WO2022247810A1 - 水系双离子电池 - Google Patents

水系双离子电池 Download PDF

Info

Publication number
WO2022247810A1
WO2022247810A1 PCT/CN2022/094583 CN2022094583W WO2022247810A1 WO 2022247810 A1 WO2022247810 A1 WO 2022247810A1 CN 2022094583 W CN2022094583 W CN 2022094583W WO 2022247810 A1 WO2022247810 A1 WO 2022247810A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
electrolyte
aqueous
negative electrode
positive electrode
Prior art date
Application number
PCT/CN2022/094583
Other languages
English (en)
French (fr)
Inventor
吕力
孙建国
Original Assignee
新加坡国立大学
重庆新国大研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡国立大学, 重庆新国大研究院 filed Critical 新加坡国立大学
Publication of WO2022247810A1 publication Critical patent/WO2022247810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of batteries, in particular to an aqueous double-ion battery.
  • Lithium-ion batteries which are widely used at present, face problems such as resource depletion and high cost.
  • sodium-ion batteries have gained attention.
  • electrolytes of sodium-ion-based dual-ion batteries are flammable and costly, thus hindering the application development of dual-ion batteries.
  • Aqueous double-ion batteries also have problems such as rapid capacity fading and battery failure due to the dissolution of electrode materials, and the voltage window is limited by the decomposition voltage of water.
  • the present invention provides an aqueous dual-ion battery, which includes: a negative electrode, a positive electrode, and an electrolyte between the negative electrode and the positive electrode.
  • the negative pole is a metal oxyhalide that can store halogen anions;
  • the positive pole is a material that can store sodium ions.
  • the metal oxyhalide is one of oxychloride, oxybromide, oxyiodide and oxyfluoride;
  • the material of the positive electrode capable of storing sodium ions is sodium vanadium phosphate with reversible redox, One of sodium titanium phosphate, oxide, Prussian blue, iron-based Prussian blue and other Prussian blue derivatives;
  • the electrolyte is an aqueous solution of sodium halide.
  • the halogen element constituting the electrolytic solution is the same as the halogen element constituting the metal oxyhalide of the negative electrode.
  • the electrolyte is an aqueous sodium chloride solution
  • the metal oxyhalide is bismuth oxychloride.
  • the aqueous double-ion battery according to this embodiment further includes an additive added to the electrolyte, and the additive can form a solid electrolyte film on the surface of at least one of the negative electrode and the positive electrode.
  • the additive comprises urea.
  • the concentration of the urea is 10 mol/liter.
  • the additive further includes vinylene carbonate.
  • the concentration of the urea is 10 mol/liter, and the addition ratio of the vinylene carbonate is 2vt% (volume percent concentration).
  • the urea and the vinylene carbonate participate in the reaction and decompose during the first charge-discharge cycle of the dual-ion battery, thereby forming a solid electrolyte on the surface of at least one electrode in the negative electrode and the positive electrode membrane.
  • FIG. 1 is a schematic diagram of the positive and negative cyclic voltammetry curves and the stability window of the electrolyte of an aqueous dual-ion battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a cyclic voltammetry curve of an aqueous dual-ion battery according to an embodiment of the present invention.
  • FIG. 3A is a schematic diagram of a cycle curve of an aqueous dual-ion battery in a saturated sodium chloride solution according to an embodiment of the present invention.
  • FIG. 3B is a schematic diagram of a cycle curve of an aqueous dual-ion battery in an electrolyte with saturated sodium chloride solution and urea solution as additives according to an embodiment of the present invention.
  • 3C is a schematic diagram of a cycle curve of an aqueous dual-ion battery in a saturated sodium chloride solution, urea solution, and vinylene carbonate as an additive electrolyte according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a long-cycle test result curve of an aqueous dual-ion battery according to an embodiment.
  • FIG. 5A is a schematic diagram showing the comparison of cyclic voltammetry curves of a sodium vanadium phosphate positive electrode in a saturated sodium chloride solution electrolyte according to an embodiment.
  • FIG. 5B is a schematic diagram showing the comparison of cyclic voltammetry curves of the sodium vanadium phosphate positive electrode of the aqueous dual-ion battery in the electrolyte with saturated sodium chloride solution and urea solution as additives according to an embodiment.
  • FIG. 5C is a schematic diagram showing the comparison of cyclic voltammetry curves of the sodium vanadium phosphate positive electrode of the aqueous dual-ion battery in a saturated sodium chloride solution, a urea solution, and an electrolyte with vinylene carbonate as an additive according to an embodiment.
  • Fig. 6 is a schematic diagram of the redox peak intensity ratio of the sodium vanadium phosphate cathode in different electrolytes according to an embodiment.
  • FIG. 7 is a schematic diagram of a cyclic voltammetry curve of an aqueous double-ion battery according to another embodiment.
  • FIG. 8 is a schematic diagram of charge and discharge curves of an aqueous dual-ion battery according to another embodiment.
  • FIG. 9 is a schematic diagram of a long-cycle test curve of an aqueous dual-ion battery according to another embodiment.
  • the aqueous dual-ion battery of the present invention includes a negative electrode made of a material capable of storing halogen anions, a positive electrode made of a material capable of storing sodium ions, and an electrolyte between the negative electrode and the positive electrode.
  • the negative electrode is made of metal oxyhalides that can store halide anions and have reversible redox properties.
  • the metal oxyhalide may be, for example, a metal oxychloride, metal oxybromide, metal oxyiodide or metal oxyfluoride.
  • the metal oxychloride may be bismuth oxychloride (BiOCl).
  • the positive electrode is made of materials with reversible redox properties, including, for example, sodium vanadium phosphate (NaV 2 (PO 4 ) 3 ), sodium titanium phosphate, oxides, Prussian blue, iron-based Prussian blue, and other Prussian blue derivatives. a material.
  • materials with reversible redox properties including, for example, sodium vanadium phosphate (NaV 2 (PO 4 ) 3 ), sodium titanium phosphate, oxides, Prussian blue, iron-based Prussian blue, and other Prussian blue derivatives. a material.
  • the halogen element in the electrolytic solution is the same as that of the metal oxyhalide constituting the negative electrode.
  • the electrolytic solution is an aqueous sodium chloride solution
