WO2022253292A1 - 一种两档四驱扭矩管理系统及车辆 - Google Patents

一种两档四驱扭矩管理系统及车辆 Download PDF

Info

Publication number
WO2022253292A1
WO2022253292A1 PCT/CN2022/096742 CN2022096742W WO2022253292A1 WO 2022253292 A1 WO2022253292 A1 WO 2022253292A1 CN 2022096742 W CN2022096742 W CN 2022096742W WO 2022253292 A1 WO2022253292 A1 WO 2022253292A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
valve
port
clutch
output
Prior art date
Application number
PCT/CN2022/096742
Other languages
English (en)
French (fr)
Inventor
徐占
刘振宇
屠有余
陈建勋
叶珂羽
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022253292A1 publication Critical patent/WO2022253292A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/10Braking arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0265Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic for gearshift control, e.g. control functions for performing shifting or generation of shift signals
    • F16H61/0267Layout of hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0017Transmissions for multiple ratios specially adapted for four-wheel-driven vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means

Definitions

  • the present application relates to the technical field of vehicle engineering, for example, to a two-speed four-wheel drive torque management system and a vehicle.
  • the driving forms of passenger cars can be divided into two-wheel drive, timely four-wheel drive and full-time four-wheel drive.
  • the timely four-wheel drive system uses the electronic control system to comprehensively judge the reasonable timing and distribute the power of the front and rear axles in combination with the driver's intention, road conditions and vehicle conditions. Passability, and the economy of the whole vehicle is also better than that of full-time four-wheel drive.
  • the transfer case used in the four-wheel drive system in the related art is mostly a single-gear configuration.
  • the transfer case In order to increase the torque transmission range of the transfer case, the transfer case is designed as a two-speed structure.
  • the execution system of the two-speed transfer case in the market The gear shifting is mostly controlled by a DC motor, which has a complex structure, difficult processing and high cost.
  • the four-wheel drive system vehicles in the related art are often difficult to meet the requirements of the torque transmission range and the stability of the whole vehicle when faced with severe working conditions and sudden steering situations.
  • This application proposes a two-speed four-wheel drive torque management system, which can realize two-speed ratio transmission and reduce processing difficulty and cost, while improving the torque transmission adjustment effect and improving the motion stability of the whole vehicle.
  • the present application also proposes a vehicle, which can improve the torque distribution capability of the vehicle and improve the running stability of the vehicle.
  • the present application provides a two-speed four-wheel drive torque management system, including: a housing; an input shaft, the input shaft is passed through the housing; a planetary gear mechanism, the planetary gear mechanism includes a sun gear , a planetary gear, a planetary carrier and a ring gear, the planetary gear is installed on the planetary carrier and meshed between the sun gear and the ring gear, the sun gear is connected with the input shaft; the braking mechanism , the braking mechanism is arranged in the housing, and the braking mechanism can selectively lock the ring gear on the housing or lock the ring gear on the planet carrier; An output shaft, the output shaft is connected with the planet carrier, the output shaft is connected with the first transmission shaft and the second transmission shaft through a torque adjustment mechanism, and the torque adjustment mechanism is configured to adjust the transmission of the output shaft to the The torque of the first transmission shaft and the second transmission shaft; a power mechanism, the power mechanism is arranged on the housing, and the power mechanism is configured to control the brake mechanism and the torque adjustment mechanism.
  • the present application provides a vehicle, including the aforementioned two-speed four-wheel drive torque management system.
  • Fig. 1 is a schematic structural diagram of a two-speed four-wheel drive torque management system provided in a specific embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of a power mechanism provided by a specific embodiment of the present application.
  • 61 reversing valve; 611, first oil port; 612, second oil port; 613, oil inlet; 614, oil return port; 62, first oil cylinder; 63, second oil cylinder; 64, first input oil road;
  • the first control valve 811. The first valve port; 812. The second valve port; 813. The third valve port; 82. The second control valve; 821. The fourth valve port; 822. The fifth valve port; 823 , the sixth valve port; 83, the third oil cylinder; 84, the fourth oil cylinder; 85, the first pressure sensor; 86, the second pressure sensor; 87, the second input oil circuit;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • Figure 1 discloses a two-speed four-wheel drive torque management system, which includes a housing 1, an input shaft 2, a planetary gear mechanism, a braking mechanism, an output shaft 41, a torque adjustment mechanism and a power mechanism.
  • the input shaft 2 passes through the casing 1 .
  • the planetary gear mechanism includes a sun gear 31, a planet gear 32, a planet carrier 33 and a ring gear 34.
  • the planet gear 32 is mounted on the planet carrier 33 and meshed between the sun gear 31 and the ring gear 34.
  • the sun gear 31 is connected to the input shaft 2 .
  • the braking mechanism is arranged in the casing 1 , and the braking mechanism can selectively lock the ring gear 34 on the casing 1 or lock the ring gear 34 on the planet carrier 33 .
  • the output shaft 41 is connected with the planet carrier 33, and the output shaft 41 is connected with the first transmission shaft 42 and the second transmission shaft 43 through a torque adjustment mechanism, and the torque adjustment mechanism is set to adjust the transmission of the output shaft 41 to the first transmission shaft 42 and the second transmission shaft shaft 43 torque.
  • the power mechanism is arranged on the housing 1, and the power mechanism is configured to control the brake mechanism and the torque adjustment mechanism.
  • the torque adjustment mechanism can adjust the driving force output from the output shaft 41 to the first transmission shaft 42 and the second transmission shaft 43, so as to better realize the dynamic distribution management of the driving force on the first transmission shaft 42 and the second transmission shaft 43 .
  • the torque adjustment mechanism can additionally provide power to the left and right wheels, thereby realizing active yaw Angle control improves the steering angle of the vehicle, improves the cornering performance of the vehicle, makes the vehicle move more smoothly, and improves the running stability of the vehicle.
  • the power mechanism can exert a control effect on the braking mechanism and the torque adjustment mechanism, so that the two-speed transfer case and the torque distribution management to the first transmission shaft 42 and the second transmission shaft 43 can be realized at the same time, so that The two-speed four-wheel drive torque management system has a high degree of integration, which can save costs.
  • the brake mechanism includes a shift brake 51 and a shift clutch 52 .
  • the shift brake 51 is arranged in the casing 1 , the driving end of the shift brake 51 is connected with the ring gear 34 , and the driven end of the shift brake 51 is connected with the casing 1 .
  • the shifting clutch 52 is arranged in the housing 1 , the driving end of the shifting clutch 52 is connected with the ring gear 34 , and the driven end of the shifting clutch 52 is connected with the planet carrier 33 .
  • both the gear shift clutch 52 and the gear shift brake 51 are multi-disc wet type, which can have a long service life and facilitate the automatic shifting of gear positions.
  • the power mechanism includes a reversing valve 61, a first oil cylinder 62 and a second oil cylinder 63, the reversing valve 61 has a first state, an intermediate state and a second state, and the reversing valve 61 It has a first oil port 611, a second oil port 612, an oil inlet 613 and an oil return port 614.
  • the oil inlet 613 is set to communicate with the first input oil circuit 64, and the output end of the first oil cylinder 62 is connected to the shift brake 51.
  • the active end is connected, the output end of the second oil cylinder 63 is connected with the active end of the shift clutch 52, the first oil cylinder 62 communicates with the first oil port 611, the second oil cylinder 63 communicates with the second oil port 612, and the reversing valve 61 is located at In the first state, the oil inlet 613 of the reversing valve 61 communicates with the first oil port 611, and the second oil port 612 communicates with the oil return port 614. When the reversing valve 61 is in the second state, the oil inlet 613 communicates with the second oil port.
  • the two oil ports 612 are in communication, the first oil port 611 is in communication with the oil return port 614 , when the reversing valve 61 is in the middle state, both the first oil port 611 and the second oil port 612 are in communication with the oil return port 614 .
  • the shifting of gears in the system is realized through a reversing valve 61, which can better ensure that the high-pressure oil in the first input oil circuit 64 can only enter the first oil cylinder 62 and the second oil cylinder 63 at the same time.
  • the single reversing valve 61 is also beneficial to improve the integration of the power mechanism, so as to reduce the complexity and cost of the oil circuit.
  • the reversing valve 61 is a three-position, four-way solenoid valve, which adjusts the working position by controlling the current.
  • the reversing valve 61 When the reversing valve 61 is in the left position, it is in the first state. Enter the oil inlet 613 through the first input oil passage 64 and pass into the first oil cylinder 62 through the first oil port 611 to realize the control of the driving end of the shift brake 51, and then make the driving end of the shift brake 51 and the driven end of the shift brake 51 The end is pressed tightly so that the ring gear 34 is fixed to the housing 1, thereby realizing the output of the output shaft 41 with a large speed ratio; when the reversing valve 61 is in the right position, it is in the second state, at this time, the high-pressure oil passes through the first input oil
  • the road 64 enters the second oil port 612 through the oil inlet 613 and passes into the second oil cylinder 63 to realize the control of the driving end of the shift clutch 52, and then the driving end
  • the torque adjustment mechanism includes a first clutch 71 and a second clutch 72, the driving end of the first clutch 71 is connected to the driving end of the second clutch 72, and the driving end of the first clutch 71 It can also be connected to the output shaft 41 , the driven end of the first clutch 71 is connected to the first transmission shaft 42 , and the driven end of the second clutch 72 is connected to the second transmission shaft 43 .
  • the output shaft 41 is connected to the driving end of the first clutch 71, the driving end of the first clutch 71 is connected to the driving end of the second clutch 72, so that the output shaft 41 can simultaneously drive the driving end of the first clutch 71. end and the driving end of the second clutch 72 rotate, and then by adjusting the degree of compression between the driving end and the driven end of the first clutch 71, the torque output from the first clutch 71 to the first transmission shaft 42 can be adjusted.
  • the pressing degree of the driving end and the driven end of the second clutch 72 adjusts the torque output from the second clutch 72 to the second transmission shaft 43 .
  • the transmission torque can be adjusted more accurately, so as to facilitate the realization of reliable torque adjustment effect according to the actual running conditions of the vehicle.
  • the torque regulating mechanism can simultaneously adjust the torque output to the first transmission shaft 42 and the second transmission shaft 43, Furthermore, the steering performance of the whole vehicle can be better improved according to the different torque transmissions of the first transmission shaft 42 and the second transmission shaft 43 , such as solving the problem of adjusting understeer or oversteer.
  • the pressing force of the first clutch 71 and the second clutch 72 is adjusted to the maximum, the electronic limited slip function of the vehicle on the first transmission shaft 42 and the second transmission shaft 43 can be realized, and since the two are allocated as Maximum, it can better ensure the equal distribution of power to the left and right wheels.
  • both the first clutch 71 and the second clutch 72 can be set as multi-plate wet clutches, which have a larger adjustment range and higher adjustment accuracy, which is more conducive to improving the accuracy of torque adjustment and realizing Accurate control of torque ensures the running stability of the vehicle.
  • the output shaft 41 is provided with a first meshing tooth 44
  • the first clutch 71 is provided with a second meshing tooth 45
  • the first meshing tooth 44 can be connected with the second meshing tooth 45 to transmit the power of the output shaft 41 to the first clutch 71 and the second clutch 72 after rotating 90 degrees.
  • the second meshing teeth 45 can also be disposed on the second clutch 72 .
  • the power mechanism includes a first control valve 81, a second control valve 82, a third oil cylinder 83, and a fourth oil cylinder 84.
  • the first control valve 81 has a first switch position and a second oil cylinder. Two switching positions, the first control valve 81 has a first valve port 811, a second valve port 812 and a third valve port 813, the first valve port 811 is set to communicate with the second input oil passage 87, the second valve port 812 is connected to the second valve port 813
  • the three oil cylinders 83 are connected, and the output end of the third oil cylinder 83 is connected with the driving end of the first clutch 71.
  • the first valve port 811 When the first control valve 81 is in the first switching position, the first valve port 811 is connected with the second valve port 812, and the first valve port 811 is connected with the second valve port 812.
  • the second valve port 812 communicates with the third valve port 813;
  • the second control valve 82 has the third switching position and the fourth switching position, and the second control valve 82 has the fourth valve port 821 , the fifth valve port 822 and the sixth valve port 823, the fourth valve port 821 is set to communicate with the second input oil circuit 87
  • the fifth valve port 822 communicates with the fourth oil cylinder 84
  • the output end of the fourth oil cylinder 84 communicates with the second The driving end of the clutch 72 is connected.
  • the fourth valve port 821 communicates with the fifth valve port 822.
  • the fifth valve port 822 communicates with the fifth valve port 822.
  • the sixth valve port 823 communicates.
  • the first control valve 81 can individually control the third oil cylinder 83, and then can realize the independent control of the first clutch 71, that is, the independent control of the torque transmitted to the first transmission shaft 42, the second control The valve 82 can independently control the fourth oil cylinder 84 , and then can realize the independent control on the second clutch 72 , and also can independently control the torque transmitted to the second transmission shaft 43 .
  • the torque of the first transmission shaft 42 and the second transmission shaft 43 can be controlled independently at the same time, thereby greatly improving the torque transmission control of the first transmission shaft 42 and the second transmission shaft 43 Accuracy can better ensure the improvement effect of vehicle running performance and improve the stability of the whole vehicle.
  • both the first control valve 81 and the second control valve 82 are two-position three-way solenoid valves, which adjust the working position by controlling the current.
  • the following takes the movement of the first control valve 81 as an example.
  • the movement of the second control valve 82 is similar to that of the first control valve 81 , so no further description is needed.
  • the driven end of the first clutch 71 Since the driven end of the first clutch 71 is connected to the first transmission shaft 42, the power of the output shaft 41 can be transmitted to the first transmission shaft 42.
  • the oil pressure received by the first control valve 81 adjusts the pressing force of the driving end and the driven end of the first clutch 71 , and then adjusts the torque transmitted by the output shaft 41 received by the first transmission shaft 42 .
  • the power mechanism further includes a first pressure sensor 85 and a second pressure sensor 86.
  • the first pressure sensor 85 is arranged between the second valve port 812 and the third oil cylinder 83.
  • the first The pressure sensor 85 is set to detect the oil pressure input from the second valve port 812 to the third oil cylinder 83;
  • the second pressure sensor 86 is set between the fifth valve port 822 and the fourth oil cylinder 84, and the second pressure sensor 86 is set to detect the oil pressure of the third oil cylinder 83;
  • the five-valve port 822 is input to the oil pressure of the fourth oil cylinder 84 .
  • the power mechanism includes an oil tank 91, a mechanical pump 92, and an auxiliary oil pump 93.
  • the mechanical pump 92 and the auxiliary oil pump 93 communicate with an output oil circuit 99 through a check valve 94, and the mechanical pump 92 and The auxiliary oil pump 93 is configured to output high-pressure oil to the output oil circuit 99 , and the output oil circuit 99 is configured to control the operation of the shift brake 51 or the shift clutch 52 through the reversing valve 61 .
  • the mechanical pump 92 and the auxiliary oil pump 93 can provide relatively reliable high-pressure oil input for the power mechanism.
  • the hydraulic oil demand of the power mechanism can be identified according to the actual working state of the system.
  • the mechanical pump 92 and the auxiliary oil pump 93 are respectively connected to the output oil passage 99 through the check valve 94, which can prevent the high-pressure oil from flowing back to the non-working oil pump, causing leakage.
  • the mechanical pump 92 is connected in series with the input shaft 2.
  • the input shaft 2 rotates, it can drive the mechanical pump 92 to rotate to generate high-pressure oil.
  • the auxiliary oil pump 93 can generate high-pressure oil according to actual work requirements.
  • the mechanical pump 92 and the auxiliary oil pump 93 The generated high-pressure oil can be combined in the oil passages in the housing 1 to provide high-pressure oil to the output oil passage 99 .
  • the power mechanism further includes a safety valve 95 and a pressure limiting valve 96.
  • the first ends of the safety valve 95 and the pressure limiting valve 96 are both communicated with the output oil passage 99, and the second ends are connected with the output oil circuit 99.
  • the oil tank 91 is connected, the safety valve 95 has a safety pressure limit, the pressure limiting valve 96 has a normal pressure limit, the normal pressure limit is greater than the working pressure of the output oil circuit 99, the safety pressure limit is greater than the normal pressure limit, and the safety valve 95 is set It is configured to open when the working pressure of the output oil passage 99 is greater than the safety pressure limit.
  • the pressure limiting valve 96 can play a primary role in protecting the hydraulic system of the power mechanism, and the safety valve 95 can play a secondary role in protecting the hydraulic system of the power mechanism, and can prevent the hydraulic components from being damaged when the oil pressure is too high. Damaged when high.
  • the safety valve 95 can be opened and the excess high-pressure oil can be unloaded into the oil tank 91 , which can play a better role in safety protection.
  • a third pressure sensor 98 is provided on the output oil passage 99, and the third pressure sensor 98 can obtain the combined pressure of the high-pressure oil output by the mechanical pump 92 and the auxiliary oil pump 93. Oil pressure, thereby can facilitate the work of safety valve 95 and pressure limiting valve 96.
  • both the mechanical pump 92 and the auxiliary oil pump 93 communicate with the oil tank 91 through a suction filter 97 configured to clean high-pressure oil.
  • the setting of the suction filter 97 can better ensure the cleanliness of the oil circuit of the entire power mechanism, thereby prolonging the service life of the system.
  • the two-speed four-wheel drive torque management system of this embodiment includes a housing 1, an input shaft 2, a planetary gear mechanism, a braking mechanism, an output shaft 41, a torque regulating mechanism and a power mechanism.
  • the input shaft 2 passes through the casing 1 .
  • the planetary gear mechanism includes a sun gear 31, a planet gear 32, a planet carrier 33 and a ring gear 34.
  • the planet gear 32 is mounted on the planet carrier 33 and meshed between the sun gear 31 and the ring gear 34.
  • the sun gear 31 is connected to the input shaft 2 .
  • the braking mechanism is arranged in the casing 1 , and the braking mechanism can selectively lock the ring gear 34 on the casing 1 or lock the ring gear 34 on the planet carrier 33 .
  • the output shaft 41 is connected with the planet carrier 33, and the output shaft 41 is connected with the first transmission shaft 42 and the second transmission shaft 43 through a torque adjustment mechanism, and the torque adjustment mechanism is set to adjust the transmission of the output shaft 41 to the first transmission shaft 42 and the second transmission shaft shaft 43 torque.
  • the power mechanism is arranged on the housing 1, and the power mechanism is configured to control the brake mechanism and the torque adjustment mechanism.
  • the brake mechanism includes a shift brake 51 and a shift clutch 52 .
  • the shift brake 51 is arranged in the casing 1 , the driving end of the shift brake 51 is connected with the ring gear 34 , and the driven end of the shift brake 51 is connected with the casing 1 .
  • the shifting clutch 52 is arranged in the housing 1 , the driving end of the shifting clutch 52 is connected with the ring gear 34 , and the driven end of the shifting clutch 52 is connected with the planet carrier 33 .
  • the torque adjustment mechanism includes a first clutch 71 and a second clutch 72, the driving end of the first clutch 71 is connected with the driving end of the second clutch 72, the driving end of the first clutch 71 can also be connected with the output shaft 41, the first clutch 71 The driven end of the clutch 72 is connected with the first transmission shaft 42 , and the driven end of the second clutch 72 is connected with the second transmission shaft 43 .
  • the power mechanism includes a reversing valve 61, a first oil cylinder 62, a second oil cylinder 63, a first control valve 81, a second control valve 82, a third oil cylinder 83, a fourth oil cylinder 84, an oil tank 91, a mechanical pump 92 and an auxiliary oil pump 93.
  • the reversing valve 61 has a first state, an intermediate state and a second state, the reversing valve 61 has a first oil port 611, a second oil port 612, an oil inlet 613 and an oil return port 614, and the oil inlet 613 is set to communicate with
  • the first input oil circuit 64 the output end of the first oil cylinder 62 is connected with the active end of the shift brake 51, the output end of the second oil cylinder 63 is connected with the active end of the shift clutch 52, the first oil cylinder 62 is connected with the first oil port 611 communicates, the second oil cylinder 63 communicates with the second oil port 612, when the reversing valve 61 is in the first state, the oil inlet 613 of the reversing valve 61 communicates with the first oil port 611, and the second oil port 612 communicates with the return oil port Port 614 communicates, when the reversing valve 61 is in the second state, the oil inlet 613 communicates with the second oil port 612
  • the first control valve 81 has a first switching position and a second switching position.
  • the first control valve 81 has a first valve port 811, a second valve port 812 and a third valve port 813.
  • the first valve port 811 is set to communicate with the second valve port.
  • the second input oil circuit 87, the second valve port 812 communicates with the third oil cylinder 83, the output end of the third oil cylinder 83 is connected with the driving end of the first clutch 71, when the first control valve 81 is in the first switching position, the first The valve port 811 communicates with the second valve port 812.
  • the second valve port 812 communicates with the third valve port 813; the second control valve 82 has the third switching position and the fourth switching position.
  • the second control valve 82 has a fourth valve port 821, a fifth valve port 822 and a sixth valve port 823, the fourth valve port 821 is set to communicate with the second input oil passage 87, the fifth valve port 822 is connected to the fourth oil cylinder 84 is connected, the output end of the fourth oil cylinder 84 is connected with the driving end of the second clutch 72, when the second control valve 82 is in the third switching position, the fourth valve port 821 is connected with the fifth valve port 822, and the second control valve 82 When in the fourth switching position, the fifth valve port 822 communicates with the sixth valve port 823 .
  • the mechanical pump 92 and the auxiliary oil pump 93 communicate with the output oil circuit 99 respectively through the check valve 94.
  • the mechanical pump 92 and the auxiliary oil pump 93 are set to output high-pressure oil to the output oil circuit 99, and the output oil circuit 99 is set to control the brake through the control valve.
  • Mechanism and output shaft 41 switch.
  • the output oil passage 99 communicates with the oil inlet 613 , the first valve port 811 and the fourth valve port 821 .
  • Mechanical pump 92 and auxiliary oil pump 93 all communicate with oil tank 91 by suction filter 97, and suction filter 97 is set to clean high-pressure oil.
  • the power mechanism also includes a first pressure sensor 85 , a second pressure sensor 86 , a safety valve 95 and a pressure limiting valve 96 .
  • the first pressure sensor 85 is arranged between the second valve port 812 and the third oil cylinder 83, and the first pressure sensor 85 is configured to detect the oil pressure input from the second valve port 812 to the third oil cylinder 83; the second pressure sensor 86 is arranged at Between the fifth valve port 822 and the fourth oil cylinder 84 , the second pressure sensor 86 is configured to detect the oil pressure input from the fifth valve port 822 to the fourth oil cylinder 84 .
  • the safety valve 95 has a safety pressure limit
  • the pressure limiting valve 96 has a normal pressure limit
  • the normal pressure limit is greater than the working pressure of the output oil circuit 99
  • the safety pressure limit is greater than the normal pressure limit
  • the safety valve 95 is configured so that when the working pressure of the output oil circuit 99 is greater than the safety pressure limit Open.
  • the present application also discloses a vehicle, including the aforementioned two-speed four-wheel drive torque management system.
  • the vehicle of the embodiment of the present application since it has the above-mentioned two-speed four-wheel drive torque management system, the torque distribution capability of the vehicle can be improved, and the running stability of the vehicle can be improved.

Abstract

本申请公开了一种两档四驱扭矩管理系统及车辆,涉及车辆工程技术领域。该两档四驱扭矩管理系统包括壳体、输入轴、行星齿轮机构、制动机构、输出轴、扭矩调节机构和动力机构。输入轴穿设在壳体上。行星轮安装在行星架上且啮合在太阳轮和齿圈之间,太阳轮与输入轴连接。制动机构设在壳体内,制动机构能够可选择地将齿圈锁紧在壳体上或将齿圈锁紧在行星架上。输出轴与行星架连接,输出轴通过扭矩调节机构与第一传动轴和第二传动轴连接,扭矩调节机构设置为调节输出轴传递至第一传动轴和第二传动轴的扭矩。动力机构设在壳体上,动力机构设置为控制制动机构和所述扭矩调节机构。

Description

一种两档四驱扭矩管理系统及车辆
本申请要求在2021年6月3日提交中国专利局、申请号为202110620457.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆工程技术领域,例如涉及一种两档四驱扭矩管理系统及车辆。
背景技术
乘用车四驱系统应用领域广泛。乘用车驱动形式可分为两驱、适时四驱、全时四驱。适时四驱系统利用电子控制系统,结合驾驶员意图、路况及车况,综合判断合理时机,分配前后轴动力,具有响应快,控制准确等特点,最终改善整车动力性、操纵稳定性、整车通过性,同时整车经济性也优于全时四驱。
相关技术中的四驱系统所用的分动器多为单一挡位构型,为了增大分动器传扭范围,分动器被设计成两挡结构,市场中的两挡分动器的执行系统换挡执行多为直流电机控制,这种方案结构复杂,加工难度大、成本高。同时相关技术中的四驱系统的车辆在面对恶劣工况和突发转向情况时,往往难以满足传扭范围需求和整车稳定性需求。
因此,亟需一种两档四驱扭矩管理系统,能够实现两档速比传递并降低加工难度和加工成本,同时提高传扭调节效果,提高整车运动稳定性。
发明内容
本申请提出一种两档四驱扭矩管理系统,能够实现两档速比传递并降低加工难度和加工成本,同时提高传扭调节效果,提高整车运动稳定性。
本申请还提出一种车辆,能够提高车辆的扭矩分配能力,提高车辆的运行稳定性。
本申请的技术方案如下:
第一方面,本申请提供一种两档四驱扭矩管理系统,包括:壳体;输入轴,所述输入轴穿设在所述壳体上;行星齿轮机构,所述行星齿轮机构包括太阳轮、行星轮、行星架和齿圈,所述行星轮安装在所述行星架上且啮合在所述太阳轮和所述齿圈之间,所述太阳轮与所述输入轴连接;制动机构,所述制动机构设在所述壳体内,所述制动机构能够可选择地将所述齿圈锁紧在所述壳体上或将所述齿圈锁紧在所述行星架上;输出轴,所述输出轴与所述行星架连接,所述输出轴通过扭矩调节机构与第一传动轴和第二传动轴连接,所述扭矩调节机构设置为调节所述输出轴传递至所述第一传动轴和所述第二传动轴的扭矩;动力机构,所述动力机构设在所述壳体上,所述动力机构设置为控制所述制动机构和所述扭矩调节机构。
第二方面,本申请提供一种车辆,包括前文所述的两档四驱扭矩管理系统。
附图说明
图1是本申请具体实施方式提供的两档四驱扭矩管理系统的结构示意图;
图2是本申请具体实施方式提供的动力机构的结构示意图。
附图标记
1、壳体;
2、输入轴;
31、太阳轮;32、行星轮;33、行星架;34、齿圈;
41、输出轴;42、第一传动轴;43、第二传动轴;44、第一啮合齿;45、第二啮合齿;
51、换挡制动器;52、换挡离合器;
61、换向阀;611、第一油口;612、第二油口;613、进油口;614、回油口;62、第一油缸;63、第二油缸;64、第一输入油路;
71、第一离合器;72、第二离合器;
81、第一控制阀;811、第一阀口;812、第二阀口;813、第三阀口;82、第二控制阀;821、第四阀口;822、第五阀口;823、第六阀口;83、第三油缸;84、第四油缸;85、第一压力传感器;86、第二压力传感器;87、第二输入油路;
91、油箱;92、机械泵;93、辅助油泵;94、单向阀;95、安全阀;96、限压阀;97、吸滤器;98、第三压力传感器;99、输出油路。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
下面参考图1和图2描述本申请实施例的两档四驱扭矩管理系统的结构。
如图1和图2所示,图1公开了一种两档四驱扭矩管理系统,其包括壳体1、输入轴2、行星齿轮机构、制动机构、输出轴41、扭矩调节机构和动力机构。输入轴2穿设在壳体1上。行星齿轮机构包括太阳轮31、行星轮32、行星架33和齿圈34,行星轮32安装在行星架33上且啮合在太阳轮31和齿圈34之间,太阳轮31与输入轴2连接。制动机构设在壳体1内,制动机构能够可选择地将齿圈34锁紧在壳体1上或将齿圈34锁紧在行星架33上。输出轴41与行星架33连接,输出轴41通过扭矩调节机构与第一传动轴42和第二传动轴43连接,扭矩调节机构设置为调节输出轴41传递至第一传动轴42和第二传动轴43的扭矩。动力机构设在壳体1上,动力机构设置为控制制动机构和所述扭矩调节机构。
可以理解的是,当制动机构将齿圈34锁紧在壳体1上时,输入轴2的动力将通过太阳轮31、行星轮32和行星架33并最终由于行星架33连接的输出轴41输出至第一传动轴42和第二传动轴43,此时输入轴2与输出轴41能够实现大速比输出;当制动机构将齿圈34锁紧在行星架33上时,整个行星齿轮机构形成为整体,此时输入轴2和输出轴41能够实现小速比输出,由此,通过制动机构调整输入轴2、行星齿轮机构和输出轴41的配合关系,即可较为可靠地实现两个速比的输出,从而实现两档分动和提高分动器的传扭范围,较好地保证整车的扭矩分配要求。同时通过行星齿轮机构和制动机构实现换挡,相对相关技术中的直流电机控制系统,结构更为简单,并能降低加工难度和加工成本。
扭矩调节机构能够调节由输出轴41输出至第一传动轴42和第二传动轴43的驱动力,从而能够较好地实现对第一传动轴42和第二传动轴43的动态驱动 力分配管理。例如,在第一传动轴42和第二传动轴43分别与车辆的左右车轮连接时,如整车遇到转向失稳情况,通过扭矩调节机构能够额外对左右车轮提供动力,从而实现主动偏航角度的控制,改善整车的转向角度,提高整车的过弯性能,使车辆运动更为顺畅,较好地改善了整车的运行稳定性。
在本实施例中,动力机构能够对制动机构和扭矩调节机构起到控制效果,从而能够同时实现两档分动器和对第一传动轴42、第二传动轴43的扭矩分配管理,使得两档四驱扭矩管理系统具有较高的集成度,进而能够节约成本。
在一些实施例中,如图1所示,制动机构包括换挡制动器51和换挡离合器52。换挡制动器51设在壳体1内,换挡制动器51的主动端与齿圈34连接,换挡制动器51的从动端与壳体1连接。换挡离合器52设在壳体1内,换挡离合器52的主动端与齿圈34连接,换挡离合器52的从动端与行星架33连接。
可以理解的是,将制动机构设置为互相独立的换挡制动器51和换挡离合器52,能够较好地保证行星齿轮机构在同一时间内仅能将输入轴2输入的动力以一种速比输出至输出轴41,从而确保整个两档四驱扭矩管理系统在同一时间内处于一个档位运行,从而较好地保证了其运行安全性和可靠性。
在一些具体的实施例中,换挡离合器52和换挡制动器51均为多片湿式,能够具有较长的使用寿命,有利于实现档位的自动切换。
在一些实施例中,如图2所示,动力机构包括换向阀61、第一油缸62和第二油缸63,换向阀61具有第一状态、中间状态和第二状态,换向阀61具有第一油口611、第二油口612、进油口613和回油口614,进油口613设置为连通第一输入油路64,第一油缸62的输出端与换挡制动器51的主动端连接,第二油缸63的输出端与换挡离合器52的主动端连接,第一油缸62与第一油口611连通,第二油缸63与第二油口612连通,换向阀61位于第一状态时,换向阀61的进油口613与第一油口611连通,第二油口612与回油口614连通,换向阀61位于第二状态时,进油口613与第二油口612连通,第一油口611与回油口614连通,换向阀61位于中间状态时,第一油口611和第二油口612均与回 油口614连通。
可以理解的是,通过一个换向阀61实现系统的档位切换,能够较好地保证在同一时间内,第一输入油路64的高压油仅能进入第一油缸62和第二油缸63中的一个,从而保证了系统仅能在一个档位运行。同时单个换向阀61还有利于提高动力机构的集成度,以降低油路复杂程度和降低成本。
示例性的,在本实施例中,换向阀61为三位四通电磁阀,其通过控制电流调节工作位置,当换向阀61位于左侧位置时即处于第一状态,此时高压油通过第一输入油路64进入进油口613并通过第一油口611并通入第一油缸62,实现对换挡制动器51的主动端的控制,进而使换挡制动器51的主动端与从动端压紧,使得齿圈34与壳体1固定,进而实现输出轴41的大速比输出;当换向阀61位于右侧位置时即处于第二状态,此时高压油通过第一输入油路64通过进油口613进入第二油口612并通入第二油缸63,实现对换挡离合器52的主动端的控制,进而使换挡离合器52的主动端与从动端压紧,并将齿圈34锁紧在行星架33上,实现输出轴41的小速比输出;当换向阀61位于中间位置时即处于中间状态,此时第一油缸62和第二油缸63均与回油口614连通,高压油不进入第一油缸62和第二油缸63。
在一些实施例中,如图1所示,扭矩调节机构包括第一离合器71和第二离合器72,第一离合器71的主动端与第二离合器72的主动端连接,第一离合器71的主动端还能够与输出轴41连接,第一离合器71的从动端与第一传动轴42连接,第二离合器72的从动端与第二传动轴43连接。
可以理解的是,由于输出轴41与第一离合器71的主动端连接,第一离合器71的主动端和第二离合器72的主动端连接,从而使得输出轴41能够同时带动第一离合器71的主动端和第二离合器72的主动端转动,再通过调整第一离合器71的主动端和从动端的压紧程度,即可调整由第一离合器71输出至第一传动轴42的扭矩,通过调整第二离合器72的主动端和从动端的压紧程度,调整由第二离合器72输出至第二传动轴43的扭矩。由此,通过第一离合器71和 第二离合器72的压紧程度,即能较为精准地调整传递扭矩,从而便于根据车辆的实际运行状况实现可靠的扭矩调节效果。同时,由于第一传动轴42通过第一离合器71控制、第二传动轴43通过第二离合器72控制,能够使扭矩调节机构同时调节输出至第一传动轴42和第二传动轴43的扭矩,进而可以根据第一传动轴42和第二传动轴43的不同传扭更好地改善整车的转向性能,如解决调节转向不足或转动过度的问题。此外,当第一离合器71和第二离合器72的压紧力调节至最大时,能够实现对第一传动轴42和第二传动轴43上的车辆的电子限滑功能,且由于两者分配为最大,能够较好地保证左右车轮的动力对等分配。
示例性的,在本实施例中,第一离合器71和第二离合器72均可设置为多片湿式离合器,其调节范围更大、调节精度更高,更有利于提高扭矩调节的精度,实现对扭矩的准确控制,保证整车的运行稳定性。
在一些具体的实施例中,如图1所示,输出轴41上设有第一啮合齿44,第一离合器71上设有第二啮合齿45,第一啮合齿44能够与第二啮合齿45配合以将输出轴41的动力旋转90度后传递至第一离合器71和第二离合器72。当然,在本申请的其他实施例中,第二啮合齿45也能够设置于第二离合器72上。
在一些实施例中,如图2所示,动力机构包括第一控制阀81、第二控制阀82、第三油缸83和第四油缸84,第一控制阀81具有第一切换位和第二切换位,第一控制阀81具有第一阀口811、第二阀口812和第三阀口813,第一阀口811设置为连通第二输入油路87,第二阀口812与第三油缸83连通,第三油缸83的输出端与第一离合器71的主动端连接,第一控制阀81位于第一切换位时,第一阀口811与第二阀口812连通,第一控制阀81位于第二切换位时,第二阀口812与第三阀口813连通;第二控制阀82具有第三切换位和第四切换位,第二控制阀82具有第四阀口821、第五阀口822和第六阀口823,第四阀口821设置为连通第二输入油路87,第五阀口822与第四油缸84连通,第四油缸84的输出端与第二离合器72的主动端连接,第二控制阀82位于第三切换位时,第四阀口821与第五阀口822连通,第二控制阀82位于第四切换位时,第五阀 口822与第六阀口823连通。
可以理解的是,第一控制阀81能够单独控制第三油缸83,进而能够实现对第一离合器71的单独控制,也就能够对传递至第一传动轴42的扭矩的单独控制,第二控制阀82能够单独控制第四油缸84,进而能够实现对第二离合器72的单独控制,也就能够对传递至第二传动轴43的扭矩的单独控制。由此,根据本实施例的动力机构,能够同时对第一传动轴42和第二传动轴43的扭矩进行独立控制,从而大大提高了第一传动轴42和第二传动轴43的传扭控制精度,能够更好地保证车辆运行性能的改善效果,提高整车稳定性。
示例性的,在本实施例中,第一控制阀81和第二控制阀82均为二位三通电磁阀,其通过控制电流调节工作位置,下面以第一控制阀81的运动为例进行说明,第二控制阀82的运动与第一控制阀81类似,无需赘述。当第一控制阀81位于第一切换位时,高压油进入第一阀口811并通过第二阀口812进入第三油缸83,实现对第一离合器71的主动端的控制,进而使第一离合器71的主动端与从动端压紧,由于第一离合器71的从动端与第一传动轴42连接,从而能够将输出轴41的动力传动至第一传动轴42上,且能够通过调整第一控制阀81受到的油压大小调整第一离合器71的主动端和从动端的压紧力的大小,进而调整第一传动轴42接收到的由输出轴41传递的扭矩。
在一些实施例中,如图2所示,动力机构还包括第一压力传感器85和第二压力传感器86,第一压力传感器85设在第二阀口812与第三油缸83之间,第一压力传感器85设置为检测第二阀口812输入至第三油缸83的油压;第二压力传感器86设在第五阀口822与第四油缸84之间,第二压力传感器86设置为检测第五阀口822输入至第四油缸84的油压。
可以理解的是,通过第一压力传感器85和第二压力传感器86的设置,能够实时检测由第一控制阀81和第二控制阀82输出至第三油缸83和第四油缸84的高压油的油压,从而能够根据油压获取第一离合器71和第二离合器72的压紧力,以便于根据该压紧力实现闭环精准控制,进而能够有效保证传递扭矩的 精准控制,规避传扭调节不足或过度的问题,从而较好地提高了系统的控制精度和控制可靠性。
在一些实施例中,如图2所示,动力机构包括油箱91、机械泵92和辅助油泵93,机械泵92和辅助油泵93分别通过单向阀94与输出油路99连通,机械泵92和辅助油泵93设置为向输出油路99输出高压油,输出油路99设置为通过换向阀61控制换挡制动器51或者换挡离合器52工作。
可以理解的是,通过机械泵92和辅助油泵93能够为动力机构提供较为可靠地高压油的输入,同时能够根据系统的实际工作状态,识别动力机构的液压油需求,通过控制辅助油泵93的间歇工作,能够较好地提供动力机构的控制效率。此外,机械泵92和辅助油泵93分别通过单向阀94连通于输出油路99,能够防止高压油回流至未工作的油泵处,造成泄露。
示例性地,机械泵92与输入轴2串联,输入轴2转动时能够带动机械泵92转动以产生高压油,同时辅助油泵93能够根据实际工作需求产生高压油,机械泵92和辅助油泵93所产生的高压油能够在壳体1内的油路汇合以为输出油路99提供高压油。
在一些实施例中,如图2所示,动力机构还包括安全阀95和限压阀96,安全阀95和限压阀96的第一端均与输出油路99连通,第二端均与油箱91连通,安全阀95具有安全压力限值,限压阀96具有常用压力限值,常用压力限值大于输出油路99的工作压力,安全压力限值大于常用压力限值,安全阀95被配置为当输出油路99的工作压力大于安全压力限值时打开。
可以理解的是,限压阀96能够对动力机构的液压系统起到第一重保护效果,安全阀95能够对动力机构的液压系统起到二重安全保障作用,能够防止液压元件在油压过高时损坏。示例性地,当动力机构的压力大于安全压力限值时,安全阀95能够打开并将多余的高压油卸荷至油箱91中,即可起到较好的安全保障作用。通过安全阀95和限压阀96的设置,即可保证了动力机构的安全和正常使用,还延长了动力机构的使用寿命。
在一些具体的实施例中,如图2所示,输出油路99上设有第三压力传感器98,第三压力传感器98能够获取由机械泵92和辅助油泵93所输出的高压油汇合后的油压,从而能够便于安全阀95和限压阀96的工作。
在一些实施例中,机械泵92和辅助油泵93均通过吸滤器97与油箱91连通,吸滤器97设置为清洁高压油。
可以理解的是,吸滤器97的设置能够较好地保证整个动力机构的油路的清洁度,从而延长系统的使用寿命。
实施例:
下面参考图1和图2描述本申请一个具体实施例的两档四驱扭矩管理系统。
本实施例的两档四驱扭矩管理系统包括壳体1、输入轴2、行星齿轮机构、制动机构、输出轴41、扭矩调节机构和动力机构。输入轴2穿设在壳体1上。行星齿轮机构包括太阳轮31、行星轮32、行星架33和齿圈34,行星轮32安装在行星架33上且啮合在太阳轮31和齿圈34之间,太阳轮31与输入轴2连接。制动机构设在壳体1内,制动机构能够可选择地将齿圈34锁紧在壳体1上或将齿圈34锁紧在行星架33上。输出轴41与行星架33连接,输出轴41通过扭矩调节机构与第一传动轴42和第二传动轴43连接,扭矩调节机构设置为调节输出轴41传递至第一传动轴42和第二传动轴43的扭矩。动力机构设在壳体1上,动力机构设置为控制制动机构和所述扭矩调节机构。
制动机构包括换挡制动器51和换挡离合器52。换挡制动器51设在壳体1内,换挡制动器51的主动端与齿圈34连接,换挡制动器51的从动端与壳体1连接。换挡离合器52设在壳体1内,换挡离合器52的主动端与齿圈34连接,换挡离合器52的从动端与行星架33连接。
扭矩调节机构包括第一离合器71和第二离合器72,第一离合器71的主动端与第二离合器72的主动端连接,第一离合器71的主动端还能够与输出轴41连接,第一离合器71的从动端与第一传动轴42连接,第二离合器72的从动端 与第二传动轴43连接。
动力机构包括换向阀61、第一油缸62、第二油缸63、第一控制阀81、第二控制阀82、第三油缸83第四油缸84、油箱91、机械泵92和辅助油泵93。
换向阀61具有第一状态、中间状态和第二状态,换向阀61具有第一油口611、第二油口612、进油口613和回油口614,进油口613设置为连通第一输入油路64,第一油缸62的输出端与换挡制动器51的主动端连接,第二油缸63的输出端与换挡离合器52的主动端连接,第一油缸62与第一油口611连通,第二油缸63与第二油口612连通,换向阀61位于第一状态时,换向阀61的进油口613与第一油口611连通,第二油口612与回油口614连通,换向阀61位于第二状态时,进油口613与第二油口612连通,第一油口611与回油口614连通,换向阀61位于中间状态时,第一油口611和第二油口612均与回油口614连通。
第一控制阀81具有第一切换位和第二切换位,第一控制阀81具有第一阀口811、第二阀口812和第三阀口813,第一阀口811设置为连通第二输入油路87,第二阀口812与第三油缸83连通,第三油缸83的输出端与第一离合器71的主动端连接,第一控制阀81位于第一切换位时,第一阀口811与第二阀口812连通,第一控制阀81位于第二切换位时,第二阀口812与第三阀口813连通;第二控制阀82具有第三切换位和第四切换位,第二控制阀82具有第四阀口821、第五阀口822和第六阀口823,第四阀口821设置为连通第二输入油路87,第五阀口822与第四油缸84连通,第四油缸84的输出端与第二离合器72的主动端连接,第二控制阀82位于第三切换位时,第四阀口821与第五阀口822连通,第二控制阀82位于第四切换位时,第五阀口822与第六阀口823连通。
机械泵92和辅助油泵93分别通过单向阀94与输出油路99连通,机械泵92和辅助油泵93设置为向输出油路99输出高压油,输出油路99设置为通过控制阀控制制动机构和输出轴41切换。输出油路99与进油口613、第一阀口811和第四阀口821连通。机械泵92和辅助油泵93均通过吸滤器97与油箱91连 通,吸滤器97设置为清洁高压油。
动力机构还包括第一压力传感器85、第二压力传感器86安全阀95和限压阀96。第一压力传感器85设在第二阀口812与第三油缸83之间,第一压力传感器85设置为检测第二阀口812输入至第三油缸83的油压;第二压力传感器86设在第五阀口822与第四油缸84之间,第二压力传感器86设置为检测第五阀口822输入至第四油缸84的油压。安全阀95和限压阀96的第一端均与输出油路99连通,安全阀95和限压阀96的第二端均与油箱91连通,安全阀95具有安全压力限值,限压阀96具有常用压力限值,常用压力限值大于输出油路99的工作压力,安全压力限值大于常用压力限值,安全阀95被配置为当输出油路99的工作压力大于安全压力限值时打开。
本申请还公开了一种车辆,包括前文所述的两档四驱扭矩管理系统。
根据本申请实施例的车辆,由于具有前文所述的两档四驱扭矩管理系统,能够提高车辆的扭矩分配能力,提高车辆的运行稳定性。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (10)

  1. 一种两档四驱扭矩管理系统,包括:
    壳体(1);
    输入轴(2),所述输入轴(2)穿设在所述壳体(1)上;
    行星齿轮机构,所述行星齿轮机构包括太阳轮(31)、行星轮(32)、行星架(33)和齿圈(34),所述行星轮(32)安装在所述行星架(33)上且啮合在所述太阳轮(31)和所述齿圈(34)之间,所述太阳轮(31)与所述输入轴(2)连接;
    制动机构,所述制动机构设在所述壳体(1)内,所述制动机构能够可选择地将所述齿圈(34)锁紧在所述壳体(1)上或将所述齿圈(34)锁紧在所述行星架(33)上;
    输出轴(41),所述输出轴(41)与所述行星架(33)连接,所述输出轴(41)通过扭矩调节机构与第一传动轴(42)和第二传动轴(43)连接,所述扭矩调节机构设置为调节所述输出轴(41)传递至所述第一传动轴(42)和所述第二传动轴(43)的扭矩;
    动力机构,所述动力机构设在所述壳体(1)上,所述动力机构设置为控制所述制动机构和所述扭矩调节机构。
  2. 根据权利要求1所述的两档四驱扭矩管理系统,其中,所述制动机构包括:
    换挡制动器(51),所述换挡制动器(51)设在所述壳体(1)内,所述换挡制动器(51)的主动端与所述齿圈(34)连接,所述换挡制动器(51)的从动端与所述壳体(1)连接;
    换挡离合器(52),所述换挡离合器(52)设在所述壳体(1)内,所述换挡离合器(52)的主动端与所述齿圈(34)连接,所述换挡离合器(52)的从动端与所述行星架(33)连接。
  3. 根据权利要求2所述的两档四驱扭矩管理系统,其中,所述动力机构包括换向阀(61)、第一油缸(62)和第二油缸(63),所述换向阀(61)具有第一状态、中间状态和第二状态,所述换向阀(61)具有第一油口(611)、第二油 口(612)、进油口(613)和回油口(614),所述进油口(613)设置为连通第一输入油路(64),所述第一油缸(62)的输出端与所述换挡制动器(51)的主动端连接,所述第二油缸(63)的输出端与所述换挡离合器(52)的主动端连接,所述第一油缸(62)与所述第一油口(611)连通,所述第二油缸(63)与所述第二油口(612)连通,所述换向阀(61)位于第一状态时,所述进油口(613)与所述第一油口(611)连通,所述第二油口(612)与所述回油口(614)连通,所述换向阀(61)位于所述第二状态时,所述进油口(613)与所述第二油口(612)连通,所述第一油口(611)与所述回油口(614)连通,所述换向阀(61)位于所述中间状态时,所述第一油口(611)和所述第二油口(612)均与所述回油口(614)连通。
  4. 根据权利要求1所述的两档四驱扭矩管理系统,其中,所述扭矩调节机构包括第一离合器(71)和第二离合器(72),所述第一离合器(71)的主动端与所述第二离合器(72)的主动端连接,所述第一离合器(71)的主动端还能够与所述输出轴(41)连接,所述第一离合器(71)的从动端与所述第一传动轴(42)连接,所述第二离合器(72)的从动端与所述第二传动轴(43)连接。
  5. 根据权利要求4所述的两档四驱扭矩管理系统,其中,所述动力机构包括第一控制阀(81)、第二控制阀(82)、第三油缸(83)和第四油缸(84),所述第一控制阀(81)具有第一切换位和第二切换位,所述第一控制阀(81)具有第一阀口(811)、第二阀口(812)和第三阀口(813),所述第一阀口(811)设置为连通第二输入油路(87),所述第二阀口(812)与所述第三油缸(83)连通,所述第三油缸(83)的输出端与所述第一离合器(71)的主动端连接,所述第一控制阀(81)位于所述第一切换位时,所述第一阀口(811)与所述第二阀口(812)连通,所述第一控制阀(81)位于所述第二切换位时,所述第二阀口(812)与所述第三阀口(813)连通;所述第二控制阀(82)具有第三切换位和第四切换位,所述第二控制阀(82)具有第四阀口(821)、第五阀口(822)和第六阀口(823),所述第四阀口(821)设置为连通所述第二输入油路(87), 所述第五阀口(822)与所述第四油缸(84)连通,所述第四油缸(84)的输出端与所述第二离合器(72)的主动端连接,所述第二控制阀(82)位于所述第三切换位时,所述第四阀口(821)与所述第五阀口(822)连通,所述第二控制阀(82)位于所述第四切换位时,所述第五阀口(822)与所述第六阀口(823)连通。
  6. 根据权利要求5所述的两档四驱扭矩管理系统,其中,所述动力机构还包括第一压力传感器(85)和第二压力传感器(86),所述第一压力传感器(85)设在所述第二阀口(812)与所述第三油缸(83)之间,所述第一压力传感器(85)设置为检测所述第二阀口(812)输入至所述第三油缸(83)的油压;所述第二压力传感器(86)设在所述第五阀口(822)与所述第四油缸(84)之间,所述第二压力传感器(86)设置为检测所述第五阀口(822)输入至所述第四油缸(84)的油压。
  7. 根据权利要求1所述的两档四驱扭矩管理系统,其中,所述动力机构包括油箱(91)、机械泵(92)和辅助油泵(93),所述机械泵(92)和所述辅助油泵(93)分别通过单向阀(94)与输出油路(99)连通,所述机械泵(92)和所述辅助油泵(93)设置为向所述输出油路(99)输出高压油,所述输出油路(99)设置为通过控制阀控制所述制动机构和所述输出轴(41)切换。
  8. 根据权利要求7所述的两档四驱扭矩管理系统,其中,所述动力机构还包括安全阀(95)和限压阀(96),所述安全阀(95)和所述限压阀(96)的第一端均与所述输出油路(99)连通,所述安全阀(95)和所述限压阀(96)的第二端均与所述油箱(91)连通,所述安全阀(95)具有安全压力限值,所述限压阀(96)具有常用压力限值,所述常用压力限值大于所述输出油路(99)的工作压力,所述安全压力限值大于所述常用压力限值,所述安全阀(95)被配置为当所述输出油路(99)的工作压力大于所述安全压力限值时打开。
  9. 根据权利要求7所述的两档四驱扭矩管理系统,其中,所述机械泵(92)和所述辅助油泵(93)均通过吸滤器(97)与所述油箱(91)连通,所述吸滤 器(97)设置为清洁所述高压油。
  10. 一种车辆,包括权利要求1-9中任一项所述的两档四驱扭矩管理系统。
PCT/CN2022/096742 2021-06-03 2022-06-02 一种两档四驱扭矩管理系统及车辆 WO2022253292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110620457.2A CN113357326B (zh) 2021-06-03 2021-06-03 一种两挡四驱扭矩管理系统及车辆
CN202110620457.2 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022253292A1 true WO2022253292A1 (zh) 2022-12-08

