WO2022253211A1 - 一种大型场馆钢结构屋盖空间竖转施工方法 - Google Patents

一种大型场馆钢结构屋盖空间竖转施工方法 Download PDF

Info

Publication number
WO2022253211A1
WO2022253211A1 PCT/CN2022/096149 CN2022096149W WO2022253211A1 WO 2022253211 A1 WO2022253211 A1 WO 2022253211A1 CN 2022096149 W CN2022096149 W CN 2022096149W WO 2022253211 A1 WO2022253211 A1 WO 2022253211A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical rotation
lifting
steel structure
construction
structural unit
Prior art date
Application number
PCT/CN2022/096149
Other languages
English (en)
French (fr)
Inventor
黄晨光
陈凯
贾新卷
桂峥嵘
莫海钊
张在晨
季永新
崔立会
陈学朋
张永菲
蔡龙钰
秦锴
周靖康
赵绪华
Original Assignee
中国建筑第四工程局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑第四工程局有限公司 filed Critical 中国建筑第四工程局有限公司
Publication of WO2022253211A1 publication Critical patent/WO2022253211A1/zh
Priority to ZA2023/07166A priority Critical patent/ZA202307166B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/142Means in or on the elements for connecting same to handling apparatus
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/162Handles to carry construction blocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the invention belongs to the technical field of construction engineering, and more specifically relates to a construction method for vertically rotating the steel structure roof space of a large venue.
  • steel structure roofs have shown the characteristics of complex structure types, novel shapes, large component sizes, large structural spans, and super high installation heights.
  • the commonly used construction methods for the installation of steel structure roofs in large venues include high-altitude bulk method, strip or block installation method, high-altitude sliding method, overall hoisting method, overall lifting method, and overall jacking method.
  • the high-altitude bulk method refers to the method of assembling small units or parts (single rods and single nodes) directly at the design position. It is suitable for various types of grids with bolted joints, especially for difficult lifting situations. , its construction focus is to determine a reasonable assembly sequence, control the elevation and the position of the axis.
  • the strip or block installation method refers to the installation method that divides the network frame into strips or block units, which are hoisted by lifting equipment to the high-altitude design position and placed in place, and then formed as a whole. It is suitable for grids with small changes in stiffness and stress after division, such as two-way orthogonal square pyramids, positively evacuated square pyramids, etc. This installation method is conducive to improving the quality of the project and can save most of the assembly brackets.
  • the high-altitude sliding method refers to the installation method in which the divided grid units are slid single (or one by one) on the pre-set slide rails to the design position and spliced into a whole. It is suitable for grids such as square pyramids placed upright, evacuated square pyramids placed upright, and quadrangular pyramids placed orthogonally in two directions. When sliding, the sliding unit should be guaranteed to be a geometrically invariant system.
  • the overall hoisting method refers to the construction method in which the grid frame is assembled on the ground and then hoisted into place with lifting equipment.
  • the welding work of the overall network frame is carried out on the ground to better ensure the construction quality.
  • This method is applicable to various types of network frames, and it can be translated or rotated in place at high altitude during hoisting.
  • the overall lifting method refers to the construction method of installing lifting equipment on the structural column and lifting the grid frame assembled on the ground into place.
  • the overall lifting method of the grid can install lifting equipment on the structure to lift the grid, and can also lift the grid while the column synovial film is being constructed. It is suitable for peripheral support and multi-point support grid, and can be used for construction with small equipment such as plate lifters and hydraulic jacks.
  • the overall jacking method refers to the method of assembling the net frame into a whole on the ground at the design position, and then using a jack to lift the net frame to the design height. It is suitable for multi-point supporting grids with fewer fulcrums.
  • the high-altitude bulk method is the general assembly at the design position
  • the high-altitude sliding method is the cumulative sliding assembly at the design level.
  • Both installation methods require a large number of supporting tire frames and a large amount of high-altitude welding.
  • High-altitude hoisting has a large workload and high requirements for precision control, and is often restricted by the construction period and invests a lot of manpower, machinery, etc., and its construction quality and construction safety are difficult to guarantee.
  • the strip or block installation method and the overall hoisting method refer to hoisting the assembled unit to the design position with the help of lifting equipment. These two installation methods are often affected by the lifting capacity and hoisting range of the hoisting equipment.
  • the lifting capacity also complements its own weight, which requires a higher load-carrying capacity of the walking track.
  • the overall lifting method and the overall jacking method are generally applicable to regular multi-point support grids, and the overall jacking method is also affected by the stroke of the jacking equipment.
  • the present invention provides a space vertical rotation construction method for a steel structure roof of a large venue, which improves the construction efficiency and safety factor of the steel structure roof of a large venue, reduces the amount of work at heights, and ensures the construction quality.
  • a space vertical rotation construction method for a steel structure roof of a large venue comprising: dividing the steel structure roof into a vertical rotation installation area and a non-vertical rotation installation area according to the structural characteristics and stress forms of the steel structure roof;
  • the installation area is the inner canopy of the steel structure roof, and the vertical rotation structural unit in the inner canopy adopts the space vertical rotation construction method;
  • the non-vertical installation area is the outer canopy of the steel structure roof, and the outer canopy is installed by high-altitude bulk method;
  • the adjacent lifting frames will be connected by horizontal connecting beams;
  • two vertical hinges are set at the connection between the vertically rotating structural unit and the outer cover shed, two premise pulling points are determined on the vertically rotating structural unit and a lifting point device is installed, and lifting equipment is used Connected with the lifting point device, the vertical rotation of the vertical rotation structural unit is raised to the design elevation, the vertical rotation hinge is packaged and welded, and the rods between the vertical rotation structural units are installed by lifting and hoisting equipment to complete the steel structure roof of the large venue Space vertical rotation construction.
  • the vertical rotation installation area is divided into n vertical rotation structural units, and the vertical rotation structural units are sequentially numbered as 1# unit and 2# unit in a certain order until they are divided into Up to n# units; the divided n vertically rotated structural units are symmetrical, and ensure that the vertically rotated structural units are geometrically invariable systems and stable in the plane.
  • the two vertical hinges are set on the same level and ensure that the two vertical hinges are concentric and coaxial; the two front pull point devices are installed on the same level and connected to the center line of the two vertical hinges The distances above are equal, and the length of the buckle on the pull point device connecting the two front pull points is consistent, ensuring that the two front pull points are synchronously promoted during the vertical rotation.
  • the lifting device is installed on the lifting frame, and then the lifting point device and the through-center oil cylinder are connected with the buckle cable, and the buckle cable acting on the vertical rotation structural unit is guaranteed to be mutually connected in the direction of tension.
  • Parallel and in the same plane ensure that the two lifting points on the vertical rotation structural unit are lifted synchronously; install monitoring instruments on the vertical rotation structural unit to dynamically monitor the changes of the vertical rotation structural unit during the vertical rotation installation process.
  • the elevating frame includes a front elevating frame and a rear elevating frame, and the front elevating frame adopts lifting equipment to elevate the two front pulling points on the vertically rotating structural unit; Located between the two vertical hinges, the rear lifting frame adopts lifting equipment to adjust and control the rear lifting point on the vertical rotation structural unit.
  • the position of the through-hole cylinder on the rear lifting frame is constantly adjusted, so that the position of the through-hole cylinder is consistent with the radial sliding distance of the rear pulling point, so as to ensure that the buckle cable is always kept vertically pulled.
  • the vertically rotating structural unit is checked to be intact, in the case of no wind or light wind and good weather, start to lift the vertically rotating structural unit by 100 mm around the vertical hinge, and let it stand for a day; After the stage is over, continue to lift the vertical rotation structural unit to the design elevation according to the proposed lifting speed.
  • the outer cover shed, the lying support tire frame, and the lifting frame are inserted in advance in the area where the concrete main structure is completed.
  • the present invention utilizes the structure of the stands in the field, and installs the horizontal support tire frame along the structure of the stand, which significantly reduces the installation height of the horizontal support tire frame.
  • the present invention assembles vertically rotating structural units at low altitude, which significantly reduces the amount of high-altitude work, improves construction efficiency and construction safety factor, and also ensures construction quality.
  • the present invention takes a short time to vertically rotate the vertically rotating structural unit, has a large vertically rotating angle, and has a high vertically rotating height, and the vertically rotating structural unit has a large space size and heavy weight.
  • Figure 1 is a top view of a steel structure roof
  • Fig. 2 is the front view of the steel structure roof
  • Figure 3 is a schematic cross-sectional view of a steel structure roof
  • Fig. 4 is a schematic diagram of the installation structure of the vertically rotating structural unit
  • Fig. 5 is a structural schematic diagram of a vertically rotating structural unit
  • Fig. 6 is a schematic cross-sectional view of a vertically rotating structural unit in a lying state and a vertically rotating in-position state;
  • Figure 7 is a schematic diagram of the plane layout of the lifting frame, the vertical hinge, the embedded rod, and the lifting point device.
  • the present invention provides a space vertical rotation construction method of steel structure roofs of large venues, including the following step:
  • the steel structure roof is divided into vertical rotation installation area 1 and non-vertical rotation installation area 2.
  • the vertical rotation installation area 1 is the inner canopy of the steel structure roof
  • the vertical rotation structural unit 4 in this part adopts the space vertical rotation construction method
  • the embedded rods 14 between the vertical rotation structural units 4 are hoisted and installed
  • the non-vertical installation area 2 is the outer shed of the steel structure roof, and this part is installed by the high-altitude bulk method.
  • FIG. 1 , FIG. 2 and FIG. 3 they are schematic diagrams of division of the vertically rotating installation area 1 and the non-vertically rotating installation area 2 of the steel structure roof in this embodiment.
  • the vertical rotation installation area 1 divides the vertical rotation installation area 1 into n vertical rotation structural units 4, and number the vertical rotation structural units 4 into 1# unit and 2# unit in a certain order, Until it is divided into n# units.
  • the divided vertically rotating structural unit 4 should be as symmetrical as possible, and ensure that the vertically rotating structural unit 4 is a geometrically invariable system and stable in the plane.
  • the vertical rotation installation area 1 is divided into eight vertical rotation structural units 4, and they are sequentially numbered as 1# unit, 2# unit, ..., 8# unit in the counterclockwise direction, as shown in Figure 4 Show.
  • the construction of the outer shed starts, and at the same time, the horizontal support frame 10 is installed on the stand structure in the stadium, and the lifting frame is installed in the stadium core.
  • the concrete main structure 3 of the stadium is constructed to a certain floor height, in the completed concrete main structure 3 area, the non-vertical installation area 2, the horizontal support tire frame 10, and the lifting frame are inserted in advance for construction.
  • two vertical hinges 7 are arranged at the connection between the vertical structural unit 4 and the outer cover shed, and these two vertical hinges 7 are arranged on the same On an elevation, and ensure that these two vertical hinges 7 are concentric and coaxial. Simultaneously determine two front pull points 5 and install the pull point device on the reasonable position of the vertical rotation structure unit 4, and these two pull point devices are installed on the same elevation and to the vertical axis (two vertical hinges) 7 on the center line) equal distance, in addition to connect the buckle 13 lengths on the two pull point devices are consistent, to ensure that the two front pull points 5 synchronously promote in the vertical rotation process.
  • two front pull points 5 and one rear pull point 6 are determined at the reasonable position of the vertically rotating structural unit 4, and the front pull point 5 device installed on these two front pull points 5 is arranged on On the same elevation, the distance to the vertical shaft (the center line of the two vertical hinges 7) is equal. In addition, the length of the buckle cable 13 connecting the two front pull point 5 devices is the same, so as to ensure that the two front pull Point 5 is lifted synchronously during the vertical rotation, as shown in Fig. 5, Fig. 6 and Fig. 7.
  • the lifting device 12 is installed on the lifting frame, and then the lifting point device and the core-through oil cylinder are connected with the buckle cable 13 (steel strand). And ensure that the buckle cables 13 acting on the vertically rotating structural unit 4 are parallel to each other and in the same plane in the direction of tension, so as to ensure that the two premise pull points 5 on the vertically rotating structural unit 4 are lifted synchronously.
  • monitoring instruments are installed on the vertical rotation system to dynamically monitor the changes of the vertical rotation system during the vertical rotation installation process.
  • the elevating frame includes a front elevating frame 8 and a rear elevating frame 9, a total of 16 are arranged, the front elevating frame 8 is arranged in the core area of the field, and the rear elevating frame 9 is arranged in the top area of the stand in the high area.
  • the eight front lifting frames 8 in the core area of the field are connected by transverse link beams 15 to resist the pulling force acting on the front lifting frames 8 to enhance the overall rigidity and strength of the front lifting frames 8;
  • the rear lifting frames 9 are arranged because each Each vertically rotating structural unit 4 has three connecting nodes with the outer cover shed, and the connecting nodes on both sides are provided with vertically rotating hinges 7, while the middle connecting node area is disconnected during the vertically rotating process. It is long and heavy.
  • a rear lifting frame 9 In order to reduce the deformation of the rod 14 under its own weight, a rear lifting frame 9 needs to be installed, and a lifting device 12 and a pushing device are installed on the rear lifting frame 9.
  • the pushing device is to ensure that the pulling point 6 is connected
  • the buckle cable 13 on the top remains vertical all the time during the vertical movement of the rear lifting point 6, as shown in Fig. 6 and Fig. 7 .
  • the vertical rotation and vertical rotation structure unit 4 is tested according to the group symmetry, wherein the 1# unit and the 5# unit belong to the A group, the 3# unit and the 7# unit belong to the B group, and the 2# unit and the 4# unit , 6# unit and 8# unit are classified as Group C. In the process of vertical rotation and lifting, try vertical rotation and lifting of Group A, Group B, and Group C in turn.
  • a limit device 11 is installed to prevent the vertically rotating structural unit 4 from swinging in the air.
  • the vertical hinge 7 is packaged and welded to complete the connection node between the vertical structural unit 4 and the outer shed, so as to ensure that the node meets the structural stress requirements.
  • the vertical hinge 7 in S5 refers to the vertical hinge 7 that is formed by disconnecting near the joint area where the vertical structural unit 4 and the outer shed are connected, and then connecting them through ear plates and pin shafts.
  • the lifting point device in the CS5 is also composed of lug plates and pin shafts.
  • the pulling point device is set in the form of a rotatable pin shaft in order to prevent the buckle cable 13 from being twisted during the pulling process.
  • the hoisting equipment 12 in S6 includes a core-through oil cylinder, a buckle cable 13 (steel strand), a hydraulic station, a fixing device, a cable saddle device, a monitoring system, and the like.
  • the vertical rotation system in the CS6 includes a vertical rotation structural unit 4, a vertical rotation hinge 7, a lifting point device, a lifting frame, a lifting device 12, and the like.
  • the present invention utilizes the outer cover shed closed into a loop to resist the horizontal thrust generated at the vertical hinge 7 during the vertical rotation of the vertical rotation structural unit 4 .
  • the horizontal support tire frame 10 is installed along the structure form of the stand, and the installation height of the horizontal support tire frame 10 is significantly reduced.
  • Assembling the vertically rotating structural unit 4 at a low altitude significantly reduces the workload at high altitudes, improves construction efficiency and construction safety factor, and ensures construction quality.
  • the time for vertically rotating the vertically rotating structural unit 4 is short, the angle of vertically rotating is large, and the height of vertically rotating is high, and the vertically rotating structural unit has a large space size and heavy weight.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Abstract

本发明公开了一种大型场馆钢结构屋盖空间竖转施工方法,属于建筑工程技术领域,包括:将钢结构屋盖划分为内罩棚和外罩棚,内罩棚中的竖转结构单元采用空间竖转施工方法,外罩棚采用高空散装法安装;场馆混凝土主体结构施工完成后,外罩棚开始施工,在场内的看台结构上安装卧拼支撑胎架,在场芯内安装多个提升架,提升架采用横向联系梁连接;在竖转结构单元与外罩棚的连接处设置两个竖转铰,在竖转结构单元上确定两个前提拉点并安装提拉点装置,将竖转结构单元竖转提升到设计标高,封装焊接竖转铰,嵌补安装竖转结构单元之间的杆件。本发明提高了大型场馆钢结构屋盖的施工效率和安全系数,减少了高空作业量,保证了施工质量。

Description

一种大型场馆钢结构屋盖空间竖转施工方法 技术领域
本发明属于建筑工程技术领域,更具体的说是涉及一种大型场馆钢结构屋盖空间竖转施工方法。
背景技术
近年来,随着大型场馆功能从基本需求逐步拓展,钢结构屋盖呈现出了结构类型复杂、造型新颖、构件尺寸大、结构跨度大、安装高度超高等特点。目前,大型场馆钢结构屋盖安装常用的施工方法包括高空散装法、分条或分块安装法、高空滑移法、整体吊装法、整体提升法、整体顶升法等。
高空散装法是指将小单元或散件(单根杆件及单个节点)直接在设计位置进行总拼的方法,适用于螺栓连接节点的各种类型网架,尤其是适合起重困难的情况,它的施工重点是确定合理的拼装顺序,控制好标高和轴线的位置。
分条或分块安装法是指将网架分成条状或块状单元分别由起重设备吊装到高空设计位置就位搁置,然后再形成整体的安装方法。适用于分割后刚度和受力状况改变较小的网架,如两向正交正放四角锥、正向抽空四角锥等网架。此种安装方法,有利于提高工程质量,并可节省大部分拼装支架。
高空滑移法是指将分条的网架单元在事先设置的滑轨上单条(或逐条)滑移到设计位置拼接成整体的安装方法。适用于正放四角锥、正放抽空四角锥、两向正交正放四角锥等网架。滑移时滑移单元应保证成为几何不变体系。
整体吊装法是指网架在地面上总拼后,用起重设备将其吊装就位的施工方法。整体网架的焊接工作在地面上进行,更好的保证施工质量,此法适用于各 种类型的网架,吊装时可在高空平移或旋转就位。
整体提升法是指在结构柱上安装提升设备,将在地面上拼好的网架提升就位的施工方法。网架整体提升法可在结构上安装提升设备提升网架,也可在进行柱子滑膜施工的同时提升网架。适用于周边支承及多点支承网架,可用升板机、液压千斤顶等小型机具进行施工。
整体顶升法是指在设计位置的地面将网架拼装成整体,然后用千斤顶将网架顶升到设计高度的提升方法。适用于支点较少的多点支承网架。
综上所述,高空散装法是在设计位置上进行总拼,高空滑移法是在设计标高上累计滑移拼装,这两种安装方式都需要布置大量的支撑胎架、高空焊接量较多、高空吊装工作量较大、对精度控制要求较高,且往往受到工期的制约而投入大量的人力、机具等,其施工质量、施工安全也难以得到保障。分条或分块安装法和整体吊装法是指借助起重设备将组拼单元吊装至设计位置,这两种安装方法往往受起重设备的起重能力及吊装范围影响,同时起重设备的起重能力还与自身的重量相辅相成,对行走轨道的承载能力要求较高。而整体提升法和整体顶升法一般适用于规则的多点支承网架,其中整体顶升法还受顶升设备的行程影响。
针对构件尺寸大、杆件重量重、结构跨度大、安装高度超高的大型场馆钢结构屋盖,尤其是巨型带肋空间折板形网格结构,使用现有的钢结构屋盖安装方法已很难满足此类钢结构工程的安装需求。
因此,如何提供一种大型场馆钢结构屋盖空间竖转施工方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种大型场馆钢结构屋盖空间竖转施工方法,提高了大型场馆钢结构屋盖的施工效率和安全系数,减少了高空作业量,保证了施工质量。
为了实现上述目的,本发明采用如下技术方案:
一种大型场馆钢结构屋盖空间竖转施工方法,包括:根据钢结构屋盖的结构特点和受力形式,将钢结构屋盖划分为竖转安装区域和非竖转安装区域;其中,竖转安装区域为钢结构屋盖的内罩棚,内罩棚中的竖转结构单元采用空间竖转施工方法;非竖转安装区域为钢结构屋盖的外罩棚,外罩棚采用高空散装法安装;场馆混凝土主体结构施工完成后,外罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架,且在场芯内安装多个提升架,相邻提升架之间采用横向联系梁连接;待外罩棚和竖转结构单元施工完成后,在竖转结构单元与外罩棚的连接处设置两个竖转铰,在竖转结构单元上确定两个前提拉点并安装提拉点装置,采用提升设备与提拉点装置相连,将竖转结构单元竖转提升到设计标高,封装焊接竖转铰,采用起重吊装设备嵌补安装竖转结构单元之间的杆件,完成大型场馆钢结构屋盖空间竖转施工。
优选的,根据划定好的竖转安装区域,将竖转安装区域划分为n个竖转结构单元,并按一定顺序将竖转结构单元依次编号为1#单元、2#单元,直至划分为n#单元为止;所划分的n个竖转结构单元对称,并确保竖转结构单元为几何不可变体系且平面内稳定。
优选的,两个竖转铰设置在同一个标高上,并确保这两个竖转铰同心共轴;两个前提拉点装置安装在同一个标高上且到两个竖转铰的中心连线上的距离相等,连接这两个前提拉点的提拉点装置上的扣索长度一致,确保这两个前提拉点在竖转过程中同步提升。
优选的,待提升架安装完成后,在提升架上安装提升设备,再用扣索连接好提拉点装置和穿心油缸,并保证作用在竖转结构单元上的扣索在拉力方向上相互平行且在同一个平面内,确保竖转结构单元上的两个提拉点同步提升;在竖转结构单元上安装监控仪器,动态监控竖转结构单元在竖转安装过程中的变化状况。
优选的,提升架包括前提升架与后提升架,前提升架采用提升设备提升竖转结构单元上的两个前提拉点;竖转结构单元上还设置有后提拉点,后提拉点位于两个竖转铰之间,后提升架采用提升设备调节控制竖转结构单元上的后提拉点。
优选的,竖转提升过程中,不断调节后提升架上穿心油缸的位置,使穿心油缸的位置与后提拉点的径向滑移距离一致,确保扣索始终保持竖向提拉。
优选的,待竖转结构单元检查完好无损后,在无风或微风且天气良好的情况下,开始绕竖转铰将竖转结构单元试竖转提升100mm,静置一天;待试竖转提升阶段结束后,按照拟定的提升速度继续将竖转结构单元竖转提升到设计标高。
优选的,待场馆混凝土主体结构施工到一定层高后,外罩棚、卧拼支撑胎架、提升架在混凝土主体结构施工完成的区域提前插入施工。
本发明的有益效果在于:
首先,本发明利用场内看台结构形式,沿看台结构形式安装卧拼支撑胎架,显著降低了卧拼支撑胎架的安装高度。
其次,本发明在低空组拼竖转结构单元,显著降低了高空作业量,提高了施工效率和施工安全系数,也保证了施工质量。
此外,本发明将竖转结构单元竖转到位的时间短、竖转的角度大、竖转的 高度高,且竖转的结构单元空间尺寸大、重量重。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为钢结构屋盖俯视图;
图2为钢结构屋盖主视图;
图3为钢结构屋盖剖面示意图;
图4为竖转结构单元的安装结构示意图;
图5为竖转结构单元的结构示意图;
图6为竖转结构单元卧拼状态与竖转到位状态的剖面示意图;
图7为提升架、竖转铰、嵌补杆件、提拉点装置平面布置示意图。
其中,图中:
1-竖转安装区域;2-非竖转安装区域;3-混凝土主体结构;4-竖转结构单元;5-前提拉点;6-后提拉点;7-竖转铰;8-前提升架;9-后提升架;10-卧拼支撑胎架;11-限位装置;12-提升设备;13-扣索;14-杆件;15-横向联系梁。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅附图1,为了提高大型场馆钢结构屋盖的施工效率和安全系数,减少高空作业量,保证施工质量,本发明提供了一种大型场馆钢结构屋盖空间竖转施工方法,包括如下步骤:
S1,根据钢结构屋盖的结构特点和受力形式,将钢结构屋盖划分为竖转安装区域1和非竖转安装区域2。其中,竖转安装区域1为钢结构屋盖的內罩棚,该部分中的竖转结构单元4采用空间竖转施工方法,竖转结构单元4间的嵌补杆件14采用起吊设备进行吊装安装;非竖转安装区域2为钢结构屋盖的外罩棚,该部分采用高空散装法安装。如图1、图2、图3所示,为本实施例的钢结构屋盖竖转安装区域1与非竖转安装区域2的划分示意图。
S2,根据划定好的竖转安装区域1,将竖转安装区域1划分为n个竖转结构单元4,并按一定顺序将竖转结构单元4依次编号为1#单元、2#单元,直至划分为n#单元为止。同时所划分的竖转结构单元4应尽量对称,并确保竖转结构单元4为几何不可变体系且平面内稳定。在本实施例中,将竖转安装区域1划分为8个竖转结构单元4,并按逆时针方向将其依次编号为1#单元、2#单元、…、8#单元,如图4所示。
S3,待场馆混凝土主体结构3施工完成后,外罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架10,且在场芯内安装提升架。为了节约工期,待场馆混凝土主体结构3施工到一定层高后,在已施工完成的混凝土主体结构3区域,提前安排非竖转安装区域2、卧拼支撑胎架10、提升架插入施工。
S4,待卧拼支撑胎架10安装完成后,在卧拼支撑胎架10上拼装竖转结构单元4并设置相应的限位装置11,如图6所示。
S5,待非竖转安装区域2和竖转结构单元4施工完成后,在竖转结构单元4 与外罩棚的连接处设置两个竖转铰7,且这两个竖转铰7设置在同一个标高上,并确保这两个竖转铰7同心共轴。同时在竖转结构单元4的合理位置上确定两个前提拉点5并安装提拉点装置,并将这两个提拉点装置安装在同一个标高上且到竖转轴(两个竖转铰7的中心连线)上的距离相等,此外连接这两个提拉点装置上的扣索13长度一致,以确保这两个前提拉点5在竖转过程中同步提升。在本实施例中,在竖转结构单元4的合理位置上确定了两个前提拉点5和一个后提拉点6,安装在这两个前提拉点5上的前提拉点5装置设置在同一个标高上且到竖转轴(两个竖转铰7的中心连线)上的距离相等,此外连接这两个前提拉点5装置上的扣索13长度一致,以确保这两个前提拉点5在竖转过程中同步提升,如图5、图6、图7所示。
S6,待提升架安装完成后,在提升架上安装提升设备12,再用扣索13(钢绞线)连接好提拉点装置和穿心油缸。并保证作用在竖转结构单元4上的扣索13在拉力方向上相互平行且在同一个平面内,以确保竖转结构单元4上的两个前提拉点5同步提升。同时在竖转体系上安装监控仪器,以动态监控竖转体系在竖转安装过程中的变化状况。在本实施例中,提升架包括前提升架8和后提升架9,共布置了16个,前提升架8布置在场芯区域,后提升架9布置在高区看台顶区域。其中,场芯区域的8个前提升架8采用横向联系梁15连接,以增强前提升架8的整体刚度和强度来抵抗作用在前提升架8上的拉力;布置后提升架9是因为每个竖转结构单元4都与外罩棚有三个连接节点,两侧连接节点设置了竖转铰7,而中间连接节点区域在竖转过程中是断开的,同时断开后的杆件14比较长且重,为了减少杆件14在自重下的变形,需设置后提升架9,并在后提升架9上设置提升设备12和顶推设备,顶推设备是保证连接后提拉点6装置上的扣索13在后提拉点6竖转移动的过程中始终保持竖直,如图6、图7所 示。
S7,待所有竖转安装工序都准备完成后,解除卧拼拼装竖转结构单元4时设置的限位装置11。
S8,待卧拼拼装竖转结构单元4上的限位装置11解除完成后,检查竖转体系是否完整、良好。
S9,待竖转体系检查完好无损后,在无风或微风且天气良好的情况下,开始绕竖转铰7将竖转结构单元4试竖转提升100mm且静置一天。在本实施例中,按组对称试竖转竖转结构单元4,其中1#单元、5#单元归为A组,3#单元、7#单元归为B组,2#单元、4#单元、6#单元、8#单元归为C组。在试竖转提升过程中,依次试竖转提升A组、B组、C组。
S10,待试竖转提升阶段结束后,按照拟定的提升速度继续将竖转结构单元4竖转提升到设计标高。在本实施例中,竖转提升过程中,依次竖转提升A组、B组、C组。同时,不断调节后提升架9上穿心油缸的位置,使其与后提拉点6的径向滑移距离一致,以确保扣索13始终保持竖向提拉。
S11,待竖转结构单元4竖转提升到设计标高后,安装限位装置11,防止竖转结构单元4在空中摆动。同时,封装焊接竖转铰7,使竖转结构单元4与外罩棚的连接节点完整,以确保节点满足结构受力要求。
S12,待所有竖转结构单元4都竖转提升到设计标高并安装好相应的限位装置11以及竖转铰7封装焊接完成后,采用起吊设备嵌补安装竖转结构单元4间的杆件14,如图7所示。
S13,待所有嵌补的杆件14安装完成后,拆除竖转安装到位时安装的限位装置11。
S14,待竖转安装到位时安装的限位装置11都拆除完成后,按照拟定的卸 载方案释放提拉力,完成钢结构屋盖的体系转换。
S15,待钢结构屋盖的体系转换完成后,拆除临时支撑措施。
本实施例中,S5中的竖转铰7是指在竖转结构单元4与外罩棚连接处的节点域附近断开,然后再通过耳板、销轴将其连接而形成的竖转铰7。同时所述CS5中的提拉点装置也是由耳板、销轴构成的。在本施工方法中将提拉点装置设置为可转动的销轴形式,是为了防止扣索13在提拉的过程中受扭。
本实施例中,S6中的提升设备12包括穿心油缸、扣索13(钢绞线)、液压站、固定装置、索鞍装置、监控制系统等。同时所述CS6中的竖转体系包括竖转结构单元4、竖转铰7、提拉点装置、提升架、提升设备12等。
本实施例中,S7-S15过程中,需动态监控竖转体系的变化情况,并做好数据收集和数据分析报告。
本发明利用闭合成环后的外罩棚来抵抗竖转结构单元4竖转过程中在竖转铰7处产生的水平推力。利用场内看台结构形式,沿看台结构形式安装卧拼支撑胎架10,显著降低了卧拼支撑胎架10的安装高度。在低空组拼竖转结构单元4,显著降低了高空作业量,提高了施工效率和施工安全系数,也保证了施工质量。将竖转结构单元4竖转到位的时间短、竖转的角度大、竖转的高度高,且竖转的结构单元空间尺寸大、重量重。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的, 本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,包括:根据钢结构屋盖的结构特点和受力形式,将钢结构屋盖划分为竖转安装区域和非竖转安装区域;其中,竖转安装区域为钢结构屋盖的内罩棚,内罩棚中的竖转结构单元采用空间竖转施工方法;非竖转安装区域为钢结构屋盖的外罩棚,外罩棚采用高空散装法安装;场馆混凝土主体结构施工完成后,外罩棚开始施工,同时在场内的看台结构上安装卧拼支撑胎架,且在场芯内安装多个提升架,相邻提升架之间采用横向联系梁连接;待外罩棚和竖转结构单元施工完成后,在竖转结构单元与外罩棚的连接处设置两个竖转铰,在竖转结构单元上确定两个前提拉点并安装提拉点装置,采用提升设备与提拉点装置相连,将竖转结构单元竖转提升到设计标高,封装焊接竖转铰,采用起重吊装设备嵌补安装竖转结构单元之间的杆件,完成大型场馆钢结构屋盖空间竖转施工;
    两个竖转铰设置在同一个标高上,并确保这两个竖转铰同心共轴;两个前提拉点装置安装在同一个标高上且到两个竖转铰的中心连线上的距离相等,连接这两个前提拉点的提拉点装置上的扣索长度一致,确保这两个前提拉点在竖转过程中同步提升。
  2. 根据权利要求1所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,根据划定好的竖转安装区域,将竖转安装区域划分为n个竖转结构单元,并按一定顺序将竖转结构单元依次编号为1#单元、2#单元,直至划分为n#单元为止;所划分的n个竖转结构单元对称,并确保竖转结构单元为几何不可变体系且平面内稳定。
  3. 根据权利要求1所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,待提升架安装完成后,在提升架上安装提升设备,再用扣索连接好提拉点装置和穿心油缸,并保证作用在竖转结构单元上的扣索在拉力方向上相互平行且在同一个平面内,确保竖转结构单元上的两个提拉点同步提升;在竖转结构单元上安装监控仪器,动态监控竖转结构单元在竖转安装过程中的变化状况。
  4. 根据权利要求3所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,提升架包括前提升架与后提升架,前提升架采用提升设备提升竖转结构单元上的两个前提拉点;竖转结构单元上还设置有后提拉点,后提拉点位于两个竖转铰之间,后提升架采用提升设备调节控制竖转结构单元上的后提拉点。
  5. 根据权利要求4所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,竖转提升过程中,不断调节后提升架上穿心油缸的位置,使穿心油缸的位置与后提拉点的径向滑移距离一致,确保扣索始终保持竖向提拉。
  6. 根据权利要求1所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,待竖转结构单元检查完好无损后,在无风或微风且天气良好的情况下,开始绕竖转铰将竖转结 构单元试竖转提升100mm,静置一天;待试竖转提升阶段结束后,按照拟定的提升速度继续将竖转结构单元竖转提升到设计标高。
  7. 根据权利要求1所述的一种大型场馆钢结构屋盖空间竖转施工方法,其特征在于,待场馆混凝土主体结构施工到一定层高后,外罩棚、卧拼支撑胎架、提升架在混凝土主体结构施工完成的区域提前插入施工。
PCT/CN2022/096149 2021-06-04 2022-05-31 一种大型场馆钢结构屋盖空间竖转施工方法 WO2022253211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/07166A ZA202307166B (en) 2021-06-04 2023-07-17 Construction method for a steel shed of an ultrahigh large-span giant ribbed spatial folded-plate-shaped grid structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110627140.1 2021-06-04
CN202110627140.1A CN113235948B (zh) 2021-06-04 2021-06-04 一种大型场馆钢结构屋盖空间竖转施工方法

Publications (1)

Publication Number Publication Date
WO2022253211A1 true WO2022253211A1 (zh) 2022-12-08

Family

ID=77136889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096149 WO2022253211A1 (zh) 2021-06-04 2022-05-31 一种大型场馆钢结构屋盖空间竖转施工方法

Country Status (2)

Country Link
CN (1) CN113235948B (zh)
WO (1) WO2022253211A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587929A (zh) * 2024-01-17 2024-02-23 北京建工集团有限责任公司 一种环向封闭折板网壳结构的中心压力环及其施工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113235948B (zh) * 2021-06-04 2022-06-07 中国建筑第四工程局有限公司 一种大型场馆钢结构屋盖空间竖转施工方法
CN113235947B (zh) * 2021-06-04 2022-06-07 中国建筑第四工程局有限公司 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
CN113235946B (zh) * 2021-06-04 2022-06-21 中国建筑第四工程局有限公司 一种大型场馆钢罩棚高空旋转施工方法
CN113622576B (zh) * 2021-09-08 2022-11-25 中国建筑第四工程局有限公司 一种超大型体育场馆钢罩棚屋盖结构空间转体施工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045526A (ja) * 1998-07-27 2000-02-15 Tomoe Corp 屋根架構の構築方法
CN103061521A (zh) * 2013-01-24 2013-04-24 中国水利水电第二工程局有限公司 大型体育场悬挑钢桁架力矩式安装方法
US20150110581A1 (en) * 2013-10-23 2015-04-23 Shanghai YeSheng Mechanical & Electrical Control Technology Co., LTD Apparatus and method for lifting and sliding a structure attached to the wall
CN105951994A (zh) * 2016-06-29 2016-09-21 铁道第三勘察设计院集团有限公司 一种柱面网壳封闭罩棚及其拓展安装方法
CN109563709A (zh) * 2016-06-28 2019-04-02 安全工业责任有限公司 用于竖井安装的倾斜索具装置
CN110065887A (zh) * 2019-05-10 2019-07-30 中建八局第四建设有限公司 空间网架钢结构双向旋转提升施工方法
CN110130652A (zh) * 2019-05-10 2019-08-16 中铁四局集团有限公司 大型复杂组合结构钢屋盖整体提升施工方法
CN113235948A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢结构屋盖空间竖转施工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045526A (ja) * 1998-07-27 2000-02-15 Tomoe Corp 屋根架構の構築方法
CN103061521A (zh) * 2013-01-24 2013-04-24 中国水利水电第二工程局有限公司 大型体育场悬挑钢桁架力矩式安装方法
US20150110581A1 (en) * 2013-10-23 2015-04-23 Shanghai YeSheng Mechanical & Electrical Control Technology Co., LTD Apparatus and method for lifting and sliding a structure attached to the wall
CN109563709A (zh) * 2016-06-28 2019-04-02 安全工业责任有限公司 用于竖井安装的倾斜索具装置
CN105951994A (zh) * 2016-06-29 2016-09-21 铁道第三勘察设计院集团有限公司 一种柱面网壳封闭罩棚及其拓展安装方法
CN110065887A (zh) * 2019-05-10 2019-07-30 中建八局第四建设有限公司 空间网架钢结构双向旋转提升施工方法
CN110130652A (zh) * 2019-05-10 2019-08-16 中铁四局集团有限公司 大型复杂组合结构钢屋盖整体提升施工方法
CN113235948A (zh) * 2021-06-04 2021-08-10 中国建筑第四工程局有限公司 一种大型场馆钢结构屋盖空间竖转施工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117587929A (zh) * 2024-01-17 2024-02-23 北京建工集团有限责任公司 一种环向封闭折板网壳结构的中心压力环及其施工方法
CN117587929B (zh) * 2024-01-17 2024-03-22 北京建工集团有限责任公司 一种环向封闭折板网壳结构的中心压力环及其施工方法

Also Published As

Publication number Publication date
CN113235948A (zh) 2021-08-10
CN113235948B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022253211A1 (zh) 一种大型场馆钢结构屋盖空间竖转施工方法
WO2022253209A1 (zh) 超高大跨度巨型带肋空间折板形网格结构钢罩棚施工方法
CN107524261B (zh) 一种屋面钢网架的施工方法
CN111042539B (zh) 一种大跨度钢结构桁架单点支撑安装施工方法
CN113235946B (zh) 一种大型场馆钢罩棚高空旋转施工方法
CN109057365B (zh) 一种大跨度管桁架屋架高空滑移安装方法
CN111395532B (zh) 大跨度半开口椭圆球面网壳安装施工方法
CN113738124A (zh) 一种大跨度钢结构网架提升施工工法
CN113622576B (zh) 一种超大型体育场馆钢罩棚屋盖结构空间转体施工方法
CN110924690A (zh) 一种大跨度网架安装方法
CN114086669A (zh) 一种大型空间异形曲面钢网架模块化快速建造方法
CN111980165A (zh) 大跨度网架外扩拼装整体顶升施工方法
CN110254748B (zh) 一种接头-壁板结构静力压缩试验装置
CN209941511U (zh) 桥梁钢箱梁分段吊装高空合拢的支撑装置
WO2021120335A1 (zh) 一种大跨度不等高双向曲面网架的累积提升方法
CN109440942B (zh) 一种厂房屋面网架安装结构及施工工艺
CN114837483B (zh) 一种高低跨门式钢架建筑结构及其施工工艺
CN110748156A (zh) 一种通过滑动定位的大型筒仓顶部支撑结构及其施工方法
CN104264781A (zh) 网格状柱面钢结构网壳及其施工方法
CN111502027B (zh) 一种大跨度网架结构倒锥顶升方法
CN114033189A (zh) 大面积高空网架结构铝格栅吊顶施工装置及施工方法
CN210420898U (zh) 一种新型钢箱梁0号块支架
CN211818113U (zh) 一种飞天梯钢结构支撑体系
CN215926791U (zh) 一种工字钢桁架自提升装置
CN220100799U (zh) 一种大跨度钢结构连廊的支撑架卸载装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE