WO2022247808A1 - 水系氯离子电池 - Google Patents

水系氯离子电池 Download PDF

Info

Publication number
WO2022247808A1
WO2022247808A1 PCT/CN2022/094581 CN2022094581W WO2022247808A1 WO 2022247808 A1 WO2022247808 A1 WO 2022247808A1 CN 2022094581 W CN2022094581 W CN 2022094581W WO 2022247808 A1 WO2022247808 A1 WO 2022247808A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
aqueous
ion battery
ammonium
sodium chloride
Prior art date
Application number
PCT/CN2022/094581
Other languages
English (en)
French (fr)
Inventor
吕力
孙建国
Original Assignee
新加坡国立大学
重庆新国大研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡国立大学, 重庆新国大研究院 filed Critical 新加坡国立大学
Priority to CN202280035022.4A priority Critical patent/CN117441255A/zh
Publication of WO2022247808A1 publication Critical patent/WO2022247808A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, in particular to aqueous chloride ion batteries.
  • Lithium-ion batteries have almost reached the upper limit not only in terms of energy density, but also in terms of cycle life and charge and discharge power. Lithium resources are not only limited, but also unevenly distributed. Therefore, it is necessary to provide a more sustainable clean energy storage technology.
  • chloride-ion batteries Due to the abundance of chlorine resources, chloride-ion batteries have become one of the topics that have attracted much attention in the development of clean energy.
  • chloride-ion batteries there are still some technical difficulties in existing chloride-ion batteries.
  • the chlorine in the aqueous chloride ion electrolyte can be superior to lithium or zinc used in lithium-ion batteries or zinc-ion batteries in terms of volume density and concentration, however, the battery cycle stability of the existing aqueous chloride-ion batteries is poor , is not yet suitable for general use. Therefore, it is necessary to provide a novel aqueous chloride-ion battery.
  • the present invention provides a water-based chloride-ion battery, which includes: a positive electrode, a negative electrode, a non-colloidal electrolyte, and additives added to the electrolyte.
  • the active material of the positive electrode is metallic silver.
  • the active material of the negative electrode includes metal oxychloride, and the negative electrode active material does not include lithium, zinc or lithium/zinc compound.
  • the electrolyte is an aqueous sodium chloride solution
  • the additive is selected from materials that can simultaneously promote the oxidation-reduction reaction of the positive electrode and the negative electrode in the aqueous sodium chloride solution, such as an amphoteric type (Janus) to promote electrode reactions effect of at least one ammonium ion compound.
  • the negative electrode material is a mixed material of metal oxychloride and carbon powder, wherein the metal oxychloride is bismuth oxychloride.
  • the additive comprises at least one ammonium ion compound.
  • the at least one ammonium ion compound is ammonium chloride to constitute a sodium chloride/ammonium chloride mixed aqueous solution.
  • the additive includes an ammonium ion compound consisting of ammonium ions and acid ions.
  • the at least one ammonium ion compound is ammonium chloride to constitute a sodium chloride/ammonium chloride mixed aqueous solution.
  • the molar concentration of ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution does not exceed the molar concentration of sodium chloride.
  • the molar concentration ratio of sodium chloride to ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 1:1.
  • the molar concentration ratio of sodium chloride to ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is between 3:1 and 1:1.
  • the molar concentration ratio of sodium chloride to ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 3:2.
  • the molar concentration ratio of sodium chloride to ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 3:1.
  • the coulombic efficiency of the aqueous chloride-ion battery remains above 97%.
  • the specific capacity of the aqueous chloride ion battery is at least 40mAh g -1 .
  • the manufacturing method of the aqueous chloride ion battery of the present invention comprises: adding ammonium chloride to a sodium chloride aqueous solution with a concentration of 0.6 mol/L to obtain a mixed aqueous solution of sodium chloride/ammonium chloride with a concentration of 1.0 mol/L , wherein the ammonium chloride is used as a chemical reaction accelerator in the electrolyte; and the negative electrode and the positive electrode are separated and arranged in the electrolyte solution, wherein no colloidal electrolyte solution is provided between the negative electrode and the positive electrode, wherein the The concentration of ammonium chloride in the electrolytic solution around the negative electrode is approximately the same as the concentration of ammonium chloride in the electrolytic solution around the positive electrode.
  • the coulombic efficiency of the aqueous chloride-ion battery is continuously maintained above 97% during 500 charge-discharge cycles.
  • the aqueous chloride ion battery has a specific capacity of at least 40mAh g -1 after 500 charge and discharge cycles.
  • the electrolyte solution is prepared by adding ammonium chloride to an aqueous sodium chloride solution, wherein the molar concentration of the added ammonium chloride does not exceed the molar concentration of sodium chloride.
  • the molar concentration ratio of sodium chloride to the ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 1:1. Further preferably, the molar concentration ratio of sodium chloride to the ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 3:2. Still further preferably, the molar concentration ratio of sodium chloride to the ammonium chloride in the sodium chloride/ammonium chloride mixed aqueous solution is 3:1.
  • the present invention provides a water-based chloride-ion battery, which includes: a positive electrode, a negative electrode, a non-gel electrolyte, and additives added to the electrolyte.
  • the positive electrode active material of the battery is metal silver
  • the negative electrode active material of the battery includes metal oxychloride.
  • the negative active material does not include lithium, zinc or lithium/zinc compounds.
  • the electrolyte of the battery is sodium chloride aqueous solution.
  • the additive includes at least one zwitterionic compound, wherein the at least one zwitterionic compound can simultaneously promote the redox reaction of the positive electrode and the negative electrode in the aqueous sodium chloride solution.
  • the negative electrode active material is a mixed material of metal oxychloride and carbon powder, wherein the metal oxychloride is bismuth oxychloride.
  • the zwitterionic compound is an ammonium ion compound; and the additive forms a sodium chloride/ammonium ion compound mixed aqueous solution in an aqueous sodium chloride solution.
  • the ammonium ion compound is ammonium chloride.
  • the electrolytic solution is prepared by the following method: an aqueous solution of ammonium chloride is added to an aqueous solution of sodium chloride, wherein the molar concentration ratio of sodium chloride to ammonium chloride in the mixed aqueous solution of sodium chloride/ammonium chloride is 3: Between 1 and 1:1. Further preferably, the molar concentration ratio of sodium chloride to ammonium chloride in the electrolyte is 3:1. Still further preferably, the molar concentration ratio of sodium chloride and ammonium chloride in the electrolyte is 3:2. Preferably, the molar concentration ratio of sodium chloride to ammonium chloride water in the electrolyte is 1:1.
  • the concentration of ammonium chloride in the electrolyte around the negative electrode is substantially the same as that in the electrolyte around the positive electrode.
  • the preparation method of the aqueous chloride ion battery comprises: adding ammonium chloride to an aqueous sodium chloride solution with a concentration of 0.6 mol/L to obtain a mixed aqueous solution of sodium chloride/ammonium chloride with a concentration of 1.0 mol/L, and
  • the negative electrode and the positive electrode are arranged separately in the electrolyte solution, wherein the electrolyte solution between the negative electrode and the positive electrode is not provided with gel-like electrolyte solution.
  • the coulombic efficiency of the aqueous chloride-ion battery is higher than at least 97% after 500 charge-discharge cycles.
  • the specific capacity of the aqueous chloride-ion battery is higher than at least 40mAh g -1 .
  • Fig. 1 shows the cyclic voltammetry curve of existing water system chloride ion battery
  • Fig. 2 shows the charge-discharge cycle curve of the aqueous chloride ion battery of Fig. 1;
  • FIG. 3 is a schematic diagram of an aqueous chloride ion battery according to an embodiment of the present invention.
  • Fig. 4 is a kind of manufacturing method flowchart of aqueous chloride ion battery
  • Fig. 5 is the cyclic voltammetry curve of the aqueous chloride ion battery according to another embodiment
  • Fig. 6 is the cycle curve of the aqueous chloride ion battery of the embodiment shown in Fig. 5;
  • Fig. 7 shows the long cycle test result of the embodiment of Fig. 5 and Fig. 1;
  • Fig. 8 shows the rate performance test result of the embodiment of Fig. 5 and Fig. 1;
  • Fig. 9 is the cycle curve of the aqueous chloride ion battery according to another embodiment of the present invention.
  • Fig. 10 shows the long cycle test result corresponding to the embodiment of Fig. 9;
  • Fig. 11 is the cycle curve of the aqueous chloride ion battery according to another embodiment of the present invention.
  • FIG. 12 shows long cycle test results corresponding to the embodiment of FIG. 11 .
  • the working principle of the existing chloride ion battery will be described by taking a battery with 0.6 mol/L (mol/L) sodium chloride aqueous solution as the electrolyte as an example.
  • metallic silver was used as the positive electrode active material and bismuth oxychloride was used as the negative electrode active material in the battery in the experiment.
  • Fig. 1 is the cyclic voltammetry curve of existing water system chloride ion battery, specifically at room temperature (23.8
  • the battery composed of bismuth oxychloride negative electrode and silver positive electrode tested under the test the cyclic voltammetry curve tested under the scan rate of 5 mV/s, the voltage range is 0-1.2 volts, and the electrolyte is 0.6 mol/liter sodium chloride aqueous solution.
  • chloride ions are released from the negative electrode and captured on the positive electrode, and its specific redox reaction is as follows:
  • Negative electrode 3BiOCl+3e - ⁇ Bi+Bi 2 O 3 +3Cl - (1)
  • Negative electrode Bi+Bi 2 O 3 +3Cl - ⁇ 3BiOCl+3e - (3)
  • Figure 2 is the charge-discharge cycle curve of the aqueous chloride ion battery, specifically the charge-discharge curve of the battery composed of bismuth oxychloride negative electrode and silver positive electrode at a charge-discharge current of 50mA g -1 , and the electrolyte is neutral 0.6 mol/L chlorine sodium chloride solution.
  • Two distinct discharge voltage plateaus were exhibited during the initial cycle, located at about 0.55 volts and about 0.15 volts, respectively. However, the low-voltage plateau gradually disappeared in subsequent cycles, which is consistent with the test results of the cyclic voltammetry curve in Figure 1.
  • the chloride ion battery shown in Figure 1 and Figure 2 has an initial charge/discharge specific capacity of 223.0/110.9mAh g -1 at a charge and discharge current density of 50 mA g -1 , and its coulombic efficiency is only 49.8%. It can be seen that the silver chloride/silver redox reaction is not completely reversible in aqueous sodium chloride solution after multiple charge-discharge cycles. Scanning electron microscope images show that after an initial discharge to 0 volts, the surface on the silver (Ag) cathode is covered by a layer of irregular silver chloride (AgCl) grains. This indicates that silver chloride (AgCl) cannot be completely reduced to silver (Ag) in the redox reaction. Therefore, for existing chloride-ion batteries using sodium chloride (NaCl) solution, the Coulombic efficiency will decrease due to the gradual increase in the amount of silver chloride (AgCl) deposited on the positive electrode during electrochemical cycling.
  • NaCl sodium chlor
  • Embodiment 1 of the present invention the molar concentration of ammonium chloride in the mixed aqueous solution of sodium chloride/ammonium chloride does not exceed the molar concentration of said sodium chloride
  • FIG. 3 shows an aqueous chloride ion battery 100 according to one embodiment of the present invention.
  • the aqueous chloride ion battery 100 includes a negative electrode 200 , a positive electrode 300 and a non-gel electrolyte 400 between the negative electrode 200 and the positive electrode 300 .
  • the active material of the negative electrode 200 is selected from materials that do not dissolve in the aqueous electrolyte solution 400 .
  • the positive electrode active material and the negative electrode active material of the battery do not include lithium, zinc or lithium/zinc compounds.
  • the negative electrode active material is metal oxychloride.
  • the negative electrode active material is selected from compounds excluding lithium, zinc or lithium/zinc.
  • the negative electrode active material is bismuth oxychloride (BiOCl).
  • the negative electrode may also contain carbon powder mixed material.
  • the carbon powder is acetylene black.
  • the preparation method of the negative electrode may include: stirring the bismuth oxychloride synthesized by the hydrolysis method, acetylene black, and polyvinylidene fluoride in an N-methylpyrrolidone solution at a ratio of 7:2:1, and then coating them on the graphite substrate , and dried under vacuum at 120 °C for 12 h. Polyvinylidene fluoride was used as a binder.
  • the size and shape of the negative electrode can be set according to actual usage. In the example in this article, a disc with a diameter of 12mm is used as the negative electrode.
  • the positive electrode active material of the positive electrode 300 is metallic silver.
  • the size and shape of the positive electrode can be set according to actual usage, for example, the positive electrode can be a silver thin film with a thickness between 0.05 mm and 0.1 mm.
  • the preparation method of the positive electrode may include: rolling a silver plate (thickness 1 mm) (99.9%, supplier: Goodfellow) into a film with a thickness of 0.05 mm to 0.1 mm, and cutting it into A disc with a diameter of 12 mm was used as the positive electrode.
  • the electrolyte in the chloride ion battery of this embodiment is a liquid or fluid electrolyte rather than a jelly electrolyte.
  • the electrolyte solution 400 is an aqueous solution of sodium chloride, which also includes additives.
  • the additive is selected from at least one ammonium ion compound having an amphoteric (Janus) effect of promoting electrode reaction.
  • the additive is selected from aqueous solutions that can provide at least one zwitterion.
  • the additive includes at least one zwitterion, and the additive simultaneously assists the redox reaction of the positive electrode and the negative electrode.
  • zwitterions refer to accelerators that can simultaneously promote the oxidation-reduction reaction of the negative electrode and the positive electrode in the electrolyte.
  • the amphoteric effect refers to modifying the redox reaction of the positive and negative electrodes at the same time;
  • the amphoteric material refers to the material that has the effect of promoting the electrode reaction of the amphoteric type, which may include amphoteric ions or amphoteric type compounds, etc.
  • the discharge specific capacity of the battery can be as high as 123.7mAh g -1 at a charge and discharge current of 500mA g -1 , and the capacity of the battery is 89.9mAh after 50 charge and discharge cycles g -1 , corresponding to a Coulombic efficiency of 98.8%.
  • the specific capacity is calculated based on the mass of the negative active material.
  • the additive includes an ammonium ion compound composed of ammonium ions and acid ions.
  • the additive is ammonium chloride (NH 4 Cl).
  • the electrolytic solution can be prepared by the following method: adding ammonium chloride to an aqueous sodium chloride solution, wherein the molar concentration of the added ammonium chloride does not exceed the molar concentration of the sodium chloride.
  • the molar concentration of ammonium chloride added is between 33% (one third) and 100% of the molar concentration of sodium chloride.
  • the sodium chloride and the ammonium chloride are substantially uniformly mixed in the aqueous electrolyte solution 400 or substantially uniformly distributed in the electrolyte solution.
  • the concentration of ammonium chloride in the electrolytic solution around the negative electrode 200 is substantially the same as the concentration of ammonium chloride in the electrolytic solution around the positive electrode 300 .
  • no separator is provided between the negative electrode and the positive electrode, and no non-liquid electrolyte is provided between the negative electrode and the positive electrode.
  • the flowchart of FIG. 4 shows an example of a method 500 for manufacturing a chloride ion battery according to the present invention.
  • the method includes: at step 510, adding ammonium chloride to an aqueous sodium chloride solution with a concentration of 0.6mol/L (mol/liter) to obtain a mixed solution with a concentration of 1.0mol/L; and at step 520, adding at least one The negative electrode and at least one positive electrode are arranged in the electrolyte solution apart from each other. There is no gel electrolyte between the negative electrode and the positive electrode, and the concentration of ammonium chloride in the electrolyte around the negative electrode and the ammonium chloride concentration in the electrolyte around the positive electrode are set to be approximately the same.
  • the additive is distributed approximately uniformly in the electrolyte.
  • the electrolyte solution can be stored under -0.1 Pa (Pascal) vacuum for 12 hours to remove dissolved gases in the aqueous solution, such as oxygen.
  • the electrolyte between the negative electrode and the positive electrode does not include the gel-like electrolyte.
  • the electrolytic solution need not include an organic electrolyte.
  • Embodiment 2 the aqueous solution that the molar concentration ratio of sodium chloride and ammonium chloride is 1:1 is used as electrolyte
  • an aqueous chloride ion battery includes a negative electrode whose negative active material is bismuth oxychloride, a positive electrode whose positive active material is metallic silver, and the positive and negative electrodes are arranged in a non-colloidal electrolyte.
  • the electrolyte contains sodium chloride, and the electrolyte contains additives to promote redox reactions at the positive and negative electrodes.
  • the additive is ammonium chloride.
  • Additives include the zwitterion NH 4 + .
  • an aqueous solution having a molar concentration ratio of 1.0 mol/L sodium chloride to ammonium chloride of 1:1 is used as the electrolyte.
  • the electrolyte can be stored under -0.1Pa vacuum for 12 hours before use to reduce or remove dissolved gases, such as oxygen, in it.
  • the pH value of an aqueous solution with a molar ratio of 1.0mol/L sodium chloride to ammonium chloride of 1:1 is approximately 4.776.
  • ammonium chloride (NH 4 Cl) is introduced into the aqueous sodium chloride (NaCl) solution as a promoter for the reaction of the negative electrode and the positive electrode.
  • This increases the conversion kinetics of bismuth/bismuth oxychloride (Bi/BiOCl) and thus the storage efficiency of chloride ions (Cl ⁇ ).
  • the electrolyte is a mixed aqueous solution of ammonium chloride (NH 4 Cl) and sodium chloride (NaCl).
  • the electrolytic solution is an aqueous solution in which ammonium chloride (NH 4 Cl) and sodium chloride (NaCl) are uniformly mixed.
  • Ammonium ion (NH 4 + ) in ammonium chloride (NH 4 Cl) undergoes dissociation to generate ammonia (NH 3 ) and proton (H + ).
  • the dissociation of ammonium ion (NH 4 + ) will form ammonia (NH 3 ) in the electrolyte and react with silver chloride (AgCl) to form a soluble silver ammonium complex (Ag(NH 3 ) 2 + ) And chloride ion (Cl - ), the chemical reaction is as follows:
  • the silver ammonium complex (Ag(NH 3 ) 2 + ) will be reduced to silver (Ag) by reacting with protons (H + ), the chemical reaction is as follows:
  • chloride ions (Cl ⁇ ) are generated from the positive electrode during the discharge process, which effectively promotes the reduction process of silver chloride (AgCl) to silver.
  • protons H +
  • NaCl sodium chloride
  • H + proton
  • chloride ions Cl -
  • chloride-ion batteries the capacity of chloride-ion batteries depends on the transfer of trivalent Bismuth to low-valence states. number of electrons.
  • NH 4 + ammonium ion
  • one mole of bismuth oxychloride (BiOCl) can provide three moles of electrons.
  • NaCl sodium chloride
  • only one-third of the moles of electrons are donated due to a different chemical reaction.
  • Fig. 5 is the cyclic voltammetry curve of the aqueous chloride ion battery in embodiment 2, specifically the battery that the bismuth oxychloride negative pole and silver positive pole tested at room temperature (23.8 degrees centigrade), the cyclic voltammetry under the scan rate of 5mV/s Safety curve, the voltage range is 0-1.0V, and the electrolyte is 1.0mol/L sodium chloride/ammonium chloride (1:1) aqueous solution.
  • the battery cyclic voltammetry curve of embodiment 2 shows that in the charging process, a stronger oxidation peak occurs at 0.87V, and this stronger oxidation peak corresponds to the release of chloride ions from the bismuth oxychloride negative electrode and being absorbed by the silver positive electrode. Capture, and its specific redox reaction is as follows:
  • Negative electrode BiOCl+3e - +2H + ⁇ Bi+H 2 O+Cl - (7)
  • the ions of the positive electrode and the negative electrode do not form an intercalation reaction.
  • This oxidation peak shifts to 0.81V.
  • two distinct reduction peaks appeared at 0.27V and 0.07V. These two reduction peaks correspond to the capture of chloride ions by the bismuth oxychloride negative electrode and the release of chloride ions by the silver positive electrode.
  • the specific redox reactions are as follows:
  • Fig. 6 is the cycle curve of the aqueous chloride ion battery in Example 2, specifically the charge and discharge curve of the battery composed of bismuth oxychloride negative electrode and silver positive electrode at a charge and discharge current of 50mA g -1 , wherein the electrolyte is a neutral 1.0 mol/L sodium chloride/ammonium chloride (1:1) aqueous solution.
  • the electrolyte is a neutral 1.0 mol/L sodium chloride/ammonium chloride (1:1) aqueous solution.
  • the chloride-ion battery can provide an initial charge/discharge specific capacity of 272.1/144.2 mAh g -1 at 50 mA g -1 , which is higher than that of the battery without additives.
  • Figure 7 shows the long-term cycle test of the existing aqueous chloride-ion battery and the aqueous chloride-ion battery of Example 2, specifically the cycle performance of the battery composed of bismuth oxychloride negative electrode and silver positive electrode at a charge-discharge current density of 500mA g -1 .
  • the coulombic efficiency of the existing chloride-ion battery lacks stability, and its specific capacity is lower than 50mAh g -1 after 25 charge-discharge cycles.
  • the battery long cycle test results of Example 2 show that the battery tested in 1.0mol/L sodium chloride/ammonium chloride (1:1) solution still has 84.4/83.7 after 100 charge and discharge cycles Reversible charge/discharge specific capacity in mAh g -1 .
  • the coulombic efficiency of the aqueous chloride-ion battery of Example 2 is kept above 97% after 500 charge-discharge cycles.
  • the improvement of silver chloride/silver conversion efficiency on the positive electrode side and the increase in the number of available transfer electrons on the negative electrode side make the aqueous chloride ion battery of Example 2 of the present invention exhibit excellent cycle performance.
  • Fig. 8 shows the rate performance comparison between the existing aqueous chloride ion battery and the aqueous chloride ion battery according to Example 2 of the present invention, specifically the rate performance of the battery composed of bismuth oxychloride negative electrode and silver positive electrode in different aqueous electrolytes.
  • the rate performance test of the battery according to Example 2 shows that the rate performance of the battery is significantly improved after the ammonium ion is introduced into the sodium chloride solution.
  • Embodiment 3 the aqueous solution of sodium chloride and ammonium chloride molar concentration ratio is 3:1 as electrolytic solution
  • a kind of aqueous chloride ion battery comprises the negative electrode that the negative electrode active material is bismuth oxychloride, and the positive electrode active material is the positive electrode of metal silver, and positive and negative two poles are arranged on non-colloidal in the electrolyte.
  • the electrolyte contains sodium chloride, which contains additives to facilitate redox reactions at the positive and negative electrodes.
  • the additive is ammonium chloride.
  • Additives include the zwitterion NH 4 + .
  • an aqueous solution with a molar concentration ratio of 1.0 mol/L sodium chloride to ammonium chloride of 3:1 is used as the electrolyte.
  • the electrolyte can be stored under -0.1Pa vacuum for 12 hours before use to reduce or remove dissolved gases, such as oxygen, in it.
  • Fig. 9 is the cycle curve of the aqueous chloride ion battery of embodiment 3, specifically the charge and discharge curve of the battery composed of bismuth oxychloride negative electrode and silver positive electrode at a charge and discharge current of 500mA g -1 , and the electrolyte is a neutral 1.0mol/ L sodium chloride/ammonium chloride (3:1) aqueous solution.
  • the battery of Example 3 its charge and discharge curves show that there are two obvious discharge voltage plateaus in the initial cycle, which are respectively located at about 0.36V and about 0.11V. The low voltage plateau fades away in subsequent cycles.
  • the aqueous chloride ion battery of this example can provide a charge/discharge specific capacity of 197.59/181.14 mAh g ⁇ 1 after 10 cycles at 500 mA g ⁇ 1 .
  • Fig. 10 is a curve of the long-term cycle test results of the aqueous chloride-ion battery of Example 3, specifically the cycle performance of the battery composed of bismuth oxychloride negative electrode and silver positive electrode at a charge-discharge current density of 500mA g -1 .
  • the battery long-cycle test of Example 3 shows that the battery with an electrolyte solution having a molar concentration ratio of 1.0mol/L sodium chloride to ammonium chloride of 3:1 can still be used after 100 charge-discharge cycles.
  • a reversible charge/discharge specific capacity of 110.76/111.3mAh g -1 is provided.
  • the battery of Example 3 can maintain a capacity of 47.04/46.06 mAh g -1 after 500 charge-discharge cycles, and its coulombic efficiency has been maintained at least 97.9% or above.
  • Such excellent cycling performance can be attributed to the enhanced silver chloride/silver conversion efficiency on the positive side and the increased number of available transfer electrons on the negative side.
  • Embodiment 4 the aqueous solution that the molar concentration ratio of sodium chloride and ammonium chloride is 3:2 is used as electrolytic solution
  • a kind of aqueous chloride ion battery comprises the negative electrode that the negative electrode active material is bismuth oxychloride, and the positive electrode active material is the positive electrode of metal silver, and positive and negative two poles are arranged on non-colloidal in the electrolyte.
  • the electrolyte contains sodium chloride, which contains additives to facilitate redox reactions at the positive and negative electrodes.
  • the additive is ammonium chloride.
  • Additives include the zwitterion NH 4 + .
  • an aqueous solution with a molar concentration ratio of 1.0 mol/L sodium chloride and ammonium chloride of 3:2 is used as the electrolyte.
  • the electrolyte can be stored under -0.1Pa vacuum for 12 hours before use to reduce or remove gases such as oxygen dissolved therein.
  • Fig. 11 is the cycle curve of the aqueous chloride ion battery of Example 4, specifically the charge-discharge curve of a battery composed of a bismuth oxychloride negative electrode and a silver positive electrode at a charge-discharge current of 500mA g -1 , and the electrolyte is a neutral 1.0mol/ L sodium chloride/ammonium chloride (3:2) aqueous solution.
  • the battery of Example 4 its charge and discharge curves show that there are two obvious discharge voltage plateaus in the initial cycle, which are respectively located at about 0.33V and about 0.13V. The low voltage plateau fades away in subsequent cycles.
  • the chloride ion battery of Example 4 can provide a charge/discharge specific capacity of 162.95/152.70 mAh g ⁇ 1 after 10 charge and discharge cycles at 500 mA g ⁇ 1 .
  • FIG. 12 is a schematic diagram of the long-term cycle test results of the aqueous chloride-ion battery of Example 4, specifically the cycle performance of the battery composed of a bismuth oxychloride negative electrode and a silver positive electrode at a charge-discharge current density of 500 mA g -1 .
  • the battery in the electrolyte with a molar concentration ratio of 1.0mol/L sodium chloride to ammonium chloride of 3:2 can also provide a reversible charge/discharge specific capacity of 89.90/90.02mAh g -1 after 100 charge-discharge cycles.
  • the battery can maintain a capacity of 31.48/30.78mAh g -1 after 500 charge-discharge cycles, and its coulombic efficiency has been maintained at 97.8%, ie at least above 97%.
  • the improvement of silver chloride/silver conversion efficiency on the positive electrode side and the increase in the number of available transfer electrons on the negative electrode side make the aqueous chloride ion battery of Example 4 of the present invention exhibit excellent cycle performance.
  • aqueous chloride-ion electrolytes One problem with existing aqueous chloride-ion electrolytes is the rapid battery capacity fading caused by the solubility of electrode materials. If an aqueous chloride ion electrolyte is selected, such as an aqueous sodium chloride solution, chlorine is superior to lithium/zinc used in aqueous lithium or zinc ion batteries in terms of price, bulk density and content.
  • aqueous chloride ion electrolyte such as an aqueous sodium chloride solution
  • chlorine is superior to lithium/zinc used in aqueous lithium or zinc ion batteries in terms of price, bulk density and content.
  • most electrode materials are unstable or soluble in aqueous solution, which causes rapid capacity fading and battery failure, and is not suitable for existing industrial or daily applications.
  • the aqueous chloride ion battery according to the embodiment of the present invention still maintains the capacity equivalent to the initial use after multiple charge and discharge cycles.
  • the aqueous chloride-ion battery according to this protocol has an initial discharge specific capacity of 123.7 mAh g at 500 mA g and a stable voltage of 0.55 V.
  • zwitterions such as NH 4 +
  • the rate performance and long-term cycle performance of the battery are improved.
  • Zwitterions help to increase the AgCl/Ag conversion at the positive electrode on the one hand and increase the number of available transfer electrons at the negative electrode on the other hand.
  • the technical solution can improve the service life and stability of the battery, and provides a practical way for commercial development of the aqueous chloride ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及水系氯离子电池。根据本发明一个实施例的水系氯离子电池包括:正极、负极、非胶状的电解液,以及添加于该电解液中的添加剂。该正极的正极活性材料为金属银,该负极的负极活性材料包括金属氯氧化物。该负极材料不包括锂、锌或者锂/锌的化合物。该电解液为氯化钠水溶液。所述添加剂选自具有双性型(Janus)促进电极反应效果的至少一种铵根离子化合物。

Description

水系氯离子电池 技术领域
本申请涉及电池领域,尤其涉及水系氯离子电池。
背景技术
铅酸电池和锂离子电池技术虽已被广泛使用,但这几类电池的循环寿命还是无法满足今日的需求。铅酸电池还涉及废料处理的问题。锂离子电池不仅在能量密度方面,也在循环寿命和充放电功率方面都几乎达到了上限。锂资源不但有限,其分布也不均匀。因此,有必要提供一种较有持续性的清洁能源存储技术。
氯离子电池由于氯资源的丰富成为清洁能源发展备受关注的话题之一。然而,现有的氯离子电池仍存在一些技术难题。例如,水系氯离子电解液中的氯虽然可以在体积密度和浓度方面比锂离子电池或者锌离子电池中使用的锂或者锌优越,然而,现有的水系氯离子电池的电池循环稳定性较差,还不适用于普及使用。因此,有必要提供一种新型的水系氯离子电池。
发明内容
根据一个方面,本发明提供一种水系氯离子电池,该水系氯离子电池包括:正极、负极、非胶状的电解液,以及添加于该电解液中的添加剂。该正极的活性材料为金属银。该负极的活性材料包括金属氯氧化物,该负极活性材料不包括锂、锌或者锂/锌的化合物。该电解液为氯化钠水溶液,该添加剂选自具在所述氯化钠水溶液中可以同时促进所述正极和所述负极的氧化还原反应的材料,例如有双性型(Janus)促进电极反应效果的至少一种铵根离子化合物。
优选地,该负极材料为金属氯氧化物和碳粉的混合材料,其中该金属氯氧化物为氯氧化铋。
优选地,所述添加剂包括至少一种铵根离子化合物。
优选地,该至少一种铵根离子化合物为氯化铵,以构成氯化钠/氯化铵混合水溶液。
可替代地,所述添加剂包括由铵根离子和酸根离子构成的铵根离子化合物。
优选地,该至少一种铵根离子化合物为氯化铵,以构成氯化钠/氯化铵混合水溶液。
优选地,所述氯化钠/氯化铵混合水溶液中氯化铵的摩尔浓度不超过所述氯化钠的摩尔浓度。
优选地,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为1:1。
可替代地,所述氯化钠/氯化铵混合水溶液中氯化钠与氯化铵的摩尔浓度比为3:1至1:1之间。
优选地,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:2。
优选地,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:1。
优选地,在经500次充放电循环的过程后,所述水系氯离子电池的库仑效率持续保持在97%以上。
优选地,在经过500次充放电循环后,所述水系氯离子电池的比容量为至少40mAh g -1
优选地,本发明的水系氯离子电池的制造方法包括:将氯化铵加入浓度为0.6mol/L的氯化钠水溶液,以得到浓度为1.0mol/L的氯化钠/氯化铵混合水溶液,其中该氯化铵在该电解液中作为化学反应促进剂;以及将该负极和该正极相隔设置于该电解液中,其中该负极和该正极之间不设置胶状的电解液,其中该负极周围的电解液中的氯化铵浓度与该正极周围的电解液中的氯化铵浓度大致相同。
优选地,该水系氯离子电池在经500次充放电循环的过程中,其库仑效率持续保持在97%以上。
优选地,该水系氯离子电池在经过500次充放电循环后,其比容量为至少40mAh g -1
优选地,该电解液通过如下方法制备:将氯化铵加入氯化钠水溶液,其中所加入的氯化铵的摩尔浓度不超过氯化钠的摩尔浓度。
优选地,该氯化钠/氯化铵混合水溶液中氯化钠与该氯化铵的摩尔浓度比为1:1。进一步优选地,该氯化钠/氯化铵混合水溶液中氯化钠与该氯化铵的摩尔浓度比为3:2。再进一步优选地,该氯化钠/氯化铵混合水溶液中氯化钠与该氯化铵的摩尔浓度比为3:1。
根据另一方面,本发明提供一种水系氯离子电池,该水系氯离子电池包括:正极、负极、非胶状的电解液,以及添加于电解液的添加剂。该电池的正极活性材料为金属银,该电池的负极活性材料包括金属氯氧化物。该负极活性材料不包括锂、锌或者锂/锌的化合物。该电 池的电解液为氯化钠水溶液。该添加剂包括至少一种双性型离子化合物,其中该至少一种双性型离子化合物在该氯化钠水溶液中可以同时促进该正极和该负极的氧化还原反应。
优选地,该负极活性材料为金属氯氧化物和碳粉的混合材料,其中该金属氯氧化物为氯氧化铋。
优选地,该双性型离子化合物为铵根离子化合物;以及该添加剂于氯化钠水溶液中形成氯化钠/铵根离子化合物混合水溶液。
优选地,该铵根离子化合物为氯化铵。
优选地,该电解液通过如下方法制备而成:将氯化铵水溶液加入氯化钠水溶液,其中该氯化钠/氯化铵混合水溶液中氯化钠与氯化铵的摩尔浓度比为3:1至1:1之间。进一步优选地,该电解液中的氯化钠与氯化铵的摩尔浓度比为3:1。再进一步优选地,该电解液中的氯化钠与氯化铵的摩尔浓度比为3:2。优选地,该电解液中的氯化钠与氯化铵水的摩尔浓度比为1:1。
优选地,负极周围的电解液中的氯化铵浓度与正极周围的电解液中的氯化铵浓度大致相同。
优选地,该水系氯离子电池的制备方法包括:将氯化铵加入浓度为0.6mol/L的氯化钠水溶液,以得到浓度为1.0mol/L的氯化钠/氯化铵混合水溶液,以及将该负极和该正极相隔设置于该电解液中,其中该负极和该正极之间的电解液不设置胶状的电解液。优选地,该水系氯离子电池在经过500次充放电循环后,其库仑效率高于至少97%。优选地,该水系氯离子电池在经过500次充放电循环后,其比容量高于至少40mAh g -1
附图简要说明
图1示出现有水系氯离子电池的循环伏安曲线;
图2示出图1的水系氯离子电池的充放电循环曲线;
图3是根据本发明一个实施例的水系氯离子电池的示意图;
图4是一种水系氯离子电池的制造方法流程图;
图5是根据另一个实施例的水系氯离子电池的循环伏安曲线;
图6是图5所示实施例的水系氯离子电池的循环曲线;
图7示出图5和图1的实施例的长循环测试结果;
图8示出图5和图1的实施例的倍率性能测试结果;
图9是根据本发明又一个实施例的水系氯离子电池的循环曲线;
图10示出对应图9的实施例的长循环测试结果;
图11是根据本发明再一个实施例中的水系氯离子电池的循环曲线;
图12示出对应于图11的实施例的长循环测试结果。
具体实施方式
以下参照图1和图2,以0.6摩尔/升(mol/L)氯化钠水溶液为电解液的电池为例说明现有氯离子电池的工作原理。为了方便对比,实验中在该电池中使用金属银为正极活性材料,以及氯氧化铋为负极活性材料。
图1为现有水系氯离子电池的循环伏安曲线,具体为在室温(23.8
摄氏度)下测试的氯氧化铋负极以及银正极构成的电池,在5毫伏/秒扫描速率下测试的循环伏安曲线,电压区间为0-1.2伏,电解液为0.6摩尔/升氯化钠水溶液。在充电过程中,氯离子从负极释放出并在正极上被捕获,其具体的氧化还原反应如下所示:
负极:3BiOCl+3e -→Bi+Bi 2O 3+3Cl -    (1)
正极:Ag+Cl -→AgCl+e -     (2)
在放电过程中,正极释放氯离子并且负极捕获氯离子,具体的氧化还原反应如下所示:
负极:Bi+Bi 2O 3+3Cl -→3BiOCl+3e -      (3)
正极:AgCl+e -→Ag+Cl -     (4)
图2为水系氯离子电池的充放电循环曲线,具体为氯氧化铋负极以及银正极构成的电池在50mA g -1充放电电流下的充放电曲线,电解液为中性的0.6摩尔/升氯化钠水溶液。在初始循环中呈现出两个明显的放电电压平台,其分别位于约0.55伏和约0.15伏。但是,低压平台在随后的循环中逐渐消失,这与其图1的循环伏安曲线测试结果一致。
图1及图2所示的氯离子电池在50mA g -1的充放电电流密度具有223.0/110.9mAh g -1的初始充电/放电比容量,其库仑效率只有49.8%。可见,在经过多次充放电循环后,氯化银/银氧化还原反应在氯化钠水溶液中不是完全可逆的。扫描电子显微镜图像显示,初始放电至0伏后,银(Ag)阴极上的表面被一层不规则的氯化银(AgCl)颗粒覆盖。这表明,氯化银(AgCl)在氧化还原反应中不能完全还原成银(Ag)。因此,对于使用氯化钠(NaCl)溶液的现有的氯化物离子电池,由于在电化学循环过程中沉积在正极上的氯化银(AgCl)数量逐渐增加,库仑效率将下降。
本发明实施例1:氯化钠/氯化铵混合水溶液中氯化铵的摩尔浓度不超过所述氯化钠的摩尔浓度
图3所示为根据本发明一个实施例的水系氯离子电池100。水系氯离子电池100包括负极200、正极300以及介于负极200与正极300之间的非胶状电解液400。负极200的活性材料选自在水系电解液400中不会溶解的材料。该电池所的正极活性材料和负极活性材料不包括锂、锌或者锂/锌的化合物。负极活性材料为金属氯氧化物。负极活性材料选自不包括锂、锌或者锂/锌的化合物。作为一个示例,负极活性材料为氯氧化铋(BiOCl)。负极还可包含碳粉混合材料。优选地,碳粉为乙炔黑。负极的制备方法可以包括:将水解法合成的氯氧化铋与乙炔黑,聚偏二氟乙烯以7:2:1的比例于N-甲基吡咯烷酮溶液中搅拌均匀后涂覆在石墨基板之上,并在120℃下真空干燥12小时。聚偏二氟乙烯作为粘结剂。可选地,负极的大小形状等可以根据实际用途而设置。本文中的示例,以直径12mm的圆片为负极。
作为一个示例,正极300的正极活性材料为金属银。可选地,正极的大小形状等可以根据实际用途而设置,例如正极可以是厚度在0.05毫米至0.1毫米之间的银薄膜。在本文的示例中,正极的制备方法可以包括:将银板(厚度为1毫米)(99.9%,供应商:Goodfellow)采用轧制机轧制成0.05毫米至0.1毫米厚的薄膜,并裁剪为直径12毫米的圆片作为正极。
本实施例的氯离子电池中的电解液为液态或者流体的电解液,而不是胶状的电解液。电解液400为氯化钠水溶液,其中还包括添加剂。该添加剂选自具有双性型(Janus)促进电极反应效果的至少一种铵根离子化合物。该添加剂选自可以提供至少一种双性型离子的水溶液。添加剂包括至少一种双性型离子,该添加剂同时辅助正极及负极的氧化还原反应。本文中,双性型离子指的是,在电解液中可以同时促进负极和正极的氧化还原反应的促进剂。本文中,双性型效果指的是,同时修饰正负两极的氧化还原反应;双性型材料指的是,具有双性型促进电极反应效果的材料,其中可包括双性型离子或者双性型化合物 等。
实验显示,将铵离子加入纯氯化钠水溶液中,电池在500mA g -1的充放电流下,其放电比容量可高达123.7mAh g -1,电池的容量在50次充放电循环后为89.9mAh g -1,相应的库仑效率为98.8%。本文中比容量是基于负极活性材料的质量计算的。
作为另一示例,添加剂包括由铵根离子和酸根离子构成的铵根离子化合物。优选地,该添加剂为氯化铵(NH 4Cl)。该电解液可以通过如下方法制备而成:将氯化铵加入氯化钠水溶液,其中所加入的氯化铵的摩尔浓度不超过所述氯化钠的摩尔浓度。优选地,所加入的氯化铵的摩尔浓度为氯化钠的摩尔浓度的33%(三分之一)至100%之间。
在制作电池的过程中或在电池启动时,氯化钠与氯化铵于水系电解液400中大致均匀混合或者大致均匀分布于电解液中。负极200周围的电解液中的氯化铵浓度与正极300周围的电解液中的氯化铵浓度大致相同。在该示例中,负极与正极之间不设置隔离装置,负极和正极之间也不设置非液态的电解质。优选地,负极和正极之间没有设置胶状的电解液。因此,可以简化该电池的制造流程。
图4的流程图示出根据本发明的氯离子电池的制备方法500的一个示例。该方法包括:在步骤510,将氯化铵加入浓度为0.6mol/L(摩尔/升)的氯化钠水溶液,以得到浓度为1.0mol/L的混合溶液;以及在步骤520,将至少一个负极和至少一个正极彼此相隔设置于所述电解液中。其中负极和正极之间不设置胶状的电解液,并且其中负极周围的电解液中的氯化铵浓度与正极周围的电解液中的氯化铵浓度被设置为大致相同。换言之,添加剂被大致均匀分布在电解液中。在使用前,电解液可以于-0.1Pa(帕斯卡)真空下保存12小时,以去除水溶液中溶解的气体,例如氧气。负极和正极之间的电解液不包括胶状的电解 液。该电解液不需包括有机电解质。
实施例2:氯化钠与氯化铵摩尔浓度比为1:1的水溶液作为电解液
根据本发明的一个实施例,一种水系氯离子电池包括负极活性材料为氯氧化铋的负极,正极活性材料为金属银的正极,正负两极设置于非胶状的电解液中。电解液包含氯化钠,其中电解液含有添加剂,以促进正负两极的氧化还原反应。在本实施例中,添加剂为氯化铵。添加剂包括双性型离子NH 4 +。本实施例以1.0mol/L氯化钠与氯化铵摩尔浓度比为1:1的水溶液作为电解液。该电解液可以在使用前在-0.1Pa真空下保存12小时,以减少或去除其中溶解的气体,例如氧气。1.0mol/L氯化钠与氯化铵摩尔比为1:1的水溶液的pH值大致为4.776。
根据本实施例,将氯化铵(NH 4Cl)作为负极和正极反应的促进剂引入到氯化钠(NaCl)水溶液中。这提高了铋/氯氧化铋(Bi/BiOCl)的转化动力并因此提高氯离子(Cl -)的存储效率。电解液为氯化铵(NH 4Cl)与氯化钠(NaCl)混合的水溶液。此外,电解液为氯化铵(NH 4Cl)与氯化钠(NaCl)均匀混合的水溶液。
氯化铵(NH 4Cl)中的铵根离子(NH 4 +)经过解离生成氨(NH 3)和质子(H +)。铵根离子(NH 4 +)的解离,在电解液中会形成氨(NH 3)并与氯化银(AgCl)反应形成具可溶性的银铵络合物(Ag(NH 3) 2 +)及氯离子(Cl -),化学反应如下所示:
AgCl+2NH 3=Ag(NH 3) 2 ++Cl -     (5)
银铵络合物(Ag(NH 3) 2 +)将通过与质子(H +)反应而还原为银(Ag),化学反应如下所示:
Ag(NH 3) 2 ++2H ++e -=Ag+2NH 4 +     (6)
从而在放电过程中从正极处产生氯离子(Cl -),有效促进了氯化银(AgCl)到银的还原过程。在对照实验中,在氯化钠(NaCl)电解液中仅引入质子(H +)以验证质子(H +)的促进剂效果,从而可以理解,仅在阳极侧的单侧修饰,不能有效改善氯离子电池中缓慢的反应动力学。
考虑到氯离子(Cl -)仅用作为穿梭离子,并且在充电和放电过程中不会改变其价态,因此氯离子电池的容量取决于从三价铋(trivalent Bismuth)转移到低价态的电子数量。在这种情况下,引入铵根离子(NH 4 +)后,一摩尔的氯氧化铋(BiOCl)可以提供三摩尔的电子。相比之下,在仅含有氯化钠(NaCl)的溶液中,由于化学反应的不同,则仅提供了三分之一摩尔的电子。引入铵根离子(NH 4 +)后,正极上的氯化银/银转化(AgCl/Ag)的增强,以及负极上铋离子(Bi 3+)转化为铋(Bi)提供的电子数量的增加,使得根据本发明实施例的氯离子电池呈现优异的电化学性能。
图5为实施例2中的水系氯离子电池的循环伏安曲线,具体为在室温(23.8摄氏度)下测试的氯氧化铋负极以及银正极构成的电池,在5mV/s扫描速率下的循环伏安曲线,电压区间为0-1.0V,电解液为1.0mol/L氯化钠/氯化铵(1:1)水溶液。实施例2的电池循环伏安曲线表明,在充电过程中,一个较强的氧化峰出现在0.87V,这个较强的氧化峰对应于氯离子从氯氧化铋负极释放出并在银正极上被捕获,其具体的氧化还原反应如下所示:
负极:BiOCl+3e -+2H +→Bi+H 2O+Cl -   (7)
正极:Ag+Cl -→AgCl+e -     (8)
其中,正极及负极的离子不形成插入(intercalation)反应。该氧化峰偏移至0.81V。在放电过程中,两个明显的还原峰出现在0.27V和0.07V。这两个还原峰对应于氯氧化铋负极捕获氯离子并且银正极释放氯离子,具体的氧化还原反应如下所示:
负极:Bi+H 2O+Cl -→BiOCl+3e -+2H +    (9)
正极:AgCl+e -→Ag+Cl -     (10)
图6为实施例2中的水系氯离子电池的循环曲线,具体为氯氧化铋负极以及银正极构成的电池在50mA g -1充放电电流下的充放电曲线,其中电解液为中性的1.0mol/L氯化钠/氯化铵(1:1)水溶液。如图6所示,在初始循环中呈现出两个明显的放电电压平台,其分别位于约
0.36V和约0.13V。低电压平台在随后的循环中逐渐消失。此外,氯离子电池在50mA g -1下可以提供272.1/144.2mAh g -1的初始充电/放电比容量,其高于没有添加剂的电池的初始充电/放电比容量。
图7为现有的水系氯离子电池以及实施例2的水系氯离子电池的长循环测试,具体为氯氧化铋负极以及银正极构成的电池在500mA g -1充放电电流密度下的循环性能。现有氯离子电池的库伦效率缺乏稳定性,其比容量在25次充放电循环后已低于50mAh g -1。相比之下,实施例2的电池长循环测试结果表明,在1.0mol/L氯化钠/氯化铵(1:1)溶液中测试的电池在100次充放电循环后仍然具有84.4/83.7mAh g -1的可逆充电/放电比容量。在500次充放电循环后保持41.9/41.2mAh g -1且库仑效率为98.3%,远高于没有添加剂的电池的库仑效率。换言之,实施例2的水系氯离子电池在经500次充放电循环的过程中,其库仑效率持续保持在97%以上。正极侧氯化银/银转化效率的提高以及负极侧可用转移电子数量的增加,使得本发明实施例2的水系氯离子电池 呈现优异的循环性。
图8示出现有的水系氯离子电池与根据本发明实施例2的水系氯离子电池的倍率性能对比,具体为在不同的水系电解液中氯氧化铋负极以及银正极构成的电池的倍率性能。如图8所示,根据实施例2的电池倍率性能测试表明,在氯化钠溶液中引入铵根离子后,电池的倍率性能显著提高。
实施例3:氯化钠与氯化铵摩尔浓度比为3:1的水溶液作为电解液
根据本发明的另一个实施例(实施例3),一种水系氯离子电池,包括负极活性材料为氯氧化铋的负极,正极活性材料为金属银的正极,正负两极设置于非胶状的电解液中。电解液中包含氯化钠,其中含有添加剂,以促进正负两极的氧化还原反应。在该示例中,添加剂为氯化铵。添加剂包括双性型离子NH 4 +。该示例以1.0mol/L氯化钠与氯化铵摩尔浓度比为3:1的水溶液作为电解液。该电解液可以在使用前在-0.1Pa真空下保存12小时,以减少或去除其中溶解的气体,例如氧气。
图9为实施例3的水系氯离子电池的循环曲线,具体为氯氧化铋负极以及银正极构成的电池在500mA g -1充放电电流下的充放电曲线,电解液为中性的1.0mol/L氯化钠/氯化铵(3:1)水溶液。根据实施例3的电池,其充放电曲线表明,在初始循环中呈现出两个较明显的放电电压平台,其分别位于约0.36V和约0.11V。低电压平台在随后的循环中逐渐消失。该实施例的水系氯离子电池在500mA g -1下在10次循环之后可以提供197.59/181.14mAh g -1的充电/放电比容量。
图10为为实施例3的水系氯离子电池的长循环测试结果曲线,具体为氯氧化铋负极以及银正极组成的电池在500mA g -1充放电电流密度下的循环性能。如图10所示,实施例3的电池长循环测试表明,具 有1.0mol/L氯化钠与氯化铵摩尔浓度比为3:1的电解液的电池,在100次充放电循环后仍然可提供110.76/111.3mAh g -1的可逆充电/放电比容量。该实施例3的电池在500次充放电循环后,可以保持47.04/46.06mAh g -1的容量,而且其库仑效率一直保持在至少97.9%或以上。如此优异的循环性能可归因于正极侧氯化银/银转化效率的提高,以及负极侧可用转移电子数量的增加。
实施例4:氯化钠与氯化铵摩尔浓度比为3:2的水溶液作为电解液
根据本发明的另一个实施例(实施例4),一种水系氯离子电池,包括负极活性材料为氯氧化铋的负极,正极活性材料为金属银的正极,正负两极设置于非胶状的电解液中。电解液中包含氯化钠,其中含有添加剂,以促进正负两极的氧化还原反应。在该示例中,添加剂为氯化铵。添加剂包括双性型离子NH 4 +。该示例以1.0mol/L氯化钠与氯化铵摩尔浓度比为3:2的水溶液作为电解液。该电解液可以在使用前在-0.1Pa真空下保存12小时,以减少或去除其中溶解的氧气等气体。
图11为实施例4的水系氯离子电池的循环曲线,具体为氯氧化铋负极以及银正极构成的电池在500mA g -1充放电电流下的充放电曲线,电解液为中性的1.0mol/L氯化钠/氯化铵(3:2)水溶液。根据实施例4的电池,其充放电曲线表明,在初始循环中呈现出两个较明显的放电电压平台,其分别位于约0.33V和约0.13V。低电压平台在随后的循环中逐渐消失。实施例4的氯离子电池在500mA g -1下在10次充放电循环之后可以提供162.95/152.70mAh g -1的充电/放电比容量。
图12为实施例4的水系氯离子电池的长循环测试结果示意图,具体为氯氧化铋负极以及银正极组成的电池在500mA g -1充放电电流密度下的循环性能。在1.0mol/L氯化钠与氯化铵摩尔浓度比为3:2的电解液的电池,在100次充放电循环后还可提供89.90/90.02mAh g -1的可 逆充电/放电比容量。该电池在500次充放电循环后可以保持31.48/30.78mAh g -1的容量,而且其库仑效率一直保持在97.8%,即至少97%以上。正极侧氯化银/银转化效率的提高以及负极侧可用转移电子数量的增加,使得本发明实施例4的水系氯离子电池呈现优异的循环性。
现有的水系氯离子电解液的一个问题是电极材料的溶解性所导致的快速的电池容量的衰减。如果选用水系氯离子电解液,例如氯化钠水溶液,无论在价格、体积密度和含量方面,氯都比水系锂或锌离子电池中使用的锂/锌来得优越。然而,在现有的氯离子电池中,大多数电极材料存在不稳定或溶于水溶液的问题,因而引起容量快速衰减和电池失效,不适用于现有工业或者日常用途。现有的氯离子电池使用的[OMIM][Cl]/[BMIM][BF 4]或者PP 14Cl/PP 14TFSI电解液都是较昂贵的离子液体电解液,也不利于氯离子电池的商业开发。
本发明提供的技术方案则解决了现有氯离子电池所面对的几个问题。其中,如上所述,根据本发明的实施例的水系氯离子电池在多次充放电循环后仍保持相当于初始使用的容量。该水系氯离子电池在500次充放电循环的过程中,其库仑效率可以持续保持在97%以上的水平,电池的比容量可以高于40mAh g -1。因此,根据本方案的氯离子电池在500mA g -1下具有123.7mAh g -1的初始放电比容量,并且具有0.55V的稳定电压。通过在水系电解液中加入双性型离子(如NH 4 +),电池的倍率性能和长期循环性能被提高。双性型离子一方面有助于提高正极处的AgCl/Ag转化率,另一方面有助于在负极处增加可用的转移电子的数量。本技术方案可以提高电池寿命和稳定性,为水系氯离子电池提供了商业开发的实际途径。
上述实施例中基于本发明基础技术方案的各个具体技术特征的所有可能的替换和/或组合都应当理解为被本说明书记载的内容及范围所 涵盖。以上实施例示例性地描述了本发明的几种实施方式,其中具体及详细的描述,不旨在被理解为对本申请所请求的保护范围的限制。本领域技术人员可以在本申请的发明构思、所描述的技术方案及技术特征范围之内对各个实施例及其中的技术特征做出各种修改、替换、重新组合、添加、删除等,应理解为均属于如权利要求书定义的本申请的保护范围。

Claims (20)

  1. 一种水系氯离子电池,其特征在于,所述水系氯离子电池包括:
    正极,其正极活性材料为金属银;
    负极,其负极活性材料包括金属氯氧化物,所述负极活性材料不包括锂、锌或者锂/锌的化合物;
    非胶状的电解液,所述电解液为氯化钠水溶液;以及
    添加于所述电解液中的添加剂,所述添加剂选自在所述氯化钠水溶液中可以同时促进所述正极和所述负极的氧化还原反应的材料。
  2. 根据权利要求1所述的水系氯离子电池,其特征在于,所述负极材料为金属氯氧化物和碳粉的混合材料,其中所述金属氯氧化物为氯氧化铋。
  3. 根据权利要求1所述的水系氯离子电池,其特征在于,所述添加剂包括至少一种铵根离子化合物。
  4. 根据权利要求3所述的水系氯离子电池,其特征在于,所述至少一种铵根离子化合物为氯化铵,以构成氯化钠/氯化铵混合水溶液。
  5. 根据权利要求1所述的水系氯离子电池,其特征在于,所述添加剂包括由铵根离子和酸根离子构成的铵根离子化合物。
  6. 根据权利要求5所述的水系氯离子电池,其特征在于,所述铵根离子化合物为氯化铵,以构成氯化钠/氯化铵混合水溶液。
  7. 根据权利要求4或6所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中氯化铵的摩尔浓度不超过所述氯化钠的摩尔浓度。
  8. 根据权利要求7所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为1:1。
  9. 根据权利要求7所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中氯化钠与氯化铵的摩尔浓度比为3:1至1:1之间。
  10. 根据权利要求9所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:2。
  11. 根据权利要求9所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:1。
  12. 根据权利要求1所述的水系氯离子电池,其特征在于,在经500次充放电循环的过程后,所述水系氯离子电池的库仑效率持续保持在97%以上。
  13. 根据权利要求1所述的水系氯离子电池,其特征在于,在经过500次充放电循环后,所述水系氯离子电池的比容量为至少40mAh g -1
  14. 根据权利要求4或6所述的水系氯离子电池,其特征在于,所述水系氯离子电池的制备方法包括:
    将所述氯化铵加入浓度为0.6mol/L的所述氯化钠水溶液,以得浓度为1.0mol/L的氯化钠/氯化铵混合水溶液,其中所述氯化铵于所述电解液中作为化学反应促进剂;以及
    将所述负极和所述正极相隔设置于所述电解液中,其中所述负极和所述正极之间不设置胶状的电解液,其中所述负极周围的电解液中的氯化铵浓度与所述正极周围的电解液中的氯化铵浓度大致相同。
  15. 根据权利要求14所述的水系氯离子电池,其特征在于,在经500次循环的过程中,所述水系氯离子电池的库仑效率持续保持在97 %以上。
  16. 根据权利要求15所述的水系氯离子电池,其特征在于,在经过500次循环后,所述水系氯离子电池的比容量为至少40mAh g -1
  17. 根据权利要求16所述的水系氯离子电池,其特征在于,所述电解液通过如下方法制备:将氯化铵加入氯化钠水溶液,其中所加入的所述氯化铵的摩尔浓度不超过所述氯化钠溶液的摩尔浓度。
  18. 根据权利要求17所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为1:1。
  19. 根据权利要求17所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:2。
  20. 根据权利要求17所述的水系氯离子电池,其特征在于,所述氯化钠/氯化铵混合水溶液中的氯化钠与氯化铵的摩尔浓度比为3:1。
PCT/CN2022/094581 2021-05-24 2022-05-24 水系氯离子电池 WO2022247808A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280035022.4A CN117441255A (zh) 2021-05-24 2022-05-24 水系氯离子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110566431.4A CN115395011A (zh) 2021-05-24 2021-05-24 水系氯离子电池
CN202110566431.4 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247808A1 true WO2022247808A1 (zh) 2022-12-01

Family

ID=84114131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094581 WO2022247808A1 (zh) 2021-05-24 2022-05-24 水系氯离子电池

Country Status (2)

Country Link
CN (2) CN115395011A (zh)
WO (1) WO2022247808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116969507A (zh) * 2023-05-05 2023-10-31 南京工业大学 用于氯离子电池的导电聚合物包覆的氯氧化铋正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241711A (zh) * 2014-05-16 2014-12-24 南京工业大学 一种氯离子电池
CN110416531A (zh) * 2019-07-26 2019-11-05 长安大学 卤化氧铋水系锌离子二次电池正极及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241711A (zh) * 2014-05-16 2014-12-24 南京工业大学 一种氯离子电池
CN110416531A (zh) * 2019-07-26 2019-11-05 长安大学 卤化氧铋水系锌离子二次电池正极及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUMING CHEN, ZHI YI LEONG, HUI YING YANG: "An aqueous rechargeable chloride ion battery", ENERGY STORAGE MATERIALS, vol. 7, 1 April 2017 (2017-04-01), pages 189 - 194, XP055517443, ISSN: 2405-8297, DOI: 10.1016/j.ensm.2017.02.001 *
KARKERA GURUPRAKASH; REDDY M. ANJI; FICHTNER MAXIMILIAN: "Recent developments and future perspectives of anionic batteries", JOURNAL OF POWER SOURCES, vol. 481, 13 September 2020 (2020-09-13), AMSTERDAM, NL, pages 1 - 17, XP086357576, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2020.228877 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116969507A (zh) * 2023-05-05 2023-10-31 南京工业大学 用于氯离子电池的导电聚合物包覆的氯氧化铋正极材料及其制备方法

Also Published As

Publication number Publication date
CN115395011A (zh) 2022-11-25
CN117441255A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
CN102332572B (zh) 一种负极材料及其制造方法、锂离子电池及其负极片
FI128461B (en) Rechargeable sodium cells for use in high energy density batteries
WO2011079482A1 (zh) 一种电池
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN105336952A (zh) 一种钠锌双离子可充电电池
CN114373982B (zh) 一种基于液态醚类有机电解液的少负极二次钠电池及其制备方法
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN105047861A (zh) 一种硫碳复合材料及其制备方法
WO2022247808A1 (zh) 水系氯离子电池
CN111244530A (zh) 一种用于合金负极材料锂电池的电解液及其应用
US5712057A (en) Poly-sulfide and carbon electrode material and associated process
CN111785897A (zh) Pp/go/kpw功能性隔膜及其在锂-硫电池中的应用
CN115632173A (zh) 一种非锂水系碱性双离子电池
CN115133159A (zh) 一种功能性水系锌离子电池电解液及其制备方法和应用
CN111244560B (zh) 双金属电极二次电池
CN109980226B (zh) 一种具有聚酰胺光亮剂层的锌负极及其制备方法和应用
US11444335B2 (en) High voltage rechargeable Zn—MnO2 battery
CN115084485B (zh) 一种碳纤维负载钼酸锰/氧化锰纳米异质结材料及其制备方法和应用
CN114497539B (zh) 基于亚铁氰化铜正极和吩嗪类有机物负极的水系可充电电池
CN118589065A (zh) 一种水系双金属阳离子电池的电解液及其制备方法和应用
CN117673341A (zh) 一种镍酸锌及含镍酸锌的可充电的锌离子电池
CN117497880A (zh) 可充电水系硫锰电池
CN118136785A (zh) 钠离子电池正极预钠化方法以及预钠化后钠离子电池正极
CN117219885A (zh) 一种基于配离子催化氧化机制的硼化物电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035022.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810533

Country of ref document: EP

Kind code of ref document: A1