WO2022253209A1 - 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法 - Google Patents

超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法 Download PDF

Info

Publication number
WO2022253209A1
WO2022253209A1 PCT/CN2022/096147 CN2022096147W WO2022253209A1 WO 2022253209 A1 WO2022253209 A1 WO 2022253209A1 CN 2022096147 W CN2022096147 W CN 2022096147W WO 2022253209 A1 WO2022253209 A1 WO 2022253209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lifting
structural unit
rotating structural
frame
shed
Prior art date
Application number
PCT/CN2022/096147
Other languages
English (en)
French (fr)
Inventor
黄晨光
陈凯
贾新卷
桂峥嵘
莫海钊
张在晨
季永新
崔立会
陈学朋
秦锴
周靖康
张永菲
蔡龙钰
赵绪华
Original Assignee
中国建筑第四工程局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑第四工程局有限公司 filed Critical 中国建筑第四工程局有限公司
Publication of WO2022253209A1 publication Critical patent/WO2022253209A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/142Means in or on the elements for connecting same to handling apparatus
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/162Handles to carry construction blocks

Definitions

  • the invention belongs to the technical field of construction engineering, and more specifically relates to a construction method for a steel shed with a super-high and large-span giant ribbed space folded-plate grid structure.
  • the high-altitude bulk method refers to the method of assembling small units or parts (single rods and single nodes) directly at the design position. It is suitable for various types of grids with bolted joints, especially for difficult lifting situations. , its construction focus is to determine a reasonable assembly sequence, control the elevation and the position of the axis.
  • the strip or block installation method refers to the installation method that divides the network frame into strips or block units, which are hoisted by lifting equipment to the high-altitude design position and placed in place, and then formed as a whole. It is suitable for grids with small changes in stiffness and stress after division, such as two-way orthogonal square pyramids, positively evacuated square pyramids, etc. This installation method is conducive to improving the quality of the project and can save most of the assembly brackets.
  • the high-altitude sliding method refers to the installation method in which the divided grid units are slid single (or one by one) on the pre-set slide rails to the design position and spliced into a whole. It is suitable for grids such as square pyramids placed upright, evacuated square pyramids placed upright, and quadrangular pyramids placed orthogonally in two directions. When sliding, the sliding unit should be guaranteed to be a geometrically invariant system.
  • the overall hoisting method refers to the construction method in which the grid frame is assembled on the ground and then hoisted into place with lifting equipment.
  • the welding work of the overall network frame is carried out on the ground to better ensure the construction quality.
  • This method is applicable to various types of network frames, and it can be translated or rotated in place at high altitude during hoisting.
  • the overall lifting method refers to the construction method of installing lifting equipment on the structural column and lifting the grid frame assembled on the ground into place.
  • the overall lifting method of the grid can install lifting equipment on the structure to lift the grid, and can also lift the grid while the column synovial film is being constructed. It is suitable for peripheral support and multi-point support grid, and can be used for construction with small equipment such as plate lifters and hydraulic jacks.
  • the overall jacking method refers to the method of assembling the net frame into a whole on the ground at the design position, and then using a jack to lift the net frame to the design height. It is suitable for multi-point supporting grids with fewer fulcrums.
  • the high-altitude bulk method is the general assembly at the design position
  • the high-altitude sliding method is the cumulative sliding assembly at the design level.
  • Both installation methods require a large number of supporting tire frames and a large amount of high-altitude welding.
  • High-altitude hoisting has a large workload and high requirements for precision control, and is often restricted by the construction period and invests a lot of manpower, machinery, etc., and its construction quality and construction safety are difficult to guarantee.
  • the strip or block installation method and the overall hoisting method refer to hoisting the assembled unit to the design position with the help of lifting equipment. These two installation methods are often affected by the lifting capacity and hoisting range of the hoisting equipment.
  • the lifting capacity also complements its own weight, which requires a higher load-carrying capacity of the walking track.
  • the overall lifting method and the overall jacking method are generally applicable to regular multi-point support grids, and the overall jacking method is also affected by the stroke of the jacking equipment.
  • the existing steel canopy can be used for installation It is difficult to meet the installation requirements of this type of steel structure engineering.
  • the present invention provides a construction method for a super-high and large-span giant ribbed space folded-plate grid structure steel canopy, which improves the construction efficiency and safety of an ultra-high and large-span giant ribbed space folded-plate grid structure steel canopy
  • the coefficient reduces the amount of high-altitude operations and ensures the construction quality.
  • a construction method for a steel shed with a super-high and large-span giant ribbed space folded-plate grid structure comprising:
  • the steel canopy is divided into roof canopy and facade canopy; among them, the rotating structural unit in the roof canopy is installed by the construction method of rotation and lifting; the facade canopy is installed by high-altitude bulk method;
  • the construction of the façade canopy will start.
  • the horizontal support tire frame will be installed on the stand structure in the stadium, and multiple front lifting frames and rear lifting frames will be installed in the venue, assembled and rotated on the horizontal frame.
  • Structural unit and set corresponding limit device after the rotating structural unit is assembled, select the appropriate front pulling point and rear pulling point on the rotating structural unit, and install the lifting point device on the front pulling point and rear pulling point ;
  • the construction of the ultra-high and large-span giant ribbed space folded-plate grid structure steel canopy was completed.
  • the roof shed is reasonably divided into n rotating structural units, and they are numbered in sequence as 1# unit, 2# unit, ..., n# unit, and the divided rotating structural units Symmetry, and ensure that the rotating structural unit is a geometrically invariable system and stable in the plane.
  • the lifting equipment is installed on the front lifting frame and the rear lifting frame, and the lifting equipment and the lifting point device are connected with a buckle cable; Dynamically monitor the changing status of the rotating structural unit during the rotation and lifting process.
  • the rotating lifting system After the rotating lifting system is inspected intact, start the lifting equipment on the front lifting frame and the rear lifting frame when there is no wind or light wind and the weather is good, try to lift the rotating structural unit by 100mm and let it stand for a day.
  • the lifting equipment on the front lifting frame is started, and the rotating structural unit is rotated to the design line position according to the proposed lifting speed; the positions of the through-hole oil cylinders on the front lifting frame and the rear lifting frame are constantly adjusted, Make the position of the piercing cylinder on the front lifting frame consistent with the radial sliding distance of the front pulling point, and the position of the piercing cylinder on the rear lifting frame is consistent with the radial sliding distance of the rear pulling point, so as to ensure that the buckle cable is always kept vertical. According to the planned lifting speed, the rotating structural unit is lifted up to the design level.
  • the front lifting frame includes four lattice columns, a first transverse connecting beam, a second transverse connecting beam and a third transverse connecting beam, the four lattice columns are combined into a frame structure, a transverse connecting beam, a second transverse connecting beam The beams and the third transverse connecting beams are installed on the lattice columns sequentially from bottom to top.
  • the façade canopy, the horizontal support tire frame, the front lifting frame and the rear lifting frame are inserted in advance in the area where the concrete main structure is completed.
  • the present invention utilizes the structure of the stands in the field, and installs the horizontal support tire frame along the structure of the stand, which significantly reduces the installation height of the horizontal support tire frame.
  • the invention assembles the rotating structural unit at low altitude, which significantly reduces the amount of high-altitude work, improves construction efficiency, installation accuracy and construction safety factor, and also ensures construction quality.
  • the time for vertically turning the rotating structural unit to the position is short, the angle of vertical turning is large, and the height of vertical turning is high, and the vertically turning structural unit has a large space size and heavy weight.
  • Figure 1 is a top view of the steel canopy
  • Fig. 2 is the front view of the steel canopy
  • Figure 3 is a schematic cross-sectional view of the steel canopy
  • Fig. 4 is a schematic diagram of the installation structure of the rotating structural unit
  • Fig. 5 is the structural representation of rotating structure unit
  • Fig. 6 is a schematic cross-sectional view of the revolving structural unit in the lying state and rotating to the position of the design line;
  • Fig. 7 is a schematic cross-sectional view of the rotating structural unit rotating to the position of the design line and being lifted into place;
  • Figure 8 is a schematic diagram of the plane layout of the front lifting frame, the rear lifting frame, and the lifting point device.
  • the present invention provides a super-high and large-span
  • the construction method of the giant ribbed space folded-plate grid structure steel shed includes the following steps:
  • the steel canopy is divided into a facade canopy and a roof canopy.
  • the rotating structural units in the roof canopy are installed by a construction method combining rotation and lifting, and the rods between the rotating structural units are hoisted and installed by lifting equipment; the facade canopy is installed by high-altitude bulk method.
  • Fig. 1 and Fig. 2 it is a schematic diagram of dividing the steel shed of this embodiment into a roof shed and a facade shed.
  • the roof shed is reasonably divided into n rotating structural units, and they are sequentially numbered as 1# unit, 2# unit, ..., n# unit.
  • the divided rotating structural units should be as symmetrical as possible, and ensure that the rotating structural units are geometrically invariable systems and stable in the plane.
  • the roof shed is divided into 8 rotating structural units, which are sequentially numbered as 1# unit, 2# unit, ..., 8# unit in the counterclockwise direction, as shown in FIG. 4 .
  • a suitable front pulling point and a rear pulling point on the rotating structural unit after the assembly of the rotating structural unit is completed, select a suitable front pulling point and a rear pulling point on the rotating structural unit, and install a lifting point device on the front and rear pulling points.
  • 2 front pulling points and 3 rear pulling points are selected for each rotating structural unit.
  • the three back-lifting points are also called back-lifting point A, back-lifting point B, and back-lifting point C, and the back-lifting points A and C are on the same elevation, and the two selected The front pulling points are also on the same elevation, and the distances from the two front pulling points to the rear pulling points A and C are equal.
  • each rotating structural unit is provided with 1 front elevating frame and 3 rear elevating frames, and the 3 rear elevating frames are respectively called Rear lifting frame A, rear lifting frame B and rear lifting frame C, three rear lifting frames are set because the rotating structural unit has large size, long length and heavy weight, so it is necessary to set up multiple rear lifting frames to coordinate the rotating structural unit Forces and deformations during rotation and lifting.
  • three transverse connecting beams are arranged at different elevations on the front lifting frame in this embodiment, which are successively referred to as the first transverse connecting beam, the second transverse connecting beam, and the third transverse connecting beam from bottom to top. The purpose of the three transverse connecting beams is to enhance the overall stability of the front lifting frame.
  • the front lifting frame is equipped with three horizontal connecting beams, and the rotating structural unit falls in the front lifting frame, during the rotation process, the horizontal connecting beams need to be dismantled and reinstalled.
  • the specific implementation method is as follows: When the rotating structural unit rotates close to the second transverse connecting beam, remove the second transverse connecting beam, then rotate the rotating structural unit, and install the second transverse connecting beam after the rotating structural unit rotates higher than the second transverse connecting beam.
  • the three horizontal connecting beams are also dismantled and reinstalled according to this step, but the first horizontal connecting beam is lower than the rotating structural unit, so this step does not need to be performed.
  • a limit device is made to fix the rotating structural unit to prevent the rotating structural unit from swinging in the air.
  • the façade canopy, horizontal support frame, and front lifting frame can be inserted in advance in the area where the concrete main structure is completed.
  • the front lifting frame and the rear lifting frame in S3 include four lattice columns, the first horizontal connecting beam, the second horizontal connecting beam and the third horizontal connecting beam, and the four lattice columns are combined into a frame structure.
  • the first horizontal connecting beam, the second horizontal connecting beam and the third horizontal connecting beam are installed on the lattice columns in sequence from bottom to top, and two lattice columns of the front lifting frame fall in the area of the rotating structural unit, so the rotating structure needs to be adjusted first.
  • Structural elements are subjected to rotating and sweeping collision checking analysis, and then the installation position of the front lifting frame is determined.
  • the lifting point device in S5 is composed of lug plates and pin shafts.
  • the lifting point device is set in the form of a rotatable pin shaft to prevent the buckle cable from being twisted during the rotation stage.
  • the lifting equipment in S6 includes the core-through cylinder, buckle cable (steel strand), hydraulic station, fixing device, lifting control system, jacking control system, etc.
  • the push control system is installed on the front lifting frame and the rear lifting frame because during the rotation process of the rotating structural unit, the rotation track of the front pulling point and the rear pulling point is an arc, that is, the front pulling point and the rear pulling point There is a certain sliding distance in the radial direction, so it is necessary to set up a push control system to control the position of the piercing cylinder to ensure that the buckle cable can always be pulled vertically during the rotation phase.
  • the rotating lifting system in S6 includes rotating structural unit, lifting point device, front lifting frame, rear lifting frame, lifting equipment, etc.
  • the present invention utilizes the stand structure, installs the horizontal support frame along the stand structure, and then assembles the steel components on the horizontal support frame at low altitude to form a rotating structural unit, and then performs vertical rotation on the rotating structural unit to the design. The linearity is then raised to the design level.
  • the horizontal support tire frame is installed along the structure of the stand, which significantly reduces the installation height of the horizontal support tire frame. Assembling rotating structural units at low altitudes significantly reduces the workload at high altitudes, improves construction efficiency, installation accuracy, and construction safety factors, and also ensures construction quality.
  • the time to turn the rotating structural unit vertically into position is short, the angle of vertical turning is large, and the height of vertical turning is high, and the structural unit turned vertically has large space size and heavy weight.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related part, please refer to the description of the method part.

Abstract

本发明公开了一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,属于建筑工程技术领域,包括:将钢罩棚划分为屋面罩棚和立面罩棚;场馆混凝土主体结构施工完成后,立面罩棚施工,在场内的看台结构上安装卧拼支撑胎架,在场内安装前提升架和后提升架,在卧拼支撑胎架上拼装旋转结构单元并设置限位装置;在旋转结构单元上选取合适的前提拉点和后提拉点,并在前提拉点、后提拉点上安装提拉点装置;旋转结构单元向上提升到设计标高,焊接旋转结构单元和立面罩棚的连接处,采用起重吊装设备嵌补安装旋转结构单元之间的杆件。本发明提高了超高大跨度巨型带肋空间折板形网格结构钢罩棚的施工效率和安全系数,减少了高空作业量,保证了施工质量。

Description

超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法 技术领域
本发明属于建筑工程技术领域,更具体的说是涉及一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法。
背景技术
随着我国基础设施建设的迅猛发展,涌现出了大量形态各异的场馆、机场、高铁站等超高大跨度异型钢结构工程,这对钢结构的精准、高效施工提出了更高的要求。目前,大型场馆钢罩棚安装常用的施工方法包括高空散装法、分条或分块安装法、高空滑移法、整体吊装法、整体提升法、整体顶升法等。
高空散装法是指将小单元或散件(单根杆件及单个节点)直接在设计位置进行总拼的方法,适用于螺栓连接节点的各种类型网架,尤其是适合起重困难的情况,它的施工重点是确定合理的拼装顺序,控制好标高和轴线的位置。
分条或分块安装法是指将网架分成条状或块状单元分别由起重设备吊装到高空设计位置就位搁置,然后再形成整体的安装方法。适用于分割后刚度和受力状况改变较小的网架,如两向正交正放四角锥、正向抽空四角锥等网架。此种安装方法,有利于提高工程质量,并可节省大部分拼装支架。
高空滑移法是指将分条的网架单元在事先设置的滑轨上单条(或逐条)滑移到设计位置拼接成整体的安装方法。适用于正放四角锥、正放抽空四角锥、两向正交正放四角锥等网架。滑移时滑移单元应保证成为几何不变体系。
整体吊装法是指网架在地面上总拼后,用起重设备将其吊装就位的施工方法。整体网架的焊接工作在地面上进行,更好的保证施工质量,此法适用于各 种类型的网架,吊装时可在高空平移或旋转就位。
整体提升法是指在结构柱上安装提升设备,将在地面上拼好的网架提升就位的施工方法。网架整体提升法可在结构上安装提升设备提升网架,也可在进行柱子滑膜施工的同时提升网架。适用于周边支承及多点支承网架,可用升板机、液压千斤顶等小型机具进行施工。
整体顶升法是指在设计位置的地面将网架拼装成整体,然后用千斤顶将网架顶升到设计高度的提升方法。适用于支点较少的多点支承网架。
综上所述,高空散装法是在设计位置上进行总拼,高空滑移法是在设计标高上累计滑移拼装,这两种安装方式都需要布置大量的支撑胎架、高空焊接量较多、高空吊装工作量较大、对精度控制要求较高,且往往受到工期的制约而投入大量的人力、机具等,其施工质量、施工安全也难以得到保障。分条或分块安装法和整体吊装法是指借助起重设备将组拼单元吊装至设计位置,这两种安装方法往往受起重设备的起重能力及吊装范围影响,同时起重设备的起重能力还与自身的重量相辅相成,对行走轨道的承载能力要求较高。而整体提升法和整体顶升法一般适用于规则的多点支承网架,其中整体顶升法还受顶升设备的行程影响。
针对构件尺寸大、杆件重量重、吊装难度大、结构跨度大、安装高度超高的大型场馆钢罩棚,尤其是超高大跨度巨型带肋折板形网格结构,使用现有的钢罩棚安装方法已很难满足此类钢结构工程的安装需求。
因此,如何提供一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,提高了超高大跨度巨型带肋空间折板形网格结构钢罩棚的施工效率和安全系数,减少了高空作业量,保证了施工质量。
为了实现上述目的,本发明采用如下技术方案:
一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,包括:
将钢罩棚划分为屋面罩棚和立面罩棚;其中,屋面罩棚中的旋转结构单元采用旋转与提升的施工方法安装;立面罩棚采用高空散装法安装;
场馆混凝土主体结构施工完成后,立面罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架,在场内安装多个前提升架和后提升架,在卧拼支撑胎架上拼装旋转结构单元并设置相应的限位装置;旋转结构单元拼装完成后,在旋转结构单元上选取合适的前提拉点和后提拉点,并在前提拉点、后提拉点上安装提拉点装置;采用提升设备与提拉点装置相连,将旋转结构单元向上提升到设计标高,焊接旋转结构单元和立面罩棚的连接处,采用起重吊装设备嵌补安装旋转结构单元之间的杆件,完成超高大跨度巨型带肋空间折板形网格结构钢罩棚的施工。
优选的,根据屋面罩棚的结构形式,将屋面罩棚合理划分为n个旋转结构单元,并将其按顺序依次编号为1#单元、2#单元、…、n#单元,所划分的旋转结构单元对称,并确保旋转结构单元为几何不可变体系且平面内稳定。
优选的,前提升架与后提升架安装完成后,在前提升架与后提升架上安装提升设备,并用扣索连接好提升设备和提拉点装置;在旋转结构单元上安装监控仪器,以动态监控旋转结构单元在旋转提升过程中的变化状况。
优选的,待旋转提升体系检查完好无损后,在无风或微风且天气良好的情况下,开始启动前提升架、后提升架上的提升设备,将旋转结构单元试提升 100mm且静置一天。
优选的,待试提升阶段结束后,启动前提升架上的提升设备,按照拟定的提升速度将旋转结构单元旋转到设计线位置;不断调节前提升架与后提升架上穿心油缸的位置,使前提升架上穿心油缸的位置与前提拉点的径向滑移距离一致,后提升架上穿心油缸的位置与后提拉点的径向滑移距离一致,确保扣索始终保持竖向提拉,按照拟定的提升速度将旋转结构单元向上提升至设计标高。
优选的,前提升架包括四根格构柱、第一横向联系梁、第二横向联系梁和第三横向联系梁,四根格构柱组合成框架结构,一横向联系梁、第二横向联系梁和第三横向联系梁由下至上依次安装在格构柱上。
优选的,待场馆混凝土主体结构施工到一定层高后,立面罩棚、卧拼支撑胎架、前提升架和后提升架在混凝土主体结构施工完成的区域提前插入施工。
本发明的有益效果在于:
首先,本发明利用场内看台结构形式,沿看台结构形式安装卧拼支撑胎架,显著降低了卧拼支撑胎架的安装高度。
其次,本发明在低空组拼旋转结构单元,显著降低了高空作业量,提高了施工效率、安装精度和施工安全系数等,也保证了施工质量。
此外,本发明将旋转结构单元竖转到位的时间短、竖转的角度大、竖转的高度高,且竖转的结构单元空间尺寸大、重量重。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为钢罩棚俯视图;
图2为钢罩棚主视图;
图3为钢罩棚剖面示意图;
图4为旋转结构单元的安装结构示意图;
图5为旋转结构单元的结构示意图;
图6为旋转结构单元卧拼状态与旋转到设计线位置的剖面示意图;
图7为旋转结构单元旋转到设计线位置与提升到位的剖面示意图;
图8为前提升架、后提升架、提拉点装置平面布置示意图。
其中,图中:
1-屋面罩棚;2-立面罩棚;3-混凝土主体结构;4-旋转结构单元;5-前提拉点;6-后提拉点;7-第一横向联系梁;8-前提升架;9-后提升架;10-卧拼支撑胎架;11-提升设备;12-扣索;13-第二横向联系梁;14-第三横向联系梁。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅附图1-8,为了提高超高大跨度巨型带肋空间折板形网格结构钢罩棚的施工效率和安全系数,减少高空作业量,保证施工质量,本发明提供了一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,包括如下步骤:
S1,根据钢罩棚的结构特点及受力形式,将钢罩棚划分为立面罩棚和屋面 罩棚。其中,屋面罩棚中的旋转结构单元采用旋转与提升结合的施工方法安装,旋转结构单元间的杆件采用起重设备吊装安装;立面罩棚采用高空散装法安装。如图1、图2所示,为本实施例钢罩棚划分为屋面罩棚和立面罩棚的示意图。
S2,根据屋面罩棚的结构形式,将屋面罩棚合理划分为n个旋转结构单元,并将其按顺序依次编号为1#单元、2#单元、…、n#单元。同时所划分的旋转结构单元应尽量对称,并确保旋转结构单元为几何不可变体系且平面内稳定。在本实施例中,将屋面罩棚划分为8个旋转结构单元,并按逆时针方向将其依次编号为1#单元、2#单元、…、8#单元,如图4所示。
S3,为了节约工期,待场馆混凝土主体结构施工完成后,立面罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架,且在场内安装前提升架和后提升架。
S4,待卧拼支撑胎架安装完成后,在卧拼支撑胎架上拼装旋转结构单元并设置相应的限位装置,如图5所示。
S5,待旋转结构单元拼装完成后,在旋转结构单元上选取合适的前提拉点和后提拉点,并在前、后提拉点上安装提拉点装置。在本实施例中,每个旋转结构单元选取了2个前提拉点和3个后提拉点。其中,3个后提拉点又分别称为后提拉点A、后提拉点B和后提拉点C,且后提拉点A、C在同一个标高上,同时所选取的2个前提拉点也在同一个标高上,且这2个前提拉点到后提拉点A、C连线上的距离相等。