  • the electrolytic solution is an aqueous sodium iodide solution.
  • the electrolyte solution of the aqueous double ion battery according to this embodiment further includes additives.
  • the additive can form a solid electrolyte film on the surface of at least one of the negative electrode and the positive electrode.
  • urea and/or vinylene carbonate are used as additives for the electrolyte of the aqueous dual-ion battery, and urea and vinylene carbonate participate in the reaction and decompose during the first charge-discharge cycle of the aqueous dual-ion battery.
  • a solid electrolyte film is formed on the surface of at least one electrode in the positive electrode, so as to achieve the effect of improving the electrical performance of the water-based double-ion battery.
  • the present invention provides an aqueous dual-ion battery, wherein the positive electrode of the battery is made of a material capable of storing sodium ions, such as sodium vanadium phosphate.
  • the negative electrode of the battery is made of a material that can store halogen anions, such as bismuth oxychloride, and the electrolyte of the battery includes an aqueous sodium halide solution, such as an aqueous sodium chloride solution.
  • the electrolyte solution of the water-based double-ion battery can be saturated aqueous sodium chloride solution, saturated aqueous sodium chloride solution and urea solution, or saturated aqueous sodium chloride solution, urea solution and vinylene carbonate.
  • the manufacturing method of the dual-ion battery according to an example of the present invention comprises stirring bismuth oxychloride, acetylene black, and polyvinylidene fluoride in an N-methylpyrrolidone solution in a mass ratio of 7:2:1 and coating them on graphite On a paper substrate, vacuum-dried at 120 degrees Celsius for 12 hours, and cut into negative electrode discs with a diameter of 12 mm.
  • the manufacturing method also includes stirring sodium vanadium phosphate, acetylene black, and polyvinylidene fluoride in an N-methylpyrrolidone solution in a mass ratio of 7:2:1 and coating the graphite paper lining On the bottom, vacuum-dried at 120 degrees Celsius for 12 hours, and cut into positive electrode discs with a diameter of 12 mm.
  • the manufacturing method further includes intervening an electrolyte between the negative electrode and the positive electrode, so as to manufacture the aqueous double-ion battery according to the embodiment of the present invention.
  • the electrolyte may be a saturated aqueous sodium chloride solution.
  • the manufacturing method further includes adding additives to the aqueous sodium chloride solution.
  • Additives can be urea and/or vinylene carbonate.
  • the dosage of urea can be, for example, 10 moles per liter.
  • the dosage of vinylene carbonate can be, for example, 2% by volume (2vt%).
  • Fig. 1 is a schematic diagram of the positive and negative cyclic voltammetry curves and the stability window of the electrolyte of an aqueous dual-ion battery according to an embodiment of the present invention, specifically the bismuth oxychloride negative electrode tested by the three-electrode system group at room temperature (23.5 degrees Celsius)
  • the sodium vanadium phosphate positive electrode presents a pair of strong redox peaks (0.46 volts/0.56 volts) during cycling, which correspond to the reaction of sodium ions (Na + ) in sodium vanadium phosphate (Na 3 Insertion and extraction of V 2 (PO 4 ) 3 ) positive electrode.
  • Bismuth oxychloride (BiOCl) negative electrode presents two reduction peaks at -0.23 volts and -0.92 volts, respectively, and these two reduction peaks correspond to the reduction of Bi 3+ /Bi 0 in BiOCl, accompanied by chloride ions (Cl - ) from Release of BiOCl anode.
  • FIG. 2 is a schematic diagram of a cyclic voltammetry curve of an aqueous dual-ion battery according to an embodiment of the present invention, specifically a battery tested at room temperature (23.5 degrees Celsius) with bismuth oxychloride as the negative electrode and sodium vanadium phosphate as the positive electrode at 5
  • FIG. 3A is a schematic diagram of a cycle curve of an aqueous dual-ion battery in a saturated sodium chloride solution according to an embodiment of the present invention, specifically a battery with bismuth oxychloride as the negative electrode and sodium vanadium phosphate as the positive electrode at 200 milliamperes per gram ( The charge-discharge curve obtained from the test under the current density of mA g -1 ).
  • 3B is a schematic diagram of the cycle curve of an aqueous dual-ion battery in a saturated sodium chloride solution and an electrolyte of 10 moles per liter (mol/liter) urea solution according to an embodiment, specifically using bismuth oxychloride as the negative electrode and phosphoric acid
  • mA g -1 milliamperes per gram
  • 3C is a schematic diagram of a cycle curve of an aqueous dual-ion battery in a saturated sodium chloride solution, a 10 mole per liter (mol/liter) urea solution and an electrolyte of 2vt% vinylene carbonate according to an embodiment, specifically in the form of The charge-discharge curves obtained by testing the battery with bismuth oxychloride as the negative electrode and sodium vanadium phosphate as the positive electrode at a current density of 200 milliamperes per gram (mA g -1 ).
  • the battery using saturated sodium chloride solution as the electrolyte can obtain an initial specific capacity of 53 milliamperes per gram (mAh g -1 ) at a current density of 200 milliamperes per gram (mA g -1 ) (calculated based on the amount of positive active material).
  • a battery using saturated sodium chloride and 10 moles per liter of urea as the electrolyte can obtain 86 milliamperes per gram (mAh g -1 ) at a current density of 200 milliamperes per gram (mA g -1 ) . 1 )
  • the initial specific capacity (calculated by the mass of the positive electrode).
  • a battery using saturated sodium chloride, 10 moles per liter of urea and 2vt% vinylene carbonate as the electrolyte can obtain 172 mA at a current density of 200 milliamperes per gram (mA g -1 )
  • the initial specific capacity per gram (mAh g -1 ) (calculated by the mass of the positive electrode).
  • the initial specific capacity of the aqueous dual-ion battery according to this example is significantly higher than the theoretical capacity for two electron conversions corresponding to Na 3 V 2 (PO 4 ) 3 /NaV 2 (PO 4 ) 3 ( ⁇ 118 mAh/g) .
  • the increase of the initial specific capacity is related to the reaction and decomposition of urea and vinylene carbonate in the electrolyte during the first cycle and the formation of a solid electrolyte film (Solid Electrolyte Interphase) on the surface of the electrode material.
  • Fig. 4 is a schematic diagram of a long cycle test result curve of an aqueous dual-ion battery according to an embodiment, specifically, a battery with bismuth oxychloride as the negative electrode and sodium vanadium phosphate as the positive electrode at a current of 200 milliamperes per gram (mA g -1 ) Schematic diagram of charge-discharge cycle performance under density.
  • the battery with saturated sodium chloride, 10 moles per liter of urea and 2vt% vinylene carbonate as the electrolyte can be charged and discharged at 200 milliamperes per gram (mA g - 1 )
  • a relatively stable discharge specific capacity of 43.78 milliampere hours per gram (mAh g -1 ) was obtained at the current density.
  • the battery can still obtain a specific capacity of 33.78 milliamp hours per gram (mAh g -1 ).
  • Figure 5A is a schematic diagram of the comparison of cyclic voltammetry curves of the sodium vanadium phosphate positive electrode in the electrolyte of saturated sodium chloride solution according to one embodiment, specifically the sodium vanadium phosphate positive electrode tested by the three-electrode system group at room temperature (23.5 degrees Celsius) Cyclic voltammetry curves of different turns measured at a scan rate of 5 millivolts per second (mV/s), using silver/silver chloride (Ag/AgCl) as a reference electrode.
  • mV/s millivolts per second
  • 5B is a schematic diagram showing the comparison of cyclic voltammetry curves of the sodium vanadium phosphate positive electrode in saturated sodium chloride solution and 10 moles per liter (mol/liter) urea solution electrolyte according to an embodiment. Specifically, it is the cyclic voltammetry curve of different turns of the sodium vanadium phosphate positive electrode tested by the three-electrode system group at room temperature (23.5 degrees Celsius) at a scan rate of 5 millivolts per second (mV/s), expressed as silver/silver chloride (Ag/AgCl) is the reference electrode.
  • mV/s millivolts per second
  • 5C is a comparative schematic diagram of the cyclic voltammetry curves of the sodium vanadium phosphate positive electrode in saturated sodium chloride solution, 10 moles per liter (mol/liter) urea solution and 2vt% vinylene carbonate electrolyte according to one embodiment, Specifically, it is the cyclic voltammetry curve of different turns of the sodium vanadium phosphate positive electrode tested by the three-electrode system group at room temperature (23.5 degrees Celsius) at a scan rate of 5 millivolts per second (mV/s), expressed as silver/silver chloride (Ag/AgCl) is the reference electrode.
  • mV/s millivolts per second
  • Na 3 V 2 (PO 4 ) 3 has structural damage after many cycles (for example, after 20 charge-discharge cycles), which leads to Decay of Na + storage capacity in Na 3 V 2 (PO 4 ) 3 cathode.
  • urea and vinylene carbonate were added to the electrolyte, the structural damage of Na 3 V 2 (PO 4 ) 3 was significantly improved, and the redox kinetics performance was significantly improved.
  • FIG. 6 is a schematic diagram of the redox peak intensity ratio of the sodium vanadium phosphate positive electrode in different electrolytes according to an embodiment, specifically in (1) saturated sodium chloride solution, (2) saturated sodium chloride solution and 10 moles per liter (mol/liter) urea solution, (3) saturated sodium chloride solution, 10 moles per liter (mol/liter) urea solution and 2vt% vinylene carbonate electrolyte for the 40th time
  • the present invention provides an aqueous double-ion battery, wherein the positive pole of the battery is iron-based Prussian blue (Na 2 FeFe(CN) 6 ), the negative pole of the battery is bismuth oxychloride, and saturated chlorine Sodium chloride aqueous solution, 10 moles per liter of urea solution and 2vt% vinylene carbonate were used as the electrolyte of the dual-ion battery.
  • the positive pole of the battery is iron-based Prussian blue (Na 2 FeFe(CN) 6 )
  • the negative pole of the battery is bismuth oxychloride
  • saturated chlorine Sodium chloride aqueous solution, 10 moles per liter of urea solution and 2vt% vinylene carbonate were used as the electrolyte of the dual-ion battery.
  • Battery preparation Stir bismuth oxychloride, acetylene black, and polyvinylidene fluoride in an N-methylpyrrolidone solution at a mass ratio of 7:2:1, then coat them on a graphite paper substrate, and heat them at 120 degrees Celsius Vacuum-dried for 12 hours, and then cut into electrode discs with a diameter of 12 mm as negative electrodes.
  • Fig. 7 is a schematic diagram of the cyclic voltammetry curve of the aqueous double-ion battery according to this embodiment, specifically a battery tested at room temperature (23.5 degrees Celsius), using bismuth oxychloride as the negative electrode and iron-based Prussian blue as the positive electrode at 5 milliliters
  • the electrolyte is saturated aqueous sodium chloride solution, 10 moles per liter (mol/liter) urea solution and 2vt% of vinylene carbonate.
  • Fig. 8 is a schematic diagram of charge and discharge curves of an aqueous dual-ion battery according to another embodiment, specifically using bismuth oxychloride as the negative electrode, iron-based Prussian blue as the positive electrode, and saturated sodium chloride aqueous solution, 10 moles per liter (mol/L liter) urea solution and 2vt% vinylene carbonate as the electrolyte, the charge-discharge curve obtained by testing the battery at a current density of 200 milliamperes per gram (mA g ⁇ 1 ).
  • the battery when using saturated sodium chloride, 10 moles per liter of urea and 2vt% vinylene carbonate as the electrolyte, the battery can obtain a current density of 17.86 milliamperes per gram at a current density of 200 milliamperes per gram.
  • Initial specific capacity (calculated by the amount of positive active material).
  • Fig. 9 is a schematic diagram of the long-cycle test curve of the water-based dual-ion battery according to this embodiment, specifically using bismuth oxychloride as the negative electrode, iron-based Prussian blue as the positive electrode, saturated aqueous sodium chloride solution, 10 moles per liter (mol /L) urea solution and 2vt% vinylene carbonate as the electrolyte, the charge-discharge cycle performance of the battery at a current density of 200 milliamperes per gram (mA g -1 ).
  • the battery when saturated aqueous sodium chloride solution, 10 moles per liter of urea and 2vt% vinylene carbonate are used as the electrolyte, the battery can be charged and discharged at a current of 200 mA per gram after the first 80 charges and discharges. A relatively stable discharge specific capacity of 15.69 mAh per gram is obtained under the density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种水系双离子电池,包括负极、正极及介于所述负极与所述正极之间的电解液。负极为可存储卤素阴离子的金属卤氧化物,正极为可存储钠离子的材料。负极的金属卤氧化物可以是氯氧化物、溴氧化物、碘氧化物及氟氧化物中的一种。可存储钠离子的具有可逆氧化还原特性的正极的可以是磷酸钒钠、磷酸钛钠、氧化物、普鲁士蓝、铁基普鲁士蓝及其他普鲁士蓝衍生物中的一种。电解液为卤化钠水溶液。电解液的卤元素与构成所述负极的所述金属卤氧化物的卤元素相同。电解液优选为氯化钠水溶液,负极优选为氯氧化铋。电解液中可以加入添加剂,添加剂可在负极及正极中的至少一个电极表面形成固体电解质膜。添加剂可以包括尿素及/或碳酸亚乙烯酯。

Description

水系双离子电池 技术领域
本发明涉及电池领域,尤其涉及一种水系双离子电池。
背景技术
目前广泛应用的锂离子电池面临资源枯竭和成本高昂等方面的问题。相比之下,钠离子电池得到了关注。目前基于钠离子的双离子电池的电解液具有易燃特性且成本较高,因此双离子电池的应用开发受到阻碍。水系双离子电池也存在因电极材料的溶解导致的容量快速衰减和电池失效,以及电压窗口受到水的分解电压的限制等问题。
因此,期望提供一种能够解决上述问题的水系双离子电池。
发明内容
根据一个实施例,本发明提供一种水系双离子电池,所述水系双离子电池包括:负极、正极及介于所述负极与所述正极之间的电解液。所述负极为可存储卤素阴离子的金属卤氧化物;所述正极为可存储钠离子的材料。
优选地,所述金属卤氧化物为氯氧化物,溴氧化物,碘氧化物及氟氧化物中的一种;所述可存储钠离子的正极的材料为具有可逆氧化还原的磷酸钒钠、磷酸钛钠、氧化物、普鲁士蓝、铁基普鲁士蓝及其他普鲁士蓝衍生物中的一种;所述电解液为卤化钠水溶液。
优选地,构成所述电解液的卤元素与构成所述负极的所述金属卤氧化物的卤元素相同。
优选地,所述电解液为氯化钠水溶液,所述金属卤氧化物为氯氧 化铋。
优选地,根据本实施例的水系双离子电池还包括加入所述电解液中的添加剂,所述添加剂可在所述负极及所述正极中的至少一个电极表面形成固体电解质膜。
优选地,所述添加剂包括尿素。进一步优选地,所述尿素的浓度为10摩尔/升。
优选地,所述添加剂还包括碳酸亚乙烯酯。进一步优选地,所述尿素的浓度为10摩尔/升,所述碳酸亚乙烯酯的添加比为2vt%(体积百分浓度)。
优选地,所述尿素及所述碳酸亚乙烯酯在所述双离子电池的首圈充放电循环过程中参与反应并分解,从而在所述负极及所述正极中的至少一个电极表面形成固体电解质膜。
附图简要说明
图1为根据本发明一个实施例的水系双离子电池的正负极循环伏安曲线及电解液的稳定窗口示意图。
图2为根据本发明一个实施例的水系双离子电池的循环伏安曲线示意图。
图3A为根据本发明一个实施例的水系双离子电池在饱和氯化钠溶液中的循环曲线示意图。
图3B为根据本发明一个实施例的水系双离子电池在饱和氯化钠溶液及尿素溶液作为添加剂的电解液中的循环曲线示意图。
图3C为根据本发明一个实施例的水系双离子电池在饱和氯化钠溶液尿素溶液、碳酸亚乙烯酯作为添加剂的电解液中的循环曲线示意图。
图4为根据一个实施例的水系双离子电池的长循环测试结果曲线 示意图。
图5A为根据一个实施例水系双离子电池的磷酸钒钠正极在饱和的氯化钠溶液的电解液中的循环伏安曲线对比示意图。
图5B为根据一个实施例水系双离子电池的磷酸钒钠正极在饱和氯化钠溶液及尿素溶液作为添加剂的电解液中的循环伏安曲线对比示意图。
图5C为根据一个实施例水系双离子电池的磷酸钒钠正极在饱和氯化钠溶液及尿素溶液、碳酸亚乙烯酯作为添加剂的电解液中的循环伏安曲线对比示意图。
图6为根据一个实施例水系双离子电池的磷酸钒钠正极在不同的电解液中的氧化还原峰强度比示意图。
图7为根据另一个实施例水系双离子电池的循环伏安曲线示意图。
图8为根据另一个实施例水系双离子电池的充放电曲线示意图。
图9为根据另一个实施例水系双离子电池的长循环测试曲线示意图。
具体实施方式
本发明涉及一种水系双离子电池。根据一个实施例,本发明的水系双离子电池包括由可存储卤素阴离子的材料制成的负极、由可存储钠离子的材料制成的正极,以及介于负极与正极之间的电解液。负极由可存储卤素阴离子并具有可逆氧化还原特性的金属卤氧化物制成。该金属卤氧化物可以是例如金属氯氧化物、金属溴氧化物、金属碘氧化物或金属氟氧化物。具体地,金属氯氧化物可以是氯氧化铋(BiOCl)。正极由具有可逆氧化还原特性的材料制成,包括例如磷酸钒钠(NaV 2(PO 4) 3)、磷酸钛钠、氧化物、普鲁士蓝、铁基普鲁士蓝及其他普鲁士蓝衍生物中的其中一种材料。
电解液中的卤元素与构成负极的金属卤氧化物的卤元素相同。例如,如果负极为氯氧化物,则电解液为氯化钠水溶液;如果该双离子 电池的负极为碘氧化物,则电解液为碘化钠水溶液。
根据本实施例的水系双离子电池的电解液还包括添加剂。所述添加剂可在负极及正极中的至少一个电极表面形成固体电解质膜。例如,以尿素及/或碳酸亚乙烯酯作为该水系双离子电池的电解液的添加剂,尿素及碳酸亚乙烯酯在水系双离子电池的首圈充放电循环过程中参与反应并分解,从而在负极及正极中的至少一个电极表面形成固体电解质膜,达到改善水系双离子电池电性能的效果。
根据一个实施例,本发明提供一种水系双离子电池,其中,该电池的正极由可存储钠离子的材料,例如磷酸钒钠制成。该电池的负极由可存储卤素阴离子的材料,例如氯氧化铋制成,该电池的电解液包括卤化钠水溶液,例如氯化钠水溶液。该水系双离子电池的电解液可以是饱和的氯化钠水溶液、饱和的氯化钠水溶液及尿素溶液,或饱和的氯化钠水溶液、尿素溶液以及碳酸亚乙烯酯。
根据本发明一个示例的双离子电池的制造方法包括将氯氧化铋与乙炔黑、聚偏二氟乙烯以7:2:1的质量比例于N-甲基吡咯烷酮溶液中搅拌均匀并涂覆在石墨纸衬底上,在120摄氏度下真空干燥12小时,以及裁剪为直径12毫米的负极圆片。同时地或依序地,制造方法还包括将磷酸钒钠与乙炔黑、聚偏二氟乙烯以7:2:1的质量比例于N-甲基吡咯烷酮溶液中搅拌均匀并涂覆在石墨纸衬底上,在120摄氏度下真空干燥12小时,以及裁剪为直径12毫米的正极圆片。制造方法进一步包括将电解液介入负极与正极之间,以制成根据本发明实施例的水系双离子电池。电解液可以是饱和的氯化钠水溶液。优选地,制造方法还包括将将添加剂加入氯化钠水溶液。添加剂可以是尿素及/或碳酸亚乙烯酯。尿素的加入计量可以是例如10摩尔每升。碳酸亚乙烯酯的加入剂量可以是例如体积百分比为2%(2vt%)的剂量。
图1为根据本发明一个实施例的水系双离子电池的正负极循环伏安曲线以及电解液的稳定窗口示意图,具体为在室温(23.5摄氏度)下三电极系统组测试的、氯氧化铋负极和磷酸钒钠正极在5毫伏每秒(mV/s)扫描速率下测试的循环伏安曲线,以银/氯化银(Ag/AgCl)为参比电极,电解液为饱和的氯化钠(NaCl)水溶液。
如图1所示,磷酸钒钠正极在循环过程中呈现一对很强的氧化还原峰(0.46伏/0.56伏),此氧化还原峰对应于钠离子(Na +)在磷酸钒钠(Na 3V 2(PO 4) 3)正极的嵌入和脱出。氯氧化铋(BiOCl)负极在-0.23伏和-0.92伏分别呈现两个还原峰,这两个还原峰对应于BiOCl中的Bi 3+/Bi 0的还原,伴随着氯离子(Cl -)从BiOCl负极的释放。在正向扫描过程中,与还原峰对应的两个氧化峰分别出现在–0.48伏和–0.12伏,对应于BiOCl中的Bi 0/Bi 3+的氧化过程,伴随着在负极一侧形成BiOCl进而对Cl -进行存储。上述结果证明,BiOCl负极和Na 3V 2(PO 4) 3正极可以分别存储Cl -和Na +。与此同时,正极以及负极的氧化还原电位都在电解液的分解电压窗口范围内。
图2为根据本发明一个实施例的水系双离子电池的循环伏安曲线示意图,具体为在室温(23.5摄氏度)下测试的、以氯氧化铋作为负极、以磷酸钒钠为正极的电池在5毫伏每秒(mV/s)扫描速率下测试的循环伏安曲线,电压区间为0至1.5伏,电解液为饱和的氯化钠水溶液。
如图2所示,在充电过程中,一个很强的氧化峰呈现在1.41伏,此氧化峰对应于Cl -从BiOCl负极的释放以及Na +从Na 3V 2(PO 4) 3正极的释放过程,其具体的氧化还原反应如下式所示:
负极:
Figure PCTCN2022094583-appb-000001
正极:
Figure PCTCN2022094583-appb-000002
在放电过程中,一个还原峰呈现在0.61伏,另一个还原峰呈现在0.93伏。这两个还原峰对应于Cl -在BiOCl负极存储以及Na +在Na 3V 2(PO 4) 3正极存储的过程,具体的氧化还原反应如下式所示:
负极:
Figure PCTCN2022094583-appb-000003
正极:
Figure PCTCN2022094583-appb-000004
图3A为根据本发明一个实施例的水系双离子电池在饱和氯化钠溶液中的循环曲线示意图,具体为以氯氧化铋作为负极、以磷酸钒钠作为正极的电池在200毫安每克(mA g -1)电流密度下测试获得的充放电曲线。图3B为根据一个实施例的水系双离子电池在饱和氯化钠溶液以及10摩尔每升(摩尔/升)尿素溶液的电解液中的循环曲线示意图,具体为以氯氧化铋作为负极、以磷酸钒钠作为正极的电池在200毫安每克(mA g -1)电流密度下测试获得的充放电曲线。图3C为根据一个实施例的水系双离子电池在饱和氯化钠溶液、10摩尔每升(摩尔/升)尿素溶液以及2vt%的碳酸亚乙烯酯的电解液中的循环曲线示意图,具体为以氯氧化铋作为负极、以磷酸钒钠作为正极的电池在200毫安每克(mA g -1)电流密度下测试获得的充放电曲线。
如图3A、3B及3C所示,当仅以饱和氯化钠溶液为电解液时,电池在充放电过程中呈现一对明显的电压平台,分别位于0.65伏和1.4伏,这与循环伏安曲线测试结果一致,并且这对充放电平台在不同的电解液中几乎保持不变,但是电池的比容量却随着电解液添加剂的加入逐步增加。
如图3A所示,以饱和氯化钠溶液作为电解液的电池在200毫安每克(mA g -1)电流密度下可以获得53毫安时每克(mAh g -1)的初始比容量 (以正极活性物质量计算)。如图3B所示,以饱和氯化钠及10摩尔每升的尿素作为电解液的电池在200毫安每克(mA g -1)电流密度下可以获得86毫安时每克(mAh g -1)的初始比容量(以正极质量计算)。如图3C所示,以饱和氯化钠、10摩尔每升尿素以及2vt%的碳酸亚乙烯酯为电解液的电池在200毫安每克(mA g -1)电流密度下可以获得172毫安时每克(mAh g -1)的初始比容量(以正极质量计算)。根据本示例的水系双离子电池的初始比容量明显高于Na 3V 2(PO 4) 3/NaV 2(PO 4) 3对应的两个电子转换的理论容量(~118毫安时每克)。初始比容量的增加与在首圈过程中电解液中的尿素和碳酸亚乙烯酯的参与反应并分解及电极材料表面的固体电解质膜(Solid Electrolyte Interphase)的形成相关。
图4为根据一个实施例的水系双离子电池的长循环测试结果曲线示意图,具体为以氯氧化铋作为负极、以磷酸钒钠作为正极的电池在200毫安每克(mA g -1)电流密度下的充放电循环性能示意图。
如图4所示,以饱和氯化钠、10摩尔每升尿素以及2vt%的碳酸亚乙烯酯为电解液的电池在经过前30圈充放电后,可以在200毫安每克(mA g -1)电流密度下获得比较稳定的43.78毫安时每克(mAh g -1)的放电比容量。经过200次充放电循环后,电池仍然可以获得33.78毫安时每克(mAh g -1)的比容量。这种以饱和氯化钠、10摩尔每升尿素及2vt%的碳酸亚乙烯酯为电解液的电池的性能远远高于仅以饱和氯化钠溶液为电解液,或以饱和氯化钠及10摩尔每升尿素为电解液的电池。
图5A为根据一个实施例的磷酸钒钠正极在饱和的氯化钠溶液的电解液中的循环伏安曲线对比示意图,具体为在室温(23.5摄氏度)下三电极系统组测试的磷酸钒钠正极在5毫伏每秒(mV/s)扫描速率下测试的不同圈数的循环伏安曲线,以银/氯化银(Ag/AgCl)为参比电极。图5B为根据一个实施例的磷酸钒钠正极在饱和氯化钠溶液以及10摩尔每升(摩尔/升)尿素溶液的电解液中的循环伏安曲线对比示意图。具体为在 室温(23.5摄氏度)下三电极系统组测试的磷酸钒钠正极在5毫伏每秒(mV/s)扫描速率下测试的不同圈数的循环伏安曲线,以银/氯化银(Ag/AgCl)为参比电极。图5C为根据一个实施例的磷酸钒钠正极在饱和氯化钠溶液、10摩尔每升(摩尔/升)尿素溶液及2vt%的碳酸亚乙烯酯的电解液中的循环伏安曲线对比示意图,具体为在室温(23.5摄氏度)下三电极系统组测试的磷酸钒钠正极在5毫伏每秒(mV/s)扫描速率下测试的不同圈数的循环伏安曲线,以银/氯化银(Ag/AgCl)为参比电极。
如图5A、5B及5C所示,在饱和氯化钠电解液中,Na 3V 2(PO 4) 3经过多次循环(例如,经过20次充放电循环)之后存在结构破坏现象,进而导致Na 3V 2(PO 4) 3正极中Na +存储能力的衰减。然而,当在电解液中加入尿素和碳酸亚乙烯酯后,Na 3V 2(PO 4) 3的结构破坏情况得到了明显改善,氧化还原动力学性能明显提升。
图6为根据一个实施例的磷酸钒钠正极在不同的电解液中的氧化还原峰强度比示意图,具体为分别在(1)饱和的氯化钠溶液、(2)饱和的氯化钠溶液及10摩尔每升(摩尔/升)尿素溶液、(3)饱和的氯化钠溶液、10摩尔每升(摩尔/升)尿素溶液以及2vt%的碳酸亚乙烯酯的电解液中的第四十次/第二十次及第六十次/第二十次的氧化还原峰强度比示意图。
如图6所示,在饱和氯化钠电解液中加入尿素和碳酸亚乙烯酯后,Na 3V 2(PO 4) 3的氧化还原峰强度比相较于处于仅添加尿素的饱和氯化钠电解液中和处于饱和氯化钠(无添加剂)的电解液中的Na 3V 2(PO 4) 3有显著增强。因此,在饱和氯化钠电解液中加入尿素和碳酸亚乙烯酯的水系双离子电池的循环稳定性明显提高。
根据另一实施例,本发明提供一种水系双离子电池,其中,该电池的正极为铁基普鲁士蓝(Na 2FeFe(CN) 6),该电池的负极为氯氧化铋,以饱和的氯化钠水溶液、10摩尔每升尿素溶液以及2vt%的碳酸亚乙烯 酯作为该双离子电池的电解液。
电池制备:将氯氧化铋与乙炔黑、聚偏二氟乙烯以7:2:1的质量比例于N-甲基吡咯烷酮溶液中搅拌均匀后涂覆在石墨纸衬底上,并在120摄氏度下真空干燥12小时,然后裁剪为直径12毫米的电极圆片,作为负极。将铁基普鲁士蓝与乙炔黑、聚偏二氟乙烯以7:2:1的质量比例于N-甲基吡咯烷酮溶液中搅拌均匀后涂覆在石墨纸衬底之上,并在120摄氏度下真空干燥12小时,然后裁剪为直径12毫米的电极圆片,作为正极。以饱和的氯化钠水溶液作为电解液,并加入10摩尔每升的尿素和2vt%的的碳酸亚乙烯酯进行修饰。
图7为根据该实施例的水系双离子电池的循环伏安曲线示意图,具体为在室温(23.5摄氏度)下测试的、以氯氧化铋作为负极、以铁基普鲁士蓝作为正极的电池在5毫伏每秒(mV/s)扫描速率下测试的循环伏安曲线,电压区间为0至1.5伏,电解液为饱和的氯化钠水溶液、10摩尔每升(摩尔/升)尿素溶液以及2vt%的碳酸亚乙烯酯。
如图7所示,在充电过程中,两个很强的氧化峰出现在0.33伏和1.14伏,这两个氧化峰对应于Cl -从BiOCl负极释放以及Na +从铁基普鲁士蓝(Na 2FeFe(CN) 6)正极上的释放过程,其具体的氧化还原反应如下式所示:
负极:
Figure PCTCN2022094583-appb-000005
正极:
Figure PCTCN2022094583-appb-000006
在放电过程中,一个还原峰出现在0.19伏,此外一个还原峰出现在0.63伏。这两个还原峰对应于Cl -在BiOCl负极存储以及Na +在Na 2FeFe(CN) 6正极的存储过程,具体的氧化还原反应如下式所示:
负极:
Figure PCTCN2022094583-appb-000007
正极:
Figure PCTCN2022094583-appb-000008
图8为根据另一个实施例的水系双离子电池的充放电曲线示意图,具体为以氯氧化铋作为负极、以铁基普鲁士蓝作为正极,以饱和氯化钠水溶液、10摩尔每升(摩尔/升)尿素溶液以及2vt%的碳酸亚乙烯酯为电解液的电池在200毫安每克(mA g -1)电流密度下测试获得的充放电曲线。
如图8所示,以饱和氯化钠、10摩尔每升尿素以及2vt%的碳酸亚乙烯酯为电解液时,电池在200毫安每克的电流密度下可以获得17.86毫安时每克的初始比容量(以正极活性物质量计算)。
图9为根据该一个实施例的水系双离子电池的长循环测试曲线示意图,具体为以氯氧化铋作为负极、以铁基普鲁士蓝作为正极,饱和的氯化钠水溶液、10摩尔每升(摩尔/升)尿素溶液以及2vt%的碳酸亚乙烯酯为电解液的电池在200毫安每克(mA g -1)电流密度下的充放电循环性能。
如图9所示,当以饱和氯化钠水溶液、10摩尔每升尿素以及2vt%的碳酸亚乙烯酯为电解液时,电池在经过前80次充放电后可以在200毫安每克的电流密度下获得比较稳定的15.69毫安时每克的放电比容量。
以上出于说明及描述的目的呈现了本发明的实施例、具体示例及应用场景,但是并不旨在穷举或限制。多种修改及变化对于本领域普通技术人员而言可以是明显易懂的。选择及描述示例及实施例是为了 解释本发明该技术方案的原理及实际应用,并且使得本领域普通技术人员能够理解本发明的各种实施例,其可以包括适合于预期的特定用途的各种修改。
因此,尽管本文参考附图描述说明性示例实施例,但是可以理解,该描述不是限制性的,并且本领域技术人员可以在其中实现各种其他变化及修改而不脱离本发明的范围或创新技术方案。

Claims (10)

  1. 一种水系双离子电池,其特征在于,所述水系双离子电池包括:
    负极,所述负极为可存储卤素阴离子的金属卤氧化物;
    正极,所述正极为可存储钠离子的材料;
    介于所述负极与所述正极之间的电解液。
  2. 根据权利要求1所述的水系双离子电池,其特征在于,所述金属卤氧化物为氯氧化物,溴氧化物,碘氧化物及氟氧化物中的一种;所述可存储钠离子的的正极材料为具有可逆氧化还原特性的磷酸钒钠、磷酸钛钠、氧化物、普鲁士蓝、铁基普鲁士蓝及其他普鲁士蓝衍生物中的一种;所述电解液为卤化钠水溶液。
  3. 根据权利要求2所述的水系双离子电池,其特征在于,构成所述电解液的卤元素与构成所述负极的所述金属卤氧化物的卤元素相同。
  4. 根据权利要求3所述的水系双离子电池,其特征在于,所述电解液为氯化钠水溶液,所述金属卤氧化物为氯氧化铋。
  5. 根据权利要求1所述的水系双离子电池,其特征在于,还包括加入所述电解液中的添加剂,所述添加剂可在所述负极及所述正极中的至少一个电极表面形成固体电解质膜。
  6. 根据权利要求5所述的水系双离子电池,其特征在于,所述添加剂包括尿素。
  7. 根据权利要求6所述的水系双离子电池,其特征在于,所述尿素的浓度为10摩尔/升。
  8. 根据权利要求6或7所述的水系双离子电池,其特征在于,所述添加剂还包括碳酸亚乙烯酯。
  9. 根据权利要求8所述的水系双离子电池,其特征在于,所述尿素的浓度为10摩尔/升,所述碳酸亚乙烯酯的添加比为2vt%。
  10. 根据权利要求9所述的水系双离子电池,其特征在于,所述尿素及所述碳酸亚乙烯酯在所述水系双离子电池的首圈充放电循环过程中参与反应并分解,从而在所述负极及所述正极中的至少一个电极表面形成固体电解质膜。
PCT/CN2022/094583 2021-05-24 2022-05-24 水系双离子电池 WO2022247810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110564940.3A CN115395010A (zh) 2021-05-24 2021-05-24 水系双离子电池
CN202110564940.3 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247810A1 true WO2022247810A1 (zh) 2022-12-01

Family

ID=84113784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094583 WO2022247810A1 (zh) 2021-05-24 2022-05-24 水系双离子电池

Country Status (2)

Country Link
CN (1) CN115395010A (zh)
WO (1) WO2022247810A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
CN110325481A (zh) * 2017-01-18 2019-10-11 威斯康星州男校友研究基金会 基于铋的储氯电极
CN110416531A (zh) * 2019-07-26 2019-11-05 长安大学 卤化氧铋水系锌离子二次电池正极及其制备方法与应用
CN110459801A (zh) * 2019-08-22 2019-11-15 广东工业大学 一种钠基双离子电池及其制备方法
JP2020187826A (ja) * 2019-05-09 2020-11-19 Tpr株式会社 デュアルイオンバッテリ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401030A (zh) * 2013-07-09 2013-11-20 哈尔滨工程大学 一种水系可充镁或锌离子电容电池
CN110325481A (zh) * 2017-01-18 2019-10-11 威斯康星州男校友研究基金会 基于铋的储氯电极
JP2020187826A (ja) * 2019-05-09 2020-11-19 Tpr株式会社 デュアルイオンバッテリ
CN110416531A (zh) * 2019-07-26 2019-11-05 长安大学 卤化氧铋水系锌离子二次电池正极及其制备方法与应用
CN110459801A (zh) * 2019-08-22 2019-11-15 广东工业大学 一种钠基双离子电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUMING CHEN , YINXI HUANG , LU GUO , LINFENG SUN , YE WANG AND HUI YING YANG : "Dual-ions electrochemical deionization: a desalination generator", ENERGY & ENVIRONMENTAL SCIENCE, vol. 10, 1 January 2017 (2017-01-01), pages 2081 - 2089, XP055517446, DOI: 10.1039/C7EE00855D *

Also Published As

Publication number Publication date
CN115395010A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Nakamoto et al. Electrolyte dependence of the performance of a Na2FeP2O7//NaTi2 (PO4) 3 rechargeable aqueous sodium-ion battery
JP6097686B2 (ja) リチウム又はナトリウム電池の製造方法
DK2534719T3 (en) Rechargeable electrochemical cell
CN105336952B (zh) 一种钠锌双离子可充电电池
JP6986515B2 (ja) 高エネルギー密度電池の使用のための再充電可能なナトリウム電池
KR102410425B1 (ko) 전바나듐 설페이트 산 레독스 흐름 전지 시스템
CN105190964B (zh) 金属掺杂的过渡金属六氰合铁酸盐(tmhcf)电池电极
JP2016520969A (ja) 亜鉛イオン二次電池及びその製造方法
Wen et al. Carbon coated stainless steel mesh as a low-cost and corrosion-resistant current collector for aqueous rechargeable batteries
Seki et al. Aqueous lithium-ion battery of Li4Ti5O12/LiMn2O4 using a lithium-ion conductive solid electrolytes separator
US10644308B2 (en) Electrode material of sodium-ion battery, method of manufacturing the same and electrode of sodium-ion battery
CN106920946A (zh) 一种氧化铝和碳复合包覆氟磷酸钒钠正极材料的制备方法
Qiu et al. Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries
KR20160133521A (ko) 장수명 리튬-이온 배터리
EP3561919A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
CN107148698A (zh) 用于基于锂的蓄能器的电解质
CN112687967A (zh) 锌离子电池及应用其的用电装置
JP2012023006A (ja) リチウム二次電池用陽極材料及びその製造方法並びにその材料を含むリチウム二次電池
Yu et al. Solid electrolyte interphase-ization of Mg2+-blocking layers for lithium ions in anode-free rechargeable lithium metal batteries
WO2022247810A1 (zh) 水系双离子电池
WO2022247808A1 (zh) 水系氯离子电池
JP2012009322A (ja) 水系リチウムイオン二次電池
JPH061698B2 (ja) リチウム一次電池およびその陽極活物質、並びに該陽極活物質に用いられる二酸化マンガンの製造方法
US20200091561A1 (en) Zinc alkaline secondary battery including anchored electrolyte additives
JP2001506799A (ja) リチウム二次電池の出力密度改善方法およびアノード(負極)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810535

Country of ref document: EP

Kind code of ref document: A1