group having 2 to 20 carbon atoms or a hydrogen atom, and 5 mol % or more is the acyl group.
  • n is the average number of repetitions and is 1 or more and 500 or less.
  • the present invention is a resin composition containing the above modified epoxy resin and a curing agent.
  • the resin composition preferably contains 0.1 to 100 parts by mass of a curing agent as a solid content with respect to 100 parts by mass of the solid content of the modified epoxy resin.
  • curing agents to be incorporated in the above resin composition include acrylic acid ester resins, melamine resins, urea resins, phenol resins, acid anhydrides, amine compounds, imidazole compounds, amide compounds, cationic polymerization initiators, organic There is at least one selected from the group consisting of phosphines, polyisocyanate compounds, blocked isocyanate compounds, carbodiimide compounds and active ester curing agents.
  • the present invention also provides a cured product obtained by curing the above resin composition. Further, the present invention is a laminate for electric/electronic circuits using the above resin composition.
  • the present invention also provides a method for producing a modified epoxy resin, characterized by reacting a bifunctional epoxy resin represented by the following formula (5) with a compound represented by the following formula (6).
  • X 1 and X 2 are divalent groups, and X 1 and/or X 2 include a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group.
  • the phenylene group, biphenylene group, and naphthylene group may each have a substituent on each aromatic ring.
  • G is a glycidyl group.
  • Q is independently an acyl group having 2 to 20 carbon atoms or a hydrogen atom, and 5 mol % or more is the above acyl group.
  • the compound represented by formula (6) is a compound in which at least one of Q is an acyl group, or a mixture of a compound in which at least one of Q is an acyl group and a compound in which both of Q are hydrogen atoms, good too.
  • m is the average value of the number of repetitions, and is 0 or more and 6 or less.
  • X is a divalent group and includes phenylene and biphenylene groups or naphthylene and biphenylene groups.
  • the phenylene group, biphenylene group, and naphthylene group may each have a substituent on each aromatic ring.
  • L is independently a hydrogen atom or a glycidyl group.
  • T is an acyl group having 2 to 20 carbon atoms.
  • n is the average number of repetitions and is 1 or more and 500 or less.
  • a modified epoxy resin with excellent dielectric properties, thermal conductivity and fluidity.
  • a resin composition using this modified epoxy resin can provide a cured product having excellent dielectric properties and thermal conductivity.
  • FIG. 1 is a GPC chart of the modified epoxy resin of Example 1.
  • FIG. 1 is an IR chart of the modified epoxy resin of Example 1.
  • FIG. 2 is a GPC chart of the modified epoxy resin of Example 7.
  • FIG. 4 is an IR chart of the modified epoxy resin of Example 7.
  • FIG. 2 is a GPC chart of the modified epoxy resin of Example 8.
  • FIG. 4 is an IR chart of the modified epoxy resin of Example 8.
  • FIG. 1 is a GPC chart of the modified epoxy resin of Example 1.
  • FIG. 1 is an IR chart of the modified epoxy resin of Example 1.
  • FIG. 2 is a GPC chart of the modified epoxy resin of Example 7.
  • FIG. 4 is an IR chart of the modified epoxy resin of Example 8.
  • FIG. 1 is a GPC chart of the modified epoxy resin of Example 1.
  • FIG. 1 is an IR chart of the modified epoxy resin of Example 1.
  • FIG. 2 is a GPC chart of the modified epoxy resin of Example 7.
  • FIG. 4 is an IR chart of the modified epoxy resin
  • the modified epoxy resin of the present invention is represented by the above formula (1), is an epoxy resin having an epoxy equivalent (g/eq.) of 250 to 50,000, and contains a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group. and further have a structure in which some or all of the hydrogen atoms in the hydroxyl groups are substituted (modified) with acyl groups (Z). If the epoxy equivalent is within the above range, the modified epoxy resin can participate in the curing reaction and be incorporated into the crosslinked structure.
  • the epoxy equivalent is preferably 400 to 40,000, more preferably 600 to 30,000, even more preferably 700 to 20,000.
  • the epoxy equivalent is higher, 5,000 to 50,000, more preferably 8,000 to 49,000, and still more preferably 9,000 to 9,000. 48,000.
  • good impregnability etc. are required for substrate applications in which a base material is impregnated for use. 000, more preferably 270 to 3,000.
  • the weight average molecular weight (Mw) of the modified epoxy resin of the present invention is preferably 1,000 or more and 200,000 or less.
  • Mw is preferably 1,000 or more and 200,000 or less.
  • Mw is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 15,000 or more.
  • Mw is more preferably 160,000 or less, even more preferably 120,000 or less, and particularly preferably 80,000 or less.
  • Mw may be 10,000 or less, more preferably 5,000 or less.
  • the Mw of the modified epoxy resin can be measured by the gel permeation chromatography method (GPC method) described in Examples.
  • the modified epoxy resin of the present invention has a structure in which the hydrogen atoms in the hydroxyl groups are substituted (modified) with acyl groups, so that it becomes low in polarity and has excellent dielectric properties, low hygroscopicity, solvent solubility, Better resin compatibility. Moreover, by having a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group, excellent effects in thermal conductivity and fluidity can be obtained.
  • the phenylene group, biphenylene group, and naphthylene group may each have a substituent on each aromatic ring.
  • the modified epoxy resin of the present invention can be advantageously obtained by the production method of the present invention.
  • the modified epoxy resin obtained by the production method of the present invention is sometimes referred to as the "modified epoxy resin of the present invention”
  • the cured product obtained by curing the resin composition of the present invention is referred to as the "cured product of the present invention.
  • the method for producing the modified epoxy resin of the present invention may be referred to as the “production method of the present invention”.
  • X is a divalent group
  • a divalent group (X 1 ) consisting of a phenylene group and/or a naphthylene group and a divalent group (X 2 ) consisting of a biphenylene group are essential.
  • the molar ratio of the group (X 1 ) to the group (X 2 ) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, still more preferably 3/7 to 7/3, and 4/ 6 to 6/4 is particularly preferred.
  • the total of the group (X 1 ) and the group (X 2 ) is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 30 mol% or more, and 50 mol % or more is particularly preferred.
  • the phenylene group, naphthylene group (X 1 ), and biphenylene group (X 2 ) may be unsubstituted or may have a substituent on each aromatic ring.
  • the number of substituents is preferably 0 to 2 in the phenylene group, 0 to 2 in each benzene ring in the biphenylene group, and 0 to 4 in the naphthylene group.
  • substituents include alkyl groups having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, aryl groups having 6 to 12 carbon atoms, aralkyl groups having 7 to 13 carbon atoms, and aryloxy groups having 6 to 12 carbon atoms.
  • an aralkyloxy group having 7 to 13 carbon atoms an alkenyl group having 2 to 12 carbon atoms, or an alkynyl group having 2 to 12 carbon atoms.
  • the phenylene group, biphenylene group and naphthylene group are preferably unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms, more preferably unsubstituted or substituted with a methyl group. This is because if the substituent has a large number of carbon atoms, the heat resistance may decrease.
  • a phenylene group is represented by the following formula (2)
  • a naphthylene group is represented by the following formula (3)
  • a biphenylene group is represented by the following formula (4).
  • R is a substituent
  • i and k are integers from 0 to 4
  • j is an integer from 0 to 6.
  • the alkyl group having 1 to 12 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, t-pentyl group, cyclopentyl group, n-hexyl group, isohexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, methylcyclohexyl group, n- octyl group, cyclooctyl group, n-nonyl group, 3,3,5-trimethylcyclohexyl group, n-decyl group, cyclodecyl group, n-undecyl group, n-dodecy
  • the alkoxy group having 1 to 12 carbon atoms may be linear, branched or cyclic, and examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and sec-butoxy. , t-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, t-pentoxy group, cyclopentoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptoxy group, cycloheptoxy group, methylcyclohexyloxy group, n-octyloxy group, cyclooctyloxy group, n-nonyloxy group, 3,3,5-trimethylcyclohexyloxy group, n-decyloxy group, cyclodecyloxy group, n-undecyloxy group, n-dodecyloxy group, cycl
  • aralkyloxy groups having 7 to 13 carbon atoms include benzyloxy, methylbenzyloxy, dimethylbenzyloxy, trimethylbenzyloxy, phenethyloxy, 1-phenylethyloxy, and 2-phenylisopropyloxy groups. , a naphthylmethyloxy group, and the like.
  • alkynyl groups having 2 to 12 carbon atoms examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1,3-butandienyl and phenylethynyl. groups, naphthylethynyl groups, and the like.
  • the divalent group other than the phenylene group, naphthylene group and biphenylene group is preferably a divalent hydrocarbon group or -O-, -CO-, -S-, -COO-, -SO It is a hydrocarbon group which may have a group such as -, -SO 2 -.
  • These divalent groups include, for example, an aromatic skeleton representing a residual skeleton obtained by removing two hydroxyl groups from an aromatic diol compound, an aliphatic skeleton representing a residual skeleton obtained by removing two hydroxyl groups from an aliphatic diol compound, and an alicyclic skeleton representing a residual skeleton obtained by removing two hydroxyl groups from an alicyclic diol compound.
  • These groups are the residual skeleton obtained by removing two glycidyloxy groups from a bifunctional epoxy resin (diglycidyl ether compound), the residual skeleton obtained by removing two ester structures from a diester compound, and the two hydroxyl groups removed from a bifunctional phenol compound. It is derived from the residual skeleton.
  • the aromatic skeleton having a structure obtained by removing two hydroxyl groups from an aromatic diol compound includes bisphenol A, bisphenolacetophenone, bisphenol AF, bisphenol AD, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol trimethylcyclohexane and bisphenol type optionally having an alkyl group having 1 to 10 carbon atoms as a substituent such as bisphenol trimethylcyclohexane and bisphenol cyclohexane, hydroquinone, Benzene types such as dihydroxyphenyls optionally having an unsubstituted or C 1-10 alkyl group such as resorcinol and catechol as a substituent, or unsubstituted or substituted C 1-10 alkyl groups Naphthalene types such as dihydroxynaphthalenes which may have as a group, biphenyl types such as dihydroxybipheny
  • aliphatic skeleton examples include alkylene glycol skeletons such as ethylene glycol, propylene glycol and butylene glycol.
  • alicyclic skeleton examples include hydrogenated bisphenol skeletons such as hydrogenated bisphenol A, hydrogenated bisphenol F, and hydrogenated bisphenolacetophenone.
  • the hydrocarbon group having 1 to 19 carbon atoms represented by R includes an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 7 to 13 carbon atoms. is preferred.
  • aryl group having 6 to 12 carbon atoms examples include phenyl group, tolyl group, ethylphenyl group, xylyl group, n-propylphenyl group, isopropylphenyl group, mesityl group, naphthyl group, methylnaphthyl group and the like.
  • the aralkyl group having 7 to 13 carbon atoms includes, for example, benzyl group, methylbenzyl group, dimethylbenzyl group, trimethylbenzyl group, phenethyl group, 2-phenylisopropyl group, naphthylmethyl group and the like.
  • an acyl group having a hydrocarbon group of 1 to 7 carbon atoms is more preferable, an acetyl group, propanoyl group, butanoyl group, benzoyl group and methylbenzoyl group are more preferable, and an acetyl group and benzoyl group are particularly preferable.
  • Z is an acyl group having 2 to 20 carbon atoms (hereinafter sometimes simply referred to as "acyl group”) or a hydrogen atom. At least 5 mol % of Z are acyl groups and the rest are hydrogen atoms.
  • the acyl group content (mol %) in all Z in formula (1) is also referred to as an acylation rate.
  • the acylation rate is preferably 10 mol% or more, more preferably 50 mol% or more, even more preferably 70 mol% or more, and even more preferably 90 mol% or more.
  • there is no upper limit for the acylation rate and it may be 100%, but it is about 95% in terms of reactivity.
  • the modified epoxy resin of the present invention does not contain secondary hydroxyl groups, and the dielectric properties can be further improved. Improvements in solubility and moisture resistance can also be expected.
  • the modified epoxy of the present invention is used as long as it does not greatly affect other physical properties such as moisture resistance.
  • a suitable amount of secondary hydroxyl groups can be intentionally present in the resin.
  • Specific examples of acyl groups are the same as those exemplified for Y above, and preferred acyl groups are also the same.
  • n is the number of repetitions and the average value. Its value ranges from 1 to 500. From the viewpoint of fluidity and handleability, it is preferably 1 or more and 400 or less, more preferably 1 or more and 300 or less. The n number can be calculated from the number average molecular weight (Mn) obtained by the GPC method.
  • the modified epoxy resin of the present invention is obtained by acylating some or all of the secondary hydroxyl groups, and can be obtained by various methods.
  • a preferable manufacturing method includes, for example, the following manufacturing method. (A); A manufacturing method of reacting a bifunctional epoxy resin represented by the above formula (5) with a diester compound represented by the above formula (6). Hereinafter, this method may be referred to as manufacturing method (A).
  • an acid component acylating agent
  • this method may be referred to as manufacturing method (B).
  • the modified epoxy resins obtained by production methods (A) and (B) are the modified epoxy resins of the present invention and are represented by the same formula (1).
  • the production method (A) is a method of reacting a bifunctional epoxy resin represented by formula (5) with a diester compound represented by formula (6).
  • G is a glycidyl group
  • m is the number of repetitions
  • the average value thereof is 0 or more and 6 or less, preferably 0 or more and 3 or less.
  • Q is independently an acyl group having 2 to 20 carbon atoms or a hydrogen atom, and can be defined in the same manner as above.
  • 5 mol % or more of Q are acyl groups having 2 to 20 carbon atoms, and the rest are hydrogen atoms.
  • the diester compound represented by formula (6) includes a diester compound in which both Q are acyl groups, a monoester compound in which one is an acyl group and the other is a hydrogen atom, and a monoester compound in which both are hydrogen atoms. It is selected from functional phenolic compounds and may be a diester or monoester compound or a mixture comprising diester and/or monoester compounds.
  • the diester compound is preferably a diester compound in which both Q are acyl groups or a diester compound (mixture) as a main component (50 mol % or more). As the amount of monoester compound and bifunctional phenol compound increases, the acylation rate decreases.
  • the phenylene group and biphenylene group, or the naphthylene group and biphenylene group are more preferably 10 mol%. Above, more preferably 20 mol % or more, particularly preferably 40 mol % or more.
  • the modified epoxy resin of the present invention necessarily contains a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group. It may be contained in either the functional epoxy resin and/or the diester compound represented by formula (6), and the proportion thereof is not limited.
  • the bifunctional epoxy resin used in the production method (A) of the present invention is an epoxy resin represented by the above formula (5). and an epoxy resin obtained by reacting in the presence of an alkali metal compound.
  • X 1 is the same as X 1 in formula (5) above.
  • Epihalohydrin includes, for example, epichlorohydrin and epibromohydrin.
  • alkali metal compounds include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide; alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium chloride, lithium chloride and potassium chloride;
  • alkali metal alkoxides such as sodium methoxide and sodium ethoxide, alkali metal salts of organic acids such as sodium acetate and sodium stearate, alkali metal phenoxides, sodium hydride and lithium hydride.
  • the molar amount is 0.80 to 1.20 times, preferably 0.85 to 1.05 times the functional group in the bifunctional phenol compound.
  • a mole of alkali metal compound is used. If it is less than this, the amount of residual hydrolyzable chlorine may increase.
  • Alkali metal compounds are used in the form of aqueous solutions, alcoholic solutions or solids.
  • epihalohydrin is used with respect to the bifunctional phenol compound.
  • epihalohydrin is used in an amount of 1.5 to 15 times mol, preferably 2 to 10 times mol, more preferably 5 to 8 times mol, per 1 mol of the functional group in the bifunctional phenol compound. If it is more than this, the production efficiency will be lowered, and if it is less than this, the amount of high molecular weight epoxy resin produced will increase, and it may not be suitable as a raw material.
  • the epoxidation reaction is usually carried out at a temperature of 120°C or less. If the temperature is high during the reaction, the amount of so-called hardly hydrolyzable chlorine may increase, making it difficult to achieve a high degree of purification.
  • the temperature is preferably 100° C. or lower, more preferably 85° C. or lower.
  • m is usually greater than 0.
  • the epoxy resin produced by a known method is highly purified by techniques such as distillation and crystallization, or the bifunctional phenol compound is allylated and then the olefin portion is oxidized. There is a method to epoxidize with
  • the diester compound of formula (6) used in the production method (A) of the present invention is, for example, the above bifunctional phenol compound, an acid anhydride of an organic acid, a halide of an organic acid, or a compound with an organic acid. It is obtained by acylation in a condensation reaction.
  • the amounts of the bifunctional epoxy resin and the diester compound of formula (6) to be used need to be appropriately changed depending on the epoxy equivalent weight of the desired modified epoxy resin.
  • the total amount of hydroxyl groups is preferably 0.3 to 1.0 equivalents. With this equivalent ratio, it becomes easier to proceed with the increase in molecular weight while having an epoxy group at the molecular terminal. It is also possible to replace part of the diester compound of formula (6) with the above bifunctional phenol compound. Accordingly, as described above, the physical properties can be finely adjusted by allowing an appropriate amount of secondary hydroxyl groups to exist in the modified epoxy resin of the present invention. In the production method (A), a polymerization reaction and an esterification reaction of secondary hydroxyl groups occur to increase Mw and produce a modified epoxy resin.
  • a catalyst may be used, and any catalyst may be used as long as it has a catalytic ability to promote the reaction between the epoxy group and the ester group.
  • examples thereof include tertiary amines, cyclic amines, imidazole compounds, organophosphorus compounds, quaternary ammonium salts and the like.
  • these catalysts may be used alone or in combination of two or more.
  • cyclic amines examples include 1,4-diazabicyclo[2,2,2]octane (DABCO), 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1,5-diazabicyclo[ 4,3,0]nonene-5 (DBN), N-methylmorpholine, pyridine, N,N-dimethylaminopyridine (DMAP) and the like.
  • DABCO 1,4-diazabicyclo[2,2,2]octane
  • DBU 1,8-diazabicyclo[5,4,0]undecene-7
  • DBN 1,5-diazabicyclo[ 4,3,0]nonene-5
  • N-methylmorpholine pyridine
  • DMAP N,N-dimethylaminopyridine
  • organic phosphorus compounds include tri-n-propylphosphine, tri-n-butylphosphine, diphenylmethylphosphine, triphenylphosphine, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(t-butyl)phosphine, Phosphines such as tris(p-methoxyphenyl)phosphine, paramethylphosphine, 1,2-bis(dimethylphosphino)ethane, 1,4-bis(diphenylphosphino)butane, tetramethylphosphonium bromide, tetramethylphosphonium Iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bro
  • quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium hydroxide, triethylmethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrapropylammonium bromide, tetramethylammonium bromide, propylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium hydroxide, benzyltributylammonium chloride, phenyltrimethylammonium chloride and the like. .
  • a solvent for the reaction may be used, and any solvent that dissolves the modified epoxy resin may be used.
  • any solvent that dissolves the modified epoxy resin may be used. Examples thereof include aromatic solvents, ketone solvents, amide solvents, glycol ether solvents, ester solvents and the like. Also, these solvents may be used alone or in combination of two or more.
  • aromatic solvents examples include benzene, toluene, and xylene.
  • Ketone solvents include, for example, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, diisobutyl ketone, isophorone, methylcyclohexanone, acetophenone, and the like. be done.
  • amide solvents include formamide, N-methylformamide, N,N-dimethylformamide (DMF), acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, N-methylpyrrolidone and the like. be done.
  • glycol ether solvents include ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol mono-n.
  • Diethylene glycol monoalkyl ethers such as butyl ether, propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Ethylene glycol dialkyl ethers such as dibutyl ether, polyethylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether, and propylene glycol dimethyl ether , propylene glycol diethyl ether, propylene glycol dibutyl ether and other propylene glycol dialkyl ethers, dipropylene glycol dimethyl ether, dipropylene
  • ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, benzyl acetate, ethyl propionate, ethyl butyrate, butyl butyrate, valerolactone and butyrolactone.
  • solvents include, for example, dimethylsulfoxide, sulfolane, N-methyl-2-pyrrolidone, and the like.
  • the solid content concentration during the reaction is preferably 35 to 95% by mass. More preferably 50 to 90% by mass, still more preferably 70 to 90% by mass. If a highly viscous product is produced during the reaction, additional solvent may be added to continue the reaction. After completion of the reaction, the solvent can be removed or added as necessary.
  • the reaction temperature is within a temperature range that does not decompose the catalyst used. If the reaction temperature is too high, the catalyst may decompose to stop the reaction, or the resulting modified epoxy resin may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the desired molecular weight may not be obtained. Therefore, the reaction temperature is preferably 50 to 230°C, more preferably 120 to 200°C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours.
  • the reaction temperature can be ensured by using an autoclave to carry out the reaction under high pressure. When the heat of reaction needs to be removed, it is usually carried out by evaporation/condensation/reflux of the solvent used by the heat of reaction, indirect cooling, or a combination thereof.
  • the production method (B) of the present invention comprises the epoxy resin (a) represented by the formula (7) and an acid component (acyl agent), preferably, 0.05 mol or more and 2.0 mol or less of the acid anhydride represented by the formula (8) is reacted with 1 mol of the alcoholic hydroxyl equivalent of the epoxy resin. , an epoxy equivalent of 250 to 50,000 g/eq.
  • This is a method for obtaining the modified epoxy resin represented by the formula (1), that is, the modified epoxy resin of the present invention.
  • the raw material epoxy resin (a) represented by formula (7) essentially contains a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group in X in the above formula (7).
  • n in Equation (7) is the number of repetitions and the average value. Its value ranges from 1 to 500. From the viewpoint of fluidity and handleability, it is preferably 1 or more and 400 or less, more preferably 1 or more and 300 or less.
  • the n number can be calculated from the number average molecular weight (Mn) obtained by the GPC method.
  • This epoxy resin (a) can be obtained by a conventionally known method.
  • bifunctional phenol compound (a) For example, it is produced by reacting a bifunctional phenol compound having a phenylene group and a biphenylene group or a naphthylene group and a biphenylene group (sometimes referred to as a "bifunctional phenol compound (a)") with epihalohydrin in the presence of an alkali metal compound. (hereinafter referred to as "one-step method”), or a bifunctional epoxy resin and a bifunctional epoxy resin having a phenylene group and a biphenylene group, or a naphthylene group and a biphenylene group in at least one of the bifunctional epoxy resin and the bifunctional phenol compound. and a phenol compound in the presence of a catalyst (hereinafter referred to as "two-step method”).
  • the epoxy resin (a) may be obtained by any manufacturing method.
  • the molar ratio of epihalohydrin and the bifunctional phenol compound charged in the one-step method and the molar ratio of the bifunctional epoxy resin and the bifunctional phenol compound charged in the two-step method are appropriately adjusted. By doing so, it is possible to manufacture products within the desired range.
  • Bifunctional phenol compounds (a) used in the production of the one-step and two-step methods include, for example, hydroquinone and 4,4'-dihydroxybiphenyl, or 1,6'-dihydroxynaphthalene and 4,4'-dihydroxybiphenyl etc.
  • bifunctional phenol compounds may be used in combination as long as the object of the present invention is not impaired.
  • Bifunctional phenol compounds that may be used in combination include, for example, bisphenols such as bisphenol A, bisphenol F, bisphenol S, bisphenol B, bisphenol E, bisphenol C, bisphenolacetophenone, bisphenolfluorene, dihydroxybiphenyl ether, and dihydroxybiphenylthioether; Biphenols such as 4,4'-biphenol and 2,4'-biphenol, dihydroxynaphthalene, hydroquinone, catechol, resorcin, 1,1-bi-2-naphthol, 10-(2,5-dihydroxyphenyl)-9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-HQ), 10-(2,7-dihydroxynaphthyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide (DOPO-N
  • the one-stage method will be described.
  • the bifunctional phenol compound (a) and epihalohydrin are reacted in the presence of an alkali metal compound in a non-reactive solvent to consume the epihalohydrin and conduct a condensation reaction to form the epoxy resin (a).
  • an alkali metal compound in a non-reactive solvent to consume the epihalohydrin and conduct a condensation reaction to form the epoxy resin (a).
  • the alkali metal compound include those similar to those used in the production of the bifunctional epoxy resin represented by the above formula (5) used in the production method (A) of the present invention.
  • the weight-average molecular weight and epoxy equivalent of the epoxy resin (a) can be set within the desired range by appropriately adjusting the charged molar ratio of the bifunctional phenol compound and the epihalohydrin.
  • the weight average molecular weight of the epoxy resin (a) is 10,000 or more
  • epihalohydrin is added in an amount of 0.985 to 1.015 mol, preferably 0.99 mol, per 1 mol of the bifunctional phenol compound (a). It may be adjusted to ⁇ 1.012 mol, more preferably 0.995 to 1.01 mol.
  • the epoxy equivalent of the epoxy resin (a) was set to 5,000 g/eq.
  • epihalohydrin may be adjusted to 1.015 to 8 mol, preferably 1.05 to 6 mol, more preferably 1.1 to 5 mol, per 1 mol of the bifunctional phenol compound (a). .
  • the number of moles of the bifunctional phenol compound (a) used as a raw material is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and 40 mol% of all the bifunctional phenol compounds.
  • the above are particularly preferred. Outside this range, the modified epoxy resin of the present invention may have poor heat resistance.
  • the reaction temperature is usually preferably from 20 to 200°C, more preferably from 30 to 170°C, even more preferably from 40 to 150°C, particularly preferably from 50 to 100°C, when the reaction is carried out under normal pressure.
  • the temperature is preferably 20 to 100°C, more preferably 30 to 90°C, even more preferably 35 to 80°C. If the reaction temperature is within this range, side reactions are less likely to occur and the reaction is likely to proceed.
  • the reaction pressure is usually normal pressure. When the heat of reaction needs to be removed, it is usually carried out by evaporation/condensation/reflux of the solvent used, indirect cooling, or a combination thereof.
  • alcohols such as ethanol, isopropyl alcohol, and butyl alcohol can be used in addition to the reaction solvents exemplified in the production method (A) of the present invention. Only one type may be used, or two or more types may be used in combination.
  • the two-step method As the bifunctional epoxy resin used as the raw material epoxy resin for the two-step method, the same bifunctional epoxy resin represented by the above formula (5) used in the production method (A) of the present invention is used.
  • the bifunctional epoxy resin represented by the above formula (5) is preferable as the bifunctional epoxy resin used as the raw material of the two-step method, but other bifunctional epoxy resins may be used in combination as long as the object of the present invention is not impaired.
  • Examples of bifunctional epoxy resins that can be used in combination include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, and diphenyl ether type epoxy resin.
  • epoxy resins biphenol-type epoxy resins, diphenyldicyclopentadiene-type epoxy resins, alkylene glycol-type epoxy resins, aliphatic cyclic epoxy resins, and the like. These epoxy resins may be substituted with substituents having no adverse effects, such as alkyl groups and aryl groups. These epoxy resins may be used in combination of multiple types.
  • a catalyst can be used, and any compound can be used as long as it has a catalytic ability to promote the reaction between the epoxy group and the phenolic hydroxyl group.
  • the same catalyst as exemplified in the production method (A) of the present invention can be used.
  • Alkali metal compounds used in the production of bifunctional epoxy resins represented by the above formula (5) can also be used. These catalysts may be used alone or in combination of two or more. Also, the amount used is the same as the amount used as an example in the production method (A) of the present invention.
  • a solvent may be used, and any solvent may be used as long as it dissolves the epoxy resin and does not adversely affect the reaction.
  • any solvent may be used as long as it dissolves the epoxy resin and does not adversely affect the reaction.
  • examples thereof include the same solvents as those exemplified in the production method (A) of the present invention. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent to be used can be appropriately selected according to the reaction conditions.
  • the solid content concentration is preferably 35 to 95% by mass.
  • the solvent can be added during the reaction to continue the reaction. After completion of the reaction, the solvent can be removed by distillation or the like, if necessary, or can be further added.
  • the reaction temperature is within a temperature range that does not decompose the catalyst used. If the reaction temperature is too high, the catalyst may decompose to stop the reaction, or the resulting epoxy resin may deteriorate. If the reaction temperature is too low, the reaction may not proceed sufficiently and the desired molecular weight may not be obtained. Therefore, the reaction temperature is preferably 50 to 230°C, more preferably 100 to 210°C, even more preferably 120 to 200°C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours.
  • the reaction temperature can be ensured by using an autoclave to carry out the reaction under high pressure. When the heat of reaction needs to be removed, it is usually carried out by evaporation/condensation/reflux of the solvent used by the heat of reaction, indirect cooling, or a combination thereof.
  • the modified epoxy resin of the present invention is obtained by acylating the hydroxyl groups in the epoxy resin (a) represented by the above formula (7) thus obtained.
  • Acylation may be performed not only by direct esterification, but also by methods such as transesterification.
  • Examples of acid components used for the acylation include acetic acid, propionic acid, butyric acid, isobutyric acid, pentanoic acid, octanoic acid, caprylic acid, lauric acid, stearic acid, oleic acid, benzoic acid, t-butylbenzoic acid, Organic acids such as hexahydrobenzoic acid, phenoxyacetic acid, acrylic acid and methacrylic acid, acid anhydrides of organic acids, halides of organic acids, esters of organic acids, and the like can be used. Among these, acid anhydrides of organic acids are preferred.
  • Acid anhydrides of organic acids include, for example, acetic anhydride, benzoic anhydride, and phenoxyacetic anhydride.
  • esterified organic acids include methyl acetate, ethyl acetate, butyl acetate, methyl benzoate, and ethyl benzoate.
  • Halides of organic acids include, for example, acetic acid chloride, benzoic acid chloride, phenoxyacetic acid chloride and the like.
  • Compounds used for esterification include halides of organic acids such as acetic acid chloride, benzoic acid chloride and phenoxyacetic acid chloride, acid halides such as acetic anhydride, benzoic acid anhydride and phenoxyacetic acid anhydride, and acid anhydrides of organic acids.
  • Acid anhydrides such as acetic anhydride and benzoic anhydride are more preferable in the sense that washing with water after esterification is not required and contamination of halogen, which is disliked in electronic materials, is avoided.
  • the epoxy resin (a) is reacted with an acid component such as the above organic acid, an acid anhydride of an organic acid, a halide of an organic acid, or an esterified product of an organic acid used for esterifying the hydroxyl group of the epoxy resin (a).
  • the charging ratio at the time may be the same charging ratio as the target esterification ratio, or if the reactivity is low, the acid component is charged in excess with respect to the hydroxyl groups, reacted to the target esterification ratio, and then The acid component of the reaction may be removed.
  • acid catalysts such as p-toluenesulfonic acid and phosphoric acid
  • various esters such as metal catalysts such as tetraisopropyl titanate, tetrabutyl titanate, dibutyltin oxide, dioctyltin oxide, and zinc chloride.
  • metal catalysts such as tetraisopropyl titanate, tetrabutyl titanate, dibutyltin oxide, dioctyltin oxide, and zinc chloride.
  • the temperature is preferably 100 to 250°C, more preferably 130 to 230°C, in a nitrogen atmosphere.
  • the resulting acid can be removed by filtering the salt after neutralization using a basic compound, or by washing with water after neutralization using a basic compound.
  • a method of washing with water without neutralization, or a method of removing by distillation, adsorption, or the like may be used, or both methods may be used.
  • removing an acid having a boiling point lower than that of the reaction solvent it is preferably removed by distillation.
  • esterification catalysts such as organometallic catalysts such as antimony, acid catalysts such as hydrochloric acid, sulfuric acid, phosphoric acid and sulfonic acid, and basic catalysts such as lithium hydroxide and sodium hydroxide.
  • a reaction solvent may be used, and any solvent that dissolves the epoxy resin may be used.
  • any solvent that dissolves the epoxy resin may be used.
  • examples thereof include the solvents exemplified in the production method (A) of the present invention. These solvents may be the same as those used in the preparation of the epoxy resin (a), or may be different. Moreover, you may use only 1 type and may use it in combination of 2 or more types.
  • the solid content concentration during the reaction is also the same as in production method (A), preferably 35 to 95% by mass, more preferably 50 to 90% by mass, still more preferably 70 to 90% by mass.
  • the resin composition of the present invention is a resin composition containing at least the modified epoxy resin of the present invention and a curing agent.
  • various additives such as epoxy resins, inorganic fillers, coupling agents, antioxidants, and the like can be appropriately blended into the resin composition of the present invention, if necessary.
  • the resin composition of the present invention provides a cured product that satisfactorily satisfies various physical properties required for various uses.
  • a resin composition can be prepared by blending a curing agent with the modified epoxy resin of the present invention.
  • the curing agent refers to a substance that contributes to the cross-linking reaction and/or chain extension reaction with the modified epoxy resin.
  • a substance is usually called a "curing accelerator", it is regarded as a curing agent as long as it contributes to the cross-linking reaction and/or chain lengthening reaction of the modified epoxy resin.
  • the content of the curing agent in the resin composition of the present invention is preferably 0.1 to 100 parts by mass in terms of solid content with respect to 100 parts by mass of the solid content of the modified epoxy resin of the present invention. Further, it is more preferably 0.5 to 80 parts by mass, and still more preferably 1 to 50 parts by mass. In addition, in a resin composition, it is the amount of a non volatile matter (solid content).
  • solid content means components excluding solvent, and includes not only solid modified epoxy resins and other epoxy resins, but also semi-solid and viscous liquid substances.
  • the curing agent used in the resin composition of the present invention is not particularly limited, and all those generally known as epoxy resin curing agents can be used. Phenolic resins, amide-based compounds, imidazole-based compounds, and active ester-based curing agents are preferred from the viewpoint of enhancing heat resistance. These curing agents may be used alone or in combination of two or more.
  • phenol resins include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis(4-hydroxyphenoxy)benzene, 1,3-bis(4- hydroxyphenoxy)benzene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10- (2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, hydroquinone, resorcino
  • amide-based compounds include dicyandiamide and its derivatives, and polyamide resins.
  • imidazole compounds include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenyl imidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4 -diamino-6-[2′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]- ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')
  • Active ester-based curing agents include, for example, phenol esters, thiophenol esters, N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, and the like, which have two or more highly reactive ester groups per molecule. Compounds are preferred, and phenol esters obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group are more preferred. Specific examples of carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • aromatic compounds having a phenolic hydroxyl group examples include catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, benzenetriol, dicyclopentadienyl diphenol, phenol novolak, and the like.
  • the resin composition of the present invention can contain epoxy resins other than the modified epoxy resin of the present invention. By using other epoxy resins, it is possible to compensate for insufficient physical properties and improve various physical properties.
  • the epoxy resin preferably has two or more epoxy groups in the molecule, more preferably three or more epoxy groups. Examples thereof include polyglycidyl ether compounds, polyglycidylamine compounds, polyglycidyl ester compounds, alicyclic epoxy compounds, and other modified epoxy resins. These epoxy resins may be used alone, or two or more of the same epoxy resins may be used in combination, or different epoxy resins may be used in combination.
  • polyglycidyl ether compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, bisphenol fluorene type epoxy resin, and diphenyl sulfide type epoxy resin.
  • diphenyl ether type epoxy resin diphenyl ether type epoxy resin, naphthalene type epoxy resin, hydroquinone type epoxy resin, resorcinol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, alkyl novolak type epoxy resin, styrenated phenol novolak type epoxy resin, bisphenol novolak type epoxy resins, naphthol novolak type epoxy resins, phenol aralkyl type epoxy resins, ⁇ -naphthol aralkyl type epoxy resins, naphthalenediol aralkyl type epoxy resins, ⁇ -naphthol aralkyl type epoxy resins, biphenyl aralkyl phenol type epoxy resins, biphenyl type epoxy resins, biphenyl type epoxy resins, Various epoxy resins such as triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, and
  • polyglycidylamine compounds include diaminodiphenylmethane-type epoxy resins, meta-xylenediamine-type epoxy resins, 1,3-bisaminomethylcyclohexane-type epoxy resins, isocyanurate-type epoxy resins, aniline-type epoxy resins, hydantoin-type epoxy resins, Aminophenol-type epoxy resins and the like are included.
  • polyglycidyl ester compounds include dimer acid type epoxy resins, hexahydrophthalic acid type epoxy resins, and trimellitic acid type epoxy resins.
  • Alicyclic epoxy compounds include aliphatic cyclic epoxy resins such as Celoxide 2021 (manufactured by Daicel Chemical Industries, Ltd.).
  • modified epoxy resins include, for example, urethane-modified epoxy resins, oxazolidone ring-containing epoxy resins, epoxy-modified polybutadiene rubber derivatives, carboxyl group-terminated butadiene nitrile rubber (CTBN)-modified epoxy resins, polyvinylarene polyoxides (e.g., divinylbenzene di oxide, trivinylnaphthalene trioxide, etc.), phenoxy resins, and the like.
  • CBN butadiene nitrile rubber
  • the amount of the modified epoxy resin in the total components of the modified epoxy resin and the epoxy resin as a solid content is preferably It is 1 to 99% by mass, more preferably 50% by mass or more, and still more preferably 80% by mass or more.
  • the above-mentioned curing agent is added in an amount of 0.5 parts by weight as a solid content to a total of 100 parts by mass of the solid content of the modified epoxy resin and the other epoxy resins. It preferably contains 1 to 100 parts by mass, more preferably 0.5 to 80 parts by mass, and still more preferably 1 to 50 parts by mass.
  • a solvent or reactive diluent may be added to the resin composition of the present invention in order to appropriately adjust the viscosity of the resin composition during handling during coating film formation.
  • the solvent or reactive diluent is used to ensure handleability and workability in molding the resin composition, and there is no particular limitation on the amount used.
  • the term “solvent” and the above-mentioned “solvent” are used separately depending on the mode of use, but the same type or different types may be used independently.
  • Examples of the solvent that the resin composition of the present invention may contain include ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone, esters such as ethyl acetate, ethers such as ethylene glycol monomethyl ether, N, Examples include amides such as N-dimethylformamide and N,N-dimethylacetamide, alcohols such as methanol and ethanol, alkanes such as hexane and cyclohexane, and aromatics such as toluene and xylene.
  • the solvents listed above may be used alone, or two or more of them may be mixed and used in any combination and ratio.
  • reactive diluents include monofunctional glycidyl ethers such as allyl glycidyl ether, bifunctional glycidyl ethers such as propylene glycol diglycidyl ether, polyfunctional glycidyl ethers such as trimethylolpropane polyglycidyl ether, and glycidyl esters. , and glycidylamines.
  • solvents or reactive diluents are preferably used at a non-volatile content of 90% by mass or less, and the appropriate type and amount to be used are appropriately selected depending on the application.
  • a polar solvent having a boiling point of 160° C. or less such as methyl ethyl ketone, acetone, or 1-methoxy-2-propanol, is preferred, and the amount used is preferably 40 to 80% by mass in terms of non-volatile matter.
  • ketones for adhesive film applications, for example, it is preferable to use ketones, acetic esters, carbitols, aromatic hydrocarbons, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc., and the amount used is nonvolatile is preferably 30 to 60% by mass.
  • a curing accelerator or catalyst may be used in the resin composition of the present invention, if necessary.
  • curing accelerators or catalysts include imidazole compounds, tertiary amines, phosphorus compounds such as phosphines, metal compounds, Lewis acids, and amine complex salts. These may be used alone or in combination of two or more.
  • the amount of the curing accelerator or catalyst to be blended may be appropriately selected according to the purpose of use. be done. It is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, still more preferably 0.1 to 5 parts by mass, and particularly preferably 0.1 to 1.0 parts by mass.
  • the curing temperature can be lowered and the curing time can be shortened.
  • various known flame retardants can be used for the purpose of improving the flame retardancy of the cured product to the extent that the reliability is not lowered.
  • Usable flame retardants include, for example, halogen flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, and organic metal salt flame retardants. From an environmental point of view, halogen-free flame retardants are preferred, and phosphorus-based flame retardants are particularly preferred. These flame retardants may be used alone, or two or more flame retardants of the same type may be used in combination, or flame retardants of different types may be used in combination.
  • the resin composition of the present invention may contain components other than those listed above (which may be referred to as "other components" in the present invention) for the purpose of further improving its functionality.
  • Such other components include fillers, thermoplastic resins, thermosetting resins, photocurable resins, UV inhibitors, antioxidants, coupling agents, plasticizers, fluxes, thixotropic agents, and smoothing agents. , coloring agents, pigments, dispersants, emulsifiers, elasticity reducing agents, release agents, antifoaming agents, ion trapping agents and the like.
  • fillers include fused silica, crystalline silica, alumina, silicon nitride, boron nitride, aluminum nitride, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, boehmite, talc, mica, clay, calcium carbonate, magnesium carbonate, Barium carbonate, zinc oxide, titanium oxide, magnesium oxide, magnesium silicate, calcium silicate, zirconium silicate, barium sulfate, inorganic fillers such as carbon, carbon fiber, glass fiber, alumina fiber, silica alumina fiber, silicon carbide
  • fibrous fillers such as fibers, polyester fibers, cellulose fibers, aramid fibers and ceramic fibers, and fine particle rubbers.
  • thermoplastic resin other than the modified epoxy resin of the present invention may be used in combination with the resin composition of the present invention.
  • thermoplastic resins include modified epoxy resins other than the present invention, phenoxy resins, polyurethane resins, polyester resins, polyethylene resins, polypropylene resins, polystyrene resins, ABS resins, AS resins, vinyl chloride resins, polyvinyl acetate resins, polyvinyl Methyl methacrylate resin, polycarbonate resin, polyacetal resin, cyclic polyolefin resin, polyamide resin, thermoplastic polyimide resin, polyamideimide resin, polytetrafluoroethylene resin, polyetherimide resin, polyphenylene ether resin, modified polyphenylene ether resin, polyether sulfone resins, polysulfone resins, polyetheretherketone resins, polyphenylene sulfide resins, polyvinyl formal resins, and the like. Modified epoxy resins and phenoxy resins other than those
  • ingredients include organic pigments such as quinacridone-based, azo-based, and phthalocyanine-based pigments, inorganic pigments such as titanium oxide, metal foil-like pigments, and rust-preventive pigments, and ultraviolet-absorbing pigments such as hindered amine-based, benzotriazole-based, and benzophenone-based pigments.
  • antioxidants such as hindered phenol, phosphorus, sulfur, and hydrazide
  • release agents such as stearic acid, palmitic acid, zinc stearate, and calcium stearate; leveling agents; rheology control agents; and additives such as anti-cratering agents, anti-foaming agents, and the like.
  • each known component can be used without limitation.
  • the blending amount of these other components is preferably in the range of 0.01 to 20% by mass based on the total solid content in the resin composition.
  • the resin composition of the present invention is obtained by uniformly mixing the above components.
  • a resin composition containing a modified epoxy resin, a curing agent, and optionally various components can be easily cured by a conventionally known method.
  • This cured product has an excellent balance of low hygroscopicity, dielectric properties, heat resistance, adhesion, etc., and exhibits good cured physical properties.
  • the term "curing" as used herein means intentionally curing the resin composition with heat and/or light, and the degree of curing may be controlled according to desired physical properties and applications.
  • the degree of progress may be complete curing or semi-curing, and is not particularly limited, but the reaction rate of the curing reaction between the epoxy group and the curing agent is usually 5 to 95%.
  • a cured product can be obtained from the resin composition of the present invention by curing in the same manner as for known epoxy resin compositions.
  • a method for obtaining a cured product the same methods as those for known epoxy resin compositions can be used, such as casting, injection, potting, dipping, drip coating, transfer molding, compression molding, resin sheets, resins, etc.
  • a method of forming a laminated plate by laminating a laminated copper foil, prepreg, or the like and curing under heat and pressure is preferably used.
  • the curing temperature at that time is usually in the range of 80 to 300° C., and the curing time is usually about 10 to 360 minutes. This heating is preferably performed in a two-step process of primary heating at 80 to 180° C.
  • the sheet-shaped substrate inorganic fibers such as glass, and woven or non-woven fabrics of organic fibers such as polyester, polyamine, polyacryl, polyimide, Kevlar, cellulose, etc. can be used, but are not limited thereto. do not have.
  • the method for producing a prepreg from the resin composition and base material of the present invention is not particularly limited. After impregnation, the resin composition is semi-cured (to B-stage) by heating and drying. For example, it can be heated and dried at 100 to 200° C. for 1 to 40 minutes.
  • the amount of the resin composition in the prepreg is preferably 30 to 80% by mass.
  • a method of manufacturing a laminate using prepregs and insulating adhesive sheets will be described.
  • one or more prepregs are laminated, metal foil is placed on one side or both sides to form a laminate, and this laminate is heated and pressed to be laminated and integrated. do.
  • the metal foil copper, aluminum, brass, nickel, or the like can be used alone, as an alloy, or as a composite metal foil.
  • the conditions for heating and pressurizing the laminate may be appropriately adjusted so as to cure the resin composition, but if the pressure applied is too low, air bubbles will remain inside the resulting laminate. However, since the electrical characteristics may deteriorate, it is desirable to apply pressure under conditions that satisfy moldability.
  • the temperature can be set to 160 to 220° C., the pressure to 49 to 490 N/cm 2 (5 to 50 kgf/cm 2 ), and the heating time to 40 to 240 minutes.
  • a multi-layer board can be produced by using the single-layer laminate board thus obtained as an inner layer material.
  • a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the surface of the formed circuit is treated with an acid solution for blackening to obtain an inner layer material.
  • An insulating layer is formed on one or both sides of the inner layer material with a prepreg or an insulating adhesive sheet, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board.
  • the insulating adhesive sheet is used to form the insulating layer
  • the insulating adhesive sheet is arranged on the circuit-forming surface of a plurality of inner layer materials to form a laminate.
  • a laminate is formed by placing an insulating adhesive sheet between the circuit forming surface of the inner layer material and the metal foil. Then, this laminate is heated and pressurized for integral molding, thereby forming a cured product of the insulating adhesive sheet as an insulating layer and forming a multi-layered inner layer material.
  • the inner layer material and the metal foil which is the conductor layer, are formed as an insulating layer by curing an insulating adhesive sheet.
  • the metal foil the same one as that used for the laminate used as the inner layer material can be used.
  • the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material.
  • the above resin composition is preferably applied to a thickness of 5 to 100 ⁇ m for the circuit forming surface resin of the outermost layer of the inner layer material, and then the thickness is 100 to 200 ⁇ m. It is dried by heating at °C for 1 to 90 minutes to form a sheet. It is formed by a method generally called a casting method. It is desirable that the thickness after drying is 5 to 80 ⁇ m.
  • a printed wiring board can be formed by forming via holes and circuits on the surface of the multilayer laminate thus formed by an additive method or a subtractive method. Furthermore, by repeating the above-described method using this printed wiring board as an inner layer material, a laminate having more layers can be formed.
  • the insulating layer with prepreg When forming the insulating layer with prepreg, one or more prepreg layers are placed on the circuit forming surface of the inner layer material, and a metal foil is placed on the outer side to form a laminate. . By heating and pressurizing this laminate to integrally mold it, the cured prepreg is formed as an insulating layer, and the metal foil on the outside thereof is formed as a conductor layer.
  • the metal foil the same one as that used for the laminate used as the inner layer material can also be used. Further, the heat and pressure molding can be performed under the same conditions as the molding of the inner layer material.
  • a printed wiring board can be molded by forming via holes and circuits on the surface of the multilayer laminate thus molded by an additive method or a subtractive method. Further, by repeating the above-described method using this printed wiring board as an inner layer material, a multilayer board having more layers can be formed.
  • the cured product and laminate for electrical/electronic circuits obtained from the resin composition of the present invention have excellent dielectric properties and thermal conductivity.
  • Weight average molecular weight (Mw) and number average molecular weight (Mn) Obtained by GPC measurement. Specifically, a column (TSKgel SuperH-H, SuperH2000, SuperHM-H, SuperHM-H, manufactured by Tosoh Corporation) is used in series with the main body HLC8320GPC (manufactured by Tosoh Corporation), and the column temperature is The temperature was brought to 40°C. Tetrahydrofuran (THF) was used as an eluent at a flow rate of 1.0 mL/min, and a differential refractive index detector was used as a detector.
  • THF Tetrahydrofuran
  • non-volatile content solid content
  • Dielectric properties Film-like samples were measured by the cavity resonator perturbation method, and plate-like samples were measured by the capacitance method. Examples 1 to 6, 8 to 16 and Comparative Examples 1 to 4 were evaluated by the dielectric loss tangent measured at 1 GHz by the cavity resonator perturbation method. Specifically, using a PNA network analyzer N5230A (manufactured by Agilent Technologies) and a cavity resonator CP431 (manufactured by Kanto Denshi Applied Development Co., Ltd.), the width The measurement was performed using a test piece of 1.5 mm ⁇ 80 mm length ⁇ 150 ⁇ m thickness.
  • Examples 17-18 and Comparative Examples 5-6 were evaluated by the dielectric loss tangent measured at 1 GHz by the capacitance method. Specifically, in accordance with the IPC-TM-650 2.5.5.9 standard, using a material analyzer (manufactured by AGILENT Technologies), under a measurement environment of room temperature 23 ° C. and humidity 50% RH, 30 mm square ⁇ Measurements were carried out using 1 mm thick specimens.
  • a material analyzer manufactured by AGILENT Technologies
  • E1 acetic anhydride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • E2 Benzoic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Synthesis example 2 100 parts of bifunctional phenol compound C3, 128 parts of acid anhydride E1, and 99 parts of pyridine are added to a glass reaction vessel equipped with a stirring device, thermometer, nitrogen gas introduction device, cooling tube, and dropping device at room temperature. The temperature was raised to 60° C. while stirring while flowing nitrogen gas, and the reaction was carried out for 2 hours. After that, it was dried under reduced pressure for 2 hours at 150° C. and 1.3 kPa (10 torr) to obtain 153 parts of a diester compound B2.
  • Examples 2-9, Comparative Examples 1-2 A resin varnish was obtained in the same manner as in Example 1 according to the amount (parts) of each raw material charged and the reaction time shown in Table 1.
  • the "molar ratio" in the table represents the molar ratio of the bifunctional epoxy resin to the diester compound and the bifunctional phenol compound.
  • Example 10 100 parts of the resin varnish (HR1) obtained in Comparative Example 1 (40 parts in terms of solid content) and 600 parts of the reaction solvent S1 were blended, heated to 100° C., and 4 parts of the acid anhydride E1 were added for 4 hours. reacted. The resulting resin varnish was added to methanol, and the precipitated insoluble matter was filtered off, and the filtrate was dried in a vacuum dryer under conditions of 150° C. and 0.4 kPa (3 torr) for 1 hour to obtain a modified epoxy resin. rice field. 21 parts of diluting solvent S1 and 42 parts of S2 were added to the obtained modified epoxy resin and uniformly dissolved to obtain a resin varnish (R10) having a non-volatile content of 40%.
  • Example 11 A resin varnish (R11) was obtained in the same manner as in Example 10 except that 18 parts of acid anhydride E1, 25 parts of dilution solvent S1 and 51 parts of S2 were used.
  • Example 17 250 parts of the modified epoxy resin varnish (R7) obtained in Example 7 (solid content: 100 parts), 25.6 parts of the curing agent H1 and 0.3 parts of H2 were blended, MEK, propylene glycol monomethyl ether, N , and N-dimethylformamide to obtain a resin composition varnish.
  • a glass cloth WEA 7628 XS13, manufactured by Nitto Boseki Co., Ltd., 0.18 mm thick was impregnated with the obtained resin composition varnish. The impregnated glass cloth was dried in a hot air circulating oven at 150° C. for 9 minutes to obtain a prepreg.
  • the obtained prepreg was loosened and passed through a 100 mesh sieve to obtain prepreg powder.
  • the obtained prepreg powder was placed in a fluororesin mold and vacuum pressed at 2 MPa under temperature conditions of 130° C. ⁇ 15 minutes+190° C. ⁇ 80 minutes to obtain a test piece of 30 mm square ⁇ 1 mm thickness.
  • the dielectric properties and thermal conductivity of the test piece were measured, respectively, and the results are shown in Table 4.
  • Comparative example 5 A prepreg and a test piece were obtained in the same manner as in Example 17, except that 100 parts of A5 was used instead of 250 parts of modified epoxy resin varnish (solid content: 100 parts). The same test as in Example 17 was conducted, and the results are shown in Table 4.
  • Comparative example 6 A prepreg and a test piece were obtained in the same manner as in Example 17, except that 100 parts of A6 was used instead of 250 parts of modified epoxy resin varnish (solid content: 100 parts). The same test as in Example 17 was conducted, and the results are shown in Table 4.
  • the modified epoxy resin of the present invention has excellent dielectric properties, thermal conductivity and fluidity. Moreover, as can be seen from Tables 3 and 4, the cured products made from the resin composition of the present invention are also excellent in dielectric properties and thermal conductivity.
  • the modified epoxy resin and resin composition of the present invention can be applied to various fields such as adhesives, paints, construction materials for civil engineering, and insulating materials for electrical and electronic parts. It is useful as a lamination material, a sealing material, and the like.
  • the phenoxy resin of the present invention and the resin composition containing the same can be used for multilayer printed wiring boards, laminates for electric and electronic circuits such as capacitors, adhesives such as film adhesives and liquid adhesives, semiconductor sealing materials, and underfills. materials, inter-chip fill materials for 3D-LSI, insulating sheets, prepregs, heat dissipation substrates, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)

Abstract

誘電特性、熱伝導性及び流動性に優れた変性エポキシ樹脂、この変性エポキシ樹脂と硬化剤とを含む樹脂組成物、誘電特性及び熱伝導性に優れたその硬化物、並びに電気・電子回路用積層板を提供する。 下記式(1)で表され、エポキシ当量が250~50,000g/eq.である変性エポキシ樹脂。 (式中、Xは2価の基であり、フェニレン基又はナフチレン基、及びビフェニレン基を有する。Yは水素原子、炭素数2~20のアシル基又はグリシジル基である。Zは炭素数2~20のアシル基又は水素原子であり、5モル%以上は前記アシル基である。nは平均値で1~500である。)

Description

変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
 本発明は、誘電特性、熱伝導性及び流動性に優れた変性エポキシ樹脂、この変性エポキシ樹脂と硬化剤とを含む樹脂組成物、誘電特性及び熱伝導性に優れたその硬化物、並びに該樹脂組成物を用いてなる電気・電子回路用積層板に関するものである。
 エポキシ樹脂は耐熱性、接着性、耐薬品性、耐水性、機械的強度及び電気特性等に優れていることから、塗料、土木、接着、電気材料用途等の分野で広く使用されている。そして種々の方法で高分子量化することで製膜性が付与される。その高分子量化されたエポキシ樹脂はフェノキシ樹脂と称される。特にビスフェノールA型のフェノキシ樹脂は、主に塗料用ワニスのベース樹脂、フィルム成形用のベース樹脂としてや、エポキシ樹脂ワニスに添加して流動性の調整や硬化物としたときの靭性改良、接着性改良の目的に使用される。また、リン原子や臭素原子を骨格中に有するものは、エポキシ樹脂組成物や熱可塑性樹脂に配合される難燃剤として使用されている。
 電気・電子回路用積層板等の電気材料用途となるエポキシ樹脂には、耐熱性等に加えて、溶剤溶解性及び樹脂相溶性も要求される。近年、情報機器の小型化、高性能化が急速に進んでおり、それに伴い、半導体や電子部品の分野で用いられる材料に対し、これまでよりも高い性能が要求され、特に、基板の薄型化と高機能化に伴う優れた誘電特性及び熱伝導性が求められている。
 このような要求に対して、フェノキシ樹脂の側鎖に存在する水酸基をアセチル基やベンゾイル基を用いてエステルに変換することで誘電特性を向上させる方法が提案されている。特許文献1では、2官能エポキシ樹脂とジエステル系化合物を反応させて得られたフェノキシ樹脂及びその硬化物が優れた誘電特性を有することを開示するが、熱伝導性が未だ不十分である。
 一方、特許文献2には、ビフェニル構造のような剛直な部位を主骨格に導入し、さらにフェノキシ樹脂の側鎖水酸基をエステルに変換することにより誘電特性と熱伝導性の双方を向上させる方法が例示されている。しかし、この方法ではフェノキシ樹脂の流動性が著しく悪化するため、フェノキシ樹脂組成物をガラスクロス等に含浸する際、含浸不良が起こるという問題がある。
特開2016-089165号公報 特開2010-18679号公報
 本発明の課題は、誘電特性、熱伝導性及び流動性に優れたエポキシ樹脂を提供することである。また、これを含む樹脂組成物を硬化して、誘電特性及び熱伝導性に優れた硬化物を提供することである。
 上記の課題を解決するために、本発明者はエポキシ樹脂について鋭意検討した結果、特定の構造を有するエポキシ樹脂が、誘電特性、熱伝導性及び流動性に優れることを見出し、更にこれを含む樹脂組成物を硬化させた硬化物が誘電特性及び熱伝導性に優れることを見出し、本発明を完成した。
 すなわち、本発明は、下記式(1)で表され、エポキシ当量が250~50,000g/eq.である変性エポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000004
  式中、
 Xは2価の基であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を少なくとも有する。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。
 Yは独立に、水素原子、炭素数2~20のアシル基、又はグリシジル基である。
 Zは炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。
 nは繰り返し数の平均値であり、1以上500以下である。
 また、本発明は上記の変性エポキシ樹脂と、硬化剤とを含む樹脂組成物である。
 上記樹脂組成物は、変性エポキシ樹脂の固形分100質量部に対し、硬化剤を固形分として0.1~100質量部を含むことがよい。
 本発明の樹脂組成物は、上記の変性エポキシ樹脂と、他のエポキシ樹脂及び硬化剤を含み、変性エポキシ樹脂と他のエポキシ樹脂の固形分の質量比が、99/1~1/99であることができる。
 この樹脂組成物は、変性エポキシ樹脂と他のエポキシ樹脂の固形分の合計100質量部に対し、硬化剤を固形分として0.1~100質量部を含むことがよい。
 上記の樹脂組成物に配合される硬化剤としては、アクリル酸エステル樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、酸無水物、アミン系化合物、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤、有機ホスフィン類、ポリイソシアネート化合物、ブロックイソシアネート化合物、カルボジイミド化合物及び活性エステル系硬化剤からなる群から選ばれる少なくとも1種がある。
 また本発明は、上記の樹脂組成物を硬化してなる硬化物である。
 更に本発明は、上記の樹脂組成物を用いてなる電気・電子回路用積層板である。
 また本発明は、下記式(5)で表される2官能エポキシ樹脂と、下記式(6)で表される化合物とを反応させることを特徴とする上記の変性エポキシ樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000005
 式中、
 X、Xは2価の基であり、X及び/又はXはフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含む。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。
 Gはグリシジル基である。
 Qは独立に、炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。なお、式(6)で表される化合物は、Qの少なくとも1つがアシル基である化合物、又はQの少なくとも1つがアシル基である化合物とQの両方が水素原子である化合物の混合物であってもよい。
 mは繰り返し数の平均値であり、0以上6以下である。
 下記式(7)で表されるエポキシ樹脂のアルコール性水酸基当量1モルに対して、下記式(8)で表される酸無水物を0.05モル以上2.0モル以下で反応させることを特徴とする上記の変性エポキシ樹脂の製造方法である。
Figure JPOXMLDOC01-appb-C000006
 式中、
 Xは2価の基であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含む。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。
 Lは独立に、水素原子又はグリシジル基である。
 Tは炭素数2~20のアシル基である。
 nは繰り返し数の平均値であり、1以上500以下である。
 本発明によれば、誘電特性、熱伝導性及び流動性に優れた変性エポキシ樹脂を提供することができる。また、この変性エポキシ樹脂を用いた樹脂組成物で、誘電特性及び熱伝導性に優れた硬化物を提供することができる。
実施例1の変性エポキシ樹脂のGPCチャートである。 実施例1の変性エポキシ樹脂のIRチャートである。 実施例7の変性エポキシ樹脂のGPCチャートである。 実施例7の変性エポキシ樹脂のIRチャートである。 実施例8の変性エポキシ樹脂のGPCチャートである。 実施例8の変性エポキシ樹脂のIRチャートである。
 本発明の変性エポキシ樹脂は上記式(1)で表され、エポキシ当量(g/eq.)が250~50,000であるエポキシ樹脂であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を有し、更に水酸基中の水素原子の一部又は全部がアシル基(Z)で置換(変性)された構造を有する。エポキシ当量が上記範囲であれば、変性エポキシ樹脂が硬化反応に関与し、架橋構造に組み込まれることが可能である。エポキシ当量は、400~40,000が好ましく、600~30,000がより好ましく、700~20,000が更に好ましい。
 フィルム用途では、成膜性が要求されることから、エポキシ当量は、より高いことが望ましく、5,000~50,000、より好ましくは8,000~49,000、更に好ましくは9,000~48,000である。
 一方、基材に含浸させて使用する基板用途等では、良好な含浸性等が要求されることから、エポキシ当量は、むしろ低いことが望ましく、250~10,000、より好ましくは260~5,000、更に好ましくは270~3,000である。
 本発明の変性エポキシ樹脂の重量平均分子量(Mw)は1,000以上200,000以下が好ましい。ここで、Mwが1,000より小さいと、硬化物の耐熱性を向上させる構造の導入が少なくなる恐れがある。Mwが200,000より大きいと相溶性の低下や樹脂の取り扱いが困難となる場合がある。また、変性エポキシ樹脂の製膜性を向上させる観点では、Mwは5,000以上が好ましく、10,000以上がより好ましく、15,000以上が更に好ましい。相溶性や取り扱い性を向上させる観点から、Mwは、160,000以下がより好ましく、120,000以下が更に好ましく、80,000以下が特に好ましい。基材に含浸させて使用する基板用途等では、Mwは10,000以下、より好ましくは5,000以下であってもよい。
 なお、変性エポキシ樹脂のMwは実施例に記載のゲルパーミエーションクロマトグラフィー法(GPC法)により測定することができる。
 本発明の変性エポキシ樹脂は、水酸基中の水素原子がアシル基で置換(変性)された構造を有することにより、低極性となり、誘電特性に優れる効果が得られ、低吸湿性や溶剤溶解性、樹脂相溶性が良好になる。また、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を有することにより、熱伝導性及び流動性に優れた効果が得られる。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。
 本発明の変性エポキシ樹脂は、本発明の製造方法で有利に得ることができる。本明細書において、本発明の製造方法で得られる変性エポキシ樹脂を「本発明の変性エポキシ樹脂」ということがあり、本発明の樹脂組成物を硬化してなる硬化物を「本発明の硬化物」と、本発明の変性エポキシ樹脂の製造方法を「本発明の製造方法」と称することがある。
 上記式(1)において、Xは2価の基であり、フェニレン基及び/又はナフチレン基からなる2価の基(X)、ビフェニレン基からなる2価の基(X)が必須であり、これら以外の2価の基(X)を有していてもよい。基(X)と基(X)のモル比は、1/9~9/1が好ましく、2/8~8/2がより好ましく、3/7~7/3が更に好ましく、4/6~6/4が特に好ましい。また、基(X)と基(X)の合計は、X全体のモル数に対して、1モル%以上が好ましく、10モル%以上がより好ましく、30モル%以上が更に好ましく、50モル%以上が特に好ましい。
 なお、フェニレン基及びナフチレン基(X)、並びにビフェニレン基(X)は無置換又は各芳香族環に置換基を有していてもよい。置換基の数は、フェニレン基では0~2個が好ましく、ビフェニレン基では各ベンゼン環に0~2個が好ましく、ナフチレン基では0~4個が好ましい。
 置換基としては、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~12のアリール基、炭素数7~13のアラルキル基、炭素数6~12のアリールオキシ基、炭素数7~13のアラルキルオキシ基、炭素数2~12のアルケニル基、又は炭素数2~12のアルキニル基が好ましい。
 フェニレン基、ビフェニレン基、及びナフチレン基としては、無置換又は炭素数1~4のアルキル基置換体が好ましく、無置換又はメチル基置換体がより好ましい。これは置換基の炭素数が大きいと耐熱性が低下する恐れがあるためである。
 フェニレン基は下記式(2)で表され、ナフチレン基は下記式(3)で表され、ビフェニレン基は下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000007
 ここで、Rは置換基であり、i及びkは0~4の整数であり、jは0~6の整数である。
 炭素数1~12のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、ナフチルメチル基、フェネチル基、2-フェニルイソプロピル基等が挙げられる。
 炭素数1~12のアルコキシ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、t-ペントキシ基、シクロペントキシ基、n-ヘキシロキシ基、イソヘキシロキシ基、シクロヘキシロキシ基、n-ヘプトキシ基、シクロヘプトキシ基、メチルシクロヘキシロキシ基、n-オクチロキシ基、シクロオクチロキシ基、n-ノニロキシ基、3,3,5-トリメチルシクロヘキシロキシ基、n-デシロキシ基、シクロデシロキシ基、n-ウンデシロキシ基、n-ドデシロキシ基、シクロドデシロキシ基、ベンジロキシ基、メチルベンジロキシ基、ジメチルベンジロキシ基、トリメチルベンジロキシ基、ナフチルメトキシ基、フェネチロキシ基、2-フェニルイソプロポキシ基等が挙げられる。
 炭素数6~12のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、エチルフェニル基、スチリル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、エチニルフェニル基、ナフチル基、ビニルナフチル基等が挙げられる。
 炭素数7~13のアラルキル基としては、例えば、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、フェネチル基、1-フェニルエチル基、2-フェニルイソプロピル基、ナフチルメチル基等が挙げられる。
 炭素数6~12のアリールオキシ基としては、例えば、フェノキシ基、o-トリルオキシ基、m-トリルオキシ基、p-トリルオキシ基、エチルフェノキシ基、スチリルオキシ基、キシリルオキシ基、n-プロピルフェノキシ基、イソプロピルフェノキシ基、メシチルオキシ基、エチニルフェノキシ基、ナフチルオキシ基、ビニルナフチルオキシ基等が挙げられる。
 炭素数7~13のアラルキルオキシ基としては、例えば、ベンジルオキシ基、メチルベンジルオキシ基、ジメチルベンジルオキシ基、トリメチルベンジルオキシ基、フェネチルオキシ基、1-フェニルエチルオキシ基、2-フェニルイソプロピルオキシ基、ナフチルメチルオキシ基等が挙げられる。
 炭素数2~12のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-メチルビニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基、シクロヘキセニル基、シクロヘキサジエニル基、シンナミル基、ナフチルビニル基等が挙げられる。
 炭素数2~12のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1,3-ブタンジエニル基、フェニルエチニル基、ナフチルエチニル基等が挙げられる。
 フェニレン基、ナフチレン基及びビフェニレン基以外の2価の基としては、好ましくは、2価の炭化水素基又は炭化水素鎖中に-O-、-CO-、-S-、-COO-、-SO-、-SO-等の基を有してもよい炭化水素基である。これらの2価の基としては、例えば、芳香族ジオール化合物から水酸基を2個除いた残骨格を表す芳香族骨格や、脂肪族ジオール化合物から水酸基を2個除いた残骨格を表す脂肪族骨格や、脂環ジオール化合物から水酸基を2個除いた残骨格を表す脂環式骨格が挙げられる。
 これらの基は2官能エポキシ樹脂(ジグリシジルエーテル化合物)から2つのグリシジルオキシ基を除いた残骨格、ジエステル系化合物から2つのエステル構造を除いた残骨格、2官能フェノール化合物から2つの水酸基を除いた残骨格に由来する。
 芳香族ジオール化合物から水酸基を2個除いた構造の芳香族骨格は、具体的に、ビスフェノールA、ビスフェノールアセトフェノン、ビスフェノールAF、ビスフェノールAD、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH,ビスフェノールトリメチルシクロヘキサン及びビスフェノールシクロヘキサン等の無置換又は炭素原子数1~10のアルキル基を置換基として有していてもよいビスフェノール型や、ヒドロキノン、レゾルシン、カテコール等の無置換又は炭素原子数1~10のアルキル基を置換基として有していてもよいジヒドロキシフェニル類等のベンゼン型や、無置換又は炭素原子数1~10のアルキル基を置換基として有していてもよいジヒドロキシナフタレン類等のナフタレン型や、無置換又は炭素原子数1~10のアルキル基を置換基として有していてもよいジヒドロキシビフェニル類等のビフェニル型や、ビスフェノールフルオレン及びビスクレゾールフルオレン等の無置換又は炭素原子数1~10のアルキル基を置換基として有していてもよいビスフェノールフルオレン類やビスナフトールフルオレン類等のフルオレン型や、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-HQ)、10-(2,7-ジヒドロキシナフチル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-NQ)、10-(1,4-ジヒドロキシ-2-ナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフィニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等の無置換又は炭素原子数1~10のアルキル基、アリール基もしくはアラルキル基を置換基として有していてもよいリン含有フェノール型等が挙げられる。
 上記脂肪族骨格は、具体的に、エチレングリコール、プロピレングリコール及びブチレングリコール等のアルキレングリコール骨格等が挙げられる。
 上記脂環式骨格は、具体的に、水素化ビスフェノールA、水素化ビスフェノールF、及び水素化ビスフェノールアセトフェノン等の水素化ビスフェノール骨格等が挙げられる。
 式(1)において、Yは独立に、水素原子、炭素数2~20のアシル基、又はグリシジル基である。Yが水素原子である場合は末端に水酸基を与え、アシル基である場合は末端にエステル基を与え、グリシジル基である場合は末端にエポキシ基を与える。アシル基はR-CO-で表され、Rは炭素数1~19の炭化水素基である。これらの末端基は、用途に応じてその割合を制御することがよい。
 アシル基(R-CO-)において、Rで示される炭素数1~19の炭化水素基としては、炭素数1~12のアルキル基、炭素数6~12のアリール基、又は炭素数7~13のアラルキル基が好ましい。
 炭素数1~12のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、メチルシクロヘキシル基、n-オクチル基、シクロオクチル基、n-ノニル基、3,3,5-トリメチルシクロヘキシル基、n-デシル基、シクロデシル基、n-ウンデシル基、n-ドデシル基、シクロドデシル基等が挙げられる。
 炭素数6~12のアリール基としては、例えば、フェニル基、トリル基、エチルフェニル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、ナフチル基、メチルナフチル基等が挙げられる。
 炭素数7~13のアラルキル基としては、例えば、ベンジル基、メチルベンジル基、ジメチルベンジル基、トリメチルベンジル基、フェネチル基、2-フェニルイソプロピル基、ナフチルメチル基等が挙げられる。
 これらの中でも、炭素数1~7の炭化水素基を有するアシル基がより好ましく、アセチル基、プロパノイル基、ブタノイル基、ベンゾイル基、メチルベンゾイル基が更に好ましく、アセチル基、ベンゾイル基が特に好ましい。
 式(1)において、Zは炭素数2~20のアシル基(以下、単に「アシル基」と呼ぶことがある。)又は水素原子である。Zの5モル%以上はアシル基であり、残りは水素原子である。式(1)における全Z中のアシル基の含有率(モル%)を、アシル化率ともいう。アシル化率は、好ましくは10モル%以上、より好ましくは50モル%以上、更に好ましくは70モル%以上、更により好ましくは90モル%以上である。一方、アシル化率の上限はなく、100%であってもよいが、反応的には95%程度である。
 Zが全て(100モル%)アシル基の場合、本発明の変性エポキシ樹脂は二級水酸基を含まないものとなり、誘電特性を更に改良することができる。溶解性や耐湿性の改善も期待できる。一方、例えば、金属に対する接着性を微調整する際に、Zの一部を水素原子として残すことで、耐湿性を始めとする他の物性に大きな影響を及ぼさない範囲で、本発明の変性エポキシ樹脂中に敢えて適量の二級水酸基を存在させることもできる。
 アシル基の具体例は、上記Yで例示したものと同様であり、好ましいアシル基も同様である。
 式(1)において、nは繰り返し数であり、平均値である。その値の範囲は1以上500以下である。流動性及び取り扱い性の観点から好ましくは1以上400以下であり、より好ましくは1以上300以下である。n数はGPC法により得られた数平均分子量(Mn)より算出することができる。
 本発明の変性エポキシ樹脂は、二級水酸基の一部又は全部がアシル化したものであり、様々な方法で得ることができる。好ましい製造方法としては、例えば、次のような製造方法がある。
(A);上記式(5)で表される2官能エポキシ樹脂と、上記式(6)で表されるジエステル系化合物とを反応させる製造方法。以下、製造方法(A)と称することがある。
(B);上記式(7)で表されるエポキシ樹脂(本発明の変性エポキシ樹脂と区別するために、エポキシ樹脂(a)と称することがある。)と、有機酸の酸無水物、有機酸のハロゲン化物、有機酸のエステル化物等の酸成分(アシル化剤)、好ましくは有機酸の酸無水物とを反応させる製造方法。以下、製造方法(B)と称することがある。
 製造方法(A)及び(B)で得られる変性エポキシ樹脂は、本発明の変性エポキシ樹脂であり、同じ式(1)で表される。
 上記製造方法(A)は、式(5)で表される2官能エポキシ樹脂と、式(6)で表されるジエステル系化合物とを反応させる方法である。
 式(5)において、Gはグリシジル基であり、mは繰り返し数であり、その平均値は0以上6以下であり、0以上3以下が好ましい。
 式(6)において、Qは独立に、炭素数2~20のアシル基又は水素原子であり、前記と同様に定義され得る。
 式(6)において、Qの5モル%以上は炭素数2~20のアシル基で、残りは水素原子である。
 ここで、式(6)で表されるジエステル系化合物は、Qの両方がアシル基であるジエステル化合物、一方がアシル基で他方が水素原子であるモノエステル化合物、及び両方が水素原子である2官能フェノール化合物から選ばれ、ジエステル化合物又はモノエステル化合物であるか、もしくはジエステル化合物及び/又はモノエステル化合物を含む混合物であってもよい。ジエステル系化合物は、Qの両方がアシル基であるジエステル化合物又は主成分(50モル%以上)がジエステル化合物(混合物)であることがよい。モノエステル化合物や2官能フェノール化合物が多くなるとアシル化率が低くなる。
 式(5)におけるX及び式(6)におけるXは、式(1)のXを与えるように選択される。従って、式(5)で表される2官能エポキシ樹脂又は式(6)で表されるジエステル系化合物のいずれか一方、又は双方にフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含み、これらの基はX及びXの合計モル数に対して1~100モル%含まれていることが好ましい。例えば、式(5)で表される2官能エポキシ樹脂の一方だけにフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含む場合には、Xがフェニレン基であるエポキシ樹脂と、Xがビフェニレン基であるエポキシ樹脂とを少なくとも用いたエポキシ樹脂の混合物を用いるようにすることができ、式(6)で表される化合物の一方だけにこれらの基が含まれる場合や、双方に含む場合も同様に、X又はXが異なる2種以上の化合物の混合物として使用することができる。フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基に起因する誘電特性及び熱伝導性を十分に発現させるという観点からは、より好ましくはフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基が10モル%以上、更に好ましくは20モル%以上、特に好ましくは40モル%以上である。
 本発明の変性エポキシ樹脂には、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基が必ず含まれるものであり、これを満たす限り、これらの基は、原料の式(5)で表される2官能エポキシ樹脂及び/又は式(6)で表されるジエステル系化合物のいずれに含まれるものであってもよく、またその割合も制限されるものではない。また、上記式(5)におけるX又は式(6)におけるXとして、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含まない場合には、X又はXには前記したような他の2価の基を導入することができる。
 本発明の製造方法(A)に用いられる2官能エポキシ樹脂は、上記式(5)で表されるエポキシ樹脂であり、例えば、HO-X-OHで表される2官能フェノール化合物と、エピハロヒドリンとを、アルカリ金属化合物存在下で反応させて得られるエポキシ樹脂等が挙げられる。ここで、Xは上記式(5)のXと同様である。
 式(5)で表される原料エポキシ樹脂のエポキシ当量(g/eq.)は、好ましくは100~400、より好ましくは300以下である。式(5)のm値は、好ましくは0~1、より好ましくは0.3以下である。
 エピハロヒドリンとしては、例えば、エピクロルヒドリンやエピブロモヒドリン等が挙げられる。
 アルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、重炭酸ナトリウム、塩化ナトリウム、塩化リチウム、塩化カリウム等のアルカリ金属塩や、ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属アルコキシドや、酢酸ナトリウム、ステアリン酸ナトリウム等の有機酸のアルカリ金属塩や、アルカリ金属フェノキシド、水素化ナトリウム、水素化リチウム等が挙げられる。
 原料エポキシ樹脂を得るための2官能フェノール化合物とエピハロヒドリンとの反応には、2官能フェノール化合物中の官能基に対して0.80~1.20倍モル、好ましくは0.85~1.05倍モルのアルカリ金属化合物が用いられる。これより少ないと残存する加水分解性塩素の量が多くなる場合がある。アルカリ金属化合物としては、水溶液、アルコール溶液又は固体の状態で使用される。
 エポキシ化反応に際しては、2官能フェノール化合物に対しては過剰量のエピハロヒドリンが使用される。通常、2官能フェノール化合物中の官能基1モルに対して、1.5~15倍モルのエピハロヒドリンが使用されるが、好ましくは2~10倍モル、より好ましく5~8倍モルである。これより多いと生産効率が低下し、これより少ないとエポキシ樹脂の高分子量体の生成量が増え、原料に適さなくなる場合がある。
 エポキシ化反応は、通常、120℃以下の温度で行われる。反応の際、温度が高いと、いわゆる難加水分解性塩素量が多くなり高純度化が困難になる場合がある。好ましくは100℃以下であり、更に好ましくは85℃以下の温度である。
 上記2官能フェノール化合物とエピハロヒドリンを反応させると、mは0より大きくなるのが通常である。mを0とするためには、公知の方法で製造したエポキシ樹脂を蒸留、晶析等の手法で高度に精製するか、又は上記2官能フェノール化合物をアリル化した後に、オレフィン部分を酸化することでエポキシ化する方法がある。
 また、本発明の製造方法(A)に用いられる式(6)のジエステル系化合物は、例えば、上記2官能フェノール化合物を、有機酸の酸無水物、有機酸のハロゲン化物、又は有機酸との縮合反応でアシル化して得られる。
 式(5)におけるmが0のエポキシ樹脂を原料に用いることで、本発明の変性エポキシ樹脂は二級水酸基を含まないものとなり、誘電特性や耐湿性を更に改良することができる。また、例えば、金属に対する接着性を微調整する際に、適当なm数のエポキシ樹脂を使用することで、耐湿性を始めとする他の物性に大きな影響を及ぼさない範囲で、本発明の変性エポキシ樹脂中に敢えて適量の二級水酸基を存在させることもでき、結果として得られる式(1)のZを満たす範囲内において適宜原料を調整することができる。
 上記の2官能エポキシ樹脂と式(6)のジエステル系化合物の使用量は、目的とする変性エポキシ樹脂のエポキシ当量によって適宜変更する必要はあるが、エポキシ基1当量に対し、エステル基及びフェノール性水酸基の合計は0.3~1.0当量が好ましい。この当量比であると、分子末端にエポキシ基を有する状態で高分子量化を進行させやすくなる。また、式(6)のジエステル系化合物の一部を、上記2官能フェノール化合物に置き換えることも可能である。これにより前述のように、本発明の変性エポキシ樹脂中に敢えて適量の二級水酸基を存在させることで物性の微調整ができる。
 製造方法(A)では、重合反応と二級水酸基のエステル化反応が生じ、Mwが増加して変性エポキシ樹脂が生成する。
 製造方法(A)において、触媒を用いてもよく、その触媒としては、エポキシ基とエステル基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、第3級アミン、環状アミン類、イミダゾール系化合物、有機リン化合物、第4級アンモニウム塩等が挙げられる。また、これらの触媒は単独でも、2種以上を組み合わせて使用してもよい。
 第3級アミンとしては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリエタノールアミン、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等が挙げられる。
 環状アミン類としては、例えば、1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、N-メチルモルホリン、ピリジン、N,N-ジメチルアミノピリジン(DMAP)等が挙げられる。
 イミダゾール系化合物としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。
 有機リン化合物としては、例えば、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、ジフェニルメチルホスフィン、トリフェニルホスフィン、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(t-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、パラメチルホスフィン、1,2-ビス(ジメチルホスフィノ)エタン、1,4-ビス(ジフェニルホスフィノ)ブタン等のホスフィン類や、テトラメチルホスホニウムブロミド、テトラメチルホスホニウムヨージド、テトラメチルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド、トリメチルシクロヘキシルホスホニウムクロリド、トリメチルシクロヘキシルホスホニウムブロミド、トリメチルベンジルホスホニウムクロリド、トリメチルベンジルホスホニウムブロミド、テトラフェニルホスホニウムブロミド、トリフェニルメチルホスホニウムブロミド、トリフェニルメチルホスホニウムヨージド、トリフェニルエチルホスホニウムクロリド、トリフェニルエチルホスホニウムブロミド、トリフェニルエチルホスホニウムヨージド、トリフェニルベンジルホスホニウムクロリド、トリフェニルベンジルホスホニウムブロミド等のホスホニウム塩類等が挙げられる。
 第4級アンモニウム塩としては、例えば、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヒドロキシド、トリエチルメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラエチルアンモニウムヨージド、テトラプロピルアンモニウムブロミド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムヨージド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリブチルアンモニウムクロリド、フェニルトリメチルアンモニウムクロリド等が挙げられる。
 以上に挙げた触媒の中でも、4-ジメチルアミノピリジン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、2-エチル-4-メチルイミダゾール、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(t-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィンが好ましく、特に、4-(ジメチルアミノ)ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、2-エチル-4-メチルイミダゾールが好ましい。
 触媒の使用量は、反応固形分中、通常0.001~1質量%であるが、これらの化合物を触媒として使用した場合、得られる変性エポキシ樹脂中にこれらの触媒が残渣として残留し、プリント配線板の絶縁特性を悪化させたり、組成物のポットライフを短縮させたりする恐れがある。そのため、変性エポキシ樹脂中の触媒由来の窒素含有量は、0.5質量%以下が好ましく、0.3質量%以下がより好ましい。また、変性エポキシ樹脂中の触媒由来のリン含有量は、0.5質量%以下が好ましく、0.3質量%以下がより好ましい。
 製造方法(A)において、反応用の溶媒を用いてもよく、その溶媒としては、変性エポキシ樹脂を溶解するものであればどのようなものでもよい。例えば、芳香族系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒、エステル系溶媒等が挙げられる。また、これらの溶媒は1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。
 芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、2-オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサン、ジイソブチルケトン、イソホロン、メチルシクロへキサノン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド(DMF)、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチルピロリドン等が挙げられる。
 グリコールエーテル系溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル等のエチレングリコールモノアルキルエーテル類や、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル等のジエチレングリコールモノアルキルエーテル類や、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のプロピレングリコールモノアルキルエーテル類や、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類や、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類や、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類や、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類や、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類や、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類や、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類等が挙げられる。
 エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸ベンジル、プロピオン酸エチル、酪酸エチル、酪酸ブチル、バレロラクトン、ブチロラクトン等が挙げられる。
 また、その他の溶媒としては、例えば、ジメチルスルフォキシド、スルホラン、N-メチル-2-ピロリドン等が挙げられる。
 製造方法(A)において、反応時の固形分濃度は35~95質量%が好ましい。より好ましくは50~90質量%、更に好ましくは70~90質量%である。反応途中で高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。
 反応温度は、使用する触媒が分解しない程度の温度範囲で行う。反応温度が高すぎると触媒が分解して反応が停止したり、生成する変性エポキシ樹脂が劣化したりする恐れがある。反応温度が低すぎると反応が十分に進まずに目的の分子量にならない恐れがある。そのため反応温度は、好ましくは50~230℃、より好ましくは120~200℃である。また、反応時間は通常1~12時間、好ましくは3~10時間である。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。また、反応熱の除去が必要な場合は、通常、反応熱による使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。
 次に、本発明の製造方法(B)について説明する。
 製造方法(B)は、前記のとおり、式(7)で表されるエポキシ樹脂(a)と、有機酸の酸無水物、有機酸のハロゲン化物、有機酸のエステル化物等の酸成分(アシル化剤)と反応させるが、好ましくは、エポキシ樹脂のアルコール性水酸基当量1モルに対して、式(8)で表される酸無水物を0.05モル以上2.0モル以下で反応させて、エポキシ当量が250~50,000g/eq.である式(1)で表される変性エポキシ樹脂、すなわち本発明の変性エポキシ樹脂を得る方法である。
 原料の式(7)で表されるエポキシ樹脂(a)は、上記式(7)のX中にフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を必須として含む。ここで、式(7)のnは繰り返し数であり、平均値である。その値の範囲は1以上500以下である。流動性及び取り扱い性の観点から好ましくは1以上400以下であり、より好ましくは1以上300以下である。n数はGPC法により得られた数平均分子量(Mn)より算出することができる。
 このエポキシ樹脂(a)は従来知られている方法で得ることができる。例えば、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を有する2官能フェノール化合物(「2官能フェノール化合物(a)」と称することがある)とエピハロヒドリンとをアルカリ金属化合物存在下で反応させて製造する方法(以下、「一段法」と称する)や、2官能エポキシ樹脂と2官能フェノール化合物のうち少なくとも一方に、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を有する2官能エポキシ樹脂と2官能フェノール化合物とを触媒存在下で反応させて製造する方法(以下、「二段法」と称する)が挙げられる。エポキシ樹脂(a)はいずれの製造方法により得られるものであってもよい。
 エポキシ樹脂(a)の重量平均分子量やエポキシ当量は、一段法ではエピハロヒドリンと2官能フェノール化合物の仕込みモル比を、二段法では2官能エポキシ樹脂と2官能フェノール化合物の仕込みモル比を適宜調整することで、目的の範囲のものを製造することができる。
 一段法及び二段法の製造で使用される2官能フェノール化合物(a)としては、例えば、ヒドロキノン及び4,4’-ジヒドロキシビフェニル、又は1,6’-ジヒドロキシナフタレン及び4,4’-ジヒドロキシビフェニル等が挙げられる。
 また、本発明の目的を損なわない限り、これ以外の2官能フェノール化合物を併用してもよい。併用してもよい2官能フェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールB、ビスフェノールE、ビスフェノールC、ビスフェノールアセトフェノン、ビスフェノールフルオレン、ジヒドロキシビフェニルエーテル、ジヒドロキシビフェニルチオエーテル等のビスフェノール類、4,4’-ビフェノール、2,4’-ビフェノール等のビフェノール類、ジヒドロキシナフタレン、ヒドロキノン、カテコール、レゾルシン、1,1-ビ-2-ナフトール、10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-HQ)、10-(2,7-ジヒドロキシナフチル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-NQ)等が挙げられる。また、これらの2官能フェノール化合物は複数種を併用してもよい。
 まず、一段法について説明する。
 一段法の場合は、2官能フェノール化合物(a)とエピハロヒドリンを、アルカリ金属化合物の存在下、非反応性溶媒中で反応させ、エピハロヒドリンが消費され、縮合反応させることにより、エポキシ樹脂(a)を得ることができる。なお、反応終了後に、副生した塩を濾別又は水洗により除去する必要がある。アルカリ金属化合物としては、本発明の製造方法(A)に用いられる上記式(5)で表わされる2官能エポキシ樹脂の製造時に使用されるアルカリ金属化合物と同様のものが例示される。
 エポキシ樹脂(a)の重量平均分子量やエポキシ当量は、2官能フェノール化合物とエピハロヒドリンとの仕込みモル比を適宜調整することで、目的の範囲にすることができる。
 例えば、エポキシ樹脂(a)の重量平均分子量を10,000以上にする場合は、2官能フェノール化合物(a)1モルに対して、エピハロヒドリンを0.985~1.015モル、好ましくは0.99~1.012モル、より好ましくは0.995~1.01モルに調整すればよい。また、エポキシ樹脂(a)のエポキシ当量を5,000g/eq.以下にする場合、2官能フェノール化合物(a)1モルに対して、エピハロヒドリンを1.015~8モル、好ましくは1.05~6モル、より好ましくは1.1~5モルに調整すればよい。
 原料として用いられる2官能フェノール化合物(a)のモル数は、全2官能フェノール化合物中に、1モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上が更に好ましく、40モル%以上が特に好ましい。この範囲を外れると、本発明の変性エポキシ樹脂にしたときに耐熱性が悪化する恐れがある。 
 この反応は常圧下又は減圧下で行うことができる。反応温度は通常、常圧下の反応の場合は20~200℃が好ましく、30~170℃がより好ましく、40~150℃が更に好ましく、50~100℃が特に好ましい。減圧下の反応の場合は20~100℃が好ましく、30~90℃がより好ましく、35~80℃が更に好ましい。反応温度がこの範囲内であれば、副反応が起こしにくく反応を進行させやすい。反応圧力は通常、常圧である。また、反応熱の除去が必要な場合は、通常、反応熱により使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。
 反応性溶媒としては、本発明の製造方法(A)で例示した反応用の溶媒の他、エタノール、イソプロピルアルコール、ブチルアルコール等のアルコール類も使用できる。1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。
 次に、二段法について説明する。
 二段法の原料エポキシ樹脂となる2官能エポキシ樹脂としては、本発明の製造方法(A)に用いられる上記式(5)で表わされる2官能エポキシ樹脂と同様のものを使用する。
 二段法の原料となる2官能エポキシ樹脂としては、上記式(5)で表わされる2官能エポキシ樹脂が好ましいが、本発明の目的を損なわない限りこれ以外の2官能エポキシ樹脂を併用してよい。併用できる2官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、脂肪族環状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂はアルキル基、アリール基等の悪影響のない置換基で置換されていてもよい。これらのエポキシ樹脂は複数種を併用してもよい。
 二段法の場合は、触媒を使用することができ、エポキシ基とフェノール性水酸基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、本発明の製造方法(A)の例示した触媒と同様のものが挙げられる。また、上記式(5)で表わされる2官能エポキシ樹脂の製造時に使用されるアルカリ金属化合物も使用可能である。これらの触媒は単独でも、2種類以上を組み合わせて使用してもよい。また、使用量も本発明の製造方法(A)で例示した使用量と同様である。
 二段法の場合、溶媒を用いてもよく、その溶媒としてはエポキシ樹脂を溶解し、反応に悪影響のないものであればどのようなものでもよい。例えば、本発明の製造方法(A)で例示した溶媒と同様のものが例示される。これらの溶媒は1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。
 使用する溶媒の量は反応条件に応じて適宜選択することができるが、例えば、二段法の場合は固形分濃度が35~95質量%が好ましい。また、反応中に高粘性生成物が生じる場合は反応途中で溶媒を添加して反応を続けることができる。反応終了後、溶媒は必要に応じて蒸留等により除去することもできるし、更に追加することもできる。
 反応温度は、使用する触媒が分解しない程度の温度範囲で行う。反応温度が高すぎると触媒が分解して反応が停止したり、生成するエポキシ樹脂が劣化したりする恐れがある。反応温度が低すぎると反応が十分に進まずに目的の分子量にならない恐れがある。そのため反応温度は、50~230℃が好ましく、100~210℃がより好ましく、120~200℃が更に好ましい。また、反応時間は通常1~12時間であり、3~10時間が好ましい。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。また、反応熱の除去が必要な場合は、通常、反応熱による使用溶媒の蒸発・凝縮・還流法、間接冷却法、又はこれらの併用により行われる。
 このようにして得られた上記式(7)で表されるエポキシ樹脂(a)中の水酸基をアシル化することにより、本発明の変性エポキシ樹脂が得られる。アシル化は直接エステル化するだけでなくエステル交換等の方法を用いてもよい。
 上記アシル化に使用する酸成分としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、ペンタン酸、オクタン酸、カプリル酸、ラウリン酸、ステアリン酸、オレイン酸、安息香酸、t-ブチル安息香酸、ヘキサヒドロ安息香酸、フェノキシ酢酸、アクリル酸、メタクリル酸等の有機酸や、有機酸の酸無水物や、有機酸のハロゲン化物や、有機酸のエステル化物等を使用することができる。これらの内、有機酸の酸無水物が好ましい。
 有機酸の酸無水物としては、例えば、無水酢酸、安息香酸無水物、フェノキシ酢酸無水物等が挙げられる。
 有機酸のエステル化物としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、安息香酸メチル、安息香酸エチル等が挙げられる。有機酸のハロゲン化物としては、例えば、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等が挙げられる。
 エステル化に使用する化合物としては、酢酸クロリド、安息香酸クロリド、フェノキシ酢酸クロリド等の有機酸のハロゲン化物や無水酢酸、安息香酸無水物、フェノキシ酢酸無水物等の酸ハロゲン化物や有機酸の酸無水物が好ましく、エステル化の後水洗が不要で、電材用途で嫌われるハロゲンの混入を避ける意味で、無水酢酸や安息香酸無水物等の酸無水物がより好ましい。
 エポキシ樹脂(a)が有する水酸基のエステル化に使用する上記有機酸、有機酸の酸無水物、有機酸のハロゲン化物、有機酸のエステル化物等の酸成分とエポキシ樹脂(a)とを反応させる際の仕込み割合は、目的のエステル化比率と同様の仕込み比率でもよいし、反応性が低い場合には水酸基に対し過剰に上記酸成分を仕込み、目的のエステル化率まで反応させた後、未反応の酸成分を除去してもよい。
 酸成分により直接エステル化する場合、例えば、パラトルエンスルホン酸、リン酸等の酸触媒やテトライソプロピルチタネート、テトラブチルチタネート、ジブチル錫オキサイド、ジオクチル錫オキサイド、塩化亜鉛等の金属触媒等の種々のエステル化触媒を用い脱水しながら行うことができる。通常、窒素雰囲気下で100~250℃で行うのが好ましく、より好ましくは130~230℃である。
 エステル化に酸ハロゲン化物や酸無水物を使用する場合、生じた酸を除去するには、塩基性化合物を使用し中和後に塩を濾過する方法、塩基性化合物を使用し中和後水洗する方法、中和せずに水洗する方法、蒸留や吸着等で除去する方法のいずれの方法を用いてもよく、併用しても構わない。反応溶媒よりも低沸点の酸を除く場合には、蒸留し除くことが好ましい。
 エポキシ樹脂(a)をエステル交換によりエステル化する場合は、通常窒素雰囲気下で、例えば、ジブチル錫オキシドやジオクチル錫オキシド、スタノキサン触媒、テトライソプロピルチタネート、テトラブチルチタネート、酢酸鉛、酢酸亜鉛、三酸化アンチモン等の有機金属触媒や塩酸、硫酸、リン酸、スルホン酸等の酸触媒、水酸化リチウム、水酸化ナトリウム等の塩基性触媒等公知のエステル化触媒を用いて脱アルコールしながら行うことが望ましい。
 本発明の製造方法(B)において、反応用の溶媒を用いてもよく、その溶媒としては、エポキシ樹脂を溶解するものであればどのようなものでもよい。例えば、本発明の製造方法(A)で例示した溶媒等が挙げられる。これらの溶媒はエポキシ樹脂(a)の調製で用いたものと同じものでもよいし、異なるものでもよい。また、1種のみで用いてもよく、2種以上を組み合わせて使用してもよい。反応時の固形分濃度についても、製造方法(A)と同様であり、好ましくは35~95質量%、より好ましくは50~90質量%、更に好ましくは70~90質量%である。
 本発明の樹脂組成物は、少なくとも本発明の変性エポキシ樹脂と硬化剤とを含む樹脂組成物である。また、本発明の樹脂組成物には、必要に応じて、エポキシ樹脂、無機フィラー、カップリング剤、酸化防止剤等の各種添加剤を適宜配合することができる。本発明の樹脂組成物は、各種用途に要求される諸物性を十分に満たす硬化物を与えるものである。
 本発明の変性エポキシ樹脂に硬化剤を配合して樹脂組成物とすることができる。本発明において硬化剤とは、変性エポキシ樹脂と架橋反応及び/又は鎖長延長反応に寄与する物質を示す。なお、本発明においては、通常「硬化促進剤」と呼ばれるものであっても変性エポキシ樹脂の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤とみなすこととする。
 本発明の樹脂組成物中の硬化剤の含有量は、本発明の変性エポキシ樹脂の固形分100質量部に対して、好ましくは固形分で0.1~100質量部である。また、より好ましくは0.5~80質量部であり、更に好ましくは1~50質量部である。なお、樹脂組成物において、不揮発分(固形分)の量である。
 本発明において、「固形分」とは溶媒を除いた成分を意味し、固体の変性エポキシ樹脂や他のエポキシ樹脂のみならず、半固形や粘稠な液状物のものをも含むものとする。
 本発明の樹脂組成物に使用する硬化剤としては、特に制限はなく一般的にエポキシ樹脂硬化剤として知られているものはすべて使用できる。耐熱性を高める観点から好ましいものとして、フェノール樹脂、アミド系化合物、イミダゾール系化合物、及び活性エステル系硬化剤等が挙げられる。これらの硬化性剤は単独で使用してもよく、2種類以上を併用してもよい。
 フェノール樹脂としては、例えば、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が挙げられる。
 アミド系化合物としては、例えば、ジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。
 イミダゾール系化合物としては、例えば、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール系化合物との付加体等が挙げられる。なお、イミダゾール系化合物は触媒能を有するため、一般的には後述する硬化促進剤にも分類されうるが、本発明においては硬化剤として分類するものとする。
 活性エステル系硬化剤としては、例えば、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく、中でも、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたフェノールエステル類がより好ましい。カルボン酸化合物としては、具体的には、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール性水酸基を有する芳香族化合物としては、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。
 本発明の樹脂組成物に使用することのできるその他の硬化剤として、例えば、アクリル酸エステル樹脂、メラミン樹脂、尿素樹脂、カチオン重合剤、アミン系化合物、酸無水物、第3級アミン、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート化合物、ポリイソシアネート化合物、ブロックイソシアネート化合物、カルボジイミド化合物等が挙げられる。これらのその他の硬化剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 本発明の樹脂組成物は、本発明の変性エポキシ樹脂以外の他のエポキシ樹脂を含むことができる。他のエポキシ樹脂を使用することで、不足する物性を補ったり、種々の物性を向上させたりすることができる。エポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであることが好ましく、3個以上のエポキシ基を有するエポキシ樹脂がより好ましい。例えば、ポリグリシジルエーテル化合物、ポリグリシジルアミン化合物、ポリグリシジルエステル化合物、脂環式エポキシ化合物、その他変性エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は単独で使用してもよく、同一系のエポキシ樹脂を2種類以上併用してもよく、また、異なる系のエポキシ樹脂を組み合わせて使用してもよい。
 ポリグリシジルエーテル化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ヒドロキノン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキルノボラック型エポキシ樹脂、スチレン化フェノールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、β-ナフトールアラルキル型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、α-ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキルフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、脂肪族環状エポキシ樹脂等の各種エポキシ樹脂を使用することができる。
 ポリグリシジルアミン化合物としては、例えば、ジアミノジフェニルメタン型エポキシ樹脂、メタキシレンジアミン型エポキシ樹脂、1,3-ビスアミノメチルシクロヘキサン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アニリン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、アミノフェノール型エポキシ樹脂等が挙げられる。
 ポリグリシジルエステル化合物としては、例えば、ダイマー酸型エポキシ樹脂、ヘキサヒドロフタル酸型エポキシ樹脂、トリメリット酸型エポキシ樹脂等が挙げられる。
 脂環式エポキシ化合物としては、セロキサイド2021(ダイセル化学工業株式会社製)等の脂肪族環状エポキシ樹脂等が挙げられる。
 その他の変性エポキシ樹脂としては、例えば、ウレタン変性エポキシ樹脂、オキサゾリドン環含有エポキシ樹脂、エポキシ変性ポリブタジエンゴム誘導体、カルボキシル基末端ブタジエンニトリルゴム(CTBN)変性エポキシ樹脂、ポリビニルアレーンポリオキシド(例えば、ジビニルベンゼンジオキシド、トリビニルナフタレントリオキシド等)、フェノキシ樹脂等が挙げられる。
 本発明の樹脂組成物において、本発明の変性エポキシ樹脂と他のエポキシ樹脂とを使用する場合、固形分としての変性エポキシ樹脂及びエポキシ樹脂の全成分中、変性エポキシ樹脂の配合量は、好ましくは1~99質量%であり、より好ましくは50質量%以上、更に好ましくは80質量%以上である。
 また、本発明の変性エポキシ樹脂と他のエポキシ樹脂とを使用する場合、これら変性エポキシ樹脂と他のエポキシ樹脂との固形分の合計100質量部に対し、前記の硬化剤を固形分として0.1~100質量部を含むことが好ましく、より好ましくは0.5~80質量部であり、更に好ましくは1~50質量部である。
 本発明の樹脂組成物には、塗膜形成時の取り扱い時に、樹脂組成物の粘度を適度に調整するために溶剤又は反応性希釈剤を配合してもよい。本発明の樹脂組成物において、溶剤又は反応性希釈剤は、樹脂組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。なお、本発明においては「溶剤」という語と前述の「溶媒」という語をその使用形態により区別して使用するが、それぞれ独立して同種のものを用いても異なるものを用いてもよい。
 本発明の樹脂組成物が含み得る溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等のエステル類、エチレングリコールモノメチルエーテル等のエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、メタノール、エタノール等のアルコール類、ヘキサン、シクロヘキサン等のアルカン類、トルエン、キシレン等の芳香族類等が挙げられる。以上に挙げた溶剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 反応性希釈剤としては、例えば、アリルグリシジルエーテル等の単官能グリシジルエーテル類、プロピレングリコールジグリシジルエーテル等の二官能グリシジルエーテル類、トリメチロールプロパンポリグリシジルエーテル等の多官能グリシジルエーテル類、グリシジルエステル類、グリシジルアミン類が挙げられる。
 これらの溶剤又は反応性希釈剤は、不揮発分として90質量%以下で使用することが好ましく、その適正な種類や使用量は用途によって適宜選択される。例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1-メトキシ-2-プロパノール等の沸点が160℃以下の極性溶媒であることが好ましく、その使用量は不揮発分で40~80質量%が好ましい。また、接着フィルム用途では、例えば、ケトン類、酢酸エステル類、カルビトール類、芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を使用することが好ましく、その使用量は不揮発分で30~60質量%が好ましい。
 本発明の樹脂組成物には、必要に応じて、硬化促進剤又は触媒を使用することができる。硬化促進剤又は触媒としては、例えば、イミダゾール系化合物、第3級アミン類、ホスフィン類等のリン化合物、金属化合物、ルイス酸、アミン錯塩等が挙げられる。これらは単独で使用してもよく、2種類以上を併用してもよい。
 硬化促進剤又は触媒の配合量は、使用目的に応じて適宜選択すればよいが、樹脂組成物中のエポキシ樹脂成分100質量部に対して、0.01~15質量部が必要に応じて使用される。好ましくは0.01~10質量部、より好ましくは0.05~8質量部、更に好ましいは0.1~5質量部、特に好ましくは0.1~1.0質量部である。硬化促進剤又は触媒を使用することにより、硬化温度を下げることや、硬化時間を短縮することができる。
 本発明の樹脂組成物には、得られる硬化物の難燃性の向上を目的に、信頼性を低下させない範囲で、公知の各種難燃剤を使用することができる。使用できる難燃剤としては、例えば、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。環境に対する観点から、ハロゲンを含まない難燃剤が好ましく、特にリン系難燃剤が好ましい。これらの難燃剤は単独で使用してもよく、同一系の難燃剤を2種類以上併用してもよく、また、異なる系の難燃剤を組み合わせて使用してもよい。
 本発明の樹脂組成物には、その機能性の更なる向上を目的として、以上で挙げたもの以外の成分(本発明において「その他の成分」と称することがある。)を含んでいてもよい。このようなその他の成分としては、充填材、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、紫外線防止剤、酸化防止剤、カップリング剤、可塑剤、フラックス、揺変性付与剤、平滑剤、着色剤、顔料、分散剤、乳化剤、低弾性化剤、離型剤、消泡剤、イオントラップ剤等が挙げられる。
 充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、窒化ホウ素、窒化アルミニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、ベーマイト、タルク、マイカ、クレー、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、酸化亜鉛、酸化チタン、酸化マグネシウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ジルコニウム、硫酸バリウム、炭素等の無機充填剤や、炭素繊維、ガラス繊維、アルミナ繊維、シリカアルミナ繊維、炭化ケイ素繊維、ポリエステル繊維、セルロース繊維、アラミド繊維、セラミック繊維等の繊維状充填剤や、微粒子ゴム等が挙げられる。
 本発明の樹脂組成物には、本発明の変性エポキシ樹脂以外の熱可塑性樹脂を併用してもよい。熱可塑性樹脂としては、例えば、本発明以外の変性エポキシ樹脂、フェノキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、環状ポリオレフィン樹脂、ポリアミド樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリテトラフロロエチレン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂、ポリビニルホルマール樹脂等が挙げられる。相溶性の面からは本発明以外の変性エポキシ樹脂及びフェノキシ樹脂が好ましく、低誘電特性面からはポリフェニレンエーテル樹脂や変性ポリフェニレンエーテル樹脂が好ましい。
 その他の成分としては、キナクリドン系、アゾ系、フタロシアニン系等の有機顔料や、酸化チタン、金属箔状顔料、防錆顔料等の無機顔料や、ヒンダードアミン系、ベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤や、ヒンダードフェノール系、リン系、イオウ系、ヒドラジド系等の酸化防止剤や、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、レベリング剤、レオロジーコントロール剤、顔料分散剤、ハジキ防止剤、消泡剤等の添加剤等が挙げられる。例示していないものについても、それぞれ公知の成分を制限なく使用することができる。これらのその他の成分の配合量は、樹脂組成物中の全固形分に対して、0.01~20質量%の範囲が好ましい。
 本発明の樹脂組成物は、上記各成分を均一に混合することにより得られる。変性エポキシ樹脂、硬化剤、更に必要により各種成分の配合された樹脂組成物は、従来知られている方法と同様の方法で容易に硬化物とすることができる。この硬化物は、低吸湿性、誘電特性、耐熱性、密着性等のバランスに優れ、良好な硬化物性を示すものである。ここでいう「硬化」とは熱及び/又は光等により樹脂組成物を意図的に硬化させることを意味するものであり、その硬化の程度は所望の物性、用途により制御すればよい。進行の程度は完全硬化であっても、半硬化の状態であってもよく、特に制限されないが、エポキシ基と硬化剤の硬化反応の反応率として通常5~95%である。
 本発明の樹脂組成物は、公知のエポキシ樹脂組成物と同様な方法で硬化することによって硬化物を得ることができる。硬化物を得るための方法としては、公知のエポキシ樹脂組成物と同様の方法をとることができ、注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファ一成形、圧縮成形等や樹脂シート、樹脂付き銅箔、プリプレグ等の形態とし積層して加熱加圧硬化することで積層板とする等の方法が好適に用いられる。その際の硬化温度は通常、80~300℃の範囲であり、硬化時間は通常、硬化時間は10~360分間程度である。この加熱は80~180℃で10~90分の一次加熱と、120~200℃で60~150分の二次加熱との二段処理で行うことが好ましく、また、ガラス転移温度(Tg)が二次加熱の温度を超える配合系においては、更に150~280℃で60~120分の三次加熱を行うことが好ましい。このような二次加熱、三次加熱を行うことで硬化不良を低減することができる。樹脂シート、樹脂付き銅箔、プリプレグ等の樹脂半硬化物を作製する際には、通常、加熱等により形状が保てる程度に樹脂組成物の硬化反応を進行させる。樹脂組成物が溶媒を含んでいる場合には、通常、加熱、減圧、風乾等の手法で大部分の溶媒を除去するが、樹脂半硬化物中に5質量%以下の溶媒を残量させてもよい。
 本発明の樹脂組成物を用いて得られるプリプレグについて説明する。シート状基材としては、ガラス等の無機繊維や、ポリエステル、ポリアミン、ポリアクリル、ポリイミド、ケブラー、セルロース等の有機質繊維の織布又は不織布を使用することができるが、これに限定されるものではない。本発明の樹脂組成物及び基材からプリプレグを製造する方法としては、特に限定するものではなく、例えば、上記の基材を、上記の樹脂組成物を溶剤で粘度調整した樹脂ワニスに浸漬して含浸した後、加熱乾燥して樹脂組成物を半硬化(Bステージ化)して得られるものであり、例えば、100~200℃で1~40分間加熱乾燥することができる。ここで、プリプレグ中の樹脂組成物量は、30~80質量%とすることが好ましい。
 プリプレグや絶縁接着シートを用いて積層板を製造する方法を説明する。プリプレグを用いて積層板を形成する場合は、プリプレグを一枚又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を使用することができる。積層物を加熱加圧する条件としては、樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧量があまりに低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成型性を満足する条件で加圧することが望ましい。例えば、温度を160~220℃、圧力を49~490N/cm(5~50kgf/cm)、加熱時間を40~240分間にそれぞれ設定することができる。
 更にこのようにして得られた単層の積層板を内層材として、多層板を作成することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の片面又は両側の回路形成面に、プリプレグや絶縁接着シートにて絶縁層を形成するとともに、絶縁層の表面に導体層を形成して、多層板を形成するものである。
 絶縁接着シートにて絶縁層を形成する場合は、複数枚の内層材の回路形成面に絶縁接着シートを配置して積層物を形成する。あるいは内層材の回路形成面と金属箔の間に絶縁接着シートを配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、絶縁接着シートの硬化物を絶縁層として形成するとともに、内層材の多層化を形成する。あるいは内層材と導体層である金属箔を絶縁接着シートの硬化物を絶縁層として形成するものである。ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを使用することができる。
 また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。積層板に樹脂組成物を塗布して絶縁層を形成する場合は、内層材の最外層の回路形成面樹脂を上記の樹脂組成物を好ましくは5~100μmの厚みに塗布した後、100~200℃で1~90分加熱乾燥してシート状に形成する。一般にキャスティング法と呼ばれる方法で形成されるものである。乾燥後の厚みは5~80μmに形成することが望ましい。このようにして形成された多層積層板の表面に、更にアディティブ法やサブストラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を形成することができる。
 また更にこのプリント配線板を内層材として上記の工法を繰り返すことにより、更に多層の積層板を形成することができるものである。
 またプリプレグにて絶縁層を形成する場合は、内層材の回路形成面に、プリプレグを一枚又は複数枚を積層したものを配置し、更にその外側に金属箔を配置して積層物を形成する。そしてこの積層物を加熱加圧して一体成型することにより、プリプレグの硬化物を絶縁層として形成するとともに、その外側の金属箔を導体層として形成するものである。
 ここで、金属箔としては、内層材として用いられる積層板に用いたものと同様のものを使用することもできる。また加熱加圧成形は、内層材の成型と同様の条件にて行うことができる。このようにして成形された多層積層板の表面に、更にアディティブ法やサブトラクティブ法にてバイアホール形成や回路形成を施して、プリント配線板を成型することができる。
 また更にこのプリント配線板を内層材として上記の工法を繰り返すことにより、更に多層の多層板を形成することができる。
 本発明の樹脂組成物から得られる硬化物や電気・電子回路用積層板は、優れた誘電特性及び熱伝導性を有する。
 以下、本発明を実施例及び比較例に基づいて更に具体的に説明するが、本発明はこれに限定されるものではない。特に断りがない限り、部は「質量部」を表し、%は「質量%」を表す。分析方法、測定方法を以下に示す。また、各種当量の単位は全て「g/eq.」である。
(1)重量平均分子量(Mw)及び数平均分子量(Mn):
 GPC測定により求めた。具体的には、本体HLC8320GPC(東ソー株式会社製)にカラム(TSKgel SuperH-H、SuperH2000、SuperHM-H、SuperHM-H、以上東ソー株式会社製)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液はテトラヒドロフラン(THF)を使用し、1.0mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料は固形分で0.1gを10mLのTHFに溶解し、0.45μmのマイクロフィルターでろ過したものを50μL使用した。検量線は、標準ポリスチレン(東ソー株式会社製、PStQuick A、PStQuick B、PStQuick C)を使用し作成した。なお、データ処理は東ソー株式会社製GPC8020モデルIIバージョン6.00を使用した。
(2)IR(赤外吸光スペクトル):
 フーリエ変換型赤外分光光度計(Perkin Elmer Precisely製、Spectrum One FT-IR Spectrometer 1760X)を用い、セルには塩化ナトリウムを使用し、クロロホルムに溶解させたサンプルをセル上に塗布、乾燥させた後、波数500~4000cm-1の透過率を測定した。
(3)エポキシ当量:
 JIS K7236規格に準拠して測定を行い、単位は「g/eq.」で表した。具体的には、電位差滴定装置(平沼産業株式会社製、COM-1600ST)を用い、溶媒としてシクロヘキサノンを使用し、臭素化テトラエチルアンモニウム酢酸溶液を加え、0.1mol/L過塩素酸-酢酸溶液を用いた。なお、溶媒希釈品(樹脂ワニス)は、不揮発分から固形分換算値としての数値を算出した。
(4)不揮発分(固形分):
 JIS K7235規格に準拠して測定した。乾燥温度は200℃で、乾燥時間は60分間とした。
(5)誘電特性: 
 フィルム状サンプルは空洞共振器摂動法で、板状サンプルは容量法で測定を行った。
 実施例1~6、8~16及び比較例1~4は、空洞共振器摂動法にて1GHzで測定した際の誘電正接で評価した。具体的には、PNAネットワークアナライザN5230A(アジレント・テクノロジー株式会社製)及び空洞共振器CP431(関東電子応用開発株式会社製)を使用して、室温23℃、湿度50%RHの測定環境下、幅1.5mm×長さ80mm×厚み150μmの試験片を用いて測定を行った。
 実施例17~18及び比較例5~6は、容量法にて1GHzで測定した際の誘電正接で評価した。具体的には、IPC-TM-650 2.5.5.9規格に準じてマテリアルアナライザー(AGILENT Technologies社製)を使用して、室温23℃、湿度50%RHの測定環境下、30mm角×1mm厚の試験片を用いて測定を行った。
(6)熱伝導性:
 NETZSCH社製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
(7)流動性:
 東機産業株式会社製B型回転粘度計TVB-10Mを用いて、25℃で測定した溶液粘度にて評価した。
 実施例、比較例の使用する略号を以下の通りである。
[2官能エポキシ樹脂]
A1:ヒドロキノン型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、ZX-1027、エポキシ当量130、m≒0.18)
Figure JPOXMLDOC01-appb-C000008
A2:ナフタレン型液状エポキシ樹脂(DIC株式会社製、エピクロンHP4032D、エポキシ当量142、m≒0.06)
Figure JPOXMLDOC01-appb-C000009
A3:ビフェニル型エポキシ樹脂(三菱ケミカル株式会社製、YX-4000、エポキシ当量196、融点105℃、m≒0.13)
Figure JPOXMLDOC01-appb-C000010
A4:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128、エポキシ当量186、m≒0.11)
A5:ビスフェノールA型固形エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-901、エポキシ当量410、m≒1.7)
A6:ビスフェノールA型固形エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-7910、エポキシ当量2500、m≒16)
 ここで、mは上記式(5)におけるmと同様の意味を有する。
[ジエステル系化合物]
B1:合成例1で得た、2,5-ジ-t-ブチル-1,4-ジアセトキシベンゼン(活性当量=153)
Figure JPOXMLDOC01-appb-C000011
B2:合成例2で得た、1,6-ジアセトキシナフタレン(活性当量=122)
Figure JPOXMLDOC01-appb-C000012
   
B3:4,4’-ジアセトキシビフェニル(東京化成工業株式会社製、活性当量=135) 
Figure JPOXMLDOC01-appb-C000013
  
[2官能フェノール化合物]
C1:4,4’-ジヒドロキシビフェニル(東京化成工業株式会社製、水酸基当量93)
C2:2,5-ジ-t-ブチル-ヒドロキノン(東京化成工業株式会社製、水酸基当量111)
C3:1,6-ジヒドロキシナフタレン(東京化成工業株式会社製、水酸基当量80)
[触媒]
D1:4-ジメチルアミノピリジン(富士フィルム和光純薬株式会社製)
D2:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2E4MZ)
[溶媒・溶剤]
S1:シクロヘキサノン
S2:メチルエチルケトン(MEK)
[酸無水物]
E1:無水酢酸(富士フィルム和光純薬株式会社製)
E2:無水安息香酸(東京化成工業株式会社製)
[硬化剤]
H1:フェノールノボラック樹脂(アイカ工業株式会社製、ショウノールBRG-557、水酸基当量105)
H2:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製、キュアゾール2E4MZ)
合成例1
 撹拌装置、温度計、窒素ガス導入装置、冷却管、及び滴下装置を備えたガラス製反応容器に、室温下で、2官能フェノール化合物C2を100部、酸無水物E1を92部、ピリジンを71部仕込み、窒素ガスを流し撹拌しながら60℃まで昇温し、2時間反応を行った。その後、150℃、1.3kPa(10torr)の条件で2時間減圧乾燥を行い、ジエステル系化合物B1を138部得た。
合成例2
 撹拌装置、温度計、窒素ガス導入装置、冷却管、及び滴下装置を備えたガラス製反応容器に、室温下で、2官能フェノール化合物C3を100部、酸無水物E1を128部、ピリジンを99部仕込み、窒素ガスを流し撹拌しながら60℃まで昇温し、2時間反応を行った。その後、150℃、1.3kPa(10torr)の条件で2時間減圧乾燥を行い、ジエステル系化合物B2を153部得た。
実施例1
 撹拌装置、温度計、窒素ガス導入装置、冷却管、及び滴下装置を備えたガラス製反応容器に、室温下で、2官能エポキシ樹脂A1を100部、ジエステル系化合物B3を99部、反応溶媒S1を50部仕込み、窒素ガスを流し撹拌しながら130℃まで昇温し、触媒D1を0.1部添加した後、145℃まで昇温し、同温度で7時間反応を行った。希釈溶剤S1を50部、S2を199部使用して希釈混合して、不揮発分40%の変性エポキシ樹脂の樹脂ワニス(R1)を得た。
実施例2~9、比較例1~2
 表1に示す各原料の仕込み量(部)及び反応時間に従い、実施例1と同様操作を行い、樹脂ワニスを得た。なお、表中の「モル比」は、ジエステル系化合物及び2官能フェノール化合物に対する2官能エポキシ樹脂のモル比を表す。
Figure JPOXMLDOC01-appb-T000014
実施例10
 比較例1で得られた樹脂ワニス(HR1)を100部(固形分で40部)、反応溶媒S1を600部配合し、100℃まで昇温後、酸無水物E1を4部加えて4時間反応を行った。得られた樹脂ワニスをメタノールに加え、析出した不溶解分を濾別した後、濾液を真空乾燥器にて150℃、0.4kPa(3torr)の条件で1時間乾燥させ、変性エポキシ樹脂を得た。得られた変性エポキシ樹脂に対して、希釈溶剤S1を21部、S2を42部加えて、均一に溶解させて不揮発分40%の樹脂ワニス(R10)を得た。
実施例11
 酸無水物E1を18部、希釈溶媒S1を25部、S2を51部とした以外、実施例10と同様操作を行い、樹脂ワニス(R11)を得た。
実施例12
 酸無水物E1の代わりにE2を41部、希釈溶S1を29部、S2を59部とした以外、実施例10と同様操作を行い、樹脂ワニス(R12)を得た。
 実施例1~12及び比較例1~2で得た樹脂ワニスR1~R12及びHR1~HR2を、乾燥後の膜厚が100μmとなるよう鉄板に塗布し、乾燥機を用いて150℃、1時間乾燥して樹脂フィルムを得た。
 樹脂ワニスでエポキシ当量、Mw、及び流動性を、樹脂フィルムで誘電特性及び熱伝導性をそれぞれ測定した。その結果を表2に示す。なお、表中の「アシル化率」は全Z中のアシル基の含有率(モル%)を、「フェニレン基率」、「ナフチレン基率」、「ビフェニレン基率」は、全X中のフェニレン基の含有率(モル%)、ナフチレン基の含有率(モル%)、ビフェニレン基の含有率(モル%)を、「-」は未測定をそれぞれ表す。実施例7は樹脂フィルムにならなかったため、誘電特性及び熱伝導性の測定は行わなかった。比較例1は不溶解成分(結晶)が析出したため、流動性の測定は行わなかった。なお、樹脂ワニスHR1~HR2を使用した例は比較例である。
Figure JPOXMLDOC01-appb-T000015
実施例13~16、比較例3、4
 実施例1~4及び比較例1、2で得られた変性エポキシ樹脂ワニス(R1~R4、H1、HR2)を30部(固形分12部)、他のエポキシ樹脂A1を2部、硬化剤H1を50%MEK溶液で2.5部、及びH2を20%MEK溶液で0.6部を配合して、樹脂組成物を得た。更にこれらを乾燥後の膜厚が100μmとなるよう鉄板に塗布し、乾燥機を用いて150℃、1時間乾燥して、高分子フィルム状の硬化物を得た。誘電特性及び熱伝導性をそれぞれ測定し、その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000016
実施例17
 実施例7で得られた変性エポキシ樹脂ワニス(R7)を250部(固形分100部)、硬化剤H1を25.6部及びH2を0.3部配合し、MEK、プロピレングリコールモノメチルエーテル、N,N-ジメチルホルムアミドで調整した混合溶媒に溶解して樹脂組成物ワニスを得た。得られた樹脂組成物ワニスをガラスクロス(日東紡績株式会社製、WEA 7628 XS13、0.18mm厚)に含浸した。含浸したガラスクロスを150℃の熱風循環オーブン中で9分間乾燥してプリプレグを得た。
 得られたプリプレグをほぐし、篩で100メッシュパスの粉状のプリプレグパウダーとした。得られたプリプレグパウダーをフッ素樹脂製の型に入れて、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、30mm角×1mm厚の試験片を得た。試験片の誘電特性及び熱伝導性をそれぞれ測定し、その結果を表4に示す。
実施例18
 変性エポキシ樹脂ワニスとしてR8を使用した以外は実施例17と同様の操作を行い、プリプレグ及び試験片を得た。実施例17と同様の試験を行い、その結果を表4に示す。
比較例5
 変性エポキシ樹脂ワニス250部(固形分100部)の代わりに100部のA5を使用した以外は実施例17と同様の操作を行い、プリプレグ及び試験片を得た。実施例17と同様の試験を行い、その結果を表4に示す。
比較例6
 変性エポキシ樹脂ワニス250部(固形分100部)の代わりに100部のA6を使用した以外は実施例17と同様の操作を行い、プリプレグ及び試験片を得た。実施例17と同様の試験を行い、その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000017
 表2からわかるように、本発明の変性エポキシ樹脂は誘電特性、熱伝導性及び流動性に優れることがわかる。また、表3及び表4からわかるように、本発明の樹脂組成物からなる硬化物も誘電特性及び熱伝導性に優れることがわかる。
 本発明の変性エポキシ樹脂及び樹脂組成物は、接着剤、塗料、土木用建築材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。本発明のフェノキシ樹脂及びそれを含む樹脂組成物は、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、フィルム状接着剤、液状接着剤等の接着剤、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル材料、絶縁シート、プリプレグ、放熱基板等に好適に使用することができる。
 

Claims (12)

  1.  下記式(1)で表され、エポキシ当量が250~50,000g/eq.であることを特徴とする変性エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは2価の基であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を少なくとも有する。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。Yは独立に、水素原子、炭素数2~20のアシル基、又はグリシジル基である。Zは炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。nは繰り返し数の平均値であり、1以上500以下である。)
  2.  請求項1に記載の変性エポキシ樹脂と、硬化剤とを含むことを特徴とする樹脂組成物。
  3.  エポキシ樹脂の固形分100質量部に対し、硬化剤を固形分として0.1~100質量部を含む請求項2に記載の樹脂組成物。
  4.  請求項1に記載の変性エポキシ樹脂と、他のエポキシ樹脂及び硬化剤を含み、変性エポキシ樹脂と他のエポキシ樹脂の固形分の質量比が、99/1~1/99であることを特徴とする樹脂組成物。
  5.  変性エポキシ樹脂と他のエポキシ樹脂の固形分の合計100質量部に対し、硬化剤を固形分として0.1~100質量部を含む請求項4に記載の樹脂組成物。
  6.  硬化剤が、アクリル酸エステル樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、酸無水物、アミン系化合物、イミダゾール系化合物、アミド系化合物、カチオン重合開始剤、有機ホスフィン類、ポリイソシアネート化合物、ブロックイソシアネート化合物、カルボジイミド化合物及び活性エステル系硬化剤からなる群から選ばれる少なくとも1種である請求項2~5のいずれか1項に記載の樹脂組成物。
  7.  請求項2~5のいずれか1項に記載の樹脂組成物を硬化してなる硬化物。
  8.  請求項2~5のいずれか1項に記載の樹脂組成物を用いてなる電気・電子回路用積層板。
  9.  下記式(5)で表される2官能エポキシ樹脂と、下記式(6)で表される化合物とを反応させ、エポキシ当量が250~50,000g/eq.である下記式(1)で表される変性エポキシ樹脂を得ることを特徴とする変性エポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、X、Xはそれぞれ独立に2価の基であり、X及び/又はXはフェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含む。Xは2価の基であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を少なくとも有する。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。Gはグリシジル基であり、Yは独立に、水素原子、炭素数2~20のアシル基、又はグリシジル基である。Zは炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。Qは独立に、炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。なお、式(6)で表される化合物は、Qの少なくとも1つがアシル基である化合物、又はQの少なくとも1つがアシル基である化合物とQの両方が水素原子である化合物の混合物であってもよい。mは繰り返し数の平均値であり、0以上6以下である。nは繰り返し数の平均値であり、1以上500以下である。)
  10.  下記式(7)で表されるエポキシ樹脂のアルコール性水酸基当量1モルに対して、下記式(8)で表される酸無水物を0.05モル以上2.0モル以下で反応させ、エポキシ当量が250~50,000g/eq.である下記式(1)で表される変性エポキシ樹脂を得ることを特徴とする変性エポキシ樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Xは2価の基であり、フェニレン基及びビフェニレン基、又はナフチレン基及びビフェニレン基を含む。なお、フェニレン基、ビフェニレン基、ナフチレン基は各芳香族環に置換基を有していてもよい。Lは独立に、水素原子又はグリシジル基である。Yは独立に、水素原子、炭素数2~20のアシル基、又はグリシジル基である。Zは炭素数2~20のアシル基又は水素原子であり、5モル%以上は上記アシル基である。Tは炭素数2~20のアシル基である。nは繰り返し数の平均値であり、1以上500以下である。)
  11.  請求項6に記載の樹脂組成物を硬化してなる硬化物。
  12.  請求項6に記載の樹脂組成物を用いてなる電気・電子回路用積層板。
     
     
PCT/JP2022/021654 2021-06-04 2022-05-26 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法 WO2022255231A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525777A JPWO2022255231A1 (ja) 2021-06-04 2022-05-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094372 2021-06-04
JP2021094372 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255231A1 true WO2022255231A1 (ja) 2022-12-08

Family

ID=84324381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021654 WO2022255231A1 (ja) 2021-06-04 2022-05-26 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法

Country Status (3)

Country Link
JP (1) JPWO2022255231A1 (ja)
TW (1) TW202248268A (ja)
WO (1) WO2022255231A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089165A (ja) * 2014-10-29 2016-05-23 三菱化学株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板及びエポキシ樹脂の製造方法
JP2017193649A (ja) * 2016-04-21 2017-10-26 三菱ケミカル株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板及びエポキシ樹脂の製造方法
JP2019052278A (ja) * 2017-09-19 2019-04-04 三菱ケミカル株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、及び電気・電子回路用積層板
WO2021187180A1 (ja) * 2020-03-19 2021-09-23 日鉄ケミカル&マテリアル株式会社 フェノキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びフェノキシ樹脂の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089165A (ja) * 2014-10-29 2016-05-23 三菱化学株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板及びエポキシ樹脂の製造方法
JP2017193649A (ja) * 2016-04-21 2017-10-26 三菱ケミカル株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板及びエポキシ樹脂の製造方法
JP2019052278A (ja) * 2017-09-19 2019-04-04 三菱ケミカル株式会社 エポキシ樹脂、エポキシ樹脂組成物、硬化物、及び電気・電子回路用積層板
WO2021187180A1 (ja) * 2020-03-19 2021-09-23 日鉄ケミカル&マテリアル株式会社 フェノキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びフェノキシ樹脂の製造方法

Also Published As

Publication number Publication date
JPWO2022255231A1 (ja) 2022-12-08
TW202248268A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP6672699B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板及びエポキシ樹脂の製造方法
KR101641485B1 (ko) 가용성 이미드 골격 수지, 가용성 이미드 골격 수지 용액 조성물, 경화성 수지 조성물, 및 그 경화물
WO2007046316A1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
WO2021187180A1 (ja) フェノキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びフェノキシ樹脂の製造方法
JP7338479B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、硬化物、及び電気・電子回路用積層板
JP2015196720A (ja) リン含有エポキシ樹脂、リン含有エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板
JP7244427B2 (ja) リン含有フェノキシ樹脂、その樹脂組成物、及び硬化物
JP5326188B2 (ja) 樹脂組成物、フェノキシ樹脂、塗料組成物、接着剤組成物、接着フィルム、プリプレグ、多層プリント配線基板及び樹脂付銅箔
JP7325201B2 (ja) リン含有エポキシ樹脂、エポキシ樹脂組成物、及びその硬化物
TWI831890B (zh) 苯氧基樹脂及其製造方法、樹脂組成物、電路基板用材料、硬化物、及積層體
JP7487326B2 (ja) 変性フェノキシ樹脂、その製造方法、樹脂組成物、硬化物、電気・電子回路用積層板
JP2016084467A (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板
WO2021193273A1 (ja) リン含有フェノキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びリン含有フェノキシ樹脂の製造方法
WO2022255231A1 (ja) 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
WO2023053875A1 (ja) 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
WO2023042650A1 (ja) 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
JP2015199931A (ja) エポキシ樹脂、エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板
WO2022255122A1 (ja) リン含有変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及びリン含有変性エポキシ樹脂の製造方法
JP7545880B2 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物、硬化物、電気・電子回路用積層板
JP2022125980A (ja) 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
JP2023117721A (ja) 変性エポキシ樹脂、樹脂組成物、硬化物、電気・電子回路用積層板、及び変性エポキシ樹脂の製造方法
JP7211749B2 (ja) リン含有硬化剤、該リン含有硬化剤とエポキシ樹脂を含有するエポキシ樹脂組成物、およびその硬化物
JP2024121540A (ja) フェノキシ樹脂、樹脂組成物、硬化物、繊維強化プラスチック及び積層板並びにフェノキシ樹脂の製造方法
JP2024079607A (ja) アシルオキシ基含有多官能エポキシ樹脂、エポキシ樹脂組成物、硬化物、プリプレグ、樹脂シート、及び積層板
JP6291978B2 (ja) リン含有エポキシ樹脂、リン含有エポキシ樹脂組成物、硬化物及び電気・電子回路用積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525777

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815981

Country of ref document: EP

Kind code of ref document: A1