Family

ID=77531793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096742 WO2022253292A1 (zh) 2021-06-03 2022-06-02 一种两档四驱扭矩管理系统及车辆

Country Status (2)

Country Link
CN (1) CN113357326B (zh)
WO (1) WO2022253292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357326B (zh) * 2021-06-03 2023-07-18 中国第一汽车股份有限公司 一种两挡四驱扭矩管理系统及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370588A (en) * 1991-11-29 1994-12-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Drive power distribution control system for vehicle
CN104960414A (zh) * 2015-06-29 2015-10-07 吉林大学 动力传动系统以及具有其的车辆
CN106853770A (zh) * 2017-03-08 2017-06-16 重庆青山工业有限责任公司 一种纯电动汽车行星排式两挡变速器
CN107499119A (zh) * 2017-08-02 2017-12-22 武汉理工大学 一种集成式电动车用单排行星齿轮系两挡驱动系统
CN209738812U (zh) * 2019-03-30 2019-12-06 泉州市力普机械科技有限公司 一种反传动分离前驱动桥及其半轴离合装置
CN211525449U (zh) * 2019-12-11 2020-09-18 格特拉克(江西)传动系统有限公司 一种平行轴式两挡电驱动系统
CN113357326A (zh) * 2021-06-03 2021-09-07 中国第一汽车股份有限公司 一种两挡四驱扭矩管理系统及车辆

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942055B2 (en) * 2001-04-05 2005-09-13 Magna Drivetrain Of America, Inc. Electronically-controlled rear module for all-wheel drive system
US6962227B1 (en) * 2004-05-07 2005-11-08 Magna Drivetrain Of America, Inc. Torque vectoring drive axle assembly
US7811194B2 (en) * 2004-05-25 2010-10-12 Magna Powertrain Usa, Inc. Differential assembly with torque vectoring drive mechanism
US7361113B2 (en) * 2005-01-18 2008-04-22 Magna Powertrain Usa, Inc. Torque distributing drive unit for motor vehicles
JP4483819B2 (ja) * 2005-04-28 2010-06-16 株式会社豊田中央研究所 動力伝達システム
DE102006022173A1 (de) * 2006-05-12 2007-11-15 Zf Friedrichshafen Ag Getriebevorrichtung zum Verteilen eines Antriebsmomentes auf wenigstens zwei Antriebswellen
JP2009257433A (ja) * 2008-04-15 2009-11-05 Univance Corp 駆動力配分装置及びその製造方法
CN102678876B (zh) * 2012-06-04 2014-05-14 东北大学 一种风力发电液控换挡稳压装置
CN102848913B (zh) * 2012-09-18 2016-04-20 中国第一汽车股份有限公司 一种采用行星齿轮变速器的增程式电动汽车动力系统
WO2014055733A1 (en) * 2012-10-05 2014-04-10 American Axle & Manufacturing, Inc. Single speed and two-speed disconnecting axle arrangements
KR101565235B1 (ko) * 2013-02-06 2015-11-02 마그나 파워트레인 아게 운트 코 카게 트랜스퍼 케이스
EP3034348B1 (de) * 2014-12-19 2019-06-05 NAF Neunkirchener Achsenfabrik AG Verteilergetriebe zum Aufteilen eines Drehmoments auf wenigstens eine erste und eine zweite Achswelle eines Kraftfahrzeugs
JP2017140937A (ja) * 2016-02-10 2017-08-17 トヨタ自動車株式会社 4輪駆動車両のトランスファ
DE102016110915A1 (de) * 2016-06-14 2017-12-14 Gkn Automotive Ltd. Hydraulisches Kupplungsbetätigungssystem mit On-Demand Kupplungsbeölung
CN207673796U (zh) * 2017-03-15 2018-07-31 清华大学 一种双制动器式电动车两挡变速箱
CN107585016A (zh) * 2017-09-22 2018-01-16 吉林大学 一种配置开放绕组电机的四驱车辆混合动力系统
CN111823854A (zh) * 2019-04-22 2020-10-27 广州汽车集团股份有限公司 四驱系统及车辆
CN110044612B (zh) * 2019-05-23 2024-03-12 合肥工业大学 一种湿式双离合器总成综合性能测试设备
CN211550436U (zh) * 2019-12-23 2020-09-22 中国第一汽车股份有限公司 一种四驱分动器总成及汽车
CN112855871B (zh) * 2021-01-19 2022-02-11 燕山大学 具备电控动力分配和机械锁止的两档分动器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370588A (en) * 1991-11-29 1994-12-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Drive power distribution control system for vehicle
CN104960414A (zh) * 2015-06-29 2015-10-07 吉林大学 动力传动系统以及具有其的车辆
CN106853770A (zh) * 2017-03-08 2017-06-16 重庆青山工业有限责任公司 一种纯电动汽车行星排式两挡变速器
CN107499119A (zh) * 2017-08-02 2017-12-22 武汉理工大学 一种集成式电动车用单排行星齿轮系两挡驱动系统
CN209738812U (zh) * 2019-03-30 2019-12-06 泉州市力普机械科技有限公司 一种反传动分离前驱动桥及其半轴离合装置
CN211525449U (zh) * 2019-12-11 2020-09-18 格特拉克(江西)传动系统有限公司 一种平行轴式两挡电驱动系统
CN113357326A (zh) * 2021-06-03 2021-09-07 中国第一汽车股份有限公司 一种两挡四驱扭矩管理系统及车辆

Also Published As

Publication number Publication date
CN113357326A (zh) 2021-09-07
CN113357326B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US10732155B2 (en) Two-speed drive module
EP2797766B1 (en) Driving system and electric vehicle comprising the same
CN208842224U (zh) 一种贯通桥主减速器总成
KR101014156B1 (ko) 차량 구동력 분배 장치
JP2007524540A (ja) 統合された油圧駆動モジュールおよび4輪駆動を有する油圧式ハイブリッド車両、およびその動作方法
JP2015536857A (ja) 駆動軸から駆動軸へのトルク伝達による油圧アシストを備える車両
CN109017291A (zh) 一种贯通桥主减速器总成
WO2022253292A1 (zh) 一种两档四驱扭矩管理系统及车辆
GB2434418A (en) Transaxle with hydraulic seals adjacent a halfshaft
WO2019019292A1 (zh) 一种车辆双动力源双驱动总成
JPH01182128A (ja) 車両の前後輪駆動装置
CN210591398U (zh) 带差速限制的分时四驱商用车分动箱
CN204041892U (zh) 一种定轴式动力换挡变速器
WO2023050727A1 (zh) 前轮驱动系统和摊铺机
US7413525B2 (en) Hydraulic control system for power transmission assembly
US11313447B1 (en) Power-split hydro-mechanical hybrid transmission system with automatic adjustment function
CN111853228B (zh) 一种自动变速器液压控制系统
US20210354556A1 (en) Transmission system for a work vehicle
CN110001371B (zh) 一种对置式双电机动力耦合自动变速器
CN211592225U (zh) 用于前置前驱混合动力车辆的变速器
CN2739424Y (zh) 重型汽车变速器
JP2022133115A (ja) 車両用駆動装置
CN108248364B (zh) 双行星排式多模混合动力驱动装置
CN213108992U (zh) 一种多档双电机驱动系统以及车辆
CN219856811U (zh) 一种三速集成的电驱动桥总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE