WO2022252828A1 - 一种铜锰有序高电压铜基氧化物材料和应用 - Google Patents

一种铜锰有序高电压铜基氧化物材料和应用 Download PDF

Info

Publication number
WO2022252828A1
WO2022252828A1 PCT/CN2022/086224 CN2022086224W WO2022252828A1 WO 2022252828 A1 WO2022252828 A1 WO 2022252828A1 CN 2022086224 W CN2022086224 W CN 2022086224W WO 2022252828 A1 WO2022252828 A1 WO 2022252828A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
manganese
valence
voltage
oxide material
Prior art date
Application number
PCT/CN2022/086224
Other languages
English (en)
French (fr)
Inventor
胡勇胜
容晓晖
陈立泉
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Publication of WO2022252828A1 publication Critical patent/WO2022252828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Sodium-ion battery is a secondary battery technology with great potential. Its working principle is similar to that of lithium-ion battery. In the past ten years, research results at home and abroad have shown a blowout growth. Sodium resources are rich in reserves and widely distributed around the world, with outstanding low-cost advantages.
  • the electrode material system of sodium ion batteries has been basically formed.
  • the positive electrode materials include layered oxides, tunnel structure oxides, polyanion compounds, etc.
  • the negative electrode materials include hard carbon, soft carbon, alloys, organics, etc.
  • the sodium-ion batteries produced have been successfully demonstrated in low-speed electric vehicles and energy storage power stations, showing a rapid development momentum.
  • the energy density (100-150Wh/kg) of sodium-ion single cells using copper-based oxide/anthracite-based carbon is close to that of lithium-ion battery lithium iron phosphate/graphite system (120-180Wh/kg),
  • the cost of raw materials per unit energy also has obvious advantages (can be reduced by about 30%). Improving the energy density of batteries is an effective means to reduce costs, but the further improvement of the energy density of sodium-ion batteries has encountered a bottleneck, which is mainly due to the difficulty in achieving breakthroughs in the working voltage and specific capacity of cathode materials.
  • the average working voltage of most sodium-ion battery cathode materials is only about 3V, which is far lower than the 3.7V of the ternary lithium-ion battery cathode, which greatly limits the working scenarios of sodium-ion batteries.
  • the present invention discloses a copper-manganese ordered high-voltage copper-based oxide material.
  • manganese ions surround copper ions in a honeycomb order to reduce the lattice distortion caused by +2 valent copper ions, and make the copper ions lose electrons during the first week of charging, and the valence state changes from +2 to +2 The valence completely changes to +3 valence; during the first week of discharge, it regains electrons and changes back to +2 valence.
  • the average working voltage of the copper-manganese ordered high-voltage copper-based oxide material relative to metal sodium is above 3.5V.
  • the average working voltage is: the product of the discharge energy and the reciprocal of the discharge capacity at a current density of 10 mA/g.
  • an embodiment of the present invention provides a positive pole piece of a sodium ion secondary battery, the positive pole piece comprising:
  • an embodiment of the present invention provides a sodium ion secondary battery comprising the positive electrode sheet described in the third aspect above.
  • the sodium ion secondary battery is used for small and medium-sized energy storage devices such as mobile electronics and electric vehicles, as well as large-scale energy storage devices for solar power generation, wind power generation, smart grid peak regulation, distributed power stations, backup power supplies or communication base stations .
  • the copper-manganese ordered high-voltage copper-based oxide material provided by the invention is simple to prepare, and the contained elements sodium, copper and manganese are all non-toxic and safe elements.
  • the redox couple of copper itself has a relatively high voltage.
  • manganese ions surround copper ions in a honeycomb-like orderly arrangement. This hexagonal symmetrical orderly arrangement can effectively reduce the strong lattice distortion caused by +2 valent copper ions, thereby achieving a complete +
  • the 2-valent copper ions change to +3 valence, and the oxidation-reduction potential of copper ions is further increased by super-exchange.
  • the overall working voltage of the material can be effectively increased, thereby increasing the specific energy of the material.
  • the working potential of the redox reaction of copper can reach more than 3.5V, which is equivalent to that of the lithium-ion battery, and has excellent cycle stability, which has great practical value.
  • the sodium ion secondary battery using the copper-manganese ordered high-voltage copper-based oxide material of the present invention can be used for small and medium-sized energy storage devices such as mobile electronics and electric vehicles, as well as solar power generation, wind power generation, smart grid peak regulation, and distributed power stations , backup power supply or large-scale energy storage equipment for communication base stations.
  • Fig. 1 is the structure schematic diagram that copper ions and manganese ions of the embodiment of the present invention are arranged in a hexagonal honeycomb order;
  • Fig. 2 is the X-ray diffraction (XRD) spectrum of multiple oxide materials with different element mole percentages provided by the embodiment of the present invention
  • Fig. 4 is the charging and discharging curve diagram of the sodium ion battery provided by Example 1 of the present invention at 2.5-4.1V;
  • Fig. 5 is the charging and discharging curve diagram of the sodium ion battery provided by Example 2 of the present invention at 2.5-4.2V;
  • Fig. 6 is the charging and discharging curve diagram of the sodium ion battery provided by Example 3 of the present invention at 2.5-4.2V;
  • Fig. 7 is a charge and discharge curve of the sodium ion battery provided by Example 4 of the present invention at 2.5-4.2V.
  • the embodiment of the present invention proposes a copper-manganese ordered high-voltage copper-based oxide material, and the general chemical formula of the material is Na a [Cub Mn c Me d ]O 2+ ⁇ ;
  • the valence state of Cu is +2, Me is Li, Na, Mg, Ca, Si, P, S, Sc, Ti, V, Cr, Fe, Co, Ni, Zn, Ga, Ge, Se, Y, One or more elements of Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, La, Ta, Ir, Bi, the average valence of Mn and Me is ⁇ ;
  • This hexagonal symmetrical and ordered arrangement can effectively reduce the lattice distortion of the ginger-Taylor effect brought by the +2 valent copper ions, thereby achieving a complete transition from +2 valent copper ions to +3 valence;
  • the structural stability of the material can be significantly improved; and the oxidation-reduction potential of copper ions can be further improved through super-exchange.
  • the above two mechanisms can effectively improve the overall working voltage of the material, the cycle stability of the material, and the specific energy of the material.
  • the sodium ion secondary battery based on the copper-manganese ordered high-voltage copper-based oxide material of the present invention can be used for small and medium-sized energy storage devices such as mobile electronics and electric vehicles, as well as solar power generation, wind power generation, smart grid peak regulation, and distributed power stations , backup power supply or large-scale energy storage equipment for communication base stations.
  • a high-voltage copper-based oxide material was prepared by a solid phase method:
  • the spherical aberration-corrected transmission electron microscope shown in Figure 3 has captured the copper and manganese honeycomb ordered structure existing in the (100) crystal direction, where the white circle shows copper, and the black circle shows manganese, and it is consistent with Fig.
  • the theoretical simulation results shown in are in good agreement.
  • the copper-based layered oxide material prepared above is used as the active material of the positive electrode material of the battery for the preparation of the sodium ion battery.
  • the specific steps are: the prepared Na 2/3 Cu 1/3 Mn 2/3 O 2 powder and Acetylene black and binder polyvinylidene fluoride (PVDF) are mixed according to the mass ratio of 80:10:10, and an appropriate amount of N-methylpyrrolidone (NMP) solution is added, and the slurry is formed by grinding in a dry environment at room temperature, and then The slurry was uniformly coated on the aluminum foil of the current collector, and after drying under an infrared lamp, it was cut into (8 ⁇ 8) mm 2 pole pieces. The pole piece was dried under vacuum at 110°C for 10 hours, and then transferred to a glove box for later use.
  • PVDF Acetylene black and binder polyvinylidene fluoride
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 2 The specific preparation steps are the same as in Example 2, but the stoichiometry of the precursor compounds used Na 2 CO 3 (analytical pure), CuO (analytical pure), MnO 2 (analytical pure), TiO 2 (analytical pure) is different from that in Example 1 , the heat treatment condition is 900°C and 15 hours, and the layered oxide material of black powder is Na 2/3 Cu 1/3 Mn 5/9 Ti 1/9 O 2 , and its X-ray diffraction pattern is shown in Figure 2, from From the X-ray diffraction diagram, the crystal structure of Na 2/3 Cu 1/3 Mn 5/9 Ti 1/9 O 2 is an oxide of P2 phase layered structure.
  • the copper-based layered oxide material prepared above was used as the active material of the positive electrode material of the battery for the preparation of a sodium ion battery, and electrochemical charge and discharge tests were performed. Its preparation process and testing method are the same as in Example 1.
  • the test voltage range is 2.5V-4.2V, and the test results are shown in Figure 5. It can be seen that the discharge specific capacity in the first week can reach 69mAh/g, and the average working voltage is 3.70V.
  • a copper-based layered oxide material was prepared by a solid phase method.
  • the specific preparation steps of the examples are the same as in Example 1, but the stoichiometry of the precursor compounds used Na 2 CO 3 (analytical pure), CuO (analytical pure), MnO 2 (analytical pure), TiO 2 (analytical pure) is the same as in the examples 1 is different, the heat treatment condition is 900 °C, 15 hours, the layered oxide material of black powder is Na 2/3 Cu 1/3 Mn 4/9 Ti 2/9 O 2 , and its X-ray diffraction pattern is shown in Fig. 2. From the X-ray diffraction pattern, the crystal structure of Na 2/3 Cu 1/3 Mn 4/9 Ti 2/9 O 2 is an oxide of P2 phase layered structure.
  • the layered oxide material prepared above was used as the active material of the positive electrode material of the battery for the preparation of the sodium ion battery, and electrochemical charge and discharge tests were performed. Its preparation process and testing method are the same as in Example 1.
  • the test voltage range is 2.5V-4.2V, and the test results are shown in Figure 1. It can be seen that the discharge specific capacity in the first week can reach 69mAh/g, and the average working voltage is 3.68V.
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 2 The specific preparation steps of the embodiment are the same as those in Example 1, but the stoichiometry and Unlike in Example 1, the layered oxide material obtained from the black powder is Na 2/3 Cu 0.23 Fe 0.10 Mn 0.67 O 2 .
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 1 The specific preparation steps of the embodiment are the same as in Example 1, but the stoichiometry of the precursor compounds used Na 2 CO 3 (analytical pure), CuO (analytical pure), MnO 2 (analytical pure), MgO (analytical pure) is the same as in Example 1
  • the black powder layered oxide material is Na 2/3 Cu 0.30 Mg 0.03 Mn 0.67 O 2 .
  • a copper-based layered oxide material was prepared by a solid phase method.
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 2 The specific preparation steps of the examples are the same as in Example 1, but the stoichiometry and Unlike in Example 1, the layered oxide material obtained from the black powder is Na 2/3 Cu 0.30 Cr 0.03 Mn 0.67 O 2 .
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 2 The specific preparation steps of the examples are the same as in Example 1, but the stoichiometry of the precursor compounds used Na 2 CO 3 (analytical pure), CuO (analytical pure), MnO 2 (analytical pure), SnO 2 (analytical pure) is the same as in the examples 1, the black powder layered oxide material is Na 2/3 Cu 0.33 Sn 0.07 Mn 0.60 O 2 .
  • a copper-based layered oxide material was prepared by a solid phase method.
  • Example 2 The specific preparation steps of the examples are the same as those in Example 1, but the stoichiometry and Unlike in Example 1, the layered oxide material from which the black powder was obtained was Na 2/3 Cu 0.33 Sb 0.03 Mn 0.64 O 2 .
  • the invention provides a copper-manganese ordered high-voltage copper-based oxide material.
  • the preparation is simple, and the contained elements sodium, copper and manganese are all non-toxic and safe elements.
  • the redox couple of copper itself has a relatively high voltage.
  • the copper ions and manganese ions in the transition metal layer are arranged in a honeycomb order. This hexagonal symmetrical and orderly arrangement can effectively reduce the strong lattice distortion caused by the +2 valent copper ions, thereby achieving complete +2 valent copper
  • the ions change to +3 valence, and the redox potential of copper ions is further increased by superexchange.
  • the overall working voltage of the material can be effectively increased, thereby increasing the specific energy of the material.
  • the sodium ion secondary battery using the copper-manganese ordered high-voltage copper-based oxide material of the present invention can be used for small and medium-sized energy storage devices such as mobile electronics and electric vehicles, as well as solar power generation, wind power generation, smart grid peak regulation, and distributed power stations , backup power supply or large-scale energy storage equipment for communication base stations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种铜锰有序高电压铜基氧化物材料和应用,材料的化学通式为Naa[CubMncMed]O2+β;其中Cu的价态为+2,Me为Li、Na、Mg、Ca、Si、P、S、Sc、Ti、V、Cr、Fe、Co、Ni、Zn、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、La、Ta、Ir、Bi中的一种或多种元素,Mn和Me的平均化合价为α;+2≤α≤+4;a、b、c、d、β之间的关系满足b+c+d=1,且a+2b+α(c+d)=2×(2+β);其中0.5≤a≤2.0;0<b≤1.0;0<c<1.0;0≤d<1.0;-0.02≤β≤0.02;过渡金属层中,锰离子包围铜离子呈蜂窝状有序排布,用以降低+2价铜离子带来的晶格扭曲,并使得首周充电时,铜离子失去电子,价态从+2价完全的向+3价转变;首周放电时,再重新得到电子变回+2价。

Description

一种铜锰有序高电压铜基氧化物材料和应用
本申请要求于2021年5月31日提交中国专利局、申请号为202110603734.9、发明名称为“一种铜锰有序高电压铜基氧化物材料和应用”的中国专利申请的优先权。
技术领域
本发明涉及材料技术领域,尤其涉及一种铜锰有序高电压铜基氧化物材料和应用。
背景技术
锂离子电池已经广泛应用于生活和生产中,涉及移动电子、电动汽车、家庭储能等诸多领域。锂在地壳储量十分有限且分布极度不均,近些年随着全世界对锂离子电池的需求的持续加大,已经成为全世界的关注和争夺的焦点,而我国80%锂资源依赖进口,是全球第一大锂资源进口国。除此之外,与锂离子电池相关的原材料(主要包括镍、钴等金属化合物)也日益紧缺。资源问题严重限制了我国电动汽车和储能电站的发展:寻找锂离子电池的替代或补充储能技术,势在必行。
钠离子电池是一种潜力巨大的二次电池技术,其工作原理与锂离子电池相似,近十年国内外研究成果呈现井喷式增长。钠资源储量丰富且全球范围内分布广泛,具有突出的低成本优势。目前钠离子电池电极材料体系已经基本成型,正极材料包括层状氧化物、隧道结构氧化物、聚阴离子化合物等类型,负极材料包括硬碳、软碳、合金、有机等类型。全球从事钠离子电池产业化的公司也已达到了二十家以上,生产的钠离子电池已经在低速电动汽车和储 能电站成功实现示范应用,表现出迅猛的发展势头。根据初步成本估算,使用铜基氧化物/无烟煤基碳的钠离子单体电芯的能量密度(100-150Wh/kg)已接近锂离子电池磷酸铁锂/石墨体系(120-180Wh/kg),单位能量原材料成本也具有明显优势(可降低约30%)。提升电池能量密度是降低成本的有效手段,但钠离子电池的能量密度的进一步提升遇到了瓶颈,这主要是由于正极材料的工作电压和比容量难以实现突破。目前大部分钠离子电池正极材料的平均工作电压仅在3V左右,远远低于三元锂离子电池正极的3.7V,这极大地限制了钠离子电池的工作场景。
发明内容
本发明提供了一种铜锰有序高电压铜基氧化物材料和应用。本发明主要基于铜氧化还原反应、铜锰有序的正极材料结构,使得材料具有较高的工作电压——对金属钠可达3.5V以上,以及较高的能量密度。
第一方面,本发明公开了一种铜锰有序高电压铜基氧化物材料,所述材料的化学通式为:Na a[Cu bMn cMe d]O 2+β;其中Cu的价态为+2,Me为Li、Na、Mg、Ca、Si、P、S、Sc、Ti、V、Cr、Fe、Co、Ni、Zn、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、La、Ta、Ir、Bi中的一种或多种元素,Mn和Me的平均化合价为α;+2≤α≤+4;a、b、c、d、β分别为对应元素所占的摩尔百分比;它们之间的关系满足b+c+d=1,且a+2b+α(c+d)=2×(2+β);其中0.5≤a≤2.0;0<b≤1.0;0<c<1.0;0≤d<1.0;-0.02≤β≤0.02;
过渡金属层中,锰离子包围铜离子呈蜂窝状有序排布,用以降低+2价铜离子带来的晶格扭曲,并使得首周充电时,铜离子失去电子,价态从+2价完全的向+3价转变;首周放电时,再重新得到电子变回+2价。
优选的,所述铜锰有序高电压铜基氧化物材料相对金属钠的平均工作电压在3.5V以上。
优选的,所述平均工作电压为:10mA/g电流密度下,放电能量与放电容量倒数的乘积。
第三方面,本发明实施例提供了一种钠离子二次电池的正极极片,所述正极极片包括:
集流体、涂覆于所述集流体之上的导电添加剂和粘结剂,和如上述第一方面所述的铜锰有序高电压铜基氧化物材料。
第四方面,本发明实施例提供了一种包括上述第三方面所述的正极极片的钠离子二次电池。
优选的,所述钠离子二次电池用于移动电子、电动交通工具等中小型储能设备以及太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
本发明提供的铜锰有序高电压铜基氧化物材料,制备简单,所含有的元素钠、铜、锰都是无毒安全的元素。材料中,铜的氧化还原电对本身具有较高的电压。过渡金属层中,锰离子包围铜离子呈蜂窝状有序排布,,这种六边形对称有序排布可以有效降低+2价铜离子带来的强晶格扭曲,从而实现完全的+2价铜离子向+3价转变,并且通过超交换作用进一步提高铜离子的氧化还原电位。通过上述两方面可以有效提升材料的整体工作电压,进而提升材料的比能量。在金属钠半电池测试中发现,铜的氧化还原反应的工作电位可达3.5V以上,已与锂离子电池相当,且具有极佳的循环稳定性,具有很大实用价值。应用本发明的铜锰有序高电压铜基氧化物材料的钠离子二次电池可以用于移动电子、电动交通工具等中小型储能设备以及太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例的铜离子和锰离子呈六边形蜂窝有序排布的结构示意图;
图2为本发明实施例提供的不同元素摩尔百分比的多个氧化物材料的X射线衍射(XRD)图谱;
图3为本发明实施例1的球差校正透射电子显微镜图片;
图4为本发明实施例1提供的钠离子电池在2.5-4.1V充放电曲线图;
图5为本发明实施例2提供的钠离子电池在2.5-4.2V充放电曲线图;
图6为本发明实施例3提供的钠离子电池在2.5-4.2V充放电曲线图;
图7为本发明实施例4提供的钠离子电池在2.5-4.2V充放电曲线图。
具体实施方式
下面结合实施例,对本发明进行进一步的详细说明,但并不意于限制本发明的保护范围。
本发明实施例提出了铜锰有序高电压铜基氧化物材料,材料的化学通式为Na a[Cu bMn cMe d]O 2+β
其中,Cu的价态为+2,Me为Li、Na、Mg、Ca、Si、P、S、Sc、Ti、V、Cr、Fe、Co、Ni、Zn、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、La、Ta、Ir、Bi中的一种或多种元素,Mn和Me的平均化合价为α;a、b、c、d、β之间的关系满足b+c+d=1,且a+2b+α(c+d)=2×(2+β);其中0.5≤a≤2.0;0<b≤1.0;0<c<1.0;0≤d<1.0;+2≤α≤+4;-0.02≤β≤0.02;过渡金属层中,锰离子包围铜离子呈蜂窝状有序排布,,具体结构如图1所示,其中白色圆形所示为铜,黑色圆形所示为锰。这种六边形对称有序排布可以有效降低+2价铜离子带来的姜-泰勒效应的晶格扭曲,从而实现完全的+2价铜离子向+3价转变;除此之外还可以显著提高材料的结构稳定性;并且通过超交换作用进一步提高铜离子的氧化还原电位。以上两种机理可以有效提升材料的整体工作电压,材料的循环 稳定性,提升材料的比能量。
在首周充电时,铜离子失去电子,价态从+2价完全的向+3价转变;首周放电时,再重新得到电子变回+2价。
在金属钠半电池测试中发现,铜的氧化还原反应的工作电位可达3.5V以上,已与锂离子电池相当,且具有极佳的循环稳定性,具有很大实用价值。基于本发明的铜锰有序高电压铜基氧化物材料的钠离子二次电池可以用于移动电子、电动交通工具等中小型储能设备以及太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
实施例1
本实施例中采用固相法制备高电压铜基氧化物材料:
将Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)按所需化学计量比混合;在玛瑙研钵中研磨半小时,得到前驱体;将前驱体压片后转移到Al 2O 3坩埚内,在马弗炉中900℃下处理15小时,得到黑色粉末的层状氧化物材料Na 2/3Cu 1/3Mn 2/3O 2,其X射线衍射图谱参见图2,从X射线衍射图图谱上看,Na 2/3Cu 1/3Mn 2/3O 2的晶体结构为P2相层状结构的氧化物。图3所示的球差校正透射电子显微镜拍摄到了在(100)晶向存在的铜、锰蜂窝状有序结构,其中白色圆形所示为铜,黑色圆形所示为锰,并且与图中所示的理论模拟结果高度吻合。
将上述制备得到的铜基层状氧化物材料作为电池正极材料的活性物质用于钠离子电池的制备,具体步骤为:将制备好的Na 2/3Cu 1/3Mn 2/3O 2粉末与乙炔黑、粘结剂聚偏氟乙烯(PVDF)按照80:10:10的质量比混合,加入适量的N-甲基吡咯烷酮(NMP)溶液,在常温干燥的环境中研磨形成浆料,然后把浆料均匀涂覆于集流体铝箔上,并在红外灯下干燥后,裁成(8×8)mm 2的极片。极片在真空条件下,110℃干燥10小时,随即转移到手套箱备用。
模拟电池的装配在Ar气氛的手套箱内进行,以金属钠作为对电极,以NaClO 4/(碳酸乙烯酯(EC):碳酸丙烯酯(PC)=1:1)溶液作为电解液,装配成CR2032扣式电池。使用恒流充放电模式,在10mA/g电流密度下进行充放电测试。在放电截至电压为2.5V,充电截至电压为4.1V的条件下,测试结果见图4。可以看出,其首周放电比容量可达83mAh/g,平均工作电压3.71V,超过了绝大多数层状氧化物正极。
实施例2
本实施例中采用固相法制备铜基层状氧化物材料。
具体制备步骤同实施例2,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、TiO 2(分析纯)的化学计量与实施例1中不同,热处理条件为900℃、15小时,得到黑色粉末的层状氧化物材料为Na 2/3Cu 1/3Mn 5/9Ti 1/9O 2,其X射线衍射图图谱参见图2,从X射线衍射图图谱上看,Na 2/3Cu 1/3Mn 5/9Ti 1/9O 2的晶体结构为P2相层状结构的氧化物。
将上述制备得到的铜基层状氧化物材料作为电池正极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例1。测试电压范围为2.5V-4.2V,测试结果见图5。可以看出,其首周放电比容量可达69mAh/g,平均工作电压3.70V。
实施例3
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、TiO 2(分析纯)的化学计量与实施例1中不同,热处理条件为900℃、15小时,得到黑色粉末的层状氧化物材料为Na 2/3Cu 1/3Mn 4/9Ti 2/9O 2,其X射线衍射图图谱参见图2,从X射线衍射图图谱上看,Na 2/3Cu 1/3Mn 4/9Ti 2/9O 2的晶体结构为P2相层状结构的氧化物。
将上述制备得到的层状氧化物材料作为电池正极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例1。测试电压范围为2.5V-4.2V,测试结果见图1。可以看出,其首周放电比容量可达69mAh/g,平均工作电压3.68V。
实施例4
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)的化学计量与实施例1中不同,热处理条件为700℃、15小时,得到黑色粉末的层状氧化物材料为Na 2/3Cu 1/3Mn 2/3O 2,其X射线衍射图图谱参见图2,从X射线衍射图图谱上看,Na 2/3Cu 1/3Mn 2/3O 2的晶体结构为P3相层状结构的氧化物。
将上述制备得到的层状氧化物材料作为电池正极材料的活性物质用于钠离子电池的制备,并进行电化学充放电测试。其制备过程和测试方法同实施例1。测试电压范围为2.5V-4.2V,测试结果见图7。可以看出,其首周放电比容量可达80mAh/g,平均工作电压3.69V。
实施例5
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、Fe 2O 3(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.23Fe 0.10Mn 0.67O 2
实施例6
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分 析纯)、CuO(分析纯)、MnO 2(分析纯)、MgO(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.30Mg 0.03Mn 0.67O 2
实施例7
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、NiO(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.2Ni 0.13Mn 0.67O 2
实施例8
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、Cr 2O 3(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.30Cr 0.03Mn 0.67O 2
实施例9
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、SnO 2(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.33Sn 0.07Mn 0.60O 2
实施例10
本实施例中采用固相法制备铜基层状氧化物材料。
实施例的具体制备步骤同实施例1,但所用前驱体化合物Na 2CO 3(分析纯)、CuO(分析纯)、MnO 2(分析纯)、Sb 2O 5(分析纯)的化学计量与实施例1中不同,得到黑色粉末的层状氧化物材料为Na 2/3Cu 0.33Sb 0.03Mn 0.64O 2
本发明提供了一种铜锰有序高电压铜基氧化物材料。制备简单,所含有的元素钠、铜、锰都是无毒安全的元素。材料中,铜的氧化还原电对本身具有较高的电压。过渡金属层铜离子和锰离子为蜂窝状有序排布,这种六边形对称有序排布可以有效降低+2价铜离子带来的强晶格扭曲,从而实现完全的+2价铜离子向+3价转变,并且通过超交换作用进一步提高铜离子的氧化还原电位。通过上述两方面可以有效提升材料的整体工作电压,进而提升材料的比能量。在金属钠半电池测试中发现,铜的氧化还原反应的工作电位可达3.5V以上,已与锂离子电池相当,且具有极佳的循环稳定性,具有很大实用价值。应用本发明的铜锰有序高电压铜基氧化物材料的钠离子二次电池可以用于移动电子、电动交通工具等中小型储能设备以及太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种铜锰有序高电压铜基氧化物材料,其特征在于,所述材料的化学通式为:Na a[Cu bMn cMe d]O 2+β;其中Cu的价态为+2,Me为Li、Na、Mg、Ca、Si、P、S、Sc、Ti、V、Cr、Fe、Co、Ni、Zn、Ga、Ge、Se、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、La、Ta、Ir、Bi中的一种或多种元素,Mn和Me的平均化合价为α;+2≤α≤+4;a、b、c、d、β分别为对应元素所占的摩尔百分比;它们之间的关系满足b+c+d=1,且a+2b+α(c+d)=2×(2+β);其中0.5≤a≤2.0;0<b≤1.0;0<c<1.0;0≤d<1.0;-0.02≤β≤0.02;
    过渡金属层中,锰离子包围铜离子呈蜂窝状有序排布,用以降低+2价铜离子带来的晶格扭曲,并使得首周充电时,铜离子失去电子,价态从+2价完全的向+3价转变;首周放电时,再重新得到电子变回+2价。
  2. 根据权利要求1所述的铜锰有序高电压铜基氧化物材料,其特征在于,所述铜锰有序高电压铜基氧化物材料相对金属钠的平均工作电压在3.5V以上。
  3. 根据权利要求1所述的铜锰有序高电压铜基氧化物材料,其特征在于,所述平均工作电压为:10mA/g电流密度下,放电能量与放电容量倒数的乘积。
  4. 一种钠离子二次电池的正极极片,其特征在于,所述正极极片包括:集流体、涂覆于所述集流体之上的导电添加剂和粘结剂,和如上述权利要求1-3任一所述的铜锰有序高电压铜基氧化物材料。
  5. 一种包括上述权利要求4所述的正极极片的钠离子二次电池。
  6. 根据上述权利要求5所述的钠离子二次电池,其特征在于,所述钠离子二次电池用于移动电子、电动交通工具等中小型储能设备以及太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。
PCT/CN2022/086224 2021-05-31 2022-04-12 一种铜锰有序高电压铜基氧化物材料和应用 WO2022252828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110603734.9 2021-05-31
CN202110603734.9A CN114171732B (zh) 2021-05-31 2021-05-31 一种铜锰有序高电压铜基氧化物材料和应用

Publications (1)

Publication Number Publication Date
WO2022252828A1 true WO2022252828A1 (zh) 2022-12-08

Family

ID=80476377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086224 WO2022252828A1 (zh) 2021-05-31 2022-04-12 一种铜锰有序高电压铜基氧化物材料和应用

Country Status (2)

Country Link
CN (1) CN114171732B (zh)
WO (1) WO2022252828A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171732B (zh) * 2021-05-31 2023-03-14 中国科学院物理研究所 一种铜锰有序高电压铜基氧化物材料和应用
CN114927681B (zh) * 2022-05-16 2024-03-12 华侨大学 一种p2型五元高熵钠层状正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010973A (ja) * 2012-06-28 2014-01-20 Kyocera Corp 活物質およびそれを用いた二次電池
CN104617288A (zh) * 2015-01-21 2015-05-13 中国科学院物理研究所 一种铜基富钠层状氧化物材料及其制备方法和用途
JP2015097161A (ja) * 2013-11-15 2015-05-21 日本電信電話株式会社 ナトリウム二次電池
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN106531982A (zh) * 2015-09-14 2017-03-22 香港城市大学 用作电池阴极的铜基化合物及其晶体以及包含该化合物的电池
CN110400931A (zh) * 2019-07-31 2019-11-01 陕西师范大学 一种具有超晶格有序结构的锰基储钠型正极材料及其制备方法
CN114171732A (zh) * 2021-05-31 2022-03-11 中国科学院物理研究所 一种铜锰有序高电压铜基氧化物材料和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592110B2 (ja) * 2015-05-26 2019-10-16 ユミコア ナトリウムイオン電池用のカソード材料としてのナトリウム酸化マンガンに対する2価金属ドーピング

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010973A (ja) * 2012-06-28 2014-01-20 Kyocera Corp 活物質およびそれを用いた二次電池
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
JP2015097161A (ja) * 2013-11-15 2015-05-21 日本電信電話株式会社 ナトリウム二次電池
CN104617288A (zh) * 2015-01-21 2015-05-13 中国科学院物理研究所 一种铜基富钠层状氧化物材料及其制备方法和用途
CN106531982A (zh) * 2015-09-14 2017-03-22 香港城市大学 用作电池阴极的铜基化合物及其晶体以及包含该化合物的电池
CN110400931A (zh) * 2019-07-31 2019-11-01 陕西师范大学 一种具有超晶格有序结构的锰基储钠型正极材料及其制备方法
CN114171732A (zh) * 2021-05-31 2022-03-11 中国科学院物理研究所 一种铜锰有序高电压铜基氧化物材料和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, SHU YIN: "Novel copper redox-based cathode materials for room-temperature sodium-ion batteries", CHINESE PHYSICS B, vol. 23, no. 11, 29 September 2014 (2014-09-29), XP055203399, ISSN: 1674-1056, DOI: 10.1088/1674-1056/23/11/118202 *

Also Published As

Publication number Publication date
CN114171732B (zh) 2023-03-14
CN114171732A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
EP3021386B1 (en) Layered oxide material containing copper, and preparation method and use thereof
US9728780B2 (en) Layered oxide material, preparation method, electrode plate, secondary battery and use
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
US20150125749A1 (en) Novel Phosphate Based Composite Anode Material, Preparation Method and Use Thereof
WO2023082505A1 (zh) 原位包覆硼酸盐的氧化物复合正极材料、制备方法和用途
WO2022252828A1 (zh) 一种铜锰有序高电压铜基氧化物材料和应用
CN113078299B (zh) 钠锂铁锰基层状氧化物材料、制备方法和用途
CN114715953A (zh) 一种前驱体辅助制备Cu,Zn掺杂的层状氧化物钠离子电池正极材料的方法及其应用
CN111162250A (zh) 纯阳离子变价的高钠含量p2相层状氧化物材料、制备方法和用途
CN109560258A (zh) 一种阴离子变价层状氧化物材料、制备方法和用途
CN113629219A (zh) 一种钠离子电池正极材料、钠离子电池及其制备方法和应用
CN114927663A (zh) 一种五元层状氧化物钠离子电池正极材料及其制备方法和应用
CN110504443B (zh) 具有阴离子变价的钠镁锰基层状氧化物材料、制备方法和用途
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN112499631A (zh) Fe3C/C复合材料及其应用
CN115472899A (zh) 一种钠离子电池层状氧化物正极材料、制备方法及其应用
CN111525120B (zh) 一种含有Mg、Cu、Mn的氧化物材料及其制备方法和应用
CN109411706B (zh) 一种改性工作电极及其制备方法
CN116454267A (zh) 一种钠电层状氧化物及其制备方法
AU2012206930A1 (en) Ion-exchange battery
CN113809302B (zh) 镁钙改性层状p2相镍锰基正极材料及其制备方法和应用
CN115172737A (zh) 一种高性能钠离子电池正极材料及其制备方法和电池
CN109904386A (zh) 一种含锡层状氧化物材料及其制备方法和应用
CN113078298A (zh) 钠镁铁锰基层状氧化物材料、制备方法和用途
CN115036487B (zh) 具有超结构的层状氧化物钠离子电池正极材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22814875

Country of ref document: EP

Kind code of ref document: A1