WO2022255198A1 - 結晶化ガラスの製造方法 - Google Patents

結晶化ガラスの製造方法 Download PDF

Info

Publication number
WO2022255198A1
WO2022255198A1 PCT/JP2022/021446 JP2022021446W WO2022255198A1 WO 2022255198 A1 WO2022255198 A1 WO 2022255198A1 JP 2022021446 W JP2022021446 W JP 2022021446W WO 2022255198 A1 WO2022255198 A1 WO 2022255198A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
phase separation
temperature
less
crystallized
Prior art date
Application number
PCT/JP2022/021446
Other languages
English (en)
French (fr)
Inventor
清 李
盛輝 大原
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202280038974.1A priority Critical patent/CN117440936A/zh
Priority to JP2023525760A priority patent/JPWO2022255198A1/ja
Publication of WO2022255198A1 publication Critical patent/WO2022255198A1/ja
Priority to US18/520,792 priority patent/US20240092678A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition

Definitions

  • the present invention relates to a method for producing crystallized glass.
  • High-strength glass is required as a glass plate used for the cover glass of mobile terminals, and crystallized glass is attracting attention.
  • Crystallized glass is glass containing crystals precipitated in the glass, and is superior in strength to amorphous glass containing no crystals.
  • Patent Document 1 discloses a method for producing a glass-ceramic product by ceramizing a glass article.
  • a glass product is heated to a nucleation temperature, the nucleation temperature is maintained for a predetermined time to form nuclei, and then the glass article is heated to the crystallization temperature to reach the crystallization temperature. is maintained for a predetermined time to develop a crystal phase, thereby producing a glass-ceramic product.
  • the crystallization process includes two steps of a first heat treatment (nucleation) and a second heat treatment (crystal growth). Improvement is required from the viewpoint of reduction of
  • an object of the present invention is to provide a method for producing crystallized glass in which the crystallization process is simplified compared to the conventional method.
  • the present inventors melted glass raw materials to obtain molten glass, obtained a glass molded body by molding the molten glass into a predetermined shape by molding means, and then obtained the glass molded body. is slowly cooled to obtain a base glass containing at least one of crystal nuclei and phase separation, and the base glass is heat-treated to grow crystals to obtain crystallized glass, thereby simplifying the crystallization process. , completed the present invention.
  • the present invention relates to a method for producing crystallized glass including the following (a1) to (a4). (a1) melting glass raw materials to obtain molten glass; (a2) forming the molten glass into a predetermined shape by forming means to obtain a glass molded body; (a3) slowly cooling the glass molded body, Obtaining a base glass containing at least one of crystal nuclei and/or phase separation (a4) Heat-treating the base glass containing at least one of crystal nuclei and/or phase separation to allow crystal growth to obtain crystallized glass.
  • the above (a2) and the above (a3) are performed simultaneously, and the molten glass is formed into a predetermined shape by a forming means and slowly cooled to remove at least one of the crystal nuclei and phase separation. It is preferred to obtain a blank glass comprising:
  • the raw glass plate containing at least one of the crystal nuclei and the phase separation has a peak in small-angle X-ray scattering analysis.
  • the base glass containing at least one of the crystal nuclei and the phase separation has an interparticle distance of 10 to 100 nm as measured by small-angle X-ray scattering.
  • the frit in (a1), is melted at a temperature T1 to obtain the molten glass; In (a2) and (a3) above, obtaining a base glass containing at least one of the crystal nuclei and phase separation at a temperature T2; In the above (a4), heat-treating the base glass at a temperature T3 to cause crystal growth to obtain crystallized glass, Preferably, said temperature T2 is lower than said temperatures T1 and T3.
  • the present invention relates to a method for producing crystallized glass including the following (b1) to (b3).
  • (b1) frit glass raw materials are melted to obtain molten glass;
  • (b2) the molten glass is formed into a predetermined shape by a forming means and slowly cooled to obtain a base glass containing at least one of crystal nuclei and phase separation;
  • the present invention relates to a method for producing crystallized glass including the following (c1) to (c3).
  • (c1) melting glass raw materials to obtain molten glass;
  • (c2) forming the molten glass into a predetermined shape by a forming means and slowly cooling to obtain a raw glass sheet having a peak in small-angle X-ray scattering analysis;
  • (c3) heat-treating the base glass having a peak in the small-angle X-ray scattering analysis to allow crystal growth to obtain crystallized glass;
  • the present invention relates to a method for producing crystallized glass including the following (d1) to (d3).
  • (d1) frit is melted to obtain molten glass;
  • (d2) the molten glass is molded into a predetermined shape by molding means and slowly cooled so that the distance between particles measured by small-angle X-ray scattering is 10 to 10.
  • (d3) heat-treating the raw glass having an interparticle distance of 10 to 100 nm as measured by small-angle X-ray scattering to grow crystals to obtain crystallized glass;
  • the present invention is a method for producing crystallized glass through temperature processes of temperatures T1, T2 and T3,
  • the temperature T2 is lower than the temperatures T1 and T3, and relates to a method for producing crystallized glass including obtaining a raw glass containing at least one of crystal nuclei and phase separation at the temperature T2.
  • the crystallized glass is represented by mol% based on oxides, 40-70% SiO2 , 10-35% Li 2 O; 1-15% Al 2 O 3 ; 0.5-5 % of P2O5 , 0.5-5% ZrO2 , 0-10% of B2O3 , 0-3% Na 2 O; 0-1% K2O , 0-4% of SnO2 ,
  • the total amount of SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 is preferably 60 to 80%, more preferably Al 2 O 3 is 5% or more and ZrO 2 is 2% or more. preferable.
  • the crystallized glass is represented by mol% based on oxides, 50-70% SiO2 , 15-30% Li 2 O, 1-10% Al 2 O 3 , 0.5-5 % of P2O5 , 0.5-8% ZrO2 , 0.1 to 10% MgO, 0-5% of Y2O3 0-10% of B2O3 , 0-3% Na 2 O; 0-1% K2O , It preferably contains 0 to 2% SnO 2 .
  • the crystallized glass preferably has a crystallization initiation temperature (Tx) - glass transition temperature (Tg) of 50 to 200°C.
  • the raw glass is made into a raw glass containing at least one of crystal nuclei and phase separation in a stage before the raw glass is heat-treated to grow crystals, whereby crystallization is performed.
  • the process can be simplified, the number of processes can be reduced, the process time can be shortened, and equipment can be simplified.
  • FIG. 1 is a diagram showing the flow.
  • FIG. 1(A) shows the flow of one aspect of the first embodiment of the present invention
  • FIG. 1(B) shows the flow of an example of a conventional method.
  • FIG. 2 is a diagram showing the flow of one aspect of the second embodiment of the present invention.
  • FIG. 3 is a diagram showing the flow of one aspect of the third embodiment of the present invention.
  • FIG. 4 is a diagram showing the flow of one aspect of the fourth embodiment of the present invention.
  • FIG. 5 is a diagram showing the flow of one aspect of the fifth embodiment of the present invention.
  • FIG. 6 is a diagram showing the measurement results of small-angle X-ray scattering.
  • FIG. 7 is a diagram showing the DSC curve of the glass before crystal growth obtained according to one embodiment of the present invention.
  • Crystalized glass refers to glass in which a diffraction peak indicating crystals is recognized by the powder X-ray diffraction method.
  • powder X-ray diffractometry for example, CuK ⁇ rays are used to measure the range of 2 ⁇ from 10° to 80°, and when diffraction peaks appear, precipitated crystals are identified by, for example, the three-strength line method.
  • glass phase separation refers to the separation of a single-phase glass into two or more glass phases. Whether or not the glass is phase-separated can be judged by SEM (scanning electron microscope). When the glass is phase-separated, it can be observed by SEM that it is separated into two or more phases.
  • the state of phase-separated glass includes a binodal state and a spinodal state.
  • a binodal state is a phase separation by a nucleation-growth mechanism and is generally spherical.
  • the spinodal state is a state in which phase separations are mutually and continuously entangled in three dimensions with some degree of regularity.
  • “has a peak in small-angle X-ray scattering analysis” means the value obtained by dividing the highest Intensity by the Intensity when Q (nm -1 ) is 3, [highest Intensity]/ It means that [Intensity when Q(nm ⁇ 1 ) is 3] is greater than 1.
  • SAXS small angle X-ray scattering
  • amorphous glass is glass that does not contain a crystalline phase, and refers to glass in which no diffraction peak indicating crystals is observed by powder X-ray diffractometry.
  • amorphous glass and “crystallized glass” are sometimes simply referred to as "glass”.
  • the glass composition is expressed in mol% based on oxides. Further, in this specification, when the glass composition is simply described as “%”, it means mol%. In addition, the phrase “substantially free” of the glass composition means that it is below the level of impurities contained in the raw materials and the like, that is, it is not added intentionally. Specifically, it is less than 0.1%, for example. Moreover, in this specification, “% by mass” and “% by weight” are synonymous. In the present specification, the numerical range “to” includes upper and lower limits.
  • the first embodiment of the present invention is characterized by including the following steps (a1) to (a4).
  • (a1) a step of melting glass raw materials to obtain molten glass;
  • FIG. 1 is a flow diagram showing one aspect of the first embodiment.
  • frit is melted to obtain molten glass in step S11.
  • the molten glass is formed into a predetermined shape by a forming means to obtain a glass molded body.
  • the glass compact is slowly cooled to obtain a base glass containing at least one of crystal nuclei and phase separation.
  • the raw glass sheet is heat-treated to grow crystals, and then slowly cooled to obtain crystallized glass.
  • step S31 frit is melted in step S31 to obtain molten glass.
  • step 32 the molten glass is formed into a predetermined shape by forming means, and in step 33, it is slowly cooled to obtain a glass product.
  • the glass product is subjected to a first heat treatment to form nuclei in step S34, and a second heat treatment to grow crystals in step S35, followed by slow cooling to obtain crystallized glass.
  • Step (a1) is a step of preparing glass raw materials and melting them to obtain molten glass.
  • a known melting means can be used for melting the glass. Specifically, for example, molten glass is obtained by continuously supplying frit into a melting furnace and melting in a high temperature region. A preferable glass composition in the present invention will be described later.
  • the temperature at which the frit is melted can be appropriately set depending on the composition of the frit, etc. In order to obtain a homogeneous glass, it is typically preferably 1200° C. or higher, more preferably 1300° C. or higher, and still more preferably 1400° C. °C or higher, particularly preferably 1450°C or higher, most preferably 1500°C or higher. In consideration of erosion and damage of the melting equipment, the melting temperature of the frit is preferably 1700° C. or lower, more preferably 1600° C. or lower, still more preferably 1550° C. or lower, and particularly preferably 1500° C. or lower.
  • T1 The temperature at which the frit is melted in step (a1) is defined as T1, and crystal nuclei
  • T2 is the temperature for obtaining the base glass containing at least one of phase splitting and phase splitting
  • T1 is preferably higher than T2.
  • T1-T2 (° C.) is preferably 500° C. or higher, more preferably 600° C. or higher, and still more preferably 700° C. in order to stably form at least one of crystal nuclei and phase separation. °C or higher. Also, if (T1-T2) (°C) is too large, the glass will crack during molding, and it will be difficult to produce at least one of crystal nuclei and phase separation. It is 900° C. or lower, more preferably 800° C. or lower.
  • the molding means is not particularly limited, and examples thereof include molding molds.
  • the material of the molding mold is not limited, and examples include various heat-resistant alloys (e.g., stainless steel), superhard materials containing tungsten carbide as a main component, various ceramics (e.g., silicon carbide, silicon nitride, etc.), and composite materials containing carbon. is mentioned.
  • step (a2) specifically includes, for example, an aspect in which a glass molded body is obtained by pouring molten glass into a molding mold and continuously withdrawing glass molded bodies from the molding mold.
  • the shape of the glass molded body is not particularly limited, and examples thereof include a rectangular parallelepiped.
  • the cross-sectional shape of the glass molded body is not particularly limited, and examples thereof include rectangular, square, elliptical, and circular.
  • the thickness of the glass molded body can be adjusted by adjusting the amount of molten glass supplied to the forming means and the height of the forming means.
  • the width of the molding means can be the width of the glass molding.
  • the thickness of the glass molded body is preferably 0.5 mm or more, more preferably 0.7 mm or more, and even more preferably 0.9 mm or more. Also, the thickness of the glass molded body is preferably 50 mm or less, more preferably 45 mm or less, still more preferably 40 mm or less, and particularly preferably 35 mm or less. When the thickness of the glass molded body is within the above range, it is easy to form at least one of crystal nuclei and phase separation in the raw glass obtained by slowly cooling the glass molded body.
  • the thickness of the glass is preferably 5 mm or more, more preferably 10 mm or more, still more preferably 15 mm or more, and particularly preferably 20 mm. That's it.
  • the width of the glass molded body is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more, particularly preferably 300 mm or more, and most preferably 400 mm or more.
  • the upper limit of the width of the glass molded body is not particularly limited, but from the viewpoint of handling, it is preferably 5000 mm or less, more preferably 3000 mm or less, even more preferably 1000 mm or less, and particularly preferably 500 mm or less.
  • (a3) A step of slowly cooling the glass shaped body to obtain a raw glass sheet containing at least one of crystal nuclei and phase separation. This is a step of generating and/or phase-separating crystal nuclei in the glass compact by cooling to obtain a base glass containing at least one of crystal nuclei and phase-separating.
  • the base glass contains at least one of crystal nuclei and phase separation, and preferably contains at least crystal nuclei.
  • Specific examples of the base glass include base glass containing only one of crystal nuclei and phase separation, and base glass containing both crystal nuclei and phase separation, with base glass containing only crystal nuclei being preferred.
  • crystal nuclei are generated and/or phase separation occurs in the glass compact in the raw glass plate can be confirmed by small-angle X-ray scattering analysis of the raw glass plate. Since ordinary glasses are uniformly amorphous, internal scattering is not observed in SAXS measurements. By containing at least one of crystal nuclei and phase separation, the glass becomes a glass containing extremely minute scattering, and scattering is observed.
  • the raw glass sheet containing at least one of crystal nuclei and phase separation obtained in step (a3) preferably has a peak in small-angle X-ray scattering analysis.
  • peaks obtained by small-angle X-ray scattering analysis [highest Intensity]/[Intensity when Q (nm ⁇ 1 ) is 3] is preferably greater than 1, and 1.1 1.2 or more is more preferable, and 1.3 or more is particularly preferable.
  • the base glass containing at least one of crystal nuclei and phase separation obtained in step (a3) preferably has an interparticle distance of 10 to 100 nm between particles present in the glass as determined by small-angle X-ray scattering measurement.
  • the distance between particles calculated from small-angle X-ray scattering measurement represents the distance between particles contained in the glass. It is thought that the smaller the distance between particles, the more the particle structure contained in the glass, and the stronger the scattering and the lower the transmittance.
  • the distance between particles is preferably 10 nm or more from the viewpoint of suppressing strong scattering and improving transmittance.
  • the distance between particles is preferably 100 nm or less in order to promote crystal growth.
  • the interparticle distance is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more.
  • the distance between particles is more preferably 80 nm or less, more preferably 70 nm or less, particularly preferably 60 nm or less, extremely preferably 50 nm or less, most preferably 40 nm or less, and particularly preferably 30 nm or less.
  • the temperature at which the glass molded body is slowly cooled in step (a3) can be appropriately set so as to include at least one of crystal nuclei and phase separation in consideration of the glass composition and the thickness of the glass molded body, but it is usually glass transition temperature +300. C. or less, more preferably glass transition temperature +200.degree. C. or less, still more preferably glass transition temperature +100.degree.
  • the glass before step (a4) it is preferable to slowly cool it to 100°C or less. If the slow cooling temperature is too low, there is a high possibility that the glass molded body will be strained and cracked. Therefore, it is preferable to slowly cool to a temperature of -50 ° C. or higher, more preferably the glass transition temperature or higher, and still more preferably.
  • the glass transition temperature is +30°C or higher.
  • the time for which the glass molded body is slowly cooled in order to allow the base glass to contain at least one of crystal nuclei and phase separation is preferably 10 minutes or more.
  • the time for slow cooling the glass molded body is preferably 8 hours or less, more preferably 6 hours or less, still more preferably 5 hours or less, even more preferably 4 hours or less, particularly preferably 3 hours or less, most preferably 3 hours or less.
  • the step (a2) and the step (a3) may be performed simultaneously, or the molten glass may be formed into a predetermined shape by a forming means and slowly cooled to obtain a base glass containing at least one of crystal nuclei and phase separation. good.
  • step (a2) and step (a3) are performed simultaneously, specifically, for example, molten glass is poured into a mold, and a glass molded body is continuously pulled out from the mold to be molded and slowly cooled. to obtain a base glass containing at least one of crystal nuclei and phase separation.
  • T2 is the temperature at which the base glass containing at least one of crystal nuclei and phase separation is obtained
  • T1 be the temperature at which the frit is melted in step (a1)
  • T3 be the temperature at which crystallized glass is obtained by heat-treating the base glass in step (a4) to grow crystals.
  • T2 is preferably lower than T1 and T3. .
  • T1 and T3 it is preferable to have a temperature range lower than T1 and T3 in the temperature range from obtaining molten glass to obtaining raw glass containing at least one of crystal nuclei and phase separation.
  • T2 lower than T1 and T3
  • the crystal can be grown in a stable glass shape.
  • (a4) A step of heat-treating a base glass containing at least one of crystal nuclei and phase separation to obtain crystallized glass by crystal growth.
  • the temperature of a raw glass sheet including one is raised to a crystal growth temperature and held for a predetermined time to grow crystals, thereby obtaining crystallized glass.
  • the temperature of the heat treatment in step (a4) is preferably crystallization start temperature + 20°C or higher, more preferably crystallization start temperature + 40°C or higher, still more preferably crystallization start temperature, from the viewpoint of stable crystal growth. +60°C or higher.
  • the crystallization start temperature is preferably +200°C or less, more preferably +180°C or less, and still more preferably +150°C or less.
  • the heat treatment temperature is preferably 400°C or higher, more preferably 500°C or higher, even more preferably 600°C or higher, particularly preferably 650°C or higher, and most preferably 700°C or higher, from the viewpoint of stable crystal growth.
  • the heat treatment temperature is preferably 1000° C. or lower, more preferably 900° C. or lower, and still more preferably 800° C. or lower.
  • the temperature at which the base glass is heat-treated and the crystal is grown to obtain the crystallized glass is defined as T3, and in the step (a3), or when the steps (a2) and (a3) are performed simultaneously, the step (a2).
  • T3 is preferably higher than T2, where T2 is the temperature at which the raw glass containing at least one of crystal nuclei and phase separation is obtained.
  • (T3-T2) (° C.) is preferably 10° C. or higher, more preferably 30° C. or higher, still more preferably 30° C. or higher, from the viewpoint that the temperature of T2 is preferably low for crystal growth in a stable glass shape. 50°C or higher. If (T3-T2) (°C) is too large, crystal growth will be vigorous and transparency will be difficult to obtain.
  • the heat treatment time in step (a4) is preferably 10 minutes or longer, more preferably 30 minutes or longer, still more preferably 1 hour or longer, particularly preferably 1.5 hours or longer, and 2 hours, in terms of stable crystal growth. The above is most preferable.
  • the time is preferably 10 hours or less, more preferably 8 hours or less, still more preferably 6 hours or less, particularly preferably 4 hours or less, and most preferably 3 hours or less. be.
  • the second embodiment of the present invention is characterized by including the following steps (b1) to (b3).
  • (b1) Step of melting glass raw materials to obtain molten glass
  • (b2) Forming the molten glass into a predetermined shape by a forming means and slowly cooling to obtain a base glass containing at least one of crystal nuclei and phase separation.
  • Step (b3) A step of heat-treating the base glass containing at least one of the crystal nucleus and the phase separation to allow crystal growth to obtain crystallized glass.
  • FIG. 2 is a flow chart showing one aspect of the second embodiment.
  • frit is melted to obtain molten glass in step S51.
  • step S52 the molten glass is slowly cooled while being formed into a predetermined shape by a forming means to obtain a base glass containing at least one of crystal nuclei and phase separation.
  • the raw glass sheet is heat-treated in step S53 to grow crystals, and then slowly cooled to obtain crystallized glass.
  • molten glass is poured into a mold, and a glass molded body is continuously pulled out from the mold to be molded and slowly cooled to obtain crystal nuclei and phase separation.
  • the third embodiment of the present invention is characterized by including the following steps (c1) to (c3).
  • (c1) A step of melting glass raw materials to obtain molten glass.
  • (c2) A step of forming the molten glass into a predetermined shape by a forming means and slowly cooling it to obtain a raw glass sheet having a peak in small-angle X-ray scattering analysis.
  • (c3) a step of heat-treating the base glass having a peak in the small-angle X-ray scattering analysis to cause crystal growth to obtain crystallized glass;
  • FIG. 3 is a flow diagram showing one aspect of the third embodiment.
  • frit is melted to obtain molten glass in step S61.
  • the molten glass is slowly cooled while being formed into a predetermined shape by a forming means to obtain a raw sheet glass having a peak in small-angle X-ray scattering analysis.
  • the raw glass sheet is heat-treated in step S63 to grow crystals, and then slowly cooled to obtain crystallized glass.
  • molten glass is poured into a mold, and a glass molded body is continuously pulled out from the mold, molded and slowly cooled, and small-angle X-ray scattering analysis is performed. obtain a base glass having a peak at , and heat-treat the base glass to cause crystal growth to obtain crystallized glass.
  • the fourth embodiment of the present invention is characterized by including the following steps (d1) to (d3).
  • (d1) A step of melting frit to obtain molten glass
  • (d2) Forming the molten glass into a predetermined shape by a forming means and slowly cooling it so that the distance between particles measured by small-angle X-ray scattering is 10 to 10.
  • FIG. 4 is a flow chart showing one aspect of the fourth embodiment.
  • frit is melted to obtain molten glass in step S71.
  • the molten glass is slowly cooled while being formed into a predetermined shape by a forming means to obtain a blank glass having an interparticle distance of 10 to 100 nm as measured by small-angle X-ray scattering.
  • the raw glass sheet is heat-treated in step S73 to grow crystals, and then slowly cooled to obtain crystallized glass.
  • molten glass is poured into a mold, and a glass molded body is continuously pulled out from the mold, molded and slowly cooled, and is subjected to small-angle X-ray scattering.
  • a base glass having a measured interparticle distance of 10 to 100 nm is obtained, and the base glass is heat-treated to grow crystals to obtain crystallized glass.
  • a fifth embodiment of the present invention is a method for producing crystallized glass through temperature processes of temperatures T1, T2 and T3, wherein T2 is lower than T1 and T3 and at least crystal nuclei and phase separation at temperature T2. It is characterized by obtaining a base glass including one. Specifically, it is preferable to have a temperature range lower than T1 and T3 in the temperature range from obtaining molten glass to obtaining raw glass containing at least one of crystal nuclei and phase separation.
  • FIG. 5 is a flow diagram showing one aspect of the fifth embodiment.
  • the temperature at which the frit is melted to obtain molten glass is T1
  • the molten glass is slowly cooled while being formed into a predetermined shape by a forming means to obtain crystals.
  • T2 is the temperature at which the raw glass sheet containing at least one of nuclei and/or split phases is obtained
  • T3 is the temperature at which the raw glass sheet is heat-treated in step S83 to grow crystals
  • T2 is lower than T1 and T3.
  • Glass composition The following glass composition A and glass composition B are examples of preferred glass compositions in the manufacturing method of the present embodiment.
  • Glass composition A In mol% display based on oxides, 40-70% SiO2 , 10-35% Li 2 O; 1-15% Al 2 O 3 ; 0.5-5 % of P2O5 , 0.5-5% ZrO2 , 0-10% of B2O3 , 0-3% Na 2 O; 0-1% K2O , It preferably contains 0 to 4% SnO 2 .
  • Glass composition B In mol% display based on oxides, 50-70% SiO2 , 15-30% Li 2 O, 1-10% Al 2 O 3 , 0.5-5 % of P2O5 , 0.5-8% ZrO2 , 0.1 to 10% MgO, 0-5% of Y2O3 0-10% of B2O3 , 0-3% Na 2 O; 0-1% K2O , It preferably contains 0 to 2% SnO 2 .
  • the total amount of SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 is preferably 60 to 80% in terms of mol % based on oxides.
  • SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 are glass network formers (hereinafter also abbreviated as NWF).
  • NWF glass network formers
  • a large total amount of these NWFs increases the strength of the glass.
  • the total amount of NWFs is preferably 60% or more, more preferably 63% or more, and particularly preferably 65% or more, because it increases the fracture toughness value of the crystallized glass.
  • glass containing too many NWFs has a high melting temperature and is difficult to manufacture. Therefore, the total amount of NWFs is preferably 80% or less, more preferably 75%, and even more preferably 70% or less.
  • the ratio of the total amount of Li 2 O, Na 2 O and K 2 O to the total amount of NWF, that is, SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 is 0.20 to 0.60. preferable.
  • Li 2 O, Na 2 O and K 2 O are network modifiers, and lowering the ratio to NWF increases the voids in the network and thus improves the impact resistance. Therefore, the ratio of the total amount of Li 2 O, Na 2 O and K 2 O to the total amount of NWF, that is, SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 is preferably 0.60 or less. 55 or less is more preferable, and 0.50 or less is particularly preferable.
  • Li 2 O, Na 2 O and K 2 O are components necessary for chemical strengthening .
  • the ratio of the total amount of O and K 2 O to the total amount of NWF, that is, SiO 2 , Al 2 O 3 , P 2 O 5 and B 2 O 3 is preferably 0.20 or more, more preferably 0.25 or more, and 0.25 or more. 30 or more is particularly preferred.
  • SiO2 is a component that forms the network structure of glass.
  • the content of SiO2 which is a component that increases chemical durability, is preferably 40% or more, more preferably 45% or more, still more preferably 48% or more, even more preferably 50% or more, and particularly preferably 52%. % or more, most preferably 54% or more.
  • the content of SiO 2 is preferably 70% or less, more preferably 68% or less, even more preferably 66% or less, and particularly preferably 64% or less in order to improve meltability.
  • Al 2 O 3 is a component that increases the surface compressive stress due to chemical strengthening.
  • the content of Al 2 O 3 is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more, and 5% or more, 5.5% or more, 6% or more, and 6.5% in preferred order. % or more and 7% or more.
  • the content of Al 2 O 3 is preferably 15% or less, more preferably 12% or less, still more preferably 10% or less, and particularly preferably 9% or less, in order to prevent the devitrification temperature of the glass from becoming too high. 8% or less is most preferred.
  • Li 2 O is a component that forms surface compressive stress by ion exchange, and is a constituent component of the main crystal.
  • the content of Li 2 O is preferably 10% or more, more preferably 14% or more, still more preferably 15% or more, particularly preferably 18% or more, extremely preferably 20% or more, and most preferably 22% or more.
  • the content of Li 2 O is preferably 35% or less, more preferably 32% or less, still more preferably 30% or less, particularly preferably 28% or less, and most preferably 26% or less. is.
  • Na 2 O is a component that improves the meltability of glass.
  • it is preferably 0.5% or more, more preferably 1% or more, and particularly preferably 2% or more. Too much Na 2 O makes it difficult for crystals to precipitate, or when chemically strengthening crystallized glass, the chemical strengthening characteristics deteriorate. % or less is more preferable, and 2.5% or less is even more preferable.
  • K 2 O like Na 2 O, is a component that lowers the melting temperature of the glass and may be contained.
  • the content is preferably 0.1% or more, more preferably 0.5% or more.
  • chemically strengthening crystallized glass if the amount of K 2 O is too large, the chemical strengthening properties deteriorate or the chemical durability deteriorates. More preferably, it is 0.6% or less.
  • the total content of Na 2 O and K 2 O, Na 2 O+K 2 O is preferably 1% or more, more preferably 1.5% or more, in order to improve the meltability of the frit.
  • the ratio of the K 2 O content to the total content of Li 2 O, Na 2 O and K 2 O (hereinafter also abbreviated as R 2 O) is K 2 O/
  • R 2 O is 0.2 or less
  • the chemical strengthening characteristics can be enhanced and the chemical durability can be enhanced, which is preferable.
  • K 2 O/R 2 O is more preferably 0.15 or less, even more preferably 0.10 or less.
  • the R 2 O content is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more. Also, R 2 O is preferably 29% or less, more preferably 26% or less.
  • the content of P 2 O 5 is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, particularly preferably 2% or more, very preferably is 2.5% or more.
  • the P 2 O 5 content is too high, the phase separation tends to occur during melting and the acid resistance is significantly lowered. It is 8% or less, more preferably 4.5% or less, and particularly preferably 4.2% or less.
  • P 2 O 5 is a constituent component of Li 3 PO 4 crystals when the crystallized glass contains Li 3 PO 4 crystals.
  • ZrO 2 is a component that increases mechanical strength and chemical durability, and is preferably contained because it significantly improves CS.
  • the content of ZrO2 is preferably 0.5% or more, more preferably 1% or more, even more preferably 1.5% or more, particularly preferably 2% or more, most preferably 2.5% or more. is.
  • ZrO 2 is preferably 8% or less, more preferably 7.5% or less, even more preferably 7% or less, and particularly preferably 6% or less. If the content of ZrO 2 is too high, the devitrification temperature increases and the viscosity decreases.
  • the ZrO 2 content is preferably 5% or less, more preferably 4.5% or less, and 3.5% or less. More preferred.
  • ZrO 2 /R 2 O is preferably 0.02 or more, more preferably 0.03 or more, still more preferably 0.04 or more, and particularly preferably 0.1 or more. , 0.15 or more is most preferred.
  • ZrO 2 /R 2 O is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.4 or less, and particularly preferably 0.3 or less. .
  • MgO is a component that stabilizes the glass and also a component that enhances mechanical strength and chemical resistance. Therefore, it is preferable to contain MgO when the Al 2 O 3 content is relatively small.
  • the content of MgO is preferably 0.1%, more preferably 1% or more, more preferably 2% or more, still more preferably 3% or more, particularly preferably 4% or more.
  • MgO is 7% or less.
  • TiO 2 is a component that can promote crystallization and may be contained. When TiO 2 is contained, it is preferably 0.2% or more, more preferably 0.5% or more. On the other hand, in order to suppress devitrification during melting, the content of TiO 2 is preferably 4% or less, more preferably 2% or less, and even more preferably 1% or less.
  • SnO 2 has the effect of promoting the formation of crystal nuclei and may be contained.
  • SnO 2 is contained, it is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, and particularly preferably 2% or more.
  • the SnO 2 content is preferably 4% or less, more preferably 3% or less, and even more preferably 2% or less.
  • Y 2 O 3 is a component that has the effect of making it difficult for fragments to scatter when the chemically strengthened glass is broken when the crystallized glass is chemically strengthened, and may be contained.
  • the content of Y 2 O 3 is preferably 1% or more, more preferably 1.5% or more, still more preferably 2% or more, particularly preferably 2.5% or more, and extremely preferably 3% or more.
  • the content of Y 2 O 3 is preferably 5% or less, more preferably 4% or less.
  • B 2 O 3 is a component that improves the chipping resistance and meltability of the glass and may be contained.
  • the content is preferably 0.5% or more, more preferably 1% or more, and still more preferably 2% or more, in order to improve meltability.
  • the content of B 2 O 3 is more preferably 8% or less, still more preferably 6% or less, and particularly preferably 4% or less.
  • BaO, SrO, MgO, CaO and ZnO are all components that improve the meltability of the glass and may be contained.
  • the total content of BaO, SrO, MgO, CaO and ZnO (hereinafter also abbreviated as BaO + SrO + MgO + CaO + ZnO) is preferably 0.5% or more, more preferably 1% or more, and still more preferably 1.0% or more. 5% or more, particularly preferably 2% or more.
  • the content of BaO+SrO+MgO+CaO+ZnO is preferably 8% or less, more preferably 6% or less, still more preferably 5% or less, and particularly preferably 4% or less, because the ion exchange rate decreases.
  • BaO, SrO, and ZnO may be contained in order to improve the light transmittance of the crystallized glass by improving the refractive index of the residual glass and bring it closer to the precipitated crystal phase, thereby lowering the haze value.
  • the total content of BaO, SrO and ZnO (hereinafter also abbreviated as BaO + SrO + ZnO) is preferably 0.3% or more, more preferably 0.5% or more, further preferably 0.7% or more, and 1% or more. is particularly preferred.
  • these components may reduce the ion exchange rate.
  • BaO + SrO + ZnO is preferably 2.5% or less, more preferably 2% or less, further preferably 1.7% or less, and 1.5% in order to improve chemical strengthening characteristics. The following are particularly preferred.
  • La 2 O 3 , Nb 2 O 5 and Ta 2 O 5 are components that make it difficult for fragments to scatter when the chemically strengthened glass is broken when chemically strengthening the crystallized glass, and increase the refractive index. may be included to When these are contained, the total content of La 2 O 3 , Nb 2 O 5 and Ta 2 O 5 (hereinafter also abbreviated as La 2 O 3 +Nb 2 O 5 +Ta 2 O 5 ) is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, and particularly preferably 2% or more.
  • La 2 O 3 +Nb 2 O 5 +Ta 2 O 5 is preferably 4% or less, more preferably 3% or less, still more preferably 2% or less, so that the glass is less likely to devitrify during melting. It is preferably 1% or less.
  • the glass according to the present embodiment may contain CeO 2 .
  • CeO 2 may suppress coloration by oxidizing the glass.
  • the content is preferably 0.03% or more, more preferably 0.05% or more, and even more preferably 0.07% or more.
  • the content of CeO 2 is preferably 1.5% or less, more preferably 1.0% or less, in order to increase transparency.
  • a coloring component may be added within a range that does not impede the achievement of desired properties.
  • coloring components include Co3O4 , MnO2 , Fe2O3 , NiO , CuO, Cr2O3 , V2O5 , Bi2O3 , SeO2 , Er2O3 , Nd2O. 3 is mentioned.
  • the total content of coloring components is preferably in the range of 1% or less. If it is desired to increase the visible light transmittance of the glass, it is preferred that these components are not substantially contained.
  • HfO 2 , Nb 2 O 5 and Ti 2 O 3 may be added in order to increase weather resistance against irradiation with ultraviolet light.
  • the total content of HfO 2 , Nb 2 O 5 and Ti 2 O 3 is preferably 1% or less in order to suppress the effects on other properties. 0.5% or less is more preferable, and 0.1% or less is more preferable.
  • SO 3 , chlorides, and fluorides may be appropriately contained as clarifiers and the like when melting the glass.
  • the total content of components that function as clarifiers is preferably 2% or less, more preferably 2% or less, in terms of % by mass based on oxides, since excessive addition may affect strengthening properties and crystallization behavior. It is 1% or less, more preferably 0.5% or less.
  • the lower limit is not particularly limited, it is typically preferably 0.05% or more in total in terms of % by mass based on oxides.
  • the content of SO3 is preferably 0.01% or more, more preferably 0.05%, in terms of % by mass based on oxides, because if it is too small, the effect cannot be seen. or more, more preferably 0.1% or more.
  • the content of SO3 is preferably 1% or less, more preferably 0.8% or less, and still more preferably 0.6% by mass based on oxides. % or less.
  • the content of Cl is preferably 1% or less, and 0.8% by mass based on oxides, because if too much Cl is added, physical properties such as strengthening characteristics may be affected. % or less is more preferable, and 0.6% or less is even more preferable.
  • the content of Cl is preferably 0.05% or more, more preferably 0.1%, in terms of % by mass based on oxides, because if it is too small, the effect cannot be seen. or more, more preferably 0.2% or more.
  • the content of SnO 2 is preferably 1% or less, and 0.5% or less, in terms of % by mass based on the oxide, because excessive addition affects the crystallization behavior. More preferably, 0.3% or less is even more preferable.
  • the content of SnO 2 is preferably 0.02% or more, more preferably 0.02% or more in terms of % by mass based on oxides, because if it is too small, the effect cannot be seen. 05% or more, more preferably 0.1% or more.
  • As 2 O 3 is preferably not contained. When Sb 2 O 3 is contained, it is preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
  • the crystallized glass obtained by the production method of the present embodiment has a crystallization start temperature (Tx) of -
  • the glass transition temperature (Tg) is preferably 200°C or lower, more preferably 150°C or lower, still more preferably 120°C or lower, and most preferably 100°C or lower.
  • the crystallization initiation temperature (Tx) - glass transition temperature (Tg) is preferably 50°C or higher, more preferably 70°C or higher, and even more preferably 80°C or higher. , 90° C. or higher is most preferred.
  • Tx and Tg are determined from the DSC curve obtained by crushing the glass and using a differential scanning calorimeter.
  • FIG. 7 is an example of the DSC curve of the plain glass (glass before crystal growth) obtained according to one embodiment of the present invention.
  • the temperature at which the curve rises due to crystallization is defined as the crystallization start temperature (Tx).
  • Crystals contained in the present crystallized glass are not particularly limited, and examples thereof include lithium phosphate-based crystals.
  • Lithium phosphate-based crystals include, for example, Li 3 PO 4 crystals and Li 4 SiO 4 crystals.
  • the present crystallized glass may contain, for example, both Li 3 PO 4 crystals and Li 4 SiO 4 crystals, or may contain either one as a main crystal. Further, the present crystallized glass may have, for example, solid solution crystals of Li 3 PO 4 and Li 4 SiO 4 as main crystals, or solid solution crystals of either Li 3 PO 4 or Li 4 SiO 4 as main crystals.
  • This crystallized glass may be cut to an appropriate length as necessary.
  • a known cutting method can be used, and examples thereof include a cutting method using a diamond cutter and a cutting method using a water jet.
  • This crystallized glass may be ground and polished as necessary to form a glass substrate.
  • the chemical strengthening treatment after that is performed. is preferable because a compressive stress layer is also formed on the end face by .
  • the present crystallized glass may have a shape other than a plate shape depending on the product or application to which it is applied.
  • the glass plate may have a fringing shape or the like in which the thickness of the outer periphery is different.
  • the form of the glass plate is not limited to these.
  • the two main surfaces may not be parallel to each other, and one or both of the two main surfaces may be curved in whole or in part. More specifically, the glass plate may be, for example, a flat glass plate without warping, or a curved glass plate having a curved surface.
  • This crystallized glass may be chemically strengthened glass by chemical strengthening treatment (ion exchange treatment).
  • Chemical strengthening is performed by ion exchange treatment.
  • the chemical strengthening treatment can be performed, for example, by immersing the glass sheet in molten salt such as potassium nitrate heated to 360-600° C. for 0.1-500 hours.
  • the heating temperature of the molten salt is preferably 375 to 500° C.
  • the immersion time of the glass plate in the molten salt is preferably 0.3 to 200 hours.
  • molten salts for chemical strengthening include nitrates, sulfates, carbonates, and chlorides.
  • nitrates include lithium nitrate, sodium nitrate, potassium nitrate, cesium nitrate, and silver nitrate.
  • Sulfates include, for example, lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, and silver sulfate.
  • Carbonates include, for example, lithium carbonate, sodium carbonate, potassium carbonate and the like.
  • Chlorides include, for example, lithium chloride, sodium chloride, potassium chloride, cesium chloride, and silver chloride. These molten salts may be used alone, or may be used in combination.
  • the processing conditions for the chemical strengthening treatment are not particularly limited, and appropriate conditions may be selected in consideration of the composition (characteristics) of the glass, the type of molten salt, and the desired chemical strengthening characteristics. Also, the chemical strengthening treatment may be performed only once, or the chemical strengthening treatment may be performed a plurality of times under two or more different conditions (multi-stage strengthening).
  • crystallized glass used in electronic devices such as mobile devices such as mobile phones and smartphones.
  • cover glass for electronic devices such as televisions, personal computers, and touch panels that are not intended for portability, elevator wall surfaces, and wall (full-surface display) glass for buildings such as houses and buildings.
  • construction materials such as window glass, table tops, interiors of automobiles and airplanes, cover glasses thereof, and curved housings.
  • a method for producing crystallized glass including the following (a1) to (a4). (a1) melting glass raw materials to obtain molten glass; (a2) forming the molten glass into a predetermined shape by forming means to obtain a glass molded body; (a3) slowly cooling the glass molded body, Obtaining a base glass containing at least one of crystal nuclei and phase separation (a4) Heat-treating the base glass containing at least one of the crystal nuclei and phase separation to allow crystal growth to obtain crystallized glass [2] Said ( a2) and the above (a3) are performed simultaneously, and the molten glass is formed into a predetermined shape by a forming means and slowly cooled to obtain a base glass containing at least one of the crystal nuclei and the phase separation, [1] The manufacturing method described in .
  • a method for producing crystallized glass including the following (d1) to (d3).
  • (d1) frit is melted to obtain molten glass;
  • (d2) the molten glass is molded into a predetermined shape by molding means and slowly cooled so that the distance between particles measured by small-angle X-ray scattering is 10 to 10.
  • Temperature T1 , T2 and T3 to produce crystallized glass comprising: A method for producing crystallized glass, wherein the temperature T2 is lower than the temperatures T1 and T3, and comprising obtaining a base glass containing at least one of crystal nuclei and phase separation at the temperature T2.
  • Example 1 Crystallized glass was produced and evaluated by the following melting process, forming process, slow cooling process and crystal growth process.
  • Example 1 is an example. [Melting process] 61 mol % SiO2 , 5 mol % Al2O3 , 21 mol % Li2O , 2 mol % Na2O , 2 mol % P2O5 , 5 mol MgO, based on oxides %, 3 mol % of ZrO 2 , 1 mol % of Y 2 O 3 and 0.3 mol % of SO 3 were weighed and uniformly mixed. The mixed raw materials were put into a platinum crucible, put into an electric furnace at 1600° C. and melted for about 5 hours to obtain molten glass.
  • Qmax is the value of Q(nm ⁇ 1 ) (scattering vector) corresponding to the peak of the maximum value of the Intensity of the SAXS data, which clearly has a peak as shown in FIG. A clear peak means that [highest Intensity]/[Intensity when Q(nm ⁇ 1 ) is 3] is greater than one.
  • the raw glass sheet had peaks in the small-angle X-ray scattering analysis, indicating that at least one of crystal nuclei and phase separation was formed. Also, Qmax was 0.22 nm ⁇ 1 and the average interparticle distance was 29 nm.
  • DSC DSC A raw glass plate obtained using an agate mortar was pulverized to a particle size of 106 ⁇ m to 180 ⁇ m to obtain a powder. About 80 mg of the obtained powder was placed in a platinum cell and heated from room temperature to 1100° C. at a rate of 10° C./min. A curve was measured. The results are shown in FIG.
  • Tg was 512°C and Tx was 612°C.
  • Crystallized glass was obtained in the same manner as in Example 1, except that the thickness of the base glass was changed to 50 mm in the molding process of Example 1, and was designated as Example 2.
  • the haze at the center of the thickness was measured. As a result, haze was better in Example 1 in which the thickness of the base glass was 20 mm than in Example 2 in which the thickness was 50 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明は、(a1)ガラス原料を溶融して溶融ガラスを得ること、(a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得ること、(a3)前記ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること及び(a4)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ることを含む結晶化ガラスの製造方法に関する。

Description

結晶化ガラスの製造方法
 本発明は、結晶化ガラスの製造方法に関する。
 携帯端末のカバーガラス等に用いるガラス板として、高強度のガラスが求められており、結晶化ガラスが注目されている。結晶化ガラスは、ガラス中に析出した結晶を含むガラスであり、結晶を含まない非晶質ガラスと比較して、強度に優れている。
 結晶化ガラスの製造方法として、特許文献1には、ガラス物品をセラミック化してガラスセラミック製品を製造する方法が開示されている。特許文献1に記載の方法は、ガラス製品を核形成温度に加熱し、該核形成温度を所定の時間維持して核形成した後、ガラス物品を結晶化温度に加熱して、該結晶化温度を所定の時間維持して結晶相を発達させることでガラスセラミック製品を製造する方法である。
米国特許出願公開第2020/0017395号明細書
 特許文献1等に記載の従来の方法では、図1の(B)に示すように、ガラス原料を溶融した溶融ガラスを成形及び徐冷して、ガラス板やガラスブロックなどのガラス製品を一旦得る。その後、該ガラス製品を一定温度に加熱及び保持し、核形成及び結晶成長させて結晶化ガラスを製造する。そのため、図1の(B)に示すように、結晶化工程は第1の熱処理(核形成)と第2の熱処理(結晶成長)との2段階のステップを経ることとなり、工程数及び工程時間の低減の観点において改善が求められる。
 したがって、本発明は、従来と比して結晶化工程が簡略化された結晶化ガラスを製造する方法を提供することを目的とする。
 上記課題を検討した結果、本発明者らは、ガラス原料を溶融して溶融ガラスを得て、該溶融ガラスを成形手段により所定の形状に成形したガラス成形体を得た後に、該ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得て、該素板ガラスを熱処理して結晶成長させて結晶化ガラスを得ることで、結晶化工程を簡略化できることを見出し、本発明を完成させた。
 本発明は、以下の(a1)~(a4)を含む結晶化ガラスの製造方法に関する。
(a1)ガラス原料を溶融して溶融ガラスを得ること
(a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得ること(a3)前記ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
(a4)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
 本発明の製造方法において、前記(a2)及び前記(a3)が同時に行なわれ、前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、前記結晶核及び分相の少なくとも一方を含む素板ガラスを得ることが好ましい。
 本発明の製造方法において、前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱分析でピークを有することが好ましい。
 本発明の製造方法において、前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱で測定された粒子間距離が10~100nmであることが好ましい。
 本発明の製造方法は、前記(a1)において、温度T1で前記ガラス原料を溶融して前記溶融ガラスを得ること、
 前記(a2)及び前記(a3)において、温度T2で前記結晶核及び分相の少なくとも一方を含む素板ガラスを得ること、
 前記(a4)において、温度T3で前記素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ることを含み、
 前記温度T2が前記温度T1及びT3より低いことが好ましい。
 本発明は、以下の(b1)~(b3)を含む結晶化ガラスの製造方法に関する。
(b1)ガラス原料を溶融して溶融ガラスを得ること
(b2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
(b3)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
 本発明は、以下の(c1)~(c3)を含む結晶化ガラスの製造方法に関する。
(c1)ガラス原料を溶融して溶融ガラスを得ること
(c2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱分析でピークを有する素板ガラスを得ること
(c3)前記小角X線散乱分析でピークを有する素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
 本発明は、以下の(d1)~(d3)を含む結晶化ガラスの製造方法に関する。
(d1)ガラス原料を溶融して溶融ガラスを得ること
(d2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得ること
(d3)前記小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
 本発明は、温度T1、T2及びT3の温度過程を経て結晶化ガラスを製造する方法であって、
 前記温度T2は前記温度T1及びT3より低く、前記温度T2の温度において結晶核及び分相の少なくとも一方を含む素板ガラスを得ることを含む、結晶化ガラスの製造方法に関する。
 本発明の製造方法において、前記結晶化ガラスは、酸化物基準のモル%表示で、
 SiOを40~70%、
 LiOを10~35%、
 Alを1~15%、
 Pを0.5~5%、
 ZrOを0.5~5%、
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~4%、含有し、
 SiO、Al、P及びBの総量が60~80%であることが好ましく、Alが5%以上かつZrOが2%以上であることがより好ましい。
 本発明の製造方法において、前記結晶化ガラスは、酸化物基準のモル%表示で、
 SiOを50~70%、
 LiOを15~30%、
 Alを1~10%、
 Pを0.5~5%、
 ZrOを0.5~8%、
 MgOを0.1~10%、
 Yを0~5%
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~2%、含有することが好ましい。
 本発明の製造方法において、前記結晶化ガラスは結晶化開始温度(Tx)-ガラス転移温度(Tg)が50~200℃であることが好ましい。
 本発明の結晶化ガラスの製造方法によれば、素板ガラスを熱処理して結晶成長させる前の段階において、該素板ガラスを結晶核及び分相の少なくとも一方を含む素板ガラスとしておくことで、結晶化工程を簡略化でき、工程数の低減、工程時間の短縮及び設備の簡素化を実現し得る。
図1はフローを示す図である。図1の(A)は本発明の第1実施形態の一態様のフローを示し、図1の(B)は従来の方法の一例のフローを示す。 図2は本発明の第2実施形態の一態様のフローを示す図である。 図3は本発明の第3実施形態の一態様のフローを示す図である。 図4は本発明の第4実施形態の一態様のフローを示す図である。 図5は本発明の第5実施形態の一態様のフローを示す図である。 図6は小角X線散乱の測定結果を示す図である。 図7は本発明の一実施形態により得られた結晶成長させる前のガラスのDSC曲線を示す図である。
 本明細書において「結晶化ガラス」とは、粉末X線回折法によって、結晶を示す回折ピークが認められるガラスをいう。粉末X線回折法においては、例えばCuKα線を用いて2θが10°~80°の範囲を測定し、回折ピークが現れた場合には、例えば3強線法によって析出結晶を同定する。
 本明細書において「ガラスの分相」とは、単一相のガラスが、二つ以上のガラス相に分かれることをいう。ガラスが分相しているか否かは、SEM(scanning electron microscope、走査型電子顕微鏡)により判断できる。ガラスが分相している場合、SEMで観察すると、2つ以上の相に分かれていることが観察できる。
 分相したガラスの状態としては、バイノーダル状態及びスピノーダル状態が挙げられる。バイノーダル状態とは、核形成-成長機構による分相であり、一般的には球状である。また、スピノーダル状態とは、分相が、ある程度規則性を持った、3次元で相互かつ連続的に絡み合った状態である。
 本明細書において「小角X線散乱分析でピークを有する」とは、一番高いIntensityをQ(nm-1)が3であるときのIntensityで除した値である、[一番高いIntensity]/[Q(nm-1)が3であるときのIntensity]が1より大きい場合を意味する。小角X線散乱分析(Small Angle X-ray Scattering、SAXS)の測定条件の具体例を次に示す。
 Energy(波長):0.92Å
 測定検出器:PILATUS
 測定時間:480sec
 測定カメラ長:2180.9mm
 本明細書において「非晶質ガラス」とは、結晶相を含有しないガラスであり、粉末X線回折法によって、結晶を示す回折ピークが認められないガラスをいう。
 本明細書において、「非晶質ガラス」と「結晶化ガラス」とを合わせて単に「ガラス」という場合がある。
 本明細書において、ガラス組成は、特に断らない限り酸化物基準のモル%表示で表す。また、本明細書においてガラス組成について単に「%」と表記した場合は、モル%を意味するものとする。また、ガラス組成について「実質的に含有しない」とは、原材料等に含まれる不純物レベル以下であること、つまり意図的に加えたものではないことをいう。具体的には、たとえば0.1%未満である。また、本明細書において“質量%”と“重量%”とは、それぞれ同義である。本明細書において、数値範囲を表す「~」では、上下限を含む。
 以下、本発明の結晶化ガラスの製造方法について、フロー図を参照して詳細に説明する。
<第1実施形態>
 本発明の第1実施形態は、以下の工程(a1)~(a4)を含むことを特徴とする。
(a1)ガラス原料を溶融して溶融ガラスを得る工程
(a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得る工程(a3)前記ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る工程
(a4)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る工程
 図1の(A)は、第1実施形態の一態様を示すフロー図である。第1実施形態の一態様においては、ステップS11でガラス原料を溶融して溶融ガラスを得る。ステップS12で該溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得る。ステップS13で該ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る。ステップS14で該素板ガラスを熱処理し、結晶成長させた後、徐冷して、結晶化ガラスを得る。
 図1の(B)は、従来の製造方法の一例を示すフロー図である。従来の製造方法においては、ステップS31でガラス原料を溶融して溶融ガラスを得る。ステップ32で該溶融ガラスを成形手段により所定の形状に成形して、ステップ33で徐冷することによりガラス製品を得る。該ガラス製品に対し、ステップS34で第1の熱処理をして核形成させ、ステップS35で第2の熱処理をして結晶成長させた後、徐冷して、結晶化ガラスを得る。
 本発明の第1実施形態の各工程について以下に説明する。
(a1)ガラス原料を溶融して溶融ガラスを得る工程
 工程(a1)は、ガラス原料を準備し、溶融して溶融ガラスを得る工程である。ガラスを溶融するための溶融手段は公知のものを使用できる。具体的には例えば、ガラス原料を溶融炉内へ連続的に供給し、高温領域で溶解することによって溶融ガラスを得る。本発明における好ましいガラス組成については後述する。
 ガラス原料を溶融する温度はガラス原料の組成等により適宜設定できるが、均質なガラスを得るためには典型的には1200℃以上であることが好ましく、より好ましくは1300℃以上、さらに好ましくは1400℃以上、特に好ましくは1450℃以上、最も好ましくは1500℃以上である。また、溶解設備の浸食やダメージを考慮すると、ガラス原料を溶融する温度は、1700℃以下が好ましく、1600℃以下がより好ましく、1550℃以下がさらに好ましく、1500℃以下が特に好ましい。
 工程(a1)においてガラス原料を溶融する温度をT1とし、後述する工程(a3)において、又は工程(a2)及び工程(a3)を同時に行う場合は工程(a2)及び(a3)において、結晶核及び分相の少なくとも一方を含む素板ガラスを得る温度をT2とすると、T1はT2より高いことが好ましい。
 具体的には、溶融ガラスを得た後から結晶核及び分相の少なくとも一方を含む素板ガラスを得るまでの温度領域において、T1より低い温度領域を有することが好ましい。(T1-T2)(℃)は、安定して結晶核及び分相の少なくとも一方を安定して形成させるために、500℃以上であることが好ましく、より好ましくは600℃以上、さらに好ましくは700℃以上である。また、(T1-T2)(℃)が大き過ぎると、成形中にガラスが割れたり、結晶核及び分相の少なくとも一方を出すことが難しいので、1000℃以下であることが好ましく、より好ましくは900℃以下、さらに好ましくは800℃以下である。
(a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得る工程
 工程(a2)は、工程(a1)で得られた溶融ガラスを成形手段に供給し、所定の形状に成形してガラス成形体を得る工程である。成形手段は特に限定されず、例えば、成形鋳型が挙げられる。成形鋳型の材質は限定されず、例えば、各種耐熱合金(例えば、ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(例えば、炭化珪素、窒化珪素等)、カーボンを含む複合材料が挙げられる。
 工程(a2)の一態様としては、具体的には例えば、溶融ガラスを成形鋳型に流し込み、該成形鋳型からガラス成形体を連続して引き出すことによりガラス成形体を得る態様が挙げられる。
 ガラス成形体の形状は特に限定されず、例えば、直方体が挙げられる。ガラス成形体の断面形状は特に限定されず、例えば、長方形、正方形、楕円、円形が挙げられる。ガラス成形体の厚さは成形手段に供給される溶融ガラスの量と成形手段の高さにより調整できる。また、成形手段の幅をガラス成形体の幅とできる。
 ガラス成形体の厚さは、0.5mm以上であることが好ましく、0.7mm以上であることがより好ましく、0.9mm以上であることがさらに好ましい。また、ガラス成形体の厚さは、50mm以下であることが好ましく、より好ましくは45mm以下であり、さらに好ましくは40mm以下であり、特に好ましくは35mm以下である。ガラス成形体の厚さが前記範囲であることにより、ガラス成形体を徐冷して得られる素板ガラスにおいて、結晶核及び分相の少なくとも一方を形成させやすい。後工程により、ガラスブロックをスライスして複数枚の結晶化ガラス製品を得たい場合には、ガラスの厚さは5mm以上が好ましく、より好ましくは10mm以上、さらに好ましくは15mm以上、特に好ましくは20mm以上である。
 また、ガラス成形体の幅は、100mm以上であることが好ましく、より好ましくは150mm以上であり、さらに好ましくは200mm以上、特に好ましくは300mm以上、最も好ましくは400mm以上である。ガラス成形体の幅が前記範囲であることにより、後工程により結晶化ガラスを切断し、同時に多くの結晶化ガラス製品を得ることができる。ガラスの成形体の幅の上限は特に制限は無いが、取り扱いの観点から5000mm以下が好ましく、3000mm以下がより好ましく、1000mm以下がさらに好ましく、500mm以下が特に好ましい。
(a3)ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る工程
 工程(a3)は、工程(a2)で得られたガラス成形体を溶融温度から徐々に冷却することにより、ガラス成形体において結晶核を生成及び/または分相させて、結晶核及び分相の少なくとも一方を含む素板ガラスを得る工程である。
 素板ガラスは結晶核及び分相の少なくとも一方を含み、少なくとも結晶核を含むことが好ましい。素板ガラスとして、具体的には例えば、結晶核および分相のいずれか一方のみを含む素板ガラス、結晶核及び分相の両方を含む素板ガラスが挙げられ、結晶核のみを含む素板ガラスが好ましい。
 素板ガラスにおいて結晶核が生成及び/またはガラス成形体が分相しているか否かは、素板ガラスを小角X線散乱分析することにより確認できる。一般的なガラスは、均一な非晶質であるため、SAXS測定において、内部の散乱は観測されない。結晶核及び分相の少なくとも一方を含むことにより、極微小な散乱を含むガラスとなり、散乱が観測される。
 工程(a3)により得られる結晶核及び分相の少なくとも一方を含む素板ガラスは、小角X線散乱分析でピークを有することが好ましい。具体的には例えば、小角X線散乱分析で得られるピークについて、[一番高いIntensity]/[Q(nm-1)が3であるときのIntensity]は1より大きいことが好ましく、1.1以上がより好ましく、1.2以上がさらに好ましく、1.3以上が特に好ましい。小角X線散乱分析でピークを有することにより、素板ガラスにおける結晶核及び分相の少なくとも一方が十分に形成され、結晶化工程が簡略化されるとともに安定した結晶化ガラスが得られる。
 工程(a3)により得られる結晶核及び分相の少なくとも一方を含む素板ガラスは、小角X線散乱測定から求められるガラス中に存在する粒子の粒子間距離が10~100nmであることが好ましい。
 小角X線散乱測定から算出される粒子間距離はガラス中に含まれる粒子間の距離を表す。粒子間距離が小さいほど、ガラス中に含まれる粒子構造が多くなるため、散乱が強くなり透過率が低下する傾向があると考えられる。粒子間距離は、散乱が強くなるのを抑制し透過率を向上する観点から10nm以上が好ましい。粒子間距離は、結晶成長を促進させるために100nm以下が好ましい。
 粒子間距離は好ましくは10nm以上であり、より好ましくは15nm以上であり、さらに好ましくは20nm以上である。粒子間距離は80nm以下がより好ましく、70nm以下がさらに好ましく、60nm以下が特に好ましく、50nm以下が極めて好ましく、40nm以下が最も好ましく、30nm以下がとりわけ好ましい。
 工程(a3)においてガラス成形体を徐冷する温度は、ガラス組成及びガラス成形体の厚さを考慮して結晶核及び分相の少なくとも一方を含むように適宜設定できるが、通常ガラス転移温度+300℃以下の温度まで徐冷することが好ましく、より好ましくはガラス転移温度+200℃以下、さらに好ましくはガラス転移温度+100℃以下である。
 また、工程(a4)の前にガラスを取り扱う場合には100℃以下まで徐冷することが好ましい。徐冷温度が低すぎるとガラス成形体にひずみが残り割れる可能性が高いため、通常ガラス転移温度-50℃以上の温度まで徐冷することが好ましく、より好ましくはガラス転移温度以上、さらに好ましくはガラス転移温度+30℃以上である。
 素板ガラスに結晶核及び分相の少なくとも一方を含有させるためにガラス成形体を徐冷する時間は、特に限定されないが、通常は3分以上であることが好ましく、より好ましくは5分以上、さらに好ましくは10分以上である。また、ガラス成形体を徐冷する時間は、8時間以下であることが好ましく、より好ましくは6時間以下、さらに好ましくは5時間以下、よりさらに好ましく4時間以下、特に好ましくは3時間以下、最も好ましくは2時間以下、極めて好ましくは1時間以下である。
 工程(a2)及び工程(a3)は同時に行ってもよく、溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得てもよい。工程(a2)及び工程(a3)を同時に行う一態様として、具体的には例えば、溶融ガラスを成形鋳型に流し込み、該成形鋳型からガラス成形体を連続して引き出しながら、成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る態様が挙げられる。
 工程(a3)において、又は工程(a2)及び工程(a3)を同時に行う場合は工程(a2)及び(a3)において、結晶核及び分相の少なくとも一方を含む素板ガラスを得る温度をT2とし、工程(a1)においてガラス原料を溶融する温度をT1、工程(a4)において素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る温度をT3とすると、T2はT1及びT3より低いことが好ましい。
 具体的には、溶融ガラスを得た後から結晶核及び分相の少なくとも一方を含む素板ガラスを得るまでの温度領域において、T1及びT3より低い温度領域を有することが好ましい。T2をT1及びT3より低くすることにより、安定したガラス形状で結晶成長させることができる。
(a4)結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る工程
 工程(a4)は、工程(a3)で得られた結晶核及び分相の少なくとも一方を含む素板ガラスを結晶成長温度まで昇温して所定時間保持することにより結晶成長させて、結晶化ガラスを得る工程である。
 工程(a4)における熱処理の温度は、安定して結晶成長させる点から、結晶化開始温度+20℃以上であることが好ましく、より好ましくは結晶化開始温度+40℃以上、さらに好ましくは結晶化開始温度+60℃以上である。また、透明な結晶化ガラスを得るためには、結晶化開始温度+200℃以下であることが好ましく、より好ましくは結晶化開始温度+180℃以下、さらに好ましくは結晶化開始温度+150℃以下である。
 例えば、熱処理の温度は、安定して結晶成長させる点から、400℃以上が好ましく、500℃以上がより好ましく、600℃以上がさらに好ましく、650℃以上が特に好ましく、700℃以上が最も好ましい。また、透明な結晶化ガラスを得るためには、熱処理の温度は、1000℃以下であることが好ましく、より好ましくは結晶化温度900℃以下、さらに好ましくは800℃以下である。
 工程(a4)において素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る温度をT3とし、工程(a3)において、又は工程(a2)及び工程(a3)を同時に行う場合は工程(a2)及び(a3)において、結晶核及び分相の少なくとも一方を含む素板ガラスを得る温度をT2とすると、T3はT2より高いことが好ましい。具体的には、溶融ガラスを得た後から結晶核及び分相の少なくとも一方を含む素板ガラスを得るまでの温度領域において、T3より低い温度領域を有することが好ましい。
 (T3-T2)(℃)は、安定したガラス形状で結晶成長させるためにT2の温度が低いことが好ましい観点から、10℃以上であることが好ましく、より好ましくは30℃以上、さらに好ましくは50℃以上である。(T3-T2)(℃)が大きすぎると、結晶成長が激しくなり透明性が得にくいため、350℃以下であることが好ましく、より好ましくは300℃以下、さらに好ましくは250℃以下である。
 工程(a4)における熱処理の時間は、安定して結晶成長させる点から、10分以上が好ましく、30分以上がより好ましく、1時間以上がさらに好ましく、1.5時間以上が特に好ましく、2時間以上が最も好ましい。また、透明な結晶化ガラスを得るためには、10時間以下であることが好ましく、より好ましくは8時間以下、さらに好ましくは6時間以下、特に好ましくは4時間以下、最も好ましくは3時間以下である。
<第2実施形態>
 本発明の第2実施形態は、以下の工程(b1)~(b3)を含むことを特徴とする。
(b1)ガラス原料を溶融して溶融ガラスを得る工程
(b2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る工程
(b3)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る工程
 図2は第2実施形態の一態様を示すフロー図である。第2実施形態の一態様においては、ステップS51でガラス原料を溶融して溶融ガラスを得る。該溶融ガラスをステップS52で成形手段により所定の形状に成形しながら徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る。該素板ガラスをステップS53で熱処理し、結晶成長させた後、徐冷して、結晶化ガラスを得る。
 第2実施形態の一態様として、具体的には例えば、溶融ガラスを成形鋳型に流し込み、該成形鋳型からガラス成形体を連続して引き出しながら、成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得て、該素板ガラスを熱処理して結晶成長させて結晶化ガラスを得る態様が挙げられる。
<第3実施形態>
 本発明の第3実施形態は、以下の工程(c1)~(c3)を含むことを特徴とする。
(c1)ガラス原料を溶融して溶融ガラスを得る工程
(c2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱分析でピークを有する素板ガラスを得る工程
(c3)前記小角X線散乱分析でピークを有する素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る工程
 図3は第3実施形態の一態様を示すフロー図である。第3実施形態の一態様においては、ステップS61でガラス原料を溶融して溶融ガラスを得る。該溶融ガラスをステップS62で成形手段により所定の形状に成形しながら徐冷して、小角X線散乱分析でピークを有する素板ガラスを得る。該素板ガラスをステップS63で熱処理し、結晶成長させた後、徐冷して、結晶化ガラスが得られる。
 第3実施形態の一態様として、具体的には例えば、溶融ガラスを成形鋳型に流し込み、該成形鋳型からガラス成形体を連続して引き出しながら、成形するとともに徐冷して、小角X線散乱分析でピークを有する素板ガラスを得て、該素板ガラスを熱処理して結晶成長させて結晶化ガラスを得る態様が挙げられる。
<第4実施形態>
 本発明の第4実施形態は、以下の工程(d1)~(d3)を含むことを特徴とする。
(d1)ガラス原料を溶融して溶融ガラスを得る工程
(d2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得る工程
(d3)前記小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得る工程
 図4は第4実施形態の一態様を示すフロー図である。第4実施形態の一態様においては、ステップS71でガラス原料を溶融して溶融ガラスを得る。該溶融ガラスをステップS72で成形手段により所定の形状に成形しながら徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得る。該素板ガラスをステップS73で熱処理し、結晶成長させた後、徐冷して、結晶化ガラスが得られる。
 第4実施形態の一態様として、具体的には例えば、溶融ガラスを成形鋳型に流し込み、該成形鋳型からガラス成形体を連続して引き出しながら、成形するとともに徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得て、該素板ガラスを熱処理して結晶成長させて結晶化ガラスを得る態様が挙げられる。
<第5実施形態>
 本発明の第5実施形態は、温度T1、T2及びT3の温度過程を経て結晶化ガラスを製造する方法であって、T2はT1及びT3より低く、T2の温度において結晶核及び分相の少なくとも一方を含む素板ガラスを得ることを特徴とする。具体的には、溶融ガラスを得た後から結晶核及び分相の少なくとも一方を含む素板ガラスを得るまでの温度領域において、T1及びT3より低い温度領域を有することが好ましい。
 図5は第5実施形態の一態様を示すフロー図である。第5実施形態の一態様においては、ステップS81でガラス原料を溶融して溶融ガラスを得る温度をT1、該溶融ガラスをステップS82で成形手段により所定の形状に成形しながら徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得る温度をT2、該素板ガラスをステップS83で熱処理し、結晶成長させる温度をT3とした場合に、T2はT1及びT3より低い温度とする。
<ガラス組成> 
 本実施形態の製造方法における好ましいガラス組成として以下のガラス組成A及びガラス組成Bが挙げられる。
(ガラス組成A)
 酸化物基準のモル%表示で、
 SiOを40~70%、
 LiOを10~35%、
 Alを1~15%、
 Pを0.5~5%、
 ZrOを0.5~5%、
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~4%、含有することが好ましい。
(ガラス組成B)
 酸化物基準のモル%表示で、
 SiOを50~70%、
 LiOを15~30%、
 Alを1~10%、
 Pを0.5~5%、
 ZrOを0.5~8%、
 MgOを0.1~10%、
 Yを0~5%
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~2%、含有することが好ましい。
 また、酸化物基準のモル%表示で、SiO、Al、P及びBの総量が60~80%であることが好ましい。SiO、Al、P及びBは、ガラスの網目形成成分(以下、NWFとも略す)である。これらNWFの総量が多いことで、ガラスの強度が高くなる。それによって結晶化ガラスの破壊靱性値を大きくすることから、NWFの総量は60%以上が好ましく、63%以上がより好ましく、65%以上が特に好ましい。しかしNWFが多すぎるガラスは溶融温度が高くなるなど、製造が困難になるため、NWFの総量は80%以下が好ましく、75%がより好ましく、70%以下がさらに好ましい。
 LiO、NaO及びKOの総量のNWFすなわち、SiO、Al、P及びBの総量に対する比が0.20~0.60であることが好ましい。
 LiO、NaO及びKOは網目修飾成分であり、NWFに対する比率を低下させることは、ネットワーク中の隙間を増やすため、耐衝撃性を向上させる。そのため、LiO、NaO及びKOの総量のNWFすなわち、SiO、Al、P及びBの総量に対する比は0.60以下が好ましく、0.55以下がより好ましく、0.50以下が特に好ましい。一方、LiO、NaO及びKOは化学強化の際に必要な成分なので、結晶化ガラスを化学強化する場合には、化学強化特性を高くするために、LiO、NaO及びKOの総量のNWFすなわち、SiO、Al、P及びBの総量に対する比は0.20以上が好ましく、0.25以上がより好ましく、0.30以上が特に好ましい。
 SiOはガラスのネットワーク構造を形成する成分である。また、化学的耐久性を上げる成分であり、SiOの含有量は40%以上が好ましく、45%以上がより好ましく、さらに好ましくは48%以上、よりさらに好ましくは50%以上、特に好ましくは52%以上、極めて好ましくは54%以上である。一方、溶融性を向上するためにSiOの含有量は70%以下が好ましく、より好ましくは68%以下、さらに好ましくは66%以下、特に好ましくは64%以下である。
 Alは化学強化による表面圧縮応力を大きくする成分である。Alの含有量は好ましくは1%以上であり、より好ましくは2%以上、さらに好ましくは3%以上、以下好ましい順に5%以上、5.5%以上、6%以上、6.5%以上、7%以上である。一方、Alの含有量は、ガラスの失透温度が高くなりすぎないために15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましく、9%以下が特に好ましく、8%以下が最も好ましい。
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、主結晶の構成成分である。LiOの含有量は、好ましくは10%以上、より好ましくは14%以上、さらに好ましくは15%以上、特に好ましくは18%以上、極めて好ましくは20%以上、最も好ましくは22%以上である。一方、ガラスを安定にするためにLiOの含有量は、35%以下が好ましく、より好ましくは32%以下、さらに好ましくは30%以下、特に好ましくは28%以下、最も好ましくは26%以下である。
 NaOは、ガラスの溶融性を向上させる成分である。NaOを含有する場合は好ましくは0.5%以上、より好ましくは1%以上であり、特に好ましくは2%以上である。NaOは多すぎると結晶が析出しにくくなり、または結晶化ガラスを化学強化する場合には、化学強化特性が低下するため、NaOの含有量は3%以下が好ましく、2.8%以下がより好ましく、2.5%以下がさらに好ましい。
 KOは、NaOと同じくガラスの溶融温度を下げる成分であり、含有してもよい。KOを含有する場合の含有量は、好ましくは0.1%以上であり、より好ましくは0.5%以上である。結晶化ガラスを化学強化する場合には、KOは多すぎると化学強化特性が低下する、または化学的耐久性が低下するため、好ましくは1%以下、より好ましくは0.8%以下、さらに好ましくは0.6%以下である。
 NaO及びKOの合計の含有量NaO+KOはガラス原料の溶融性を向上するために1%以上が好ましく、1.5%以上がより好ましい。
 また、結晶化ガラスを化学強化する場合には、LiO、NaO及びKOの含有量の合計(以下、ROとも略す)に対するKO含有量の比KO/ROは0.2以下であると、化学強化特性を高くし、化学的耐久性を高くできるので好ましい。KO/ROは0.15以下がより好ましく、0.10以下がさらに好ましい。
 なお、ROは10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。また、ROは29%以下が好ましく、26%以下がより好ましい。
 Pは、結晶化を促進するために、含有量が好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上、極めて好ましくは2.5%以上である。一方、P含有量が多すぎると、溶融時に分相しやすくなり、また耐酸性が著しく低下するので、Pの含有量は、好ましくは5%以下、より好ましくは4.8%以下、さらに好ましくは4.5%以下、特に好ましくは4.2%以下である。Pは、結晶化ガラスがLiPO結晶を含む場合、LiPO結晶の構成成分となる。
 ZrOは、機械的強度と化学的耐久性を高める成分であり、CSを著しく向上させるため、含有することが好ましい。ZrOの含有量は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上であり、最も好ましくは2.5%以上である。一方、溶融時の失透を抑制するために、ZrOは8%以下が好ましく、7.5%以下がより好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。ZrOの含有量が多すぎると失透温度の上昇により粘性が低下する。かかる粘性の低下により成形性が悪化することを抑制するため、成形粘性が低い場合は、ZrOの含有量は5%以下が好ましく、4.5%以下がより好ましく、3.5%以下がさらに好ましい。
 また、ZrO/ROは、化学的耐久性を高くするために、0.02以上が好ましく、0.03以上がより好ましく、0.04以上がさらに好ましく、0.1以上が特に好ましく、0.15以上が最も好ましい。結晶化後の透明性を高くするために、ZrO/ROは、0.6以下が好ましく、0.5以下がより好ましく、0.4以下がさらに好ましく、0.3以下が特に好ましい。
 MgOは、ガラスを安定化させる成分であり、機械的強度と耐薬品性を高める成分でもあるため、Al含有量が比較的少ない等の場合には、含有することが好ましい。MgOの含有量は、好ましくは0.1%、より好ましくは1%以上、より好ましくは2%以上、さらに好ましくは3%以上、特に好ましくは4%以上である。一方、MgOを添加し過ぎるとガラスの粘性が下がり失透または分相が起こりやすくなるため、MgOの含有量は、10%以下が好ましく、より好ましくは9%以下、さらに好ましくは8%以下、特に好ましくは7%以下である。
 TiOは結晶化を促進し得る成分であり、含有してもよい。TiOを含有する場合、好ましくは0.2%以上であり、より好ましくは0.5%以上である。一方、溶融時の失透を抑制するために、TiOの含有量は4%以下が好ましく、2%以下がより好ましく、1%以下がさらに好ましい。
 SnOは結晶核の生成を促成する作用があり、含有してもよい。SnOを含有する場合、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。一方、溶融時の失透を抑制するために、SnOの含有量は4%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましい。
 Yは、結晶化ガラスを化学強化する場合には化学強化ガラスが破壊した時に破片が飛散しにくくする効果のある成分であり、含有させてよい。Yの含有量は、好ましくは1%以上、より好ましくは1.5%以上、さらに好ましくは2%以上、特に好ましくは2.5%以上、極めて好ましくは3%以上である。一方、溶融時の失透を抑制するために、Yの含有量は5%以下が好ましく、4%以下がより好ましい。
 Bは、ガラスのチッピング耐性を向上させ、また溶融性を向上させる成分であり、含有してもよい。Bを含有する場合の含有量は、溶融性を向上するために、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上である。一方、Bの含有量が多すぎると溶融時に脈理が発生する等、結晶化ガラスの品質が低下しやすいため10%以下が好ましい。Bの含有量は、より好ましくは8%以下、さらに好ましくは6%以下であり、特に好ましくは4%以下である。
 BaO、SrO、MgO、CaO及びZnOは、いずれもガラスの溶融性を向上する成分であり含有してもよい。これらの成分を含有させる場合、BaO、SrO、MgO、CaO及びZnOの含有量の合計(以下、BaO+SrO+MgO+CaO+ZnOとも略す)は好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。一方、イオン交換速度が低下するため、BaO+SrO+MgO+CaO+ZnOは8%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましく、4%以下が特に好ましい。
 このうちBaO、SrO、ZnOは、残留ガラスの屈折率を向上させて析出結晶相に近づけることにより結晶化ガラスの光透過率を向上して、ヘーズ値を下げるために含有してもよい。その場合、BaO、SrO及びZnOの含有量の合計(以下、BaO+SrO+ZnOとも略す)は0.3%以上が好ましく、0.5%以上がより好ましく、0.7%以上がさらに好ましく、1%以上が特に好ましい。一方で、これらの成分は、イオン交換速度を低下させる場合がある。結晶化ガラスを化学強化する場合には、化学強化特性を良くするために、BaO+SrO+ZnOは2.5%以下が好ましく、2%以下がより好ましく、1.7%以下がさらに好ましく、1.5%以下が特に好ましい。
 La、Nb及びTaは、結晶化ガラスを化学強化する場合には、いずれも化学強化ガラスが破壊した時に破片が飛散しにくくする成分であり、屈折率を高くするために、含有させてもよい。これらを含有する場合、La、Nb及びTaの含有量の合計(以下、La+Nb+Taとも略す)は好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上であり、特に好ましくは2%以上である。また、溶融時にガラスが失透しにくくなるために、La+Nb+Taは4%以下が好ましく、より好ましくは3%以下、さらに好ましくは2%以下であり、特に好ましくは1%以下である。
 また、本実施形態にかかるガラスはCeOを含有してもよい。CeOはガラスを酸化することで着色を抑える場合がある。CeOを含有する場合の含有量は0.03%以上が好ましく、0.05%以上がより好ましく、0.07%以上がさらに好ましい。CeOの含有量は、透明性を高くするために1.5%以下が好ましく、1.0%以下がより好ましい。
 結晶化ガラスを着色して使用する際は、所望の特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、Er、Ndが挙げられる。
 着色成分の含有量は、合計で1%以下の範囲が好ましい。ガラスの可視光透過率をより高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。
 紫外光の照射に対する耐候性を高めるために、HfO、Nb、Tiを添加してもよい。紫外光照射に対する耐候性を高める目的で添加する場合には、他の特性に影響を抑えるために、HfO、Nb及びTiの含有量の合計は1%以下が好ましく、0.5%以下がさらに好ましく、0.1%以下がより好ましい。
 また、ガラスの溶融の際の清澄剤等として、SO、塩化物、フッ化物を適宜含有してもよい。清澄剤として機能する成分の含有量の合計は、添加しすぎると強化特性、結晶化挙動に影響をおよぼすおそれがあるため、酸化物基準の質量%表示で、2%以下が好ましく、より好ましくは1%以下であり、さらに好ましくは0.5%以下である。下限は特に制限されないが、典型的には、酸化物基準の質量%表示で、合計で0.05%以上が好ましい。
 清澄剤としてSOを用いる場合のSOの含有量は、少なすぎると効果が見られないため、酸化物基準の質量%表示で、0.01%以上が好ましく、より好ましくは0.05%以上であり、さらに好ましくは0.1%以上である。また、清澄剤としてSOを用いる場合のSOの含有量は、酸化物基準の質量%表示で、1%以下が好ましく、より好ましくは0.8%以下であり、さらに好ましくは0.6%以下である。
 清澄剤としてClを用いる場合のClの含有量は、添加しすぎると強化特性などの物性に影響をおよぼすおそれがあるため、酸化物基準の質量%表示で、1%以下が好ましく、0.8%以下がより好ましく、0.6%以下がさらに好ましい。また、清澄剤としてClを用いる場合のClの含有量は、少なすぎると効果が見られないため、酸化物基準の質量%表示で、0.05%以上が好ましく、より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。
 清澄剤としてSnOを用いる場合のSnOの含有量は、添加しすぎると結晶化挙動に影響をおよぼすため、酸化物基準の質量%表示で、1%以下が好ましく、0.5%以下がより好ましく、0.3%以下がさらに好ましい。また、清澄剤としてSnOを用いる場合のSnOの含有量は、少なすぎると効果が見られないため、酸化物基準の質量%表示で、0.02%以上が好ましく、より好ましくは0.05%以上であり、さらに好ましくは0.1%以上である。
 Asは含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、含有しないことが最も好ましい。
<結晶化ガラス>
 本実施形態の製造方法により得られる結晶化ガラス(以下、本結晶化ガラスともいう)は、素板ガラスにおいて結晶核及び分相の少なくとも一方を形成させやすくするために、結晶化開始温度(Tx)-ガラス転移温度(Tg)は200℃以下が好ましく、150℃以下がより好ましく、120℃以下がさらに好ましく、100℃以下が最も好ましい。また、得られる結晶化ガラスの透明性を向上させるために、結晶化開始温度(Tx)-ガラス転移温度(Tg)は50℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が最も好ましい。
 Tx及びTgは、ガラスを粉砕し、示差走査熱量計を用いて得られるDSC曲線から求められる。図7は、本発明の一実施形態により得られた素板ガラス(結晶成長前のガラス)のDSC曲線の一例である。本明細書において、図7に示すように、結晶成長させる前のDSC曲線において、結晶化により曲線が立ち上がる温度を結晶化開始温度(Tx)とする。
 本結晶化ガラスが含有する結晶は特に限定されないが、例えばリン酸リチウム系の結晶が挙げられる。リン酸リチウム系の結晶としては、例えばLiPO結晶、LiSiO結晶が挙げられる。本結晶化ガラスは、例えば、LiPO結晶およびLiSiO結晶の両方を含有してもよく、いずれか一方を主結晶として含有してもよい。また、本結晶化ガラスは、例えばLiPOおよびLiSiOの固溶体結晶を主結晶としてもよく、LiPOおよびLiSiOのいずれかの固溶体結晶を主結晶としてもよい。
 本結晶化ガラスは、必要に応じて適当な長さに切断してもよい。切断方法は公知の方法を使用でき、例えば、ダイヤモンド製カッターによる切断法、ウォータージェットによる切断法が挙げられる。
 本結晶化ガラスは必要に応じて研削及び研磨処理して、ガラス基板を形成してもよい。なお、ガラス基板を所定の形状及びサイズに切断する加工又はガラス基板の面取り加工を行う場合、後述する化学強化処理を施す前に、ガラス基板の切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されることから、好ましい。
 本結晶化ガラスは、適用される製品や用途等に応じて、板状以外の形状としてもよい。またガラス板は、外周の厚さが異なる縁取り形状などを有していてもよい。また、ガラス板の形態はこれらに限定されない。例えば2つの主面は互いに平行でなくともよく、2つの主面の一方又は両方の、全部又は一部が曲面であってもよい。より具体的には、ガラス板は、例えば、反りの無い平板状のガラス板であってもよく、湾曲した表面を有する曲面ガラス板としてもよい。
 本結晶化ガラスは、化学強化処理(イオン交換処理)をして化学強化ガラスとしてもよい。化学強化は、イオン交換処理によって行われる。化学強化処理は、例えば、360~600℃に加熱された硝酸カリウム等の溶融塩中に、ガラス板を0.1~500時間浸漬することによって行える。なお、溶融塩の加熱温度としては、375~500℃が好ましく、また、溶融塩中へのガラス板の浸漬時間は、0.3~200時間が好ましい。
 化学強化処理を行うための溶融塩としては、例えば、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸セシウム、硝酸銀などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸セシウム、硫酸銀などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化セシウム、塩化銀などが挙げられる。これらの溶融塩は単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 化学強化処理の処理条件は、特に限定されず、ガラスの組成(特性)や溶融塩の種類、ならびに、所望の化学強化特性などを考慮して、適切な条件を選択すればよい。また、化学強化処理を一回のみ行ってもよく、2以上の異なる条件で複数回の化学強化処理(多段強化)を行ってもよい。
 本結晶化ガラスの用途としては、例えば、携帯電話、スマートフォン等のモバイル機器等の電子機器に用いられるカバーガラスが挙げられる。また、例えば、携帯を目的としない、テレビ、パーソナルコンピュータ、タッチパネル等の電子機器のカバーガラス、エレベータ壁面、家屋やビル等の建築物の壁面(全面ディスプレイ)ガラスが挙げられる。また、例えば、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラス、また曲面形状を有する筺体等が挙げられる。
 以上説明したように、本明細書には次の事項が開示されている。
[1] 以下の(a1)~(a4)を含む結晶化ガラスの製造方法。
(a1)ガラス原料を溶融して溶融ガラスを得ること
(a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得ること
(a3)前記ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
(a4)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
[2] 前記(a2)及び前記(a3)が同時に行なわれ、前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、前記結晶核及び分相の少なくとも一方を含む素板ガラスを得る、[1]に記載の製造方法。
[3] 前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱分析でピークを有する、[1]または[2]に記載の製造方法。
[4] 前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱で測定された粒子間距離が10~100nmである、[1]~[3]のいずれか1つに記載の製造方法。
[5] 前記(a1)において、温度T1で前記ガラス原料を溶融して前記溶融ガラスを得ること、
 前記(a2)及び前記(a3)において、温度T2で前記結晶核及び分相の少なくとも一方を含む素板ガラスを得ること、
 前記(a4)において、温度T3で前記素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ることを含み、
 前記温度T2が前記温度T1及びT3より低い、[2]~[4]のいずれか1つに記載の製造方法。
[6] 以下の(b1)~(b3)を含む結晶化ガラスの製造方法。
(b1)ガラス原料を溶融して溶融ガラスを得ること
(b2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
(b3)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
[7] 以下の(c1)~(c3)を含む結晶化ガラスの製造方法。
(c1)ガラス原料を溶融して溶融ガラスを得ること
(c2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱分析でピークを有する素板ガラスを得ること
(c3)前記小角X線散乱分析でピークを有する素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
[8] 以下の(d1)~(d3)を含む結晶化ガラスの製造方法。
(d1)ガラス原料を溶融して溶融ガラスを得ること
(d2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得ること
(d3)前記小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
[9] 温度T1、T2及びT3の温度過程を経て結晶化ガラスを製造する方法であって、
 前記温度T2は前記温度T1及びT3より低く、前記温度T2の温度において結晶核及び分相の少なくとも一方を含む素板ガラスを得ることを含む、結晶化ガラスの製造方法。
[10] 前記結晶化ガラスは、酸化物基準のモル%表示で、
 SiOを40~70%、
 LiOを10~35%、
 Alを1~15%、
 Pを0.5~5%、
 ZrOを0.5~5%、
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~4%、含有し、
 SiO、Al、P及びBの総量が60~80%である、[1]~[9]のいずれか1つに記載の製造方法。
[11] 前記結晶化ガラスは、酸化物基準のモル%表示で、Alが5%以上かつZrOが2%以上である、[10]に記載の製造方法。
[12] 前記結晶化ガラスは、酸化物基準のモル%表示で、
 SiOを50~70%、
 LiOを15~30%、
 Alを1~10%、
 Pを0.5~5%、
 ZrOを0.5~8%、
 MgOを0.1~10%、
 Yを0~5%
 Bを0~10%、
 NaOを0~3%、
 KOを0~1%、
 SnOを0~2%、含有する[1]~[9]のいずれか1つに記載の製造方法。
[13] 前記結晶化ガラスは結晶化開始温度(Tx)-ガラス転移温度(Tg)が50~200℃である、[1]~[12]のいずれか1つに記載の製造方法。
 以下、本発明を実施例によって説明するが、本発明はこれによって限定されない。
例1
 以下の溶融工程、成形工程、徐冷工程及び結晶成長工程により結晶化ガラスを製造し、評価した。例1は実施例である。
[溶融工程]
 酸化物基準で、SiOが61モル%、Alが5モル%、LiOが21モル%、NaOが2モル%、Pが2モル%、MgOが5モル%、ZrOが3モル%、Yが1モル%、SOが0.3質量%となるように、結晶化ガラスの各成分の原料を秤量して均一に混合した。混合した原料を白金坩堝に投入し、1600℃の電気炉に投入して5時間程度溶融して溶融ガラスを得た。
[成形工程、徐冷工程]
 溶融工程で得られた溶融ガラスを脱泡し、均質化した後、溶融ガラスを型に流し込み、540℃の温度において30分保持した後、0.5℃/分の速度で室温まで冷却して、厚さ20mmの素板ガラス(ガラスブロック)を得た。得られた素板ガラスを小角X線散乱で解析した。また、得られた素板ガラスについて、示差走査熱量計(ブルカー社製DSC3300SA)を用いてDSC曲線を測定した。
(小角X線散乱)
 素板ガラスを下記条件により小角X線散乱(SAXS)で解析した。
 装置:シンクロトロン光、ビームライン「BL8S3」、小角X線散乱
 装置所在地:愛知県瀬戸市南山口町250番3 「知の拠点あいち」内 公益財団法人
 科学技術交流財団 愛知シンクロトロン光センター
 Energy(波長):0.92Å
 測定検出器:PILATUS
 測定時間:480sec
 測定カメラ長:2180.9mm
 上記測定で得られた結果を図6に示す。また、図6に示す結果から、粒子間距離Lを、以下の式で求めた。
 L=2π/Qmax 
 Qmaxは、図6に示すように明らかにピークのあるSAXSデータのIntensityの極大値のピークに対応するQ(nm-1)(散乱ベクトル)の値である。明らかなピークとは、[一番高いIntensity]/[Q(nm-1)が3であるときのIntensity]が1より大きい場合を意味する。
 図6に示すように、素板ガラスは小角X線散乱分析でピークを有しており、結晶核及び分相の少なくとも一方が形成されていることがわかった。また、Qmaxは0.22nm-1であり、平均粒子間距離は29nmであった。
(DSC)
 メノウ乳鉢を用いて得られた素板ガラスを粒径が106μm~180μmになるように粉砕し、粉末を得た。得られた粉末のうち、約80mgの粉末を白金セルに入れて昇温速度を10℃/分として室温から1100℃まで昇温しながら、示差走査熱量計(ブルカー社製DSC3300SA)を用いてDSC曲線を測定した。結果を図7に示す。
 図7に示すように、Tgは512℃、Txは612℃であることがわかった。
[結晶成長工程]
 上記徐冷工程で得られた素板ガラスを熱処理炉に入れた。熱処理炉内では、約750℃まで加熱し(昇温速度5℃/分)、約2時間保持した。その後、室温まで冷却し(冷却速度5℃/分)、結晶化ガラスを得た。
 例1の成形工程において素板ガラスの厚さ50mmと変更した以外は例1と同様にして結晶化ガラスを得て、例2とした。例1及び例2の結晶化ガラスについて厚さ中央部のヘーズを測定した。その結果、素板ガラスの厚さ20mmである例1の方が厚さ50mmである例2と比較してヘーズが良好であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2021年5月31日出願の日本特許出願(特願2021-091740)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  以下の(a1)~(a4)を含む結晶化ガラスの製造方法。
    (a1)ガラス原料を溶融して溶融ガラスを得ること
    (a2)前記溶融ガラスを成形手段により所定の形状に成形してガラス成形体を得ること
    (a3)前記ガラス成形体を徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
    (a4)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
  2.  前記(a2)及び前記(a3)が同時に行なわれ、前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、前記結晶核及び分相の少なくとも一方を含む素板ガラスを得る、請求項1に記載の製造方法。
  3.  前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱分析でピークを有する、請求項1または2に記載の製造方法。
  4.  前記結晶核及び分相の少なくとも一方を含む素板ガラスは小角X線散乱で測定された粒子間距離が10~100nmである、請求項1または2に記載の製造方法。
  5.  前記(a1)において、温度T1で前記ガラス原料を溶融して前記溶融ガラスを得ること、
     前記(a2)及び前記(a3)において、温度T2で前記結晶核及び分相の少なくとも一方を含む素板ガラスを得ること、
     前記(a4)において、温度T3で前記素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ることを含み、
     前記温度T2が前記温度T1及びT3より低い、請求項2に記載の製造方法。
  6.  以下の(b1)~(b3)を含む結晶化ガラスの製造方法。
    (b1)ガラス原料を溶融して溶融ガラスを得ること
    (b2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、結晶核及び分相の少なくとも一方を含む素板ガラスを得ること
    (b3)前記結晶核及び分相の少なくとも一方を含む素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
  7.  以下の(c1)~(c3)を含む結晶化ガラスの製造方法。
    (c1)ガラス原料を溶融して溶融ガラスを得ること
    (c2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱分析でピークを有する素板ガラスを得ること
    (c3)前記小角X線散乱分析でピークを有する素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
  8.  以下の(d1)~(d3)を含む結晶化ガラスの製造方法。
    (d1)ガラス原料を溶融して溶融ガラスを得ること
    (d2)前記溶融ガラスを成形手段により所定の形状に成形するとともに徐冷して、小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを得ること
    (d3)前記小角X線散乱で測定された粒子間距離が10~100nmである素板ガラスを熱処理し、結晶成長させて結晶化ガラスを得ること
  9.  温度T1、T2及びT3の温度過程を経て結晶化ガラスを製造する方法であって、
     前記温度T2は前記温度T1及びT3より低く、前記温度T2の温度において結晶核及び分相の少なくとも一方を含む素板ガラスを得ることを含む、結晶化ガラスの製造方法。
  10.  前記結晶化ガラスは、酸化物基準のモル%表示で、
     SiOを40~70%、
     LiOを10~35%、
     Alを1~15%、
     Pを0.5~5%、
     ZrOを0.5~5%、
     Bを0~10%、
     NaOを0~3%、
     KOを0~1%、
     SnOを0~4%、含有し、
     SiO、Al、P及びBの総量が60~80%である、請求項1、6、7、8または9のいずれか1項に記載の製造方法。
  11.  前記結晶化ガラスは、酸化物基準のモル%表示で、Alが5%以上かつZrOが2%以上である、請求項10に記載の製造方法。
  12.  前記結晶化ガラスは、酸化物基準のモル%表示で、
     SiOを50~70%、
     LiOを15~30%、
     Alを1~10%、
     Pを0.5~5%、
     ZrOを0.5~8%、
     MgOを0.1~10%、
     Yを0~5%
     Bを0~10%、
     NaOを0~3%、
     KOを0~1%、
     SnOを0~2%、含有する請求項1、6、7、8または9のいずれか1項に記載の製造方法。
  13.  前記結晶化ガラスは結晶化開始温度(Tx)-ガラス転移温度(Tg)が50~200℃である、請求項1、6、7、8または9のいずれか1項に記載の製造方法。
PCT/JP2022/021446 2021-05-31 2022-05-25 結晶化ガラスの製造方法 WO2022255198A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280038974.1A CN117440936A (zh) 2021-05-31 2022-05-25 微晶玻璃的制造方法
JP2023525760A JPWO2022255198A1 (ja) 2021-05-31 2022-05-25
US18/520,792 US20240092678A1 (en) 2021-05-31 2023-11-28 Crystallized glass manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091740 2021-05-31
JP2021-091740 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/520,792 Continuation US20240092678A1 (en) 2021-05-31 2023-11-28 Crystallized glass manufacturing method

Publications (1)

Publication Number Publication Date
WO2022255198A1 true WO2022255198A1 (ja) 2022-12-08

Family

ID=84323162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021446 WO2022255198A1 (ja) 2021-05-31 2022-05-25 結晶化ガラスの製造方法

Country Status (4)

Country Link
US (1) US20240092678A1 (ja)
JP (1) JPWO2022255198A1 (ja)
CN (1) CN117440936A (ja)
WO (1) WO2022255198A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223243A (ja) * 1983-05-31 1984-12-15 Inax Corp 結晶化ガラス物品
JP2000508290A (ja) * 1996-04-09 2000-07-04 ボーテック・コーポレイション フライアッシュからのセラミックタイルの製造
JP2010001201A (ja) * 2007-12-21 2010-01-07 Ohara Inc 結晶化ガラス
US20180099901A1 (en) * 2016-10-12 2018-04-12 Corning Incorporated Glass ceramics
JP2018158866A (ja) * 2017-03-23 2018-10-11 株式会社オハラ 連続結晶化ガラス成形体の製造方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223243A (ja) * 1983-05-31 1984-12-15 Inax Corp 結晶化ガラス物品
JP2000508290A (ja) * 1996-04-09 2000-07-04 ボーテック・コーポレイション フライアッシュからのセラミックタイルの製造
JP2010001201A (ja) * 2007-12-21 2010-01-07 Ohara Inc 結晶化ガラス
US20180099901A1 (en) * 2016-10-12 2018-04-12 Corning Incorporated Glass ceramics
JP2018158866A (ja) * 2017-03-23 2018-10-11 株式会社オハラ 連続結晶化ガラス成形体の製造方法および装置

Also Published As

Publication number Publication date
US20240092678A1 (en) 2024-03-21
CN117440936A (zh) 2024-01-23
JPWO2022255198A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7435706B2 (ja) 化学強化用ガラス
KR102593850B1 (ko) 화학 템퍼링 가능한 유리판
JP7498894B2 (ja) 強化ガラス及び強化用ガラス
JPWO2019022034A1 (ja) 結晶化ガラスおよび化学強化ガラス
WO2020121888A1 (ja) 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
JPWO2016104446A1 (ja) ガラス及び化学強化ガラス
JPWO2019194110A1 (ja) 化学強化用ガラス
JP7420152B2 (ja) 化学強化ガラス物品およびその製造方法
CN113582539B (zh) 一种铝硅酸盐玻璃和应用
US20230082423A1 (en) Glass, crystallized glass and chemically strengthened glass
WO2022255198A1 (ja) 結晶化ガラスの製造方法
WO2022009850A1 (ja) ガラスおよび化学強化ガラス
WO2023149384A1 (ja) ガラス、化学強化ガラスおよびカバーガラス
JP2021042116A (ja) 結晶化ガラスおよび強化結晶化ガラス
JP2020158363A (ja) ガラス及び結晶化ガラス
WO2022181812A1 (ja) 化学強化ガラスの製造方法及び化学強化ガラス
WO2023090177A1 (ja) 結晶化ガラス
WO2023243574A1 (ja) 化学強化用ガラス及びガラス
CN117088610B (zh) 含氟玻璃及其制备方法与应用
WO2024162064A1 (ja) 結晶相を含むガラス
WO2022168895A1 (ja) 結晶化ガラスおよび化学強化ガラス
CN118679126A (zh) 玻璃、化学强化玻璃以及保护玻璃
JP2024086690A (ja) 透明なガラスセラミックス、特にカバープレートとしてのガラスセラミックス
JP2024086691A (ja) 透明なガラスセラミックス、特にカバープレートとしてのガラスセラミックス
CN115884947A (zh) 微晶玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525760

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038974.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815948

Country of ref document: EP

Kind code of ref document: A1