S6,待前、后提升架安装完成后,在前、后提升架上安装提升设备,并用扣索(钢绞线)连接好提升设备和提拉点装置(前提升架上的提升设备与前提拉点的提拉点装置连接,后提升架上的提升设备与后提拉点的提拉点装置连接)。同时在旋转提升体系上安装监控仪器,以动态监控旋转提升体系在旋转 提升过程中的变化状况。在本实施例中,共设置了8个前提升架和24个后提升架,其中每个旋转结构单元设置了1个前提升架和3个后提升架,3个后提升架又分别称为后提升架A、后提升架B和后提升架C,设置3个后提升架是因为旋转结构单元杆件尺寸大、长度长、重量重,故需要设置多个后提升架协调旋转结构单元在旋转提升过程中的受力和变形。同时在本实施例中的前提升架上的不同标高处设置了三道横向联系梁,从下往上依次称为为第一横向联系梁、第二横向联系梁、第三横向联系梁,设置三道横向联系梁的目的是为了增强前提升架的整体稳定性。
S7,待所有旋转提升安装工序都准备完成后,解除卧拼拼装旋转结构单元时设置的限位装置。
S8,待卧拼拼装旋转结构单元上的限位装置解除完成后,检查旋转提升体系是否完整、良好。
S9,待旋转提升体系检查完好无损后,在无风或微风且天气良好的情况下,开始启动前、后提升架上的提升设备,将旋转结构单元试提升100mm且静置一天。在本实施例中,按组对称试提升旋转结构单元,其中1#单元、5#单元归为A组,3#单元、7#单元归为B组,2#单元、4#单元、6#单元、8#单元归为C组,在试提升过程中,依次试提升A组、B组、C组。
S10,待试提升阶段结束后,启动前提升架上的提升设备,按照拟定的提升速度将旋转结构单元旋转到设计线位置。在本实施例中的旋转阶段,依次旋转A组、B组、C组的旋转结构单元,且除了启动前提升架上的提升设备,还需启动后提升架B上的提升设备,因为提拉点B与提拉点A、C不在一个标高和平面内,以提拉点A、C连线为假想轴的情况下,提拉点B是滑动的,故需要启动后提升架B上的提升设备。同时,需要不断调节前提升架和后提升架B上穿心 油缸的位置,使其与相应的提拉点的径向滑移距离一致,以确保扣索始终保持竖向提拉。此外,由于前提升架设置了三道横向联系梁,且旋转结构单元是落在前提升架内的,故在旋转过程中,横向联系梁需经过拆除、再安装的过程,具体实施方式为:当旋转结构单元旋转靠近第二横向联系梁后,将第二横向联系梁拆除,再旋转旋转结构单元,待旋转结构单元旋转高过第二横向联系梁后,再安装第二横向联系梁,第三横向联系梁亦是按照此步骤进行拆除、再安装,而第一横向联系梁低于旋转结构单元,则不需要进行此步骤。
S11,待旋转阶段结束后,同时启动前提升架、后提升架上的提升设备,并按照拟定的提升速度将旋转结构单元向上提升至设计标高。在本实施例中的提升阶段,依次提升A组、B组、C组的旋转结构单元到设计标高位置。同时,此阶段可能需要对旋转结构单元进行微调使其恰好提升至设计标高,并使旋转结构单元之间嵌补的杆件能够精准对接。
S12,待提升阶段结束后,做好限位装置将旋转结构单元固定住,防止旋转结构单元在空中荡移。
S13,待提升到位的旋转结构单元做好限位装置后,焊接旋转结构单元和立面罩棚的连接处,使其连接完整并满足构造要求。
S14,待所有旋转结构单元都提升到位,并做好限位装置且与立面罩棚都焊接完成后,采用起重设备嵌补安装旋转结构单元之间的杆件。
S15,待嵌补杆件安装阶段完成后,拆除旋转结构单元提升到位时安装的限位装置。
S16,待旋转结构单元提升到位时安装的限位装置都拆除完成后,按照拟定的卸载方案逐步释放提拉力,完成钢罩棚的体系转换。
S17,待钢罩棚体系转换完成后,拆除临时支撑措施。
S3中,为了节约工期,待场馆混凝土主体结构施工到一定层高后,立面罩棚、卧拼支撑胎架、前提升架可以在混凝土主体结构施工完成的区域提前插入施工。同时,S3中的前提升架、后提升架前提升架包括四根格构柱、第一横向联系梁、第二横向联系梁和第三横向联系梁,四根格构柱组合成框架结构,一横向联系梁、第二横向联系梁和第三横向联系梁由下至上依次安装在格构柱上,其中前提升架有两根格构柱落在旋转结构单元区域内,故需先对旋转结构单元进行旋转扫掠碰撞检查分析,然后在确定前提升架的安装位置。
S5中的提拉点装置是由耳板、销轴构成的,在本施工方法中将提拉点装置设置为可转动的销轴形式,是为了防止扣索在旋转阶段的过程中受扭。
S6中的提升设备包括穿心油缸、扣索(钢绞线)、液压站、固定装置、提升控制系统、顶推控制系统等。在前提升架、后提升架上设置顶推控制系统,是因为旋转结构单元在旋转过程中,前提拉点、后提拉点的旋转轨迹是一条弧线,即前提拉点、后提拉点在径向方向上有一段滑移距离,故需要通过设置顶推控制系统来控制穿心油缸的位置,以确保扣索在旋转阶段能始终保持竖直提拉。同时,S6中的旋转提升体系包括旋转结构单元、提拉点装置、前提升架、后提升架、提升设备等。
此外,上述中的步骤S7-S16,需动态监控旋转提升体系的变化情况,并做好数据收集和数据分析报告。
本发明利用看台结构形式,沿看台结构安装卧拼支撑胎架,再将钢构件在卧拼支撑胎架上进行低空组拼形成旋转结构单元,然后将旋转结构单元先进行竖向转体至设计线形再提升至设计标高。利用场内看台结构形式,沿看台结构形式安装卧拼支撑胎架,显著降低了卧拼支撑胎架的安装高度。在低空组拼旋转结构单元,显著降低了高空作业量,提高了施工效率、安装精度和施工安全 系数等,也保证了施工质量。将旋转结构单元竖转到位的时间短、竖转的角度大、竖转的高度高,且竖转的结构单元空间尺寸大、重量重。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,包括:
    将钢罩棚划分为屋面罩棚和立面罩棚;其中,屋面罩棚中的旋转结构单元采用旋转与提升的施工方法安装;立面罩棚采用高空散装法安装;
    场馆混凝土主体结构施工完成后,立面罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架,在场内安装多个前提升架和后提升架,在卧拼支撑胎架上拼装旋转结构单元并设置相应的限位装置;旋转结构单元拼装完成后,在旋转结构单元上选取合适的前提拉点和后提拉点,并在前提拉点、后提拉点上安装提拉点装置;采用提升设备与提拉点装置相连,将旋转结构单元向上提升到设计标高,焊接旋转结构单元和立面罩棚的连接处,采用起重吊装设备嵌补安装旋转结构单元之间的杆件,完成超高大跨度巨型带肋空间折板形网格结构钢罩棚的施工;
    利用看台结构形式,沿看台结构安装卧拼支撑胎架,再将钢构件在卧拼支撑胎架上进行低空组拼形成旋转结构单元,然后将旋转结构单元先进行竖向转体至设计线形再提升至设计标高;
    待旋转结构单元拼装完成后,在旋转结构单元上选取合适的前提拉点和后提拉点,并在前、后提拉点上安装提拉点装置,每个旋转结构单元选取了2个前提拉点和3个后提拉点,其中,3个后提拉点又分别称为后提拉点A、后提拉点B和后提拉点C,且后提拉点A、C在同一个标高上,同时所选取的2个前提拉点也在同一个标高上,且这2个前提拉点到后提拉点A、C连线上的距离相等。
  2. 根据权利要求1所述的一种超高大跨度巨型带肋空间折返形网格结构钢罩棚施工方法,其特征在于,根据屋面罩棚的结构形式,将屋面罩棚合理划分为n个旋转结构单元,并将其按顺序依次编号为1#单元、2#单元、…、n#单元, 所划分的旋转结构单元对称,并确保旋转结构单元为几何不可变体系且平面内稳定。
  3. 根据权利要求1所述的一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,前提升架与后提升架安装完成后,在前提升架与后提升架上安装提升设备,并用扣索连接好提升设备和提拉点装置;在旋转结构单元上安装监控仪器,以动态监控旋转结构单元在旋转提升过程中的变化状况。
  4. 根据权利要求3所述的一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,待旋转提升体系检查完好无损后,在无风或微风且天气良好的情况下,开始启动前提升架、后提升架上的提升设备,将旋转结构单元试提升100mm且静置一天。
  5. 根据权利要求4所述的一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,待试提升阶段结束后,启动前提升架上的提升设备,按照拟定的提升速度将旋转结构单元旋转到设计线位置;不断调节前提升架与后提升架上穿心油缸的位置,使前提升架上穿心油缸的位置与前提拉点的径向滑移距离一致,后提升架上穿心油缸的位置与后提拉点的径向滑移距离一致,确保扣索始终保持竖向提拉,按照拟定的提升速度将旋转结构单元向上提升至设计标高。
  6. 根据权利要求1所述的.一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,前提升架包括四根格构柱、第一横向联系梁、第二横向联系梁和第三横向联系梁,四根格构柱组合成框架结构,一横向联系梁、第二横向联系梁和第三横向联系梁由下至上依次安装在格构柱上。
  7. 根据权利要求1所述的一种超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法,其特征在于,待场馆混凝土主体结构施工到一定层高后,立面罩棚、卧拼支撑胎架、前提升架和后提升架在混凝土主体结构施工完成的区域提前插入施工。
PCT/CN2022/096147 2021-06-04 2022-05-31 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法 WO2022253209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110627131.2 2021-06-04
CN202110627131.2A CN113235947B (zh) 2021-06-04 2021-06-04 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法

Publications (1)

Publication Number Publication Date
WO2022253209A1 true WO2022253209A1 (zh) 2022-12-08

Family

ID=77137018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096147 WO2022253209A1 (zh) 2021-06-04 2022-05-31 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法

Country Status (3)

Country Link
CN (1) CN113235947B (zh)
WO (1) WO2022253209A1 (zh)
ZA (1) ZA202307166B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116044175A (zh) * 2022-12-21 2023-05-02 中交建筑集团有限公司 一种智能多点提升施工方案确定方法及系统
CN116905817A (zh) * 2023-09-12 2023-10-20 北京城建集团有限责任公司 一种施工场区受限的大型钢屋盖高效累积滑移施工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235947B (zh) * 2021-06-04 2022-06-07 中国建筑第四工程局有限公司 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
CN113235946B (zh) * 2021-06-04 2022-06-21 中国建筑第四工程局有限公司 一种大型场馆钢罩棚高空旋转施工方法
CN114215366B (zh) * 2021-12-29 2023-03-31 浙江精工钢结构集团有限公司 一种大跨拱形屋盖密吊点提升施工方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260571A (ja) * 1995-03-20 1996-10-08 Takenaka Komuten Co Ltd ドーム屋根の回転式リフトアップ構築工法
JPH09144197A (ja) * 1995-11-28 1997-06-03 Tomoe Corp スタジアム屋根の構築方法
JPH11256690A (ja) * 1998-03-16 1999-09-21 Tomoe Corp 屋根構造物の構築方法
CN103061521A (zh) * 2013-01-24 2013-04-24 中国水利水电第二工程局有限公司 大型体育场悬挑钢桁架力矩式安装方法
CN107130688A (zh) * 2017-05-18 2017-09-05 中国建筑第八工程局有限公司 索承网格结构无胎架施工方法
CN108571077A (zh) * 2018-05-18 2018-09-25 中国二十二冶集团有限公司 网架起步跨转动轴拼装就位方法
CN110065887A (zh) * 2019-05-10 2019-07-30 中建八局第四建设有限公司 空间网架钢结构双向旋转提升施工方法
CN111424822A (zh) * 2020-04-03 2020-07-17 浙江东南网架股份有限公司 环形大悬挑索承网格结构的无支架施工方法
CN111501997A (zh) * 2020-04-23 2020-08-07 贵州建工集团第四建筑工程有限责任公司 一种应用于体育场的钢桁架结构施工方法
CN111794381A (zh) * 2020-07-21 2020-10-20 锦宸集团有限公司 一种安装索承网格钢结构的反向斜拉装置及其实施方法
CN113235946A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢罩棚高空旋转施工方法
CN113235948A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢结构屋盖空间竖转施工方法
CN113235947A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
CN113622576A (zh) * 2021-09-08 2021-11-09 中国建筑第四工程局有限公司 一种超大型体育场馆钢罩棚屋盖结构空间转体施工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526949B (zh) * 2013-10-23 2016-03-30 广州建筑股份有限公司 一种附墙竖向结构的提升滑移施工方法
CN105442853B (zh) * 2015-11-13 2017-09-05 中建六局土木工程有限公司 一种大跨度异形钢网架与落地钢结构安装施工方法
CN108952178B (zh) * 2018-06-22 2021-01-08 北京市机械施工有限公司 一种不规则自由曲面钢屋盖的双向角位移累积提升方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260571A (ja) * 1995-03-20 1996-10-08 Takenaka Komuten Co Ltd ドーム屋根の回転式リフトアップ構築工法
JPH09144197A (ja) * 1995-11-28 1997-06-03 Tomoe Corp スタジアム屋根の構築方法
JPH11256690A (ja) * 1998-03-16 1999-09-21 Tomoe Corp 屋根構造物の構築方法
CN103061521A (zh) * 2013-01-24 2013-04-24 中国水利水电第二工程局有限公司 大型体育场悬挑钢桁架力矩式安装方法
CN107130688A (zh) * 2017-05-18 2017-09-05 中国建筑第八工程局有限公司 索承网格结构无胎架施工方法
CN108571077A (zh) * 2018-05-18 2018-09-25 中国二十二冶集团有限公司 网架起步跨转动轴拼装就位方法
CN110065887A (zh) * 2019-05-10 2019-07-30 中建八局第四建设有限公司 空间网架钢结构双向旋转提升施工方法
CN111424822A (zh) * 2020-04-03 2020-07-17 浙江东南网架股份有限公司 环形大悬挑索承网格结构的无支架施工方法
CN111501997A (zh) * 2020-04-23 2020-08-07 贵州建工集团第四建筑工程有限责任公司 一种应用于体育场的钢桁架结构施工方法
CN111794381A (zh) * 2020-07-21 2020-10-20 锦宸集团有限公司 一种安装索承网格钢结构的反向斜拉装置及其实施方法
CN113235946A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢罩棚高空旋转施工方法
CN113235948A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢结构屋盖空间竖转施工方法
CN113235947A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
CN113622576A (zh) * 2021-09-08 2021-11-09 中国建筑第四工程局有限公司 一种超大型体育场馆钢罩棚屋盖结构空间转体施工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116044175A (zh) * 2022-12-21 2023-05-02 中交建筑集团有限公司 一种智能多点提升施工方案确定方法及系统
CN116044175B (zh) * 2022-12-21 2023-11-14 中交建筑集团有限公司 一种智能多点提升施工方案确定方法及系统
CN116905817A (zh) * 2023-09-12 2023-10-20 北京城建集团有限责任公司 一种施工场区受限的大型钢屋盖高效累积滑移施工方法
CN116905817B (zh) * 2023-09-12 2023-11-21 北京城建集团有限责任公司 一种施工场区受限的大型钢屋盖高效累积滑移施工方法

Also Published As

Publication number Publication date
CN113235947B (zh) 2022-06-07
CN113235947A (zh) 2021-08-10
ZA202307166B (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022253209A1 (zh) 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
WO2022253211A1 (zh) 一种大型场馆钢结构屋盖空间竖转施工方法
CN111042539B (zh) 一种大跨度钢结构桁架单点支撑安装施工方法
CN111364615B (zh) 一种异形、曲面悬挂式钢结构体系的安装方法
CN107524261B (zh) 一种屋面钢网架的施工方法
WO2022253310A1 (zh) 一种大型场馆钢罩棚高空旋转施工方法
CN109057365B (zh) 一种大跨度管桁架屋架高空滑移安装方法
CN114086669B (zh) 一种大型空间异形曲面钢网架模块化快速建造方法
CN109235902A (zh) 正四角锥螺栓球网架多点支撑高空散拼方法
CN113738124A (zh) 一种大跨度钢结构网架提升施工工法
CN113622576B (zh) 一种超大型体育场馆钢罩棚屋盖结构空间转体施工方法
CN205852606U (zh) 三维空间管桁架拼装胎架
CN112096090B (zh) 大跨度空间管桁架单点支撑对接逐级卸载装置及施工工法
CN109440942B (zh) 一种厂房屋面网架安装结构及施工工艺
CN114837483B (zh) 一种高低跨门式钢架建筑结构及其施工工艺
CN104264781B (zh) 网格状柱面钢结构网壳及其施工方法
CN116451527A (zh) 拱上起柱的大跨度双曲面马鞍型空间网格钢结构施工方法
CN211818113U (zh) 一种飞天梯钢结构支撑体系
CN111255238B (zh) 一种超大跨度自动扶梯钢箱梁支撑施工工法
CN217711127U (zh) 一种高空大悬挑弧形钢结构
CN116695868B (zh) 一种采用管桁架结构的立面错位螺旋式建筑物及施工方法
CN215926791U (zh) 一种工字钢桁架自提升装置
CN220100799U (zh) 一种大跨度钢结构连廊的支撑架卸载装置
CN220667017U (zh) 一种钢结构屋顶临时支撑分级卸载装置
WO2023206851A1 (zh) 鼓节点的安装方法、钢结构网壳及其拼装单元的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE