WO2022246906A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2022246906A1
WO2022246906A1 PCT/CN2021/098669 CN2021098669W WO2022246906A1 WO 2022246906 A1 WO2022246906 A1 WO 2022246906A1 CN 2021098669 W CN2021098669 W CN 2021098669W WO 2022246906 A1 WO2022246906 A1 WO 2022246906A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
layer
display panel
grating structure
light
Prior art date
Application number
PCT/CN2021/098669
Other languages
English (en)
French (fr)
Inventor
涂清
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/419,711 priority Critical patent/US20240016029A1/en
Publication of WO2022246906A1 publication Critical patent/WO2022246906A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel.
  • OLED Organic Light Emitting Diode
  • An OLED device is a device that converts electrical energy into light energy. Its light extraction efficiency is the ratio of the total photon energy generated by the photon energy device that actually exits the device, reflecting the utilization rate of light energy by the OLED device. Part of the photon energy emitted by the light-emitting unit of the OLED device will be consumed by the surface plasmon effect on the metal interface and the waveguide effect in the organic layer, resulting in a decrease in light extraction efficiency; the surface plasmon effect mainly occurs in the OLED device.
  • the interface between the metal anode and the adjacent dielectric layer, and the interface between the metal cathode and the adjacent dielectric layer will consume about 40% of the total light output; the waveguide effect mainly occurs in the organic light-emitting functional layer of the OLED device, which will consume the total light output. About 40% of the light output. Under the same display conditions, low light extraction efficiency will lead to increased power consumption and shortened lifetime of OLED devices.
  • the present application provides a display panel, which is used to alleviate the technical problem of low light extraction efficiency of a display device caused by surface plasmon effects and waveguide effects.
  • the application provides a display panel, which includes:
  • An anode layer disposed on the array substrate, includes a first conductive layer and a second conductive layer on the first conductive layer, the surface of the first conductive layer facing the second conductive layer has a first grating structure;
  • the light emitting layer is arranged on the second conductive layer.
  • the first conductive layer is a light-reflecting conductive layer
  • the second conductive layer is a light-transmitting layer
  • the first grating structure includes a plurality of first grooves and a first protrusion adjacent to the first grooves.
  • the cross-sectional shape of the first protruding portion along a direction perpendicular to the plane where the first conductive layer is located is any one of square, triangle, trapezoid, and arc shape.
  • the first groove extends from the first end of the first conductive layer to the second end of the first conductive layer, and the first end and the second end are opposite ends of the first conductive layer.
  • the first groove and the first protrusion extend along the same direction.
  • the plurality of first grooves are equally spaced on the surface of the first conductive layer.
  • the plurality of first protrusions are distributed at equal intervals on the surface of the first conductive layer.
  • the light-emitting layer includes an organic functional layer for emitting light, and the projected area of the organic functional layer on the first conductive layer along a direction perpendicular to the plane where the first conductive layer is located is the first area;
  • the first grooves are at least distributed in the first area.
  • the first grating structure includes a nano-grating.
  • the array substrate includes a plurality of thin film transistors
  • the anode layer further includes a third conductive layer, and the third conductive layer is located on a side of the first conductive layer away from the second conductive layer.
  • the third conductive layer is electrically connected to the corresponding thin film transistor.
  • the third conductive layer includes ITO
  • the first conductive layer includes Ag
  • the second conductive layer includes ITO
  • the display panel further includes a cathode disposed on the light emitting layer, and a surface of the cathode facing the light emitting layer has a second grating structure.
  • the light-emitting layer includes an organic functional layer for emitting light, and the projected area of the organic functional layer on the cathode along the direction perpendicular to the plane where the cathode is located is the second area;
  • the second grating structure is at least distributed in the second region.
  • the second grating structure includes a plurality of second grooves and a plurality of second protrusions adjacent to the second grooves.
  • the second groove and the second protrusion extend along the same direction
  • the plurality of second grooves are distributed at equal intervals on the surface of the cathode, and the plurality of second protrusions are distributed at equal intervals on the surface of the cathode.
  • the second grating structure includes a nano-grating.
  • the orthographic projection of the second grating structure on the first conductive layer coincides with the first grating structure.
  • the present application also provides a display panel, which includes:
  • An anode layer, disposed on the array substrate, includes a first conductive layer and a second conductive layer on the first conductive layer, the surface of the first conductive layer facing the second conductive layer has a first grating structure;
  • a cathode disposed on the luminescent layer, and the surface of the cathode facing the luminescent layer has a second grating structure
  • the first grating structure includes a plurality of first grooves and a first protrusion adjacent to the first grooves, and the first grooves and the first protrusions extend along the same direction and distributed at equal intervals on the surface of the first conductive layer;
  • the second grating structure includes a plurality of second grooves and a plurality of second protrusions adjacent to the second grooves, and the second grooves extending along the same direction as the second protruding portion and distributed at equal intervals on the surface of the cathode.
  • the present application provides a display panel.
  • the display panel includes an array substrate and an anode layer disposed on the array substrate.
  • the anode layer includes a first conductive layer and a second conductive layer on the first conductive layer.
  • the surface of the second conductive layer has a first grating structure, the first conductive layer is a light-reflecting conductive layer, the second conductive layer is a light-transmitting conductive layer, and a light-emitting layer is arranged on the second conductive layer;
  • the first grating structure is arranged on a conductive layer, which weakens the surface plasmon effect and the waveguide effect in the dielectric layer near the anode, reduces the amount of light consumed by these two effects, and improves the light extraction efficiency of the display panel.
  • FIG. 1 is a schematic diagram of a first partial structure of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic plan view of the first conductive layer shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of another planar structure of the first conductive layer shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of a second partial structure of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third partial structure of a display panel provided by an embodiment of the present application.
  • FIG. 6 is a schematic plan view of the cathode shown in FIG. 5 .
  • FIG. 7 is another schematic plan view of the cathode shown in FIG. 5 .
  • FIG. 8 is a schematic diagram of a fourth partial structure of a display panel provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel.
  • the display panel includes an array substrate and an anode layer disposed on the array substrate.
  • the anode layer includes a first conductive layer and a second conductive layer on the first conductive layer. layer, the surface of the first conductive layer facing the second conductive layer has a first grating structure, the first conductive layer is a light-reflective conductive layer, the second conductive layer is a light-transmissive conductive layer, and the second conductive layer A light-emitting layer is arranged on the first conductive layer; the present application weakens the surface plasmon effect and waveguide effect that appear in the dielectric layer near the anode by setting the first grating structure on the first conductive layer, reducing the amount of light consumed by these two effects , which is beneficial to improving the light extraction efficiency of the display panel.
  • FIG. 1 is a schematic diagram of the first partial structure of a display panel provided by an embodiment of the present application.
  • the display panel includes an array substrate 10, an anode layer 20 disposed on the array substrate 10, and a The light emitting layer 30 on the anode layer 20, the cathode layer 40 disposed on the light emitting layer 30, the thin film encapsulation layer 50 disposed on the cathode layer 40, and the light concentrating layer disposed on the thin film encapsulation layer 50 60.
  • a driving circuit is disposed in the array substrate 10 , and the driving circuit is electrically connected to the anode layer 20 for providing a driving signal to the anode layer 20 .
  • the driving circuit may include various driving signal wires and multiple thin film transistor devices, and the driving signal wires and the thin film transistor devices may be distributed in an array.
  • the anode layer 20 includes a first conductive layer 21 and a second conductive layer 22 located on the first conductive layer 21, the light-emitting layer 30 is located on the second conductive layer 22, and the first conductive layer 21
  • the second conductive layer 22 is a photoconductive layer that is a reflective photoconductive layer.
  • the anode layer 20 further includes a third conductive layer 23 , and the third conductive layer 23 is located between the first conductive layer 21 and the array substrate 10 .
  • the third conductive layer 23 , the first conductive layer 21 and the second conductive layer 22 together constitute an anode of the display panel.
  • the third conductive layer 23 is an indium tin oxide (ITO) electrode
  • the first conductive layer 21 is a silver electrode
  • the second conductive layer 22 is an indium tin oxide (ITO) electrode.
  • the first conductive layer 21 is an opaque metal conductive layer, and part of the light emitted by the light-emitting layer 30 goes to the anode layer 20 and is reflected by the anode layer 20, and then from the display
  • the light-emitting surface of the panel emits light.
  • the light hits the anode layer 20 and the film layers near the anode layer 20, a part of the light will be consumed due to the surface plasmon effect and the waveguide effect; consumed by the surface plasmon effect and the waveguide effect
  • the more light is lost, the less light is emitted from the light-emitting surface of the display panel, and the light-emitting efficiency of the display panel is lower.
  • the surface of the first conductive layer 21 facing the second conductive layer 22 has a first grating structure, and the first grating structure includes a plurality of first grooves 211 and the first grating structure.
  • the first protrusion 212 adjacent to the groove 211 , the second conductive layer 22 is filled in the first groove 211 .
  • the cross-sectional shape of the first protruding portion 212 along the direction perpendicular to the plane where the first conductive layer 21 is located includes a square, and the square may be a rectangle or a square, so that a grating is formed on the first conductive layer 21. structure.
  • the first grating structure may be a nanograting. In this embodiment, by forming a first grating structure on the surface of the first conductive layer 21, the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its nearby film layers are weakened, which is conducive to improving the The light extraction efficiency of the display panel.
  • the cross-sectional shape of the first conductive layer 21 along the direction perpendicular to the plane where the first conductive layer 21 is located includes a zigzag shape.
  • the feature of the zigzag surface of the first conductive layer 21 is used to weaken the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its adjacent film layers, thereby improving the light output of the display panel. efficiency.
  • FIG. 2 is a schematic plan view of the first conductive layer shown in FIG. 1 .
  • the first groove 211 extends from the first end of the first conductive layer 21 to the second end of the first conductive layer 21, the first end and the second end are the first conductive
  • the opposite ends of the layer 21; the first grooves 211 and the first protrusions 212 are alternately arranged on the surface of the first conductive layer 21; the first protrusions 212 are also formed by the first A first end of a conductive layer 21 extends to a second end of the first conductive layer 21 .
  • both the first groove 211 and the first raised portion 212 extend along a straight line on the first conductive layer 21, or the first groove 211 and the first raised portion 212 extend along a curve on the first conductive layer 21 .
  • the first grooves 211 and the first protrusions 212 are equally spaced on the surface of the first conductive layer 21 .
  • FIG. 3 is a schematic diagram of another planar structure of the first conductive layer shown in FIG. 1 .
  • the light-emitting layer 30 includes an organic functional layer for emitting light, and the projected area of the organic functional layer on the first conductive layer 21 in a direction perpendicular to the plane where the first conductive layer 21 is located is a first area 301 ;
  • the first groove 211 and the first protrusion 212 are distributed in the first region 301 . Both the first groove 211 and the first protrusion 212 extend from one end of the first area 301 to the opposite end of the first area 301 .
  • the first groove 211 and the first protrusion 212 may extend on the first conductive layer 21 along a straight line or along a curved line.
  • the first grooves 211 and the first protrusions 212 are equally spaced on the surface of the first conductive layer 21 .
  • the light-emitting layer 30 includes a pixel definition layer and an organic functional layer disposed in the opening of the pixel definition layer, the organic functional layer includes a hole injection layer 31, located in the hole The hole transport layer 32 on the injection layer 31, the electron blocking layer 33 on the hole transport layer 32, the light emitting functional layer 34 on the electron blocking layer 33, the electrons on the light emitting functional layer 34 The control layer 35 , the electron transport layer 36 located on the electron control layer 35 , and the electron injection layer 37 located on the electron transport layer 36 .
  • the hole injection layer 31 and the hole transport layer 32 are used to transport holes to the light-emitting functional layer 34
  • the electron blocking layer 33 is used to block electrons
  • the electron injection layer 37, the electron transport The layer 36 and the electron control layer 35 are used to transport electrons to the light emitting functional layer 34
  • the light emitting functional layer 34 is used to combine holes and electrons to realize light emission.
  • the cathode layer 40 includes a cathode, and the cathode is electrically connected to the organic functional layer in the light-emitting layer 30 for transmitting electrons to the organic functional layer.
  • the cathode is made of magnesium and silver alloy.
  • the thin film encapsulation layer 50 may include a combined structure of an organic material layer and an inorganic material layer, which is used to seal and protect the cathode layer 40 and the light emitting layer 30 .
  • the light concentrating layer 60 includes a plurality of light concentrating structures for converging the light emitted by the light emitting layer 30 to a specific display area to further improve the light extraction efficiency of the display panel.
  • FIG. 4 is a second partial structural schematic diagram of the display panel provided by the embodiment of the present application.
  • the display panel shown in FIG. 4 is the same or similar to the display panel shown in FIG.
  • the structure of the display panel; the structural features of the display panel shown in FIG. 4 will be described below, and for those not described in detail, please refer to the structural description of the display panel shown in FIG. 1 above.
  • the display panel includes an array substrate 10, an anode layer 20 disposed on the array substrate 10, a light emitting layer 30 disposed on the anode layer 20, a cathode layer 40 disposed on the light emitting layer 30, and a The thin film encapsulation layer 50 on the cathode layer 40 , and the light concentrating layer 60 disposed on the thin film encapsulation layer 50 .
  • a driving circuit is disposed in the array substrate 10 , and the driving circuit is electrically connected to the anode layer 20 for providing a driving signal to the anode layer 20 .
  • the driving circuit may include various driving signal wires and multiple thin film transistor devices, and the driving signal wires and the thin film transistor devices may be distributed in an array.
  • the anode layer 20 includes a first conductive layer 21 and a second conductive layer 22 located on the first conductive layer 21, the light-emitting layer 30 is located on the second conductive layer 22, and the first conductive layer 21 for metal conductive layer.
  • the anode layer 20 further includes a third conductive layer 23 , and the third conductive layer 23 is located between the first conductive layer 21 and the array substrate 10 .
  • the third conductive layer 23 , the first conductive layer 21 and the second conductive layer 22 together constitute an anode of the display panel.
  • the third conductive layer 23 is an indium tin oxide (ITO) electrode
  • the first conductive layer 21 is a silver electrode
  • the second conductive layer 22 is an indium tin oxide (ITO) electrode.
  • the surface of the first conductive layer 21 facing the second conductive layer 22 has a first grating structure, the first grating structure includes a plurality of first grooves 211 and a plurality of first protrusions 212, the The second conductive layer 22 is filled in the first groove 211 .
  • the cross-sectional shape of the first protruding portion 212 along the direction perpendicular to the plane where the first conductive layer 21 is located is triangular, so that a grating structure is formed on the first conductive layer 21 .
  • the first grating structure may be a nano-grating.
  • the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its nearby film layers are weakened, which is conducive to improving the The light extraction efficiency of the display panel.
  • the cross-sectional shape of the first conductive layer 21 along the direction perpendicular to the plane where the first conductive layer 21 is located includes a zigzag shape.
  • the feature of the zigzag surface of the first conductive layer 21 is used to weaken the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its adjacent film layers, thereby improving the light output of the display panel. efficiency.
  • both the first groove 211 and the first protrusion 212 extend from the first end of the first conductive layer 21 to the second end of the first conductive layer 21, and the first One end and the second end are opposite ends of the first conductive layer 21 .
  • the light-emitting layer 30 includes an organic functional layer for emitting light, and the projected area of the organic functional layer on the first conductive layer 21 in a direction perpendicular to the plane where the first conductive layer 21 is located is First area; the first groove 211 and the first protrusion 212 are distributed in the first area. Both the first groove 211 and the first protrusion 212 extend from one end of the first region to the opposite end of the first region.
  • both the first groove 211 and the first protrusion 212 extend along a straight line on the first conductive layer 21 , or both extend along a curve.
  • the first grooves 211 and the first protrusions 212 are equally spaced on the surface of the first conductive layer 21 .
  • the light-emitting layer 30 includes a pixel definition layer and an organic functional layer disposed in the opening of the pixel definition layer, the organic functional layer includes a hole injection layer 31, and an organic layer on the hole injection layer 31.
  • the hole injection layer 31 and the hole transport layer 32 are used to transport holes to the light-emitting functional layer 34, the resistance blocking layer 33 is used to block electrons, the electron injection layer 37, the electron transport layer The layer 36 and the electron control layer 35 are used to transport electrons to the light emitting functional layer 34, and the light emitting functional layer 34 is used to combine holes and electrons to realize light emission.
  • the cathode layer 40 includes a cathode, and the cathode is electrically connected to the organic functional layer in the light-emitting layer 30 for transmitting electrons to the organic functional layer.
  • the cathode is made of magnesium and silver alloy.
  • the thin film encapsulation layer 50 may include a combined structure of an organic material layer and an inorganic material layer, which is used to seal and protect the cathode layer 40 and the light emitting layer 30 .
  • the light concentrating layer 60 includes a plurality of light concentrating structures for converging the light emitted by the light-emitting layer 30 to a specific display area for emission, so as to improve the light extraction efficiency of the display panel.
  • FIG. 5 is a schematic diagram of a third partial structure of a display panel provided by an embodiment of the present application.
  • the display panel shown in FIG. 5 is the same or similar to the display panel shown in FIG.
  • the structure of the display panel; the structural features of the display panel shown in FIG. 5 will be described below, and for those not described in detail, please refer to the structural description of the display panel shown in FIG. 1 above.
  • the display panel includes an array substrate 10, an anode layer 20 disposed on the array substrate 10, a light emitting layer 30 disposed on the anode layer 20, a cathode layer 40 disposed on the light emitting layer 30, and a The thin film encapsulation layer 50 on the cathode layer 40 , and the light concentrating layer 60 disposed on the thin film encapsulation layer 50 .
  • a driving circuit is disposed in the array substrate 10 , and the driving circuit is electrically connected to the anode layer 20 for providing a driving signal to the anode layer 20 .
  • the driving circuit may include various driving signal wires and multiple thin film transistor devices, and the driving signal wires and the thin film transistor devices may be distributed in an array.
  • the anode layer 20 includes a first conductive layer 21 and a second conductive layer 22 located on the first conductive layer 21, the light-emitting layer 30 is located on the second conductive layer 22, and the first conductive layer 21 for the metal conductive layer.
  • the anode layer 20 further includes a third conductive layer 23 , and the third conductive layer 23 is located between the first conductive layer 21 and the array substrate 10 .
  • the third conductive layer 23 , the first conductive layer 21 and the second conductive layer 22 together constitute an anode of the display panel.
  • the third conductive layer 23 is an indium tin oxide (ITO) electrode
  • the first conductive layer 21 is a silver electrode
  • the second conductive layer 22 is an indium tin oxide (ITO) electrode.
  • the surface of the first conductive layer 21 facing the second conductive layer 22 has a first grating structure, the first grating structure includes a plurality of first grooves 211 and a plurality of first protrusions 212, the The second conductive layer 22 is filled in the first groove 211 .
  • the cross-sectional shape of the first conductive layer 21 along the direction perpendicular to the plane where the first conductive layer 21 is located includes a zigzag shape.
  • the feature of the zigzag surface of the first conductive layer 21 is used to weaken the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its adjacent film layers, thereby improving the light output of the display panel. efficiency.
  • both the first groove 211 and the first protrusion 212 extend from the first end of the first conductive layer 21 to the second end of the first conductive layer 21, and the first One end and the second end are opposite ends of the first conductive layer 21 .
  • the light-emitting layer 30 includes an organic functional layer for emitting light, and the projected area of the organic functional layer on the first conductive layer 21 in a direction perpendicular to the plane where the first conductive layer 21 is located is First area; the first groove 211 and the first protrusion 212 are distributed in the first area. Both the first groove 211 and the first protrusion 212 extend from one end of the first region to the opposite end of the first region.
  • both the first groove 211 and the first protrusion 212 extend along a straight line on the first conductive layer 21 , or both extend along a curve.
  • the first grooves 211 and the first protrusions 212 are equally spaced on the surface of the first conductive layer 21 .
  • the light emitting layer 30 includes a pixel definition layer and an organic functional layer arranged in the opening of the pixel definition layer, the organic functional layer includes a hole injection layer 31, a hole transport layer located on the hole injection layer 31 layer 32, the electron blocking layer 33 on the hole transport layer 32, the luminescent functional layer 34 on the electron blocking layer 33, the electron control layer 35 on the luminescent functional layer 34, the electron An electron transport layer 36 on the control layer 35 , and an electron injection layer 37 on the electron transport layer 36 .
  • the hole injection layer 31 and the hole transport layer 32 are used to transport holes to the light-emitting functional layer 34, the resistance blocking layer 33 is used to block electrons, the electron injection layer 37, the electron transport layer The layer 36 and the electron control layer 35 are used to transport electrons to the light emitting functional layer 34, and the light emitting functional layer 34 is used to combine holes and electrons to realize light emission.
  • the cathode layer 40 includes a cathode, and the cathode is electrically connected to the organic functional layer in the light-emitting layer 30 for transmitting electrons to the organic functional layer.
  • the cathode is made of magnesium and silver alloy.
  • the surface of the cathode facing the light-emitting layer 30 has a second grating structure, and the second grating structure includes a plurality of second grooves 41 and a plurality of second protrusions 42 .
  • the second grating structure includes a plurality of second grooves 41 and a plurality of second protrusions 42 .
  • the cross-sectional shape of the second protrusion 42 along the direction perpendicular to the plane where the cathode layer 40 is located includes a square or a triangle.
  • the cross-sectional shape of the cathode along the direction perpendicular to the plane where the cathode layer 40 is located includes a zigzag shape, so that the cathode layer 40 forms a grating structure.
  • the second grating structure may be a nanograting.
  • FIG. 6 is a schematic plan view of the cathode shown in FIG. 5 .
  • the second grooves 41 extend from one end of the cathode to the opposite end of the cathode; the second grooves 41 and the second protrusions 42 are alternately arranged on the surface of the cathode.
  • both the second groove 41 and the second protrusion 42 extend along a straight line on the cathode, or both extend along a curve.
  • the second grooves 41 and the second protrusions 42 are equally spaced on the surface of the cathode.
  • FIG. 7 is a schematic diagram of another planar structure of the cathode shown in FIG. 5 .
  • the projected area of the organic functional layer in the luminescent layer 30 on the cathode along the direction perpendicular to the plane where the cathode layer 40 is located is the second area 302; the second groove 41 and the second protrusion The raised portions 42 are distributed in the second area 302 .
  • Both the second groove 41 and the second protrusion 42 extend from one end of the second area 302 to the opposite end of the second area 302 .
  • the second groove 41 and the second protrusion 42 may extend along a straight line or a curved line on the cathode.
  • the second grooves 41 and the second protrusions 42 are equally spaced on the surface of the cathode.
  • the orthographic projection of the second groove 41 on the first conductive layer 21 coincides with the first groove 211 .
  • the thin film encapsulation layer 50 may include a combined structure of an organic material layer and an inorganic material layer, which is used to seal and protect the cathode layer 40 and the light emitting layer 30 .
  • the light concentrating layer 60 includes a plurality of light concentrating structures for converging the light emitted by the light-emitting layer 30 to a specific display area for emission, so as to improve the light extraction efficiency of the display panel.
  • FIG. 8 is a schematic diagram of a fourth partial structure of a display panel provided by an embodiment of the present application.
  • the display panel shown in FIG. 8 is the same or similar to the display panel shown in FIG.
  • the structure of the display panel; the structural features of the display panel shown in FIG. 8 will be described below, and for those not described in detail, please refer to the structural description of the display panel shown in FIG. 1 above.
  • the display panel includes an array substrate, an anode layer disposed on the array substrate, a light emitting layer disposed on the anode layer, a cathode layer disposed on the light emitting layer, and a thin film disposed on the cathode layer
  • the encapsulation layer 50 and the light concentrating layer 60 disposed on the thin film encapsulation layer 50 .
  • the array substrate includes a base substrate 101, a buffer layer 102 disposed on the base substrate 101, a semiconductor layer 103 disposed on the buffer layer 102, a gate insulating layer 104 covering the semiconductor layer 103, The gate 105 disposed on the gate insulating layer 104, the interlayer insulating layer 106 covering the gate 105, the source and drain 107 disposed on the interlayer insulating layer 106, and the source and drain covering The flat layer 108 of the electrode 107, the source and drain electrodes 107 are connected to the opposite ends of the semiconductor layer 103 through the via holes on the gate insulating layer 104 and the interlayer insulating layer 106, and the semiconductor layer 103 , the gate 105 and the source and drain 107 form a thin film transistor device.
  • the anode layer includes a third conductive layer 23 on the flat layer 108, a first conductive layer 21 on the third conductive layer 23 and a second conductive layer 22 on the first conductive layer 21 , the first conductive layer 21 is a metal conductive layer.
  • the third conductive layer 23 is an indium tin oxide (ITO) electrode
  • the first conductive layer 21 is a silver electrode
  • the second conductive layer 22 is an indium tin oxide (ITO) electrode.
  • the surface of the first conductive layer 21 facing the second conductive layer 22 has a first grating structure, and the second conductive layer 22 fills the grooves of the first grating structure.
  • the surface plasmon effect and the waveguide effect in the surface of the first conductive layer 21 and its nearby film layers are weakened, which is conducive to improving the The light extraction efficiency of the display panel.
  • the light emitting layer includes a pixel definition layer 301 and an organic functional layer 302 disposed in the opening of the pixel definition layer 301 , and the organic functional layer 302 may include various film structures for realizing its light emitting function.
  • the cathode layer includes a cathode 401, and the surface of the cathode 401 facing the light-emitting layer has a second grating structure.
  • the second grating structure on the surface of the cathode, the amount of light consumed in the medium near the cathode due to the surface plasmon effect and the waveguide effect is reduced, and the light extraction efficiency of the display panel is improved.
  • the thin film encapsulation layer 50 may include a combined structure of an organic material layer and an inorganic material layer, which is used to seal and protect the cathode layer 40 and the light emitting layer 30 .
  • the light concentrating layer 60 includes a plurality of light concentrating structures for converging the light emitted by the light emitting layer 30 to a specific display area to further improve the light extraction efficiency of the display panel.
  • the display panel provided by the embodiment of the present application includes an array substrate and an anode layer disposed on the array substrate, and the anode layer includes a first conductive layer and a second conductive layer located on the first conductive layer.
  • Conductive layer, the surface of the first conductive layer facing the second conductive layer has a first grating structure, the first conductive layer is a light-reflecting conductive layer, the second conductive layer is a light-transmissive conductive layer, and the second conductive layer
  • a luminescent layer is arranged on the layer; the present application weakens the surface plasmon effect and the waveguide effect occurring in the dielectric layer near the anode by arranging the first grating structure on the surface of the metal conductive layer of the anode. The amount of light consumed by these two effects is reduced, which is beneficial to improving the light extraction efficiency of the display panel.
  • An embodiment of the present application further provides a display device, and the display device includes the display panel provided in the embodiment of the present application.
  • the display device may be a mobile phone, a notebook computer, a tablet computer, a TV set, a navigator and other devices with a display function.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板,该显示面板包括阵列基板(10)和设置于阵列基板(10)上的阳极层(20),阳极层(20)包括第一导电层(21)和位于第一导电层(21)上的第二导电层(22),第一导电层(21)的朝向第二导电层(22)的表面具有第一光栅结构,第一导电层(21)为反射光导电层,第二导电层(22)为透射光导电层,第二导电层(22)上设置有发光层(30);通过在第一导电层(21)上设置第一光栅结构,减弱了阳极附近的介质层中出现的表面等离子体激元效应和波导效应,降低了这两种效应消耗的光量,提升了显示面板的出光效率。

Description

显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板。
背景技术
近年来,OLED(Organic Light Emitting Diode)显示技术用于平面显示的商业化标准不断提高。得益于OLED商业化研究的不断深入和完善,目前OLED屏幕已经具备了高亮度、高对比度、广色域等特点,但在工艺和技术方面仍有一些亟待解决和提升的问题。
OLED器件是一种将电能转化为光能的器件,其出光效率是实际射出器件的光子能量器件产生的总光子能量的比值,反映了OLED器件对光能的利用率。OLED器件的发光单元发出光子能量中的一部分会被金属界面上的表面等离子体激元效应和有机层中的波导效应所消耗,造成出光效率降低;表面等离子体激元效应主要发生在OLED器件的金属阳极与相邻介质层的界面、以及金属阴极与相邻介质层的界面,该效应会消耗总产光量的40%左右;波导效应主要发生在OLED器件的有机发光功能层中,会消耗总产光量的40%左右。在相同的显示条件下,出光效率低下会导致OLED器件的功耗升高、寿命缩短。
技术问题
目前的显示器件存在因表面等离子体激元效应和波导效应而导致的出光效率低下的技术问题。
技术解决方案
本申请提供一种显示面板,用于缓解显示器件因表面等离子体激元效应和波导效应而导致的出光效率低下的技术问题。
本申请提供一种显示面板,其包括:
阵列基板;
阳极层,设置于所述阵列基板上,包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构;以及
发光层,设置于所述第二导电层上。
在本申请的显示面板中,所述第一导电层为反射光导电层,所述第二导电层为透射光导电层。
在本申请的显示面板中,所述第一光栅结构包括多个第一凹槽和与所述第一凹槽临近的第一凸起部。
在本申请的显示面板中,所述第一凸起部沿垂直于所述第一导电层所在平面的方向上的截面形状为方形、三角形、梯形、圆弧形中任一种。
在本申请的显示面板中,所述第一凹槽由所述第一导电层的第一端延伸至所述第一导电层的第二端,所述第一端与所述第二端是所述第一导电层的相对两端。
在本申请的显示面板中,所述第一凹槽和所述第一凸起部沿着相同方向延伸设置。
在本申请的显示面板中,所述多个第一凹槽在所述第一导电层的表面等间距分布。
在本申请的显示面板中,所述多个第一凸起部在所述第一导电层的表面等间距分布。
在本申请的显示面板中,所述发光层包括用于发光的有机功能层,所述有机功能层沿垂直于所述第一导电层所在平面的方向在所述第一导电层上的投影区域为第一区域;
所述第一凹槽至少分布于所述第一区域内。
在本申请的显示面板中,所述第一光栅结构包括纳米光栅。
在本申请的显示面板中,所述阵列基板包括多个薄膜晶体管,
所述阳极层还包括第三导电层,所述第三导电层位于所述第一导电层的远离所述第二导电层的一侧。
在本申请的显示面板中,所述第三导电层与对应的所述薄膜晶体管电连接。
在本申请的显示面板中,所述第三导电层包括ITO,所述第一导电层包括Ag,所述第二导电层包括ITO。
在本申请的显示面板中,所述显示面板还包括设置于所述发光层上的阴极,所述阴极朝向所述发光层的表面具有第二光栅结构。
在本申请的显示面板中,所述发光层包括用于发光的有机功能层,所述有机功能层沿垂直于所述阴极所在平面的方向在所述阴极上的投影区域为第二区域;
所述第二光栅结构至少分布于所述第二区域内。
在本申请的显示面板中,所述第二光栅结构包括多个第二凹槽和与所述第二凹槽临近的多个第二凸起部。
在本申请的显示面板中,所述第二凹槽和所述第二凸起部沿着相同方向延伸设置;
所述多个第二凹槽在所述阴极的表面等间距分布,所述多个第二凸起部在所述阴极的表面等间距分布。
在本申请的显示面板中,所述第二光栅结构包括纳米光栅。
在本申请的显示面板中,所述第二光栅结构在所述第一导电层上的正投影与所述第一光栅结构重合。
本申请还提供一种显示面板,其包括:
阵列基板;
阳极层,设置于所述阵列基板上,包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构;
发光层,设置于所述第二导电层上;
阴极,设置于所述发光层上,所述阴极朝向所述发光层的表面具有第二光栅结构;
其中,所述第一光栅结构包括多个第一凹槽和与所述第一凹槽临近的第一凸起部,所述第一凹槽和所述第一凸起部沿着相同方向延伸且在所述第一导电层表面等间距分布;所述第二光栅结构包括多个第二凹槽和与所述第二凹槽临近的多个第二凸起部,所述第二凹槽和所述第二凸起部沿着相同方向延伸且在所述阴极的表面等间距分布。
有益效果
本申请提供一种显示面板,显示面板包括阵列基板和设置于阵列基板上的阳极层,阳极层包括第一导电层和位于第一导电层上的第二导电层,第一导电层的朝向第二导电层的表面具有第一光栅结构,所述第一导电层为反射光导电层,所述第二导电层为透射光导电层,第二导电层上设置有发光层;本申请通过在第一导电层上设置第一光栅结构,减弱了阳极附近的介质层中出现的表面等离子体激元效应和波导效应,降低了这两种效应消耗的光量,提升了显示面板的出光效率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的第一种局部结构示意图。
图2是图1所示的第一导电层的一种平面结构示意图。
图3是图1所示的第一导电层的另一种平面结构示意图。
图4是本申请实施例提供的显示面板的第二种局部结构示意图。
图5是本申请实施例提供的显示面板的第三种局部结构示意图。
图6是图5所示的阴极的一种平面结构示意图。
图7是图5所示的阴极的另一种平面结构示意图。
图8是本申请实施例提供的显示面板的第四种局部结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请实施例提供一种显示面板,该显示面板包括阵列基板和设置于所述阵列基板上的阳极层,所述阳极层包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构,第一导电层为反射光导电层,第二导电层为透射光导电层,所述第二导电层上设置有发光层;本申请通过在第一导电层上设置第一光栅结构,减弱了阳极附近的介质层中出现的表面等离子体激元效应和波导效应,降低了这两种效应消耗的光量,有利于提升显示面板的出光效率。
请参阅图1,图1是本申请实施例提供的显示面板的第一种局部结构示意图,所述显示面板包括阵列基板10、设置于所述阵列基板10上的阳极层20、设置于所述阳极层20上的发光层30、设置于所述发光层30上的阴极层40、设置于所述阴极层40上的薄膜封装层50、以及设置于所述薄膜封装层50上的聚光层60。
所述阵列基板10内设置有驱动电路,所述驱动电路与所述阳极层20电性连接,用于向所述阳极层20提供驱动信号。所述驱动电路可以包括多种驱动信号走线和多个薄膜晶体管器件,所述驱动信号走线和所述薄膜晶体管器件可以为阵列式分布。
所述阳极层20包括第一导电层21和位于所述第一导电层21上的第二导电层22,所述发光层30位于所述第二导电层22上,所述第一导电层21为反射光导电层,所述第二导电层22为透射光导电层。可选地,所述阳极层20还包括第三导电层23,所述第三导电层23位于所述第一导电层21与所述阵列基板10之间。所述第三导电层23、所述第一导电层21和所述第二导电层22共同构成所述显示面板的阳极。
可选地,所述第三导电层23为氧化铟锡(ITO)电极,所述第一导电层21为银电极,所述第二导电层 22为氧化铟锡(ITO)电极。
具体地,所述第一导电层21为不透光的金属导电层,所述发光层30发射的光线中的一部分射向所述阳极层20,并被所述阳极层20反射,进而从显示面板的出光面射出。光线射至所述阳极层20及所述阳极层20附近的膜层时,会有一部分光线因表面等离子体激元效应和波导效应而被消耗掉;被表面等离子体激元效应和波导效应消耗掉的光线量越多,由显示面板的出光面射出的光线量就越少,显示面板的出光效率就会越低。
在本实施例中,所述第一导电层21的朝向所述第二导电层22的表面具有第一光栅结构,所述第一光栅结构包括多个第一凹槽211和与所述第一凹槽211临近的第一凸起部212,所述第二导电层22填充于所述第一凹槽211中。本实施例通过在阳极金属导电层的表面设置第一光栅结构,使得因表面等离子体激元效应和波导效应在阳极金属导电层附近的介质中消耗的光线量减少,增加了阳极反射的光线量,提升了显示面板的出光效率。
所述第一凸起部212沿垂直于所述第一导电层21所在平面的方向上的截面形状包括方形,所述方形可以是长方形或正方形,从而使所述第一导电层21上形成光栅结构。所述第一光栅结构可以是纳米光栅。本实施例通过在所述第一导电层21的表面形成第一光栅结构,减弱了所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,有利于提升显示面板的出光效率。
进一步地,所述第一导电层21沿垂直于所述第一导电层21所在平面方向的截面形状包括锯齿形。本实施例利用所述第一导电层21的锯齿形表面的特征,减弱所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,进而提升显示面板的出光效率。
请参阅图1和图2,图2是图1所示的第一导电层的一种平面结构示意图。所述第一凹槽211由所述第一导电层21的第一端延伸至所述第一导电层21的第二端,所述第一端与所述第二端是所述第一导电层21的相对两端;所述第一凹槽211与所述第一凸起部212在所述第一导电层21的表面交替排布;所述第一凸起部212同样由所述第一导电层21的第一端延伸至所述第一导电层21的第二端。
可选地,所述第一凹槽211和所述第一凸起部212在所述第一导电层21上均沿直线延伸,或者所述第一凹槽211与所述第一凸起部212在所述第一导电层21上均沿曲线延伸。所述第一凹槽211和所述第一凸起部212在所述第一导电层21的表面均为等间距分布。
可选地,请参阅图1和图3,图3是图1所示的第一导电层的另一种平面结构示意图。所述发光层30包括用于发光的有机功能层,所述有机功能层沿垂直于所述第一导电层21所在平面的方向在所述第一导电层21上的投影区域为第一区域301;所述第一凹槽211和所述第一凸起部212分布于所述第一区域301内。所述第一凹槽211和所述第一凸起部212均由所述第一区域301的一端延伸至所述第一区域301的相对另一端。所述第一凹槽211和所述第一凸起部212在所述第一导电层21上可以沿直线延伸,也可以沿曲线延伸。所述第一凹槽211和所述第一凸起部212在所述第一导电层21的表面均为等间距分布。
进一步地,请参阅图1,所述发光层30包括像素定义层以及设置于所述像素定义层的开口中的有机功能层,所述有机功能层包括空穴注入层31、位于所述空穴注入层31上的空穴传输层32、位于所述空穴传输层32上的电子阻挡层33、位于所述电子阻挡层33上的发光功能层34、位于所述发光功能层34上的电子控制层35、位于所述电子控制层35上的电子传输层36、以及位于所述电子传输层36上的电子注入层37。
所述空穴注入层31和所述空穴传输层32用于向所述发光功能层34传输空穴,所述电子阻挡层33用于阻挡电子,所述电子注入层37、所述电子传输层36和所述电子控制层35用于向所述发光功能层34传输电子,所述发光功能层34用于将空穴和电子结合以实现发光。
所述阴极层40包括阴极,所述阴极与所述发光层30中的有机功能层电性连接,用于向所述有机功能层传输电子。可选地,所述阴极由镁、银合金制作而成。
所述薄膜封装层50可以包括有机材料层与无机材料层的组合结构,其用于对所述阴极层40和所述发光层30进行密封和保护。
所述聚光层60包括多个聚光结构,用于将所述发光层30发出的光线汇聚至特定的显示区域射出,以进一步提高显示面板的出光效率。
在一种实施例中,请参阅图4,图4是本申请实施例提供的显示面板的第二种局部结构示意图,图4所示的显示面板与图1所示的显示面板具有相同或相似的结构;下面对图4所示的显示面板的结构特征进行说明,其中未详述之处,请参照上面对图1所示的显示面板的结构说明。
所述显示面板包括阵列基板10、设置于所述阵列基板10上的阳极层20、设置于所述阳极层20上的发光层30、设置于所述发光层30上的阴极层40、设置于所述阴极层40上的薄膜封装层50、以及设置于所述薄膜封装层50上的聚光层60。
所述阵列基板10内设置有驱动电路,所述驱动电路与所述阳极层20电性连接,用于向所述阳极层20提供驱动信号。所述驱动电路可以包括多种驱动信号走线和多个薄膜晶体管器件,所述驱动信号走线和所述薄膜晶体管器件可以为阵列式分布。
所述阳极层20包括第一导电层21和位于所述第一导电层21上的第二导电层22,所述发光层30位于所述第二导电层22上,所述第一导电层21为金属导电层。可选地,所述阳极层20还包括第三导电层23,所述第三导电层23位于所述第一导电层21与所述阵列基板10之间。所述第三导电层23、所述第一导电层21和所述第二导电层22共同构成所述显示面板的阳极。
可选地,所述第三导电层23为氧化铟锡(ITO)电极,所述第一导电层21为银电极,所述第二导电层 22为氧化铟锡(ITO)电极。
所述第一导电层21的朝向所述第二导电层22的表面具有第一光栅结构,所述第一光栅结构包括多个第一凹槽211和多个第一凸起部212,所述第二导电层22填充于所述第一凹槽211中。所述第一凸起部212沿垂直于所述第一导电层21所在平面的方向上的截面形状为三角形,从而使所述第一导电层21上形成光栅结构。
可选地,所述第一光栅结构可以是纳米光栅。
本实施例通过在所述第一导电层21的表面形成第一光栅结构,减弱了所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,有利于提升显示面板的出光效率。
所述第一导电层21沿垂直于所述第一导电层21所在平面方向的截面形状包括锯齿形。本实施例利用所述第一导电层21的锯齿形表面的特征,减弱所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,进而提升显示面板的出光效率。
可选地,所述第一凹槽211和所述第一凸起部212均由所述第一导电层21的第一端延伸至所述第一导电层21的第二端,所述第一端与所述第二端是所述第一导电层21的相对两端。
可选地,所述发光层30包括用于发光的有机功能层,所述有机功能层沿垂直于所述第一导电层21所在平面的方向在所述第一导电层21上的投影区域为第一区域;所述第一凹槽211和所述第一凸起部212分布于所述第一区域内。所述第一凹槽211和所述第一凸起部212均由所述第一区域的一端延伸至所述第一区域的相对另一端。
可选地,所述第一凹槽211和所述第一凸起部212在所述第一导电层21上均沿直线延伸,或者均沿曲线延伸。所述第一凹槽211和所述第一凸起部212在所述第一导电层21的表面均为等间距分布。
进一步地,所述发光层30包括像素定义层以及设置于所述像素定义层的开口中的有机功能层,所述有机功能层包括空穴注入层31、位于所述空穴注入层31上的空穴传输层32、位于所述空穴传输层32上的电子阻挡层33、位于所述电子阻挡层33上的发光功能层34、位于所述发光功能层34上的电子控制层35、位于所述电子控制层35上的电子传输层36、以及位于所述电子传输层36上的电子注入层37。
所述空穴注入层31和所述空穴传输层32用于向所述发光功能层34传输空穴,所述电阻阻挡层33用于阻挡电子,所述电子注入层37、所述电子传输层36和所述电子控制层35用于向所述发光功能层34传输电子,所述发光功能层34用于将空穴和电子结合以实现发光。
所述阴极层40包括阴极,所述阴极与所述发光层30中的有机功能层电性连接,用于向所述有机功能层传输电子。可选地,所述阴极由镁、银合金制作而成。
所述薄膜封装层50可以包括有机材料层与无机材料层的组合结构,其用于对所述阴极层40和所述发光层30进行密封和保护。
所述聚光层60包括多个聚光结构,用于将所述发光层30发出的光线汇聚至特定的显示区域射出,以提高显示面板的出光效率。
在一种实施例中,请参阅图5,图5是本申请实施例提供的显示面板的第三种局部结构示意图,图5所示的显示面板与图1所示的显示面板具有相同或相似的结构;下面对图5所示的显示面板的结构特征进行说明,其中未详述之处,请参照上面对图1所示的显示面板的结构说明。
所述显示面板包括阵列基板10、设置于所述阵列基板10上的阳极层20、设置于所述阳极层20上的发光层30、设置于所述发光层30上的阴极层40、设置于所述阴极层40上的薄膜封装层50、以及设置于所述薄膜封装层50上的聚光层60。
所述阵列基板10内设置有驱动电路,所述驱动电路与所述阳极层20电性连接,用于向所述阳极层20提供驱动信号。所述驱动电路可以包括多种驱动信号走线和多个薄膜晶体管器件,所述驱动信号走线和所述薄膜晶体管器件可以为阵列式分布。
所述阳极层20包括第一导电层21和位于所述第一导电层21上的第二导电层22,所述发光层30位于所述第二导电层22上,所述第一导电层21为金属导电层。可选地,所述阳极层20还包括第三导电层23,所述第三导电层23位于所述第一导电层21与所述阵列基板10之间。所述第三导电层23、所述第一导电层21和所述第二导电层22共同构成所述显示面板的阳极。
可选地,所述第三导电层23为氧化铟锡(ITO)电极,所述第一导电层21为银电极,所述第二导电层 22为氧化铟锡(ITO)电极。
所述第一导电层21的朝向所述第二导电层22的表面具有第一光栅结构,所述第一光栅结构包括多个第一凹槽211和多个第一凸起部212,所述第二导电层22填充于所述第一凹槽211中。
所述第一导电层21沿垂直于所述第一导电层21所在平面方向的截面形状包括锯齿形。本实施例利用所述第一导电层21的锯齿形表面的特征,减弱所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,进而提升显示面板的出光效率。
可选地,所述第一凹槽211和所述第一凸起部212均由所述第一导电层21的第一端延伸至所述第一导电层21的第二端,所述第一端与所述第二端是所述第一导电层21的相对两端。
可选地,所述发光层30包括用于发光的有机功能层,所述有机功能层沿垂直于所述第一导电层21所在平面的方向在所述第一导电层21上的投影区域为第一区域;所述第一凹槽211和所述第一凸起部212分布于所述第一区域内。所述第一凹槽211和所述第一凸起部212均由所述第一区域的一端延伸至所述第一区域的相对另一端。
可选地,所述第一凹槽211和所述第一凸起部212在所述第一导电层21上均沿直线延伸,或者均沿曲线延伸。所述第一凹槽211和所述第一凸起部212在所述第一导电层21的表面均为等间距分布。
所述发光层30包括像素定义层以及设置于所述像素定义层的开口中的有机功能层,所述有机功能层包括空穴注入层31、位于所述空穴注入层31上的空穴传输层32、位于所述空穴传输层32上的电子阻挡层33、位于所述电子阻挡层33上的发光功能层34、位于所述发光功能层34上的电子控制层35、位于所述电子控制层35上的电子传输层36、以及位于所述电子传输层36上的电子注入层37。
所述空穴注入层31和所述空穴传输层32用于向所述发光功能层34传输空穴,所述电阻阻挡层33用于阻挡电子,所述电子注入层37、所述电子传输层36和所述电子控制层35用于向所述发光功能层34传输电子,所述发光功能层34用于将空穴和电子结合以实现发光。
所述阴极层40包括阴极,所述阴极与所述发光层30中的有机功能层电性连接,用于向所述有机功能层传输电子。可选地,所述阴极由镁、银合金制作而成。
进一步地,所述阴极朝向所述发光层30的表面具有第二光栅结构,所述第二光栅结构包括多个第二凹槽41和多个第二凸起部42。本实施例通过在阴极表面设置第二光栅结构,使得因表面等离子体激元效应和波导效应在阴极附近的介质中消耗的光线量减少,提升了显示面板的出光效率。
所述第二凸起部42沿垂直于所述阴极层40所在平面的方向上的截面形状包括方形或三角形。所述阴极沿垂直于所述阴极层40所在平面方向的截面形状包括锯齿形,从而使所述阴极层40形成光栅结构。所述第二光栅结构可以是纳米光栅。
可选地,请参阅图5和图6,图6是图5所示的阴极的一种平面结构示意图。所述第二凹槽41由所述阴极的一端延伸至所述阴极的相对另一端;所述第二凹槽41与所述第二凸起部42在所述阴极的表面交替排布。可选地,所述第二凹槽41和所述第二凸起部42在所述阴极上均沿直线延伸,或者均沿曲线延伸。所述第二凹槽41和所述第二凸起部42在所述阴极的表面均为等间距分布。
可选地,请参阅图5和图7,图7是图5所示的阴极的另一种平面结构示意图。位于所述发光层30中的有机功能层沿垂直于所述阴极层40所在平面的方向在所述阴极上的投影区域为第二区域302;所述第二凹槽41和所述第二凸起部42分布于所述第二区域302内。所述第二凹槽41和所述第二凸起部42均由所述第二区域302的一端延伸至所述第二区域302的相对另一端。所述第二凹槽41和所述第二凸起部42在所述阴极上可以沿直线延伸,也可以沿曲线延伸。所述第二凹槽41和所述第二凸起部42在所述阴极的表面均为等间距分布。
可选地,所述第二凹槽41在所述第一导电层21上的正投影与所述第一凹槽211重合。
所述薄膜封装层50可以包括有机材料层与无机材料层的组合结构,其用于对所述阴极层40和所述发光层30进行密封和保护。
所述聚光层60包括多个聚光结构,用于将所述发光层30发出的光线汇聚至特定的显示区域射出,以提高显示面板的出光效率。
在一种实施例中,请参阅图8,图8是本申请实施例提供的显示面板的第四种局部结构示意图,图8所示的显示面板与图1所示的显示面板具有相同或相似的结构;下面对图8所示的显示面板的结构特征进行说明,其中未详述之处,请参照上面对图1所示的显示面板的结构说明。
所述显示面板包括阵列基板、设置于所述阵列基板上的阳极层、设置于所述阳极层上的发光层、设置于所述发光层上的阴极层、设置于所述阴极层上的薄膜封装层50、以及设置于所述薄膜封装层50上的聚光层60。
所述阵列基板包括衬底基板101、设置于所述衬底基板101上的缓冲层102、设置于所述缓冲层102上的半导体层103、覆盖所述半导体层103的栅极绝缘层104、设置于所述栅极绝缘层104上的栅极105、覆盖所述栅极105的层间绝缘层106、设置于所述层间绝缘层106上的源漏极107、以及覆盖所述源漏极107的平坦层108,所述源漏极107通过所述栅极绝缘层104和所述层间绝缘层106上的过孔连接至所述半导体层103的相对两端,所述半导体层103、所述栅极105和所述源漏极107构成薄膜晶体管器件。
所述阳极层包括位于所述平坦层108上的第三导电层23、位于所述第三导电层23上的第一导电层21和位于所述第一导电层21上的第二导电层22,所述第一导电层21为金属导电层。
可选地,所述第三导电层23为氧化铟锡(ITO)电极,所述第一导电层21为银电极,所述第二导电层 22为氧化铟锡(ITO)电极。
所述第一导电层21的朝向所述第二导电层22的表面具有第一光栅结构,所述第二导电层22填充于所述第一光栅结构的凹槽中。本实施例通过在所述第一导电层21的表面形成第一光栅结构,减弱了所述第一导电层21表面及其附近膜层中的表面等离子体激元效应和波导效应,有利于提升显示面板的出光效率。
所述发光层包括像素定义层301和设置于所述像素定义层301的开孔中的有机功能层302,所述有机功能层302可以包括用于实现其发光功能的多种膜层结构。
所述阴极层包括阴极401,所述阴极401朝向所述发光层的表面具有第二光栅结构。本实施例通过在阴极表面设置第二光栅结构,使得因表面等离子体激元效应和波导效应在阴极附近的介质中消耗的光线量减少,提升了显示面板的出光效率。
所述薄膜封装层50可以包括有机材料层与无机材料层的组合结构,其用于对所述阴极层40和所述发光层30进行密封和保护。
所述聚光层60包括多个聚光结构,用于将所述发光层30发出的光线汇聚至特定的显示区域射出,以进一步提高显示面板的出光效率。
综上所述,本申请实施例提供的显示面板,包括阵列基板和设置于所述阵列基板上的阳极层,所述阳极层包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构,第一导电层为反射光导电层,第二导电层为透射光导电层,所述第二导电层上设置有发光层;本申请通过在阳极的金属导电层的表面设置第一导电层上设置第一光栅结构,减弱了阳极附近的介质层中出现的表面等离子体激元效应和波导效应,降低了这两种效应消耗的光量,有利于提升显示面板的出光效率。
本申请实施例还提供一种显示装置,所述显示装置包括本申请实施例提供的显示面板。所述显示装置可以是手机、笔记本电脑、平板电脑、电视机、导航仪等具有显示功能的器件。
需要说明的是,虽然本申请以具体实施例揭露如上,但上述实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其包括:
    阵列基板;
    阳极层,设置于所述阵列基板上,包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构;以及
    发光层,设置于所述第二导电层上。
  2. 根据权利要求1所述的显示面板,其中,所述第一导电层为反射光导电层,所述第二导电层为透射光导电层。
  3. 根据权利要求1所述的显示面板,其中,所述第一光栅结构包括多个第一凹槽和与所述第一凹槽临近的第一凸起部。
  4. 根据权利要求3所述的显示面板,其中,所述第一凸起部沿垂直于所述第一导电层所在平面的方向上的截面形状为方形、三角形、梯形、圆弧形中任一种。
  5. 根据权利要求3所述的显示面板,其中,所述第一凹槽由所述第一导电层的第一端延伸至所述第一导电层的第二端,所述第一端与所述第二端是所述第一导电层的相对两端。
  6. 根据权利要求5所述的显示面板,其中,所述第一凹槽和所述第一凸起部沿着相同方向延伸设置。
  7. 根据权利要求5所述的显示面板,其中,所述多个第一凹槽在所述第一导电层的表面等间距分布。
  8. 根据权利要求5所述的显示面板,其中,所述多个第一凸起部在所述第一导电层的表面等间距分布。
  9. 根据权利要求3所述的显示面板,其中,所述发光层包括用于发光的有机功能层,所述有机功能层沿垂直于所述第一导电层所在平面的方向在所述第一导电层上的投影区域为第一区域;
    所述第一凹槽至少分布于所述第一区域内。
  10. 根据权利要求1所述的显示面板,其中,所述第一光栅结构包括纳米光栅。
  11. 根据权利要求1所述的显示面板,其中,所述阵列基板包括多个薄膜晶体管,
    所述阳极层还包括第三导电层,所述第三导电层位于所述第一导电层的远离所述第二导电层的一侧。
  12. 根据权利要求11所述的显示面板,其中,所述第三导电层与对应的所述薄膜晶体管电连接。
  13. 根据权利要求11所述的显示面板,其中,所述第三导电层包括ITO,所述第一导电层包括Ag,所述第二导电层包括ITO。
  14. 根据权利要求1所述的显示面板,其中,所述显示面板还包括设置于所述发光层上的阴极,所述阴极朝向所述发光层的表面具有第二光栅结构。
  15. 根据权利要求14所述的显示面板,其中,所述发光层包括用于发光的有机功能层,所述有机功能层沿垂直于所述阴极所在平面的方向在所述阴极上的投影区域为第二区域;
    所述第二光栅结构至少分布于所述第二区域内。
  16. 根据权利要求14所述的显示面板,其中,所述第二光栅结构包括多个第二凹槽和与所述第二凹槽临近的多个第二凸起部。
  17. 根据权利要求16所述的显示面板,其中,所述第二凹槽和所述第二凸起部沿着相同方向延伸设置;
    所述多个第二凹槽在所述阴极的表面等间距分布,所述多个第二凸起部在所述阴极的表面等间距分布。
  18. 根据权利要求14所述的显示面板,其中,所述第二光栅结构包括纳米光栅。
  19. 根据权利要求14所述的显示面板,其中,所述第二光栅结构在所述第一导电层上的正投影与所述第一光栅结构重合。
  20. 一种显示面板,其包括:
    阵列基板;
    阳极层,设置于所述阵列基板上,包括第一导电层和位于所述第一导电层上的第二导电层,所述第一导电层的朝向所述第二导电层的表面具有第一光栅结构;
    发光层,设置于所述第二导电层上;
    阴极,设置于所述发光层上,所述阴极朝向所述发光层的表面具有第二光栅结构;
    其中,所述第一光栅结构包括多个第一凹槽和与所述第一凹槽临近的第一凸起部,所述第一凹槽和所述第一凸起部沿着相同方向延伸且在所述第一导电层表面等间距分布;所述第二光栅结构包括多个第二凹槽和与所述第二凹槽临近的多个第二凸起部,所述第二凹槽和所述第二凸起部沿着相同方向延伸且在所述阴极的表面等间距分布。
PCT/CN2021/098669 2021-05-28 2021-06-07 显示面板 WO2022246906A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,711 US20240016029A1 (en) 2021-05-28 2021-06-07 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110592341.2A CN113270468A (zh) 2021-05-28 2021-05-28 显示面板
CN202110592341.2 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022246906A1 true WO2022246906A1 (zh) 2022-12-01

Family

ID=77233473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098669 WO2022246906A1 (zh) 2021-05-28 2021-06-07 显示面板

Country Status (3)

Country Link
US (1) US20240016029A1 (zh)
CN (1) CN113270468A (zh)
WO (1) WO2022246906A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159435A1 (zh) * 2022-02-24 2023-08-31 京东方科技集团股份有限公司 有机发光晶体管及其制作方法、显示面板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213262A1 (ja) * 2016-06-10 2017-12-14 凸版印刷株式会社 有機el素子、並びに有機el素子を利用した照明装置、面状光源及び表示装置
CN107732029A (zh) * 2017-09-20 2018-02-23 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制作方法
CN108054288A (zh) * 2017-12-08 2018-05-18 信利(惠州)智能显示有限公司 有机发光二极管结构
CN109148730A (zh) * 2018-09-05 2019-01-04 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN112186124A (zh) * 2020-10-12 2021-01-05 京东方科技集团股份有限公司 有机发光二极管和显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670772B1 (en) * 2002-06-27 2003-12-30 Eastman Kodak Company Organic light emitting diode display with surface plasmon outcoupling
US9508956B2 (en) * 2011-12-28 2016-11-29 Oji Holdings Corporation Organic light emitting diode, manufacturing method for organic light emitting diode, image display device, and illumination device
CN103094488B (zh) * 2013-01-24 2015-04-08 合肥京东方光电科技有限公司 电致发光器件及其制造方法
CA2920820A1 (en) * 2013-08-14 2015-02-19 Jx Nippon Oil & Energy Corporation Light emitting element and method for manufacturing light emitting element
JP2015143756A (ja) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 光学シートおよび発光装置
WO2016084727A1 (ja) * 2014-11-27 2016-06-02 シャープ株式会社 発光素子、表示パネル、表示装置、電子機器、発光素子の製造方法
CN205264761U (zh) * 2016-01-06 2016-05-25 京东方科技集团股份有限公司 有机发光器件及显示装置
CN106992266B (zh) * 2017-04-28 2019-03-12 合肥鑫晟光电科技有限公司 有机电致发光器件制备方法及装置和有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213262A1 (ja) * 2016-06-10 2017-12-14 凸版印刷株式会社 有機el素子、並びに有機el素子を利用した照明装置、面状光源及び表示装置
CN107732029A (zh) * 2017-09-20 2018-02-23 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制作方法
CN108054288A (zh) * 2017-12-08 2018-05-18 信利(惠州)智能显示有限公司 有机发光二极管结构
CN109148730A (zh) * 2018-09-05 2019-01-04 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN112186124A (zh) * 2020-10-12 2021-01-05 京东方科技集团股份有限公司 有机发光二极管和显示面板

Also Published As

Publication number Publication date
US20240016029A1 (en) 2024-01-11
CN113270468A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN106941113B (zh) 一种oled显示面板及其制备方法、显示装置
CN110176483B (zh) 有机发光二极管显示器
US10651427B2 (en) Organic light emitting diode display device
US11165038B2 (en) Display module and electronic device with auxiliary electrode layer on cathode layer
WO2015100885A1 (zh) 有机发光显示面板、显示装置
JP2015050011A (ja) エレクトロルミネセンス装置およびその製造方法
US11081663B2 (en) Organic electroluminescent display panel with auxiliary electrodes, method for manufacturing the same, and display device using the same
WO2021254217A1 (zh) 显示面板及其制备方法、显示装置
CN110045874B (zh) 一种触控显示面板和触控显示装置
WO2021223304A1 (zh) 显示面板及显示装置
CN109859644B (zh) 显示面板及显示模组
US20070126352A1 (en) Organic el display
US20220052034A1 (en) Display panel and display device
CN113097374B (zh) 一种显示面板及显示装置
CN213071143U (zh) 显示面板及电子设备
WO2021213046A1 (zh) 显示面板及其制备方法、显示装置
CN111341792B (zh) 一种阵列基板、显示面板及显示面板的制作方法
CN110391283B (zh) 有机发光显示面板和有机发光显示装置
US11991915B2 (en) Display panel and display device
WO2022246906A1 (zh) 显示面板
WO2024093413A1 (zh) 显示面板及显示装置
CN110618764B (zh) 触控显示面板及触控显示装置
WO2021027133A1 (zh) 显示面板
CN110571245A (zh) 显示面板及其制作方法
CN115915812A (zh) 显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17419711

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE