WO2022247205A1 - 一种耐磨抗紫外抗静电超疏水织物及其制备方法 - Google Patents

一种耐磨抗紫外抗静电超疏水织物及其制备方法 Download PDF

Info

Publication number
WO2022247205A1
WO2022247205A1 PCT/CN2021/135174 CN2021135174W WO2022247205A1 WO 2022247205 A1 WO2022247205 A1 WO 2022247205A1 CN 2021135174 W CN2021135174 W CN 2021135174W WO 2022247205 A1 WO2022247205 A1 WO 2022247205A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
fabric
wear
ceria
carbon
Prior art date
Application number
PCT/CN2021/135174
Other languages
English (en)
French (fr)
Inventor
吴文剑
陈卓瀚
李坤泉
苏晓竞
李元发
龙亨安
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2022247205A1 publication Critical patent/WO2022247205A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance

Definitions

  • the invention relates to the field of hydrophilic fabrics, in particular to a wear-resistant, ultraviolet-resistant, antistatic super-hydrophobic fabric and a preparation method thereof.
  • the prior art discloses a method for superhydrophobic anti-ultraviolet fabrics, mainly introducing organic anti-ultraviolet compounds into super-hydrophobic water to improve its anti-ultraviolet performance, but the stability of organic anti-ultraviolet compounds needs to be improved.
  • Ren et al. combined zinc oxide (ZnO) with silicone resin (PDMS) to construct a superhydrophobic coating on the surface of the fabric.
  • ZnO zinc oxide
  • PDMS silicone resin
  • the study found that the coating can resist strong acid, strong alkali and saturated salt solution.
  • ZnO/PDMS has a good bonding force with the fabric, it still maintains good superhydrophobic properties after finger scratching and sandpaper rubbing tests.
  • ZnO /PDMS coating can also effectively shield ultraviolet light, so that the material has good anti-ultraviolet aging performance (Guina Ren, Yuanming Song, Xiangming Li, et al. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property [J]. Journal of Colloid and Interface Science, 2018, 522: 57-62).
  • Zhu et al etched the copper surface and then modified the surface with PDMS and titanium dioxide to prepare a superhydrophobic coating with a water contact angle of 155.5° and a rolling angle of 6.8°.
  • the coating has photocatalytic properties and can effectively degrade organic pollutants on the surface.
  • the coating has excellent anti-ultraviolet properties and still maintains excellent hydrophobicity after 30 hours of ultraviolet irradiation (Hai Zhu, Lizhen Wu, Xiang Meng, et al.
  • the obtained material has good stability, but the inorganic particles need to be hydrophobized and modified, and the inorganic particles need to maintain a multi-level structure during the friction process.
  • the micro-nano structure keeps the hydrophobicity of the surface by intercepting more air layers, so the wear resistance needs to be improved.
  • a kind of wear-resistant anti-ultraviolet antistatic superhydrophobic fabric with good hydrophobic stability and abrasion resistance it also provides a kind of preparation of wear-resistant anti-ultraviolet antistatic superhydrophobic fabric with simple operation method.
  • a wear-resistant and anti-ultraviolet anti-static super-hydrophobic fabric is prepared by coating the surface of the fabric with carbon-coated hollow ceria/organic silicon polymer.
  • a further improvement to the above technical solution is that the particle size of the carbon-coated hollow ceria is 80-300 nm.
  • a further improvement to the above technical solution is that the mass ratio of the carbon-coated hollow ceria to the organosilicon polymer is 1:0.5-1:10.
  • a method for preparing a wear-resistant, anti-ultraviolet, and anti-static super-hydrophobic fabric comprising the following steps: washing and drying the fabric with water and ethanol, using toluene as a solvent, and mixing carbon-coated hollow cerium dioxide microspheres with an organic silicon polymer in a certain amount After uniform mixing and ultrasonic dispersion for 3-6 minutes, the mixed solution is added to the spray gun, and the fabric is used as the substrate for spraying. After spraying, it is dried to obtain a wear-resistant, anti-ultraviolet, and anti-static super-hydrophobic fabric.
  • the silicone polymer is a silicone resin
  • the silicone resin includes PDMS.
  • a further improvement to the above technical solution is that the mass ratio of the organosilicon polymer to toluene is 5:95-30:70.
  • the hollow structure and intrinsic hydrophobicity of carbon-coated hollow ceria can better capture air without surface modification, which greatly improves the hydrophobic stability and wear resistance of the fabric surface; carbon-coated hollow ceria
  • the introduction of the carbon layer in cerium can endow the material with electrical conductivity, effectively prevent the accumulation of surface charges caused by hydrophobicity, and avoid the adsorption of dust on the surface; ceria particles have excellent UV resistance, and compared with particles such as titanium dioxide and zinc oxide, their anti- Photocatalysis will not be triggered in the ultraviolet process, which can better avoid the degradation of the matrix resin.
  • Example 1 is a schematic diagram of the surface contact angle test of the superhydrophobic fabric of Example 1 of the wear-resistant, anti-ultraviolet and antistatic superhydrophobic fabric of the present invention.
  • Example 2 is a scanning electron microscope image of the surface of the superhydrophobic fabric of Example 1 of the wear-resistant, anti-ultraviolet and antistatic superhydrophobic fabric of the present invention.
  • a wear-resistant and anti-ultraviolet anti-static super-hydrophobic fabric is prepared by coating the surface of the fabric with carbon-coated hollow ceria/organic silicon polymer.
  • the particle diameter of the carbon-coated hollow ceria is 80-300nm.
  • the mass ratio of the carbon-coated hollow ceria to the organosilicon polymer is 1:0.5-1:10.
  • the carbon-coated hollow ceria is prepared by the following method: (1) Disperse silicon dioxide (SiO2) template microspheres in absolute ethanol, obtain a uniformly dispersed suspension solution after ultrasonication for 30 minutes, and dissolve cerium nitrate in dehydrated Form an aqueous cerium nitrate solution in ionized water, mix it with a well-dispersed SiO2 suspension after stirring evenly, pour the mixed solution into a stainless steel reactor lined with a polytetrafluoroethylene-coated surface, and conduct a hydrothermal reaction at 130 ⁇ 180°C for 6 ⁇ 15 hours , after being cooled, centrifuged and washed five times, and dried to obtain ceria-coated silica microsphere solids;
  • the mass ratio of described silica and dehydrated alcohol is 1:50 ⁇ 1:200;
  • the molar concentration of described cerium nitrate aqueous solution is 1mol/L ⁇ 3mol/L;
  • the mass ratio of described silica and cerium nitrate is 1:1 ⁇ 1:4;
  • the obtained product is calcined at a temperature of 600 ⁇ 1000°C and kept in an argon atmosphere for 3 ⁇ 6h; the calcined microspheres are immersed in sodium hydroxide solution at room temperature for 36 ⁇ 60h, filtered and dried to obtain carbon-coated hollow ceria microspheres;
  • the carbon source is one of fructose, glucose, and sucrose;
  • the mass concentration of the carbon source aqueous solution is 2wt% ⁇ 12wt%;
  • the carbon source The mass ratio of ceria-coated silica to ceria is 1:1 ⁇ 10:1; the concentration of the sodium hydroxide solution is 2mol/L ⁇ 5 mol/L.
  • a kind of preparation method of wear-resisting anti-ultraviolet antistatic superhydrophobic fabric comprises the following steps:
  • the silicone polymer is a silicone resin, and the silicone resin includes PDMS.
  • the mass ratio of the organosilicon polymer to toluene is 5:95-30:70.
  • Example 1 Weigh 2.5g of silicon dioxide with an average particle size of 200nm and disperse it in 500g of ethanol, and stir it ultrasonically for 30 minutes to obtain a silicon dioxide dispersion; /L of cerium nitrate aqueous solution, after being uniformly dispersed and mixed by ultrasonic waves, transferred to a polytetrafluoroethylene-lined stainless steel autoclave for hydrothermal reaction to obtain ceria-coated silica microspheres, the temperature of the hydrothermal reaction is 130°C, the reaction time is 15h; after the reaction kettle is naturally cooled to room temperature, the reaction solution is centrifuged to obtain ceria-coated silica microspheres, and the ceria-coated silica microspheres are alternately treated with water and ethanol. After centrifugal washing and purification, the finally obtained ceria-coated silica microsphere solid was placed at 70° C. for vacuum drying for 12 hours.
  • the fabric After washing and drying the fabric with water and ethanol, set aside, take 1.0g of the carbon-coated hollow ceria powder and 3.0g of silicone resin prepared in the above steps and add it to 7.0g of toluene, ultrasonically disperse it for 6min, and then put the mixture into the spray gun In the process, the fabric is used as the substrate for spraying, and after spraying, it is dried and placed in an oven at 100°C for 30 minutes to obtain a wear-resistant, anti-ultraviolet, and anti-static super-hydrophobic fabric.
  • Figure 1 is a test photo of the surface contact angle of the superhydrophobic fabric. It can be seen that the water droplet presents an oval shape on the surface of the fabric, has a large contact angle, and exhibits good superphobic performance.
  • Figure 2 is a scanning electron microscope photo of the surface of the super-hydrophobic fabric. It can be seen that the nanoparticles on the surface accumulate to form micron-scale aggregates. This special micro-nano structure is conducive to intercepting air to form an air layer, thereby improving the hydrophobicity of the coating surface. sex.
  • Example 2 Weigh 2.0 g of silicon dioxide with an average particle diameter of 40 nm and disperse it in 100 g of ethanol, and ultrasonically stir for 30 minutes to obtain a silicon dioxide dispersion; add 12.27 mL of a molar concentration of 2mol/L cerium nitrate aqueous solution, after being uniformly dispersed and mixed by ultrasonic waves, is transferred to a polytetrafluoroethylene-lined stainless steel high-pressure reactor for hydrothermal reaction to obtain ceria-coated silica microspheres.
  • the temperature of the hydrothermal reaction The temperature is 180°C, and the reaction time is 6 hours; after the reaction kettle is naturally cooled to room temperature, the reaction solution is centrifuged to obtain ceria-coated silica microspheres, and the ceria-coated silica microspheres are alternately coated with water and ethanol. Centrifugal washing and purification were performed, and the finally obtained ceria-coated silica microsphere solid was placed at 70° C. for vacuum drying for 12 hours.
  • the fabric After washing and drying the fabric with water and ethanol, set aside, take 1.0g of the carbon-coated hollow ceria powder and 0.5g of silicone resin prepared in the above steps and add it to 9.5g of toluene, ultrasonically disperse it for 6min, and then put the mixture into the spray gun In the process, the fabric is used as the substrate for spraying, and after spraying, it is dried and placed in an oven at 100°C for 30 minutes to obtain a wear-resistant, anti-ultraviolet, and anti-static super-hydrophobic fabric.
  • Example 3 Weigh 2.0 g of silicon dioxide with an average particle diameter of 120 nm and disperse it in 200 g of ethanol, and stir ultrasonically for 30 minutes to obtain a silicon dioxide dispersion; add 6.14 mL of a molar concentration of 3mol/L cerium nitrate aqueous solution, after being uniformly dispersed and mixed by ultrasonic waves, is transferred to a polytetrafluoroethylene-lined stainless steel autoclave for hydrothermal reaction to obtain ceria-coated silica microspheres.
  • the temperature of the hydrothermal reaction The temperature is 160°C, and the reaction time is 10 hours; after the reaction kettle is naturally cooled to room temperature, the reaction solution is centrifuged to obtain ceria-coated silica microspheres, and the ceria-coated silica microspheres are alternately coated with water and ethanol. Centrifugal washing and purification were performed, and the finally obtained ceria-coated silica microsphere solid was placed at 70° C. for vacuum drying for 12 hours.
  • Example 4 Weigh 0.5 g of silicon dioxide with an average particle size of 90 nm and disperse it in 75 g of ethanol for 30 minutes with ultrasonic stirring to obtain a silicon dioxide dispersion; add 3.06 mL of silicon dioxide to the silicon dioxide dispersion to have a molar concentration of 1.5 mol/L cerium nitrate aqueous solution, after ultrasonic dispersion and mixing, transferred to a polytetrafluoroethylene-lined stainless steel autoclave for hydrothermal reaction to obtain ceria-coated silica microspheres, the temperature of the hydrothermal reaction The temperature is 150°C, and the reaction time is 12 hours; after the reaction kettle is naturally cooled to room temperature, the reaction solution is centrifuged to obtain ceria-coated silica microspheres, and the ceria-coated silica microspheres are alternately coated with water and ethanol. Centrifugal washing and purification were carried out, and the finally obtained ceria-coated silica microsphere solid was
  • Example 5 Weigh 1.0 g of silicon dioxide with an average particle size of 140 nm and disperse it in 150 g of ethanol and stir it ultrasonically for 30 minutes to obtain a silicon dioxide dispersion; add 1.54 mL of silicon dioxide to the silicon dioxide dispersion with a molar concentration of 2.0 mol/L cerium nitrate aqueous solution, after ultrasonic dispersion and mixing, transferred to a polytetrafluoroethylene-lined stainless steel autoclave for hydrothermal reaction to obtain ceria-coated silica microspheres, the temperature of the hydrothermal reaction The temperature was 180°C, and the reaction time was 9 hours; after the reaction kettle was naturally cooled to room temperature, the reaction solution was centrifuged to obtain ceria-coated silica microspheres, and the ceria-coated silica microspheres were alternately coated with water and ethanol. Centrifugal washing and purification were carried out, and the finally obtained ceria-coated silica microsphere solid was
  • Performance test (1) Abrasion resistance test, using abrasive paper (1200 mesh) as the wearing surface, super-hydrophobic surface as the worn surface, pulling the tested sample at a speed of 3cm/s under a pressure of 12.5kPa, the test distance is 15cm, the experiment process is repeated 20 times, and the surface contact angle is measured after the test.
  • Anti-ultraviolet performance test In order to test the anti-ultraviolet performance of the superhydrophobic fabric, it was placed in a sealed box equipped with an ultraviolet lamp.
  • the wavelength of the ultraviolet lamp is 365nm
  • the power is 20W
  • the distance between the control fabric and the ultraviolet lamp is 10cm
  • the test time is 5 days
  • the contact angle of the fabric surface is measured after the test.
  • Example 1 157.9 151.4 35 153.4
  • Example 2 165.3 148.1 8 163.7
  • Example 3 150.8 146.3 204 148.5
  • Example 4 154.5 150.8 120 153.1
  • Example 5 159.2 154.6 106 155.5
  • the obtained fiber fabrics all exhibit superhydrophobic properties, and have good wear resistance, and the resistances are all below 300 K ⁇ cm -1 , with Good antistatic properties, besides little change in contact angle after UV test. Therefore, the superhydrophobic fabric obtained by the present invention has good abrasion resistance, anti-ultraviolet performance and antistatic performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种耐磨抗紫外抗静电超疏水织物,通过在织物表面涂覆碳包覆中空二氧化铈/有机硅聚合物制备而成。其中制备方法是:以二氧化硅为模板,硝酸铈为原料,制备二氧化铈中空微球前驱体;采用水热法对二氧化铈中空微球前驱体进行碳包覆处理并刻蚀模板后获得碳包覆中空二氧化铈;将碳包覆中空二氧化铈分散在有机硅树脂中,通过喷涂得到抗静电超疏水织物。使用碳包覆中空二氧化铈的中空结构与本征疏水性提高织物表面粗糙度和疏水性,通过碳层赋予材料表面抗静电性,获得抗静电超疏水织物具有良好抗静电稳定性和耐磨性,且兼具优异抗紫外性能;还提供一种操作简单的耐磨抗紫外抗静电超疏水织物的制备方法。

Description

一种耐磨抗紫外抗静电超疏水织物及其制备方法
相关申请的交叉引用。
本申请要求于2021年5月25日提交中国专利局,申请号为202110573633.1,发明名称为“一种耐磨抗紫外抗静电超疏水织物及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及亲水织物领域,特别是涉及一种耐磨抗紫外抗静电超疏水织物及其制备方法。
背景技术
近年来,荷叶表面特殊的防水性能引起了人们的广泛关注。研究发现,荷叶表面多层次的微纳米结构和疏水的蜡质材料赋予了其表面优异的超疏水性能。这种特殊的润湿性使其在防水、油水分离、防结冰、抗腐蚀、自清洁、微流体运输等领域有着巨大的应用前景,特别是在户外防水织物制品的应用。然而,在实际应用中,超疏水材料表面的低表面能材料与基材附着力差,易脱落,多层次粗糙结构还易受到各种外力冲击、磨擦或液体腐蚀的破坏,此时不仅疏水性能大幅度下降,还可能对水产生粘附。此外,将超疏水材料置于户外时还会遭受紫外等的照射导致材料的降解。同时,超疏水材料表面的疏水性可能会导致表面干燥而产生静电积累,吸附灰层破坏表面的超疏水性,因此,超疏水材料的耐磨性和耐久性是制约其产业化应用的关键因素。
技术问题
现有技术公开了一种超疏水抗紫外织物的方法,主要在超疏水中引入有机抗紫外化合物提高其抗紫外性能,但是有机抗紫外化合物的稳定性有待提高。Ren等将氧化锌(ZnO)与有机硅树脂(PDMS)复合,在织物表面构造了超疏水涂层。研究发现,该涂层可以抵抗强酸、强碱与饱和盐溶液,此外,由于ZnO/PDMS与织物具有较好的结合力,通过手指刮擦和砂纸磨擦测试后仍然保持良好的超疏水性能,ZnO/PDMS涂层还可以有效屏蔽紫外光,使该材料具有良好的抗紫外老化性能(Guina Ren, Yuanming Song, Xiangming Li, et al. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property [J]. Journal of Colloid and Interface Science, 2018, 522: 57-62)。Zhu等通过对铜表面刻蚀后,再经过PDMS和二氧化钛对表面进行改性,制备了水接触角为155.5°,滚动角为6.8°的超疏水涂层。该涂层具有光催化性能,能有效降解表面的有机污染物,同时涂层具有优异的抗紫外性能,在经过30h的紫外线照射后仍然保持优异的疏水性(Hai Zhu, Lizhen Wu, Xiang Meng, et al. An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions [J]. Nanoscale, 2020,12(21): 11455-11459)。利用二氧化钛和氧化锌的特性可以一定程度上起到较好的抗紫外效果,但是紫外照射会引发二氧化钛和氧化锌的光催化效应,可能会导致基体树脂PDMS的降解。利用基材表面的多层次结构维持超疏水所需的粗糙结构,获得的材料具有较好的稳定性,但是需要对无机粒子进行疏水化改性,同时无机粒子在摩擦过程中需要维持多层次的微纳米结构以截取更多的空气层来保持表面的疏水性,因此耐磨性有待提高。
技术解决方案
根据本申请的各种实施例,提供一种良好的疏水稳定性、耐磨性的耐磨抗紫外抗静电超疏水织物;还提供一种操作简单的耐磨抗紫外抗静电超疏水织物的制备方法。
一种耐磨抗紫外抗静电超疏水织物,所述耐磨抗紫外抗静电超疏水织物通过在织物表面涂覆碳包覆中空二氧化铈/有机硅聚合物制备而成。
对上述技术方案的进一步改进为,所述碳包覆中空二氧化铈的粒径为80~300nm。
对上述技术方案的进一步改进为,所述碳包覆中空二氧化铈与有机硅聚合物的质量比为1:0.5~1:10。
一种耐磨抗紫外抗静电超疏水织物的制备方法,包括如下步骤:将织物用水和乙醇洗涤干燥后,以甲苯为溶剂,将碳包覆中空二氧化铈微球与有机硅聚合物按一定比例混合均匀后,超声分散3~6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥得到耐磨抗紫外抗静电超疏水织物。
对上述技术方案的进一步改进为,所述有机硅聚合物为有机硅树脂,所述有机硅树脂包括PDMS。
对上述技术方案的进一步改进为,所述有机硅聚合物与甲苯的质量比为5:95~30:70。
有益效果
碳包覆中空二氧化铈的中空结构以及本征疏水性可以更好地捕捉空气,无需对其进行表面改性,大幅度提高织物表面的疏水稳定性和耐磨性;碳包覆中空二氧化铈中碳层的引入可以赋予材料导电性,有效防止疏水造成的表面电荷聚集,避免表面灰尘吸附;二氧化铈粒子具有优异的抗紫外性能,且与二氧化钛、氧化锌等粒子相比,其抗紫外过程中不会引发光催化,可以更好的避免基体树脂的降解。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本发明的耐磨抗紫外抗静电超疏水织物的实施例1的超疏水织物表面接触角测试示意图。
图2为本发明的耐磨抗紫外抗静电超疏水织物的实施例1的超疏水织物表面扫描电镜图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
一种耐磨抗紫外抗静电超疏水织物,所述耐磨抗紫外抗静电超疏水织物通过在织物表面涂覆碳包覆中空二氧化铈/有机硅聚合物制备而成。
所述碳包覆中空二氧化铈的粒径为80~300nm。
所述碳包覆中空二氧化铈与有机硅聚合物的质量比为1:0.5~1:10。
所述碳包覆中空二氧化铈通过以下方法制备:(1)取二氧化硅(SiO2)模板微球分散于无水乙醇中,超声30min后得到分散均匀的悬浮溶液,取硝酸铈溶于去离子水中形成硝酸铈水溶液,搅拌均匀后与分散均匀的SiO2悬浮液混合,将混合液倒入内衬有聚四氟乙烯涂覆面的不锈钢反应釜中,130~180℃水热反应6~15小时,冷却后离心洗涤五次,干燥后得到二氧化铈包覆二氧化硅微球固体;
所述二氧化硅与无水乙醇的质量比为1:50~1:200;所述硝酸铈水溶液的摩尔浓度为1mol/L~3mol/L;所述二氧化硅与硝酸铈的质量比为1:1~1:4;(2)将碳源水溶液和二氧化铈包覆二氧化硅微球固体按比例混合均匀后,移至聚四氟乙烯衬里不锈钢高压釜中,然后加热至160~200℃反应2~6h后,进行离心、沉淀、洗涤和干燥。对获得的产物进行煅烧处理,温度为600~1000℃,并在氩气气氛中保持3~6h;将煅烧后的微球室温下浸入氢氧化钠溶液中36~ 60h,过滤后干燥得到碳包覆中空二氧化铈微球;所述碳源为果糖、葡萄糖、蔗糖中的一种;所述碳源水溶液的质量浓度为2wt%~12wt%;所述碳源与二氧化铈包覆二氧化硅质量比为1:1~10:1;所述氢氧化钠溶液的浓度为2mol/L~5 mol/L。
一种耐磨抗紫外抗静电超疏水织物的制备方法,包括如下步骤:
将织物用水和乙醇洗涤干燥后,以甲苯为溶剂,将碳包覆中空二氧化铈微球与有机硅聚合物按一定比例混合均匀后,超声分散3~6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥得到耐磨抗紫外抗静电超疏水织物。
所述有机硅聚合物为有机硅树脂,所述有机硅树脂包括PDMS。
所述有机硅聚合物与甲苯的质量比为5:95~30:70。
实施例1:称取2.5g平均粒径为200nm的二氧化硅分散在500g的乙醇中,超声搅拌30min后得到二氧化硅分散液;向二氧化硅分散液中加入7.67mL的摩尔浓度为1mol/L的硝酸铈水溶液,通过超声波分散混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到二氧化铈包覆二氧化硅微球,水热反应的温度为130℃,反应时间为15h;反应釜自然冷却至室温后,反应液通过离心得到二氧化铈包覆二氧化硅微球,并采用水和乙醇交替对二氧化铈包覆二氧化硅微球进行离心洗涤纯化,最后得到的二氧化铈包覆二氧化硅微球固体再置于70℃下进行真空干燥处理12h。
将0.5g的二氧化铈包覆二氧化硅微球加入到250g质量浓度为2wt%的葡萄糖水溶液中混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到初产物,水热反应的温度为200℃,水热反应的时间为3h;反应釜自然冷却至室温后,反应液通过真空抽滤,并采用水和乙醇交替洗涤,再置于70℃下进行真空干燥处理12h得到初产物;再将初产物放置于管式炉中,在氩气的气氛下,以2℃/min的升温速率升温至800℃后保温6h,然后自然冷却得到碳包覆二氧化铈微球;再将碳包覆二氧化铈微球置于5mol/L的氢氧化钠溶液中浸渍36h除去二氧化硅得到碳包覆二氧化铈空心球,粒径为300nm。
将织物用水和乙醇洗涤干燥后,备用,取1.0g上述步骤中制得的碳包覆中空二氧化铈粉末和3.0g有机硅树脂加入7.0g甲苯中,超声分散6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥置于100℃烘箱中30min,得到耐磨抗紫外抗静电超疏水织物。
图1是超疏水织物表面接触角测试照片,可以看出,水滴在织物表面呈现椭圆形,具有较大的接触角,呈现良好的超疏性能。
图2是超疏水织物表面的扫描电镜照片,可以看出,表面的纳米颗粒堆积形成了微米级别团聚体,这种特殊的微纳米结构有利于截取空气形成空气层,从而提高涂层表面的疏水性。
实施例2:称取2.0g的平均粒径为40nm的二氧化硅分散在100g的乙醇中,超声搅拌30min后得到二氧化硅分散液;向二氧化硅分散液中加入12.27mL的摩尔浓度为2mol/L的硝酸铈水溶液,通过超声波分散混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到二氧化铈包覆二氧化硅微球,水热反应的温度为180℃,反应时间为6h;反应釜自然冷却至室温后,反应液通过离心得到二氧化铈包覆二氧化硅微球,并采用水和乙醇交替对二氧化铈包覆二氧化硅微球进行离心洗涤纯化,最后得到的二氧化铈包覆二氧化硅微球固体再置于70℃下进行真空干燥处理12h。
将3.5g的二氧化铈包覆二氧化硅微球加入到175g质量浓度为10wt%的果糖水溶液中混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到初产物,水热反应的温度为160℃,水热反应的时间为6h;反应釜自然冷却至室温后,反应液通过真空抽滤,并采用水和乙醇交替洗涤,再置于50℃下进行真空干燥处理24h得到初产物;再将初产物放置于管式炉中,在氩气的气氛下,以2℃/min的升温速率升温至1000℃后保温3h,然后自然冷却得到碳包覆二氧化铈微球;再将碳包覆二氧化铈微球置于2mol/L的氢氧化钠溶液中浸渍60h除去二氧化硅得到碳包覆二氧化铈空心球,粒径为80nm。
将织物用水和乙醇洗涤干燥后,备用,取1.0g上述步骤中制得的碳包覆中空二氧化铈粉末和0.5g有机硅树脂加入9.5g甲苯中,超声分散6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥置于100℃烘箱中30min,得到耐磨抗紫外抗静电超疏水织物。
实施例3:称取2.0g的平均粒径为120nm的二氧化硅分散在200g的乙醇中,超声搅拌30min后得到二氧化硅分散液;向二氧化硅分散液中加入6.14mL的摩尔浓度为3mol/L的硝酸铈水溶液,通过超声波分散混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到二氧化铈包覆二氧化硅微球,水热反应的温度为160℃,反应时间为10h;反应釜自然冷却至室温后,反应液通过离心得到二氧化铈包覆二氧化硅微球,并采用水和乙醇交替对二氧化铈包覆二氧化硅微球进行离心洗涤纯化,最后得到的二氧化铈包覆二氧化硅微球固体再置于70℃下进行真空干燥处理12h。
将1.0g的二氧化铈包覆二氧化硅微球加入到100g质量浓度为5wt%的蔗糖水溶液中混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到初产物,水热反应的温度为190℃,水热反应的时间为3h;反应釜自然冷却至室温后,反应液通过真空抽滤,并采用水和乙醇交替洗涤,再置于80℃下进行真空干燥处理6h得到初产物;再将初产物放置于管式炉中,在氩气的气氛下,以5℃/min的升温速率升温至900℃后保温3h,然后自然冷却得到碳包覆二氧化铈微球;再将碳包覆二氧化铈微球置于5mol/L的氢氧化钠溶液中浸渍48h除去二氧化硅得到碳包覆二氧化铈空心球,粒径为210nm。
将织物用水和乙醇洗涤干燥后,备用,取1.0g上述步骤中制得的碳包覆中空二氧化铈粉末和10g有机硅树脂加入90g甲苯中,超声分散4min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥置于100℃烘箱中30min,得到耐磨抗紫外抗静电超疏水织物。
实施例4:称取0.5g的平均粒径为90nm的二氧化硅分散在75g的乙醇中超声搅拌30min后得到二氧化硅分散液;向二氧化硅分散液中加入3.06mL的摩尔浓度为1.5mol/L的硝酸铈水溶液,通过超声波分散混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到二氧化铈包覆二氧化硅微球,水热反应的温度为150℃,反应时间为12h;反应釜自然冷却至室温后,反应液通过离心得到二氧化铈包覆二氧化硅微球,并采用水和乙醇交替对二氧化铈包覆二氧化硅微球进行离心洗涤纯化,最后得到的二氧化铈包覆二氧化硅微球固体再置于80℃下进行真空干燥处理10h。
将1.0g的二氧化铈包覆二氧化硅微球加入到50g质量浓度为8wt%的蔗糖水溶液中混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到初产物,水热反应的温度为180℃,水热反应的时间为6h;反应釜自然冷却至室温后,反应液通过真空抽滤,并采用水和乙醇交替洗涤,再置于80℃下进行真空干燥处理6h得到初产物;再将初产物放置于管式炉中,在氩气的气氛下,以5℃/min的升温速率升温至900℃后保温5h,然后自然冷却得到碳包覆二氧化铈微球;再将碳包覆二氧化铈微球置于5mol/L的氢氧化钠溶液中浸渍48h除去二氧化硅得到碳包覆二氧化铈空心球,粒径为200nm。
将织物用水和乙醇洗涤干燥后,备用,取0.1g上述步骤中制得的碳包覆中空二氧化铈粉末和0.8g有机硅树脂加入9.2g甲苯中,超声分散6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥置于120℃烘箱中30min,得到耐磨抗紫外抗静电超疏水织物。
实施例5:称取1.0g的平均粒径为140nm的二氧化硅分散在150g的乙醇中超声搅拌30min后得到二氧化硅分散液;向二氧化硅分散液中加入1.54mL的摩尔浓度为2.0mol/L的硝酸铈水溶液,通过超声波分散混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到二氧化铈包覆二氧化硅微球,水热反应的温度为180℃,反应时间为9h;反应釜自然冷却至室温后,反应液通过离心得到二氧化铈包覆二氧化硅微球,并采用水和乙醇交替对二氧化铈包覆二氧化硅微球进行离心洗涤纯化,最后得到的二氧化铈包覆二氧化硅微球固体再置于60℃下进行真空干燥处理12h。
将1.0g的二氧化铈包覆二氧化硅微球加入到100g质量浓度为6wt%的蔗糖水溶液中混合均匀后,转移至聚四氟乙烯内衬的不锈钢高压反应釜中进行水热反应得到初产物,水热反应的温度为200℃,水热反应的时间为6h;反应釜自然冷却至室温后,反应液通过真空抽滤,并采用水和乙醇交替洗涤,再置于60℃下进行真空干燥处理8h得到初产物;再将初产物放置于管式炉中,在氩气的气氛下,以4℃/min的升温速率升温至600℃后保温6h,然后自然冷却得到碳包覆二氧化铈微球;再将碳包覆二氧化铈微球置于4mol/L的氢氧化钠溶液中浸渍60h除去二氧化硅得到碳包覆二氧化铈空心球,粒径为270nm。
将织物用水和乙醇洗涤干燥后,备用,取1.0g上述步骤中制得的碳包覆中空二氧化铈粉末和5.0g有机硅树脂加入20g甲苯中,超声分散6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥置于120℃烘箱中30min,得到耐磨抗紫外抗静电超疏水织物。
性能测试:(1)耐磨性测试,以磨砂纸(1200目)为磨损面,超疏水表面为被磨损面,在12.5kPa的压强下,以3cm/s的速度拉被测样品,测试距离为15cm,该实验过程重复20次,测试结束后测量表面接触角。
(2)导电性能测试,采用高精度数字万用表对超疏水织物两点间电阻进行测试,选取测量间距为1cm,共测得12组数据,去掉最高与最低数值,再对剩余10组数据求平均值即得超疏水织物的电阻。
(3)接触角测试,采用接触角测量仪测试表面对水的接触角。水滴大小为5μL,每个样品测量5次,取平均值。
(4)抗紫外性能测试,为测试超疏水织物的抗紫外性能,将其置于装有紫外灯的密封箱中。紫外灯波长为365nm,功率为20W,控制织物与紫外灯的距离为10cm,测试时间为5天,测试结束后测量织物表面接触角。
表1 实施例和对比例性能测试结果
  接触角/° 摩擦后接触角/° 电阻(KΩ·cm -1 紫外测试后接触角/°
实施例1 157.9 151.4 35 153.4
实施例2 165.3 148.1 8 163.7
实施例3 150.8 146.3 204 148.5
实施例4 154.5 150.8 120 153.1
实施例5 159.2 154.6 106 155.5
从表1 的实施例的性能测试可以看出,实施例1-5中,获得的纤维织物都呈现超疏水性能,且具有较好耐磨性,电阻都在300 KΩ·cm -1以下,具有良好的抗静电性能,此外在紫外测试后接触角的变化不大。因此,本发明得到的超疏水织物具有良好的耐磨性、抗紫外性能以及抗静电性能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种耐磨抗紫外抗静电超疏水织物,其特征在于,所述耐磨抗紫外抗静电超疏水织物通过在织物表面涂覆碳包覆中空二氧化铈/有机硅聚合物制备而成。
  2. 根据权利要求1所述的耐磨抗紫外抗静电超疏水织物,其特征在于,所述碳包覆中空二氧化铈的粒径为80~300nm。
  3. 根据权利要求1所述的耐磨抗紫外抗静电超疏水织物,其特征在于,所述碳包覆中空二氧化铈与有机硅聚合物的质量比为1:0.5~1:10。
  4. 一种耐磨抗紫外抗静电超疏水织物的制备方法,其特征在于,包括如下步骤:将织物用水和乙醇洗涤干燥后,以甲苯为溶剂,将碳包覆中空二氧化铈微球与有机硅聚合物按一定比例混合均匀后,超声分散3~6min后,将混合液加入喷枪中,以织物为基体进行喷涂,喷涂完成后干燥得到耐磨抗紫外抗静电超疏水织物。
  5. 根据权利要求4所述的耐磨抗紫外抗静电超疏水织物的制备方法,其特征在于,所述有机硅聚合物为有机硅树脂,所述有机硅树脂包括PDMS。
  6. 根据权利要求4所述的耐磨抗紫外抗静电超疏水织物的制备方法,其特征在于,所述有机硅聚合物与甲苯的质量比为5:95~30:70。
PCT/CN2021/135174 2021-05-25 2021-12-02 一种耐磨抗紫外抗静电超疏水织物及其制备方法 WO2022247205A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110573633.1 2021-05-25
CN202110573633.1A CN113152075B (zh) 2021-05-25 2021-05-25 一种耐磨抗紫外抗静电超疏水织物及其制备方法

Publications (1)

Publication Number Publication Date
WO2022247205A1 true WO2022247205A1 (zh) 2022-12-01

Family

ID=76877870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135174 WO2022247205A1 (zh) 2021-05-25 2021-12-02 一种耐磨抗紫外抗静电超疏水织物及其制备方法

Country Status (2)

Country Link
CN (1) CN113152075B (zh)
WO (1) WO2022247205A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113152075B (zh) * 2021-05-25 2022-07-12 东莞理工学院 一种耐磨抗紫外抗静电超疏水织物及其制备方法
CN115094622A (zh) * 2022-07-18 2022-09-23 浙江锌芯友好环境材料科技有限公司 碳布衬底二氧化铈/二氧化钛纳米线双层复合膜及其制备技术

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202085862U (zh) * 2011-04-27 2011-12-28 庞瑞 一种超疏水防紫外线纳米晴雨伞
CN105949499A (zh) * 2016-07-11 2016-09-21 四川大学 一种超疏水材料的制备方法
US20170233586A1 (en) * 2014-07-01 2017-08-17 Industry-University Cooperation Foundation Hanyang University Super water-repellent layer structure on which droplets can move in one direction and method for manufacturing same
CN108022758A (zh) * 2017-11-28 2018-05-11 东莞理工学院 碳包覆二氧化铈空心球及其制备方法
CN108997922A (zh) * 2018-07-02 2018-12-14 安徽玉堂雨具有限公司 一种雨具用添加纳米ato-二氧化硅-二氧化铈制备超疏水耐磨聚氨酯涂料的方法
CN109576985A (zh) * 2017-09-29 2019-04-05 周琪 一种制备超疏水材料的方法
CN109679022A (zh) * 2018-12-17 2019-04-26 西安理工大学 一种具有pH响应的无氟超疏水涂层的制备方法
CN113152075A (zh) * 2021-05-25 2021-07-23 东莞理工学院 一种耐磨抗紫外抗静电超疏水织物及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076347B (zh) * 2016-05-31 2018-05-11 贵州理工学院 一种空心核壳型金属硅酸盐/二氧化铈纳米颗粒及其制备方法
CN106085070B (zh) * 2016-07-11 2019-07-05 复旦大学 一种低表面能微纳米涂层材料及其制备方法
CN106252641B (zh) * 2016-10-26 2018-11-27 福州大学 碳和二氧化铈双包覆锂离子电池三元正极材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202085862U (zh) * 2011-04-27 2011-12-28 庞瑞 一种超疏水防紫外线纳米晴雨伞
US20170233586A1 (en) * 2014-07-01 2017-08-17 Industry-University Cooperation Foundation Hanyang University Super water-repellent layer structure on which droplets can move in one direction and method for manufacturing same
CN105949499A (zh) * 2016-07-11 2016-09-21 四川大学 一种超疏水材料的制备方法
CN109576985A (zh) * 2017-09-29 2019-04-05 周琪 一种制备超疏水材料的方法
CN108022758A (zh) * 2017-11-28 2018-05-11 东莞理工学院 碳包覆二氧化铈空心球及其制备方法
CN108997922A (zh) * 2018-07-02 2018-12-14 安徽玉堂雨具有限公司 一种雨具用添加纳米ato-二氧化硅-二氧化铈制备超疏水耐磨聚氨酯涂料的方法
CN109679022A (zh) * 2018-12-17 2019-04-26 西安理工大学 一种具有pH响应的无氟超疏水涂层的制备方法
CN113152075A (zh) * 2021-05-25 2021-07-23 东莞理工学院 一种耐磨抗紫外抗静电超疏水织物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUAN WEI, XIE ANJIAN, SHEN YUHUA, WANG XIUFANG, WANG FANG, ZHANG YE, LI JIALIN: "Fabrication of Superhydrophobic Cotton Fabrics with UV Protection Based on CeO 2 Particles", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 50, no. 8, 20 April 2011 (2011-04-20), pages 4441 - 4445, XP093008504, ISSN: 0888-5885, DOI: 10.1021/ie101924v *
REN GUINA, SONG YUANMING, LI XIANGMING, WANG BO, ZHOU YANLI, WANG YUYAN, GE BO, ZHU XIAOTAO: "A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 522, 1 July 2018 (2018-07-01), US , pages 57 - 62, XP093008500, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2018.03.038 *
YUANFA LI, LONG HENGAN , LIU MINYUN: "Preparation and stability study of conductive superhydrophobic fabric based on carbon-coated ceria", 2 September 2020 (2020-09-02), pages 1 - 1, XP093008498, Retrieved from the Internet <URL:http://gjcxcy.bjtu.edu.cn/NewLXItemListForStudentDetail.aspx?IsLXItem=1&ItemNo=591884> [retrieved on 20221215] *

Also Published As

Publication number Publication date
CN113152075A (zh) 2021-07-23
CN113152075B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2022247205A1 (zh) 一种耐磨抗紫外抗静电超疏水织物及其制备方法
CN112831241A (zh) 一种超疏水超疏油环氧树脂涂料及其制备方法
WO2019205551A1 (zh) 自洁涂层、自洁纤维、自洁地毯及其应用
KR20040093065A (ko) 티타니아 나노시트 배향 박막과 그 제조 방법 및 티타니아나노시트 배향 박막을 구비한 물품
Katagiri et al. Preparation of Transparent Thick Films by Electrophoretic Sol‐Gel Deposition Using Phenyltriethoxysilane‐Derived Particles
CN110317476B (zh) 纳米功能涂料及其制备方法和应用
WO2007097284A1 (ja) 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
Bai et al. Preparation of mesoporous SiO 2/Bi 2 O 3/TiO 2 superhydrophilic thin films and their surface self-cleaning properties
CN112125335B (zh) 一种微纳米二氧化钛、制备方法及应用
CN111040527A (zh) 热反射超疏水pvdf涂料及其制备方法
CN112143332B (zh) 一种超疏水涂层及制备方法
CN109468874B (zh) 一种超疏水透明导电纸及其制备方法
JP2015158537A (ja) 防眩膜付き物品、その製造方法および画像表示装置
Zhang et al. Effect of calcination temperature on the structure and properties of SiO2 microspheres/nano-TiO2 composites
Chen et al. Facile synthesis of superhydrophobic TiO2/polystyrene core-shell microspheres
Hong et al. SiC-enhanced polyurethane composite coatings with excellent anti-fouling, mechanical, thermal, chemical properties on various substrates
Xi et al. Ultrafine nano-TiO2 loaded on dendritic porous silica nanoparticles for robust transparent antifogging self-cleaning nanocoatings
Icin et al. Dye removal by polymer derived ceramic nanobeads
Zhao et al. Fabrication of a scratch & heat resistant superhydrophobic SiO 2 surface with self-cleaning and semi-transparent performance
CN109207042B (zh) 一种环境净化超疏水耐久涂层的制备方法
CN109369882B (zh) 一种基于纳米流体的二氧化钛薄膜制备方法
CN113896232B (zh) 一种二氧化钛材料及其制备方法与应用
Jiang et al. Self-cleaning Finishing of Cotton Fabric with TiO 2/Ag 2 S/rGO Composite
CN109110805A (zh) 一种自组装制备纳米二氧化钛薄膜的方法及产品
Yang et al. Preparation and properties of environmentally benign waterborne polyurethane composites from sodium-alginate-modified nano calcium carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942768

Country of ref document: EP

Kind code of ref document: A1