WO2022246868A1 - 乙酰磺胺酸钾的制备方法 - Google Patents

乙酰磺胺酸钾的制备方法 Download PDF

Info

Publication number
WO2022246868A1
WO2022246868A1 PCT/CN2021/097016 CN2021097016W WO2022246868A1 WO 2022246868 A1 WO2022246868 A1 WO 2022246868A1 CN 2021097016 W CN2021097016 W CN 2021097016W WO 2022246868 A1 WO2022246868 A1 WO 2022246868A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
product
salt
reaction
acesulfame potassium
Prior art date
Application number
PCT/CN2021/097016
Other languages
English (en)
French (fr)
Inventor
周睿
丁震
陈永旭
杨峰宝
刘刚
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to CN202180001414.4A priority Critical patent/CN113454071B/zh
Priority to PCT/CN2021/097016 priority patent/WO2022246868A1/zh
Publication of WO2022246868A1 publication Critical patent/WO2022246868A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D291/00Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms
    • C07D291/02Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms not condensed with other rings
    • C07D291/06Six-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of fine chemical manufacturing, and in particular relates to a preparation method of acesulfame potassium.
  • Acesulfame potassium also known as AK sugar
  • AK sugar is a widely used sugar substitute food additive. Its appearance is white crystalline powder.
  • As an organic synthetic salt its taste is similar to sugarcane, and it is easily soluble in water. , Slightly soluble in alcohol, its chemical properties are stable, and it is not easy to break down and fail; it does not participate in the body's metabolism and does not provide energy; it has high sweetness and low price; it has no cariogenicity; it has good stability to heat and acid.
  • the diketene-sulfur trioxide method is widely used.
  • the specific reaction steps include: reacting sulfamic acid with amine to form amine sulfamic acid salt, and then reacting amine sulfamic acid with diketene , forming acetylacetamide salt; in the presence of sulfur trioxide, acetylacetamide salt undergoes a cyclization reaction to form a cyclic sulfur trioxide adduct; the cyclic compound is hydrolyzed to obtain a hydrolyzate (ASH); followed by hydrogen Potassium oxide or potassium hydroxide aqueous solution process hydrolyzate so as to obtain acesulfame potassium (ASK), as Chinese patent CN111228854A, Chinese patent CN1062560C and Chinese patent CN111377883A etc., use potassium hydroxide or potassium hydroxide aqueous solution to carry out salt-forming reaction, there
  • the present application is proposed in order to provide a method for preparing acesulfame potassium that overcomes the above problems or at least partially solves the above problems.
  • a kind of preparation method of acesulfame potassium comprising:
  • Salt-forming step separating the sulfonated cyclization product solution into an organic phase and an inorganic phase, adding an ethanol solution of potassium ethylate to the organic phase to carry out a salt-forming reaction; wherein, the sulfonated cyclization product solution is acetoacetamide-N-sulfonate
  • the cycloaddition product of acid triethylamine salt and sulfur trioxide is obtained by hydrolysis;
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • the above method also includes:
  • Recrystallization step dissolve the crude product of acesulfame potassium in aqueous ethanol for recrystallization.
  • dissolving the crude acesulfame potassium product in an aqueous ethanol solution, and performing recrystallization include:
  • the crude product of acesulfame potassium was dissolved in ethanol aqueous solution, and the temperature was lowered gradually to obtain refined acesulfame potassium.
  • the molar ratio of ethanol to water is 1:2-3.
  • the mass fraction of potassium ethoxide is 10%-80%.
  • the reaction time of the salt forming reaction is 1-3 min, preferably 1 min.
  • the sulfonated cyclization product solution is prepared by the following method:
  • the solid acidic catalyst is HZSM-5 molecular sieve, Na-ZSM-5 molecular sieve or SO 4 2 ⁇ /Fe 2 O 3 type catalyst.
  • the hydrolysis agent is an aqueous ethanol solution, wherein the mass fraction of ethanol in the aqueous ethanol solution is 30-65%.
  • the ratio of the molar mass of sulfur trioxide to the molar mass of water in the hydrolyzing agent is 1:1-1.5.
  • the beneficial effect of the present application is that the present application uses the ethanol solution of potassium ethylate to replace the traditional potassium hydroxide or potassium hydroxide aqueous solution and the organic phase of the sulfonated cyclization product solution to carry out a salt-forming reaction, and the obtained solid product adopts ethanol Washing can greatly reduce the content of inorganic impurities in the crude product of acesulfame potassium, and significantly improve the purity of the final product acesulfame potassium; it simplifies the subsequent process of the crude product of acesulfame potassium and reduces the concentration of acesulfame potassium The cost of purifying the crude product of potassium; and can improve the yield of acesulfame potassium.
  • the idea of the present application is that in the prior art, during the preparation of acesulfame potassium, the solution of the sulfonated cyclization product is separated into an organic phase and an inorganic phase, wherein during the salt-forming reaction between the organic phase and potassium hydroxide, there is a large amount of Inorganic components, such as potassium fluoride, potassium sulfate, etc., seriously affect the status quo of the purity of the final product acesulfame potassium, and the inventors have found that the ethanolic solution of potassium ethylate is used to replace the traditional potassium hydroxide or potassium hydroxide aqueous solution and sulfonated cyclization The organic phase of the product solution undergoes a salt-forming reaction, and the obtained solid product is washed with ethanol, which can greatly reduce the content of inorganic impurities in the crude product of acesulfame potassium, and significantly improve the purity of the final product of acesulfame potassium.
  • the preparation method of acesulfame potassium provided by the application at least includes step S110 to step S120:
  • Salt-forming step S110 separating the sulfonated cyclization product solution into an organic phase and an inorganic phase, adding an ethanol solution of potassium ethoxide to the organic phase to perform a salt-forming reaction; wherein, the sulfonated cyclization product solution is acetoacetamide-N- The cycloaddition product of triethylamine sulfonate and sulfur trioxide is obtained by hydrolysis.
  • the sulfonated cyclization product refers to the process of preparing acesulfame potassium by the diketene-sulfur trioxide method.
  • the acetylacetamide salt undergoes a cyclization reaction to form a cyclic sulfur trioxide plus compound.
  • the hydrolysis product (ASH) obtained by hydrolysis of the cyclic compound is a sulfonated ring closure product.
  • potassium hydroxide or an aqueous potassium hydroxide solution is usually used to perform a salt-forming reaction with the hydrolyzed product, thereby obtaining acesulfame potassium (ASK).
  • ASK acesulfame potassium
  • salt-forming reaction refers to the process in which the cation of potassium hydroxide is exchanged with the anion of the hydrolyzate to generate the potassium salt of acesulfame.
  • the ethanolic solution of potassium ethylate is used to replace traditional potassium hydroxide or potassium hydroxide aqueous solution for salt-forming reaction.
  • Inorganic impurities including but not limited to potassium fluoride, potassium sulfate, etc.
  • the inorganic impurities are all dissolved in the aqueous phase and will not be brought into the final product acesulfame potassium; in addition, use the ethanol solution of potassium ethylate to neutralize
  • the acid ASH corresponding to acesulfame potassium advantageously reduces the possible chloride of acetoacetamide and acesulfame potassium, thereby blocking the source of inorganic impurities from the source during the salt formation process , thereby improving the purity of the final product acesulfame potassium, and simplifying the follow-up process to the crude product of acesulfame potassium, and reducing the cost of purifying the crude product of acesulfame potassium.
  • the solvent in the obtained mixture such as dichloromethane
  • the solvent in the obtained mixture can be distilled, or the solvent can be evaporated automatically by using the residual heat of the above-mentioned salt-forming reaction.
  • the salt-forming reaction can be completed in a relatively short time.
  • the reaction time of the salt-forming reaction is 1-3 minutes, and in other embodiments, the reaction time of the salt-forming reaction is 1 minute.
  • the amount of ethanol solution of potassium ethoxide which can be determined according to the amount of raw materials used to prepare the sulfonated cyclization product solution, and can be calculated according to the theoretical value of the conversion rate of 100%.
  • the mass fraction of potassium ethoxide is not limited. In other embodiments of the present application, in the ethanol solution of potassium ethoxide, the mass fraction of potassium ethoxide can be 10%-80% .
  • Washing step S120 after the salt-forming reaction is completed, filter to obtain a solid product, and wash the solid product with ethanol to obtain a crude acesulfame potassium product.
  • the solid product can be obtained by filtration, and the solid product is acesulfame potassium. Further, ethanol can be used for one or more washings to obtain the crude product of acesulfame potassium.
  • the beneficial effect of the present application is that the present application replaces traditional potassium hydroxide or potassium hydroxide aqueous solution with the organic phase of the sulfonated cyclization product solution by adopting the ethanolic solution of potassium ethylate to carry out the salt-forming reaction, to obtain
  • the solid product is washed with ethanol, which can greatly reduce the content of inorganic impurities in the crude product of acesulfame potassium, and significantly improve the purity of the final product acesulfame potassium;
  • the cost of purifying the crude product of acesulfame potassium is reduced; and the yield of acesulfame potassium can be improved.
  • refining methods such as recrystallization can be used for the crude product of acesulfame potassium, so as to obtain acesulfame potassium with higher purity.
  • the crude product of acesulfame potassium can be dissolved in an aqueous ethanol solution for recrystallization, specifically, the aqueous ethanol solution is heated to a preset temperature, wherein, in the aqueous ethanol solution, the molar ratio of ethanol to water is 0.2-5:1 , dissolving the crude product of acesulfame potassium in an aqueous ethanol solution, and performing gradient cooling to obtain refined acesulfame potassium.
  • the preset temperature is preferably set below the boiling point of the aqueous ethanol solution.
  • the boiling point of the aqueous ethanol solution is related to the content of ethanol. For details, please refer to the prior art.
  • the molar ratio of ethanol to water in the aqueous ethanol solution, may be 1:2-3.
  • the reason for using ethanol aqueous solution for recrystallization is that acesulfame potassium is dissolved in water but slightly soluble in ethanol, and the crude product of acesulfame potassium obtained in the previous step is dissolved in ethanol solution under heating conditions, As the temperature lowers, acesulfame potassium crystals are gradually precipitated, and after the acesulfame potassium crystals precipitate, more impurities remain in ethanol; using ethanol aqueous solution for recrystallization, without introducing a new solvent system, compared with existing In the existing technology, the acesulfame potassium solid formed after the aqueous phase precipitation is recrystallized to achieve the same purity, and the number of recrystallizations is significantly reduced.
  • the following recommended method can be adopted to obtain the sulfonated cyclization product solution: triethylamine is added to the sulfamic acid solution for amination reaction to generate ammonium sulfamic acid solution; Add diketene to the ammonium sulfamic acid salt solution obtained, and carry out acylation reaction under the action of a solid acidic catalyst to obtain acetoacetamide-N-sulfonic acid triethylamine salt solution; dissolve sulfur trioxide in the solvent to form a ring sulfonating agent solution, acetoacetamide-N-sulfonic acid triethylamine salt solution and cyclizing agent solution are subjected to sulfonation ring closure reaction to obtain sulfonation ring closure product; add hydrolyzing agent in the sulfonation ring closure product solution, carry out Hydrolysis reaction to obtain hydrolyzate solution.
  • the preparation process of the hydrolyzate solution can be described as follows: add triethylamine in the sulfamic acid solution, carry out amination reaction, generate the sulfamic acid ammonium salt solution; add diketene to the obtained sulfamic acid ammonium salt solution, Under the action of a solid superacid catalyst, the acylation reaction is carried out to obtain an intermediate solution.
  • the preparation of the intermediate is more carefully divided into two small steps. First, it is the preparation of ammonium sulfamate, and then the intermediate is prepared by reacting ammonium sulfamate with diketene, that is, acetoacetamide-N-sulfonic acid triethyl amine salt.
  • the ammonium salt of sulfamic acid is obtained by adding triethylamine to the sulfamic acid solution for amination reaction.
  • sulfamic acid is dissolved in the first solvent to configure the first reaction liquid
  • triethylamine is dissolved in the second solvent to configure the second reaction liquid
  • the second The reaction solution is added to the first reaction solution to carry out amination reaction to form a sulfamic acid ammonium salt solution.
  • the first solvent and the second solvent are inert organic solvents that can provide a reaction environment for the amination reaction, such as dichloromethane.
  • Sulfamic acid and triethylamine react exothermicly. During the reaction, the heat generated will vaporize part of the dichloromethane, and the vaporized dichloromethane will leave the reaction system to take away the heat produced. Further, the vaporized dichloromethane Methane can also be recycled.
  • a kind of specific implementation of generating sulfamic acid ammonium salt solution is given below, and this embodiment is only used as an illustration, and the specific production process of sulfamic acid ammonium salt solution can adopt any one in the prior art.
  • the second reaction liquid is added dropwise into the first reaction liquid.
  • the pH value is 7-9, and the reaction is left to stand for 1 hour.
  • the above-mentioned reacted material is ammonium sulfamate solution.
  • the solid superacid can provide enough acidic sites for the acylation reaction. On the one hand, it can effectively catalyze the smooth progress of the acylation reaction of ammonium sulfamate and diketene. On the other hand, the solid superacid will not be mixed into the reaction product. No special treatment process is required in the follow-up, which saves the economic and time cost of post-treatment; and avoids the unfavorable impact on the product phase of the final product caused by the acetic acid impurities that are not removed in the prior art.
  • the solid acidic catalyst is HZSM-5 molecular sieve, Na-ZSM-5 molecular sieve or SO 4 2 ⁇ /Fe 2 O 3 type catalyst.
  • diketene is dissolved in a third solvent to prepare a third reaction solution.
  • the third solvent is an inert organic solvent that can provide a reaction environment for the amination reaction, such as dichloromethane.
  • Fill the reactor with a solid superacid catalyst add the ammonium sulfamate solution and the third reaction solution to the reactor in turn, and react under preset conditions to form acetoacetamide-N-sulfonic acid triethylamine salt solution as an intermediate body solution.
  • a continuous reactor can be selected to realize the present application, such as a fixed bed reactor, a continuous stirred tank reactor or a microchannel reactor, etc.
  • the fixed bed reactor is taken as an example to briefly explain the reaction process.
  • the reaction can be ended after the preset reaction time is reached, and the product acetoacetamide-N-sulfonic acid triethylamine salt solution is obtained. Due to the characteristics of the fixed bed reactor, the reaction can be carried out continuously and is suitable for large-scale industrial production.
  • the present application dissolves sulfur trioxide in a solvent to form a cyclizing agent solution.
  • the solvent can be but not limited to an inert organic solvent, such as methylene chloride.
  • the solvent has a stabilizing effect on sulfur trioxide, so that the sulfur trioxide is not easy to sublimate, so that the cyclization reaction proceeds forward.
  • the cyclization agent solution is added to the intermediate solution to carry out sulfonation ring closure reaction to obtain a cyclization product solution.
  • This step reaction is an exothermic reaction, preferably carried out at a lower temperature.
  • the cyclizing agent solution can be gradually dripped into the intermediate solution, and accompanied by Stir to obtain a cyclization product solution, wherein the cyclization product is the precursor ASH of acesulfame potassium.
  • a hydrolysis agent is added to the cyclization product solution to carry out a hydrolysis reaction to obtain a hydrolyzate solution.
  • this application uses a hydrolysis agent, which relies on the acidity of a solid superacid to hydrolyze the cyclization product, which can significantly increase the rate of the hydrolysis reaction and shorten the hydrolysis time.
  • the hydrolyzing agent is water or ethanol aqueous solution, and hydrolyzing with a hydrolyzing agent can significantly reduce the content of impurities in the cyclization product ASH, reduce the difficulty of subsequent acesulfame K purification, and reduce the difficulty of acesulfame K purification. the cost of.
  • the hydrolysis agent is deionized water or an aqueous ethanol solution, preferably an aqueous ethanol solution, wherein the mass concentration of ethanol in the aqueous ethanol solution is preferably 30-65%.
  • the inventor used a hydrolysis agent, especially an aqueous solution of ethanol, and controlled the water content in the hydrolysis agent, which can significantly reduce the content of impurities in the acesulfame precursor ASH, and reduce the difficulty of subsequent acesulfame potassium purification. The cost of acesulfame purification is reduced.
  • the application is not limited, the consumption of hydrolyzing agent can be determined according to the consumption of sulfur trioxide, specifically, in some embodiments of the application, the consumption of sulfur trioxide and the content of water in the hydrolyzing agent
  • the ratio of the amount of substances is 1:1-4, in some other embodiments, it is 1:1-1.5. That is to say, the amount of water in the hydrolyzing agent is preferably higher than that of sulfur trioxide.
  • Amination reaction steps Dissolve 98kg of sulfamic acid and the first dichloromethane at a molar ratio of 1:6, and control the dissolution temperature at about 20-25°C to obtain a dichloromethane solution of sulfamic acid, that is, the first The reaction solution.
  • Dissolution can be in a continuous mixing device or in a reactor.
  • Acylation reaction step dissolving diketene and third dichloromethane at a molar ratio of 1:1.5, controlling the dissolution temperature at 10-20° C. to obtain a third reaction solution.
  • the fixed bed reactor After the solid superacid catalyst is installed in the fixed bed reactor, the fixed bed reactor is started, and the circulating water is adjusted to make the circulating water work normally.
  • the amounts of the ammonium sulfonate salt solution and the third reaction solution are such that the molar ratio of sulfamic acid to diketene is 1:1.1. After the reaction starts, lower the temperature of the cooling water as much as possible, and control the temperature of the reaction system at 20-35°C; as the performance of the catalyst declines, the temperature can be slightly increased within the control range.
  • Sulfonation and cyclization step dissolving sulfur trioxide in dichloromethane to form a cyclization agent solution; adding the cyclization agent solution to the intermediate solution to carry out sulfonation and cyclization reaction to obtain a cyclization product solution.
  • Hydrolysis step adding ethanol aqueous solution as a hydrolyzing agent to the cyclization product solution to carry out hydrolysis reaction to obtain a hydrolyzate solution, which is recorded as the sulfonated cyclization product solution.
  • Separation step separating the solution of the sulfonated cyclization product into an organic phase and an aqueous phase for later use.
  • Example 1 (Example 1A, Example 1B, Example 1C)
  • Salt-forming step separating the above-mentioned sulfonated cyclization product solution into an organic phase and an inorganic phase, and adding a salt-forming reagent—a solution of potassium ethoxide in ethanol to the organic phase to carry out a salt-forming reaction.
  • a salt-forming reagent a solution of potassium ethoxide in ethanol
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • Salt-forming step separating the above-mentioned sulfonated cyclization product solution into an organic phase and an inorganic phase, and adding a salt-forming reagent—potassium ethoxide to the organic phase to carry out a salt-forming reaction.
  • the specific reaction conditions are shown in Table 1.
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • Salt-forming step separating the above-mentioned sulfonated cyclization product solution into an organic phase and an inorganic phase, and adding a salt-forming reagent—potassium methylate to the organic phase to carry out a salt-forming reaction.
  • the specific reaction conditions are shown in Table 1.
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • Salt-forming step separating the above-mentioned sulfonated cyclization product solution into an organic phase and an inorganic phase, adding a salt-forming reagent—a methanol solution of potassium methylate to the organic phase to carry out a salt-forming reaction.
  • a salt-forming reagent a methanol solution of potassium methylate
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • Salt-forming step separating the above-mentioned sulfonated cyclization product solution into an organic phase and an inorganic phase, and adding a salt-forming reagent—a potassium hydroxide ethanol solution to the organic phase to carry out a salt-forming reaction.
  • a salt-forming reagent a potassium hydroxide ethanol solution
  • Washing step after the salt-forming reaction is completed, the solid product is obtained by filtration, and the solid product is washed with ethanol to obtain the crude product of acesulfame potassium.
  • the yield of acesulfame potassium in Table 1 is the ratio of the theoretical output of the actual output of acesulfame potassium and ASH conversion into acesulfame potassium; wherein, the chloride of acetoacetamide, acesulfame potassium and Inorganic matter content was measured by high performance liquid chromatography.
  • Example 1 and Implementation Comparative Example 1 using the ethanolic solution of potassium ethylate provides different reaction environments with respect to direct potassium alcoholate (especially potassium ethylate), thereby reducing the generation of organic impurities and inorganic impurities , reducing the difficulty of refining and reducing the cost of generation.
  • the beneficial effect of the present application is that the present application replaces traditional potassium hydroxide or potassium hydroxide aqueous solution with the organic phase of the sulfonated cyclization product solution by adopting the ethanolic solution of potassium ethylate to carry out the salt-forming reaction, to obtain
  • the solid product is washed with ethanol, which can greatly reduce the content of inorganic impurities in the crude product of acesulfame potassium, and significantly improve the purity of the final product acesulfame potassium;
  • the cost of purifying the crude product of acesulfame potassium is reduced; and the yield of acesulfame potassium can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种乙酰磺胺酸钾的制备方法,包括:成盐步骤:将磺化环合产物溶液分离成有机相和无机相,向所述有机相中加入乙醇钾的乙醇溶液进行成盐反应;其中,所述磺化环合产物溶液为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫环化加成的产物经水解获得;洗涤步骤:待所述成盐反应结束后,过滤得到固体产物,对所述固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。所述方法极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度;简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本;且能够提高乙酰磺胺酸钾的收率。

Description

乙酰磺胺酸钾的制备方法 技术领域
本发明属于精细化工制造技术领域,具体涉及一种乙酰磺胺酸钾的制备方法。
发明背景
乙酰磺胺酸钾(安赛蜜)又称AK糖,是一种广泛使用的代糖食品添加剂,外观为白色结晶性粉末,它作为一种有机合成盐,其口味与甘蔗相似,易溶于水,微溶于酒精,其化学性质稳定,不易出现分解失效现象;不参与机体代谢,不提供能量;甜度较高,价格便宜;无致龋齿性;对热和酸稳定性好。
目前在安赛蜜的合成中,普遍采用双乙烯酮-三氧化硫法,其具体的反应步骤包括:使氨基磺酸与胺反应以形成氨基磺酸胺盐,然后将氨基磺酸胺盐与双乙烯酮反应,形成乙酰基乙酰胺盐;在三氧化硫存在下,乙酰基乙酰胺盐发生环化反应,形成环状三氧化硫加合物;将环状化合物水解获得水解产物(ASH);随后通常用氢氧化钾或氢氧化钾水溶液处理水解产物从而获得乙酰磺胺酸钾(ASK),如中国专利CN111228854A、中国专利CN1062560C以及中国专利CN111377883A等,使用氢氧化钾或氢氧化钾水溶液进行成盐反应,存在着很多问题,如在分离的过程中,直接沉淀的产物中还存在大量的无机成分,例如氟化钾、硫酸钾等,产物纯度难以进一步提高,造成终产品安赛蜜纯度低的问题。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的一种乙酰磺胺酸钾的制备方法。
根据本申请的第一方面,提供了一种乙酰磺胺酸钾的制备方法,包括:
成盐步骤:将磺化环合产物溶液分离成有机相和无机相,向有机相中加入乙醇钾的乙醇溶液进行成盐反应;其中,磺化环合产物溶液为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫环化加成的产物经水解获得;
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
可选的,上述方法还包括:
重结晶步骤:将乙酰磺胺酸钾粗产品溶于乙醇水溶液中,进行重结晶。
可选的,在上述方法中,将乙酰磺胺酸钾粗产品溶于乙醇水溶液中,进行重结晶包括:
将乙醇水溶液加热到预设温度,其中,在乙醇水溶液中,乙醇和水的摩尔比为0.2-5:1;
将乙酰磺胺酸钾粗产品溶解于乙醇水溶液中,并进行梯度降温,得到精制的乙酰磺胺酸钾。
可选的,在上述方法中,在乙醇水溶液中,乙醇和水的摩尔比为1:2-3。
可选的,在上述方法中,在乙醇钾的乙醇溶液中,乙醇钾的质量分数为10%-80%。
可选的,在上述方法中,在成盐步骤中,成盐反应的反应时间为1-3min,优选1min。
可选的,在上述方法中,磺化环合产物溶液是通过下述方法制得的:
在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液;
将三氧化硫溶解在溶剂中,形成环化剂溶液,使乙酰乙酰胺-N-磺酸三乙胺盐溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;
在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液。
可选的,在上述方法中,固态酸性催化剂为HZSM-5分子筛、Na-ZSM-5分子筛或SO 4 2-/Fe 2O 3型催化剂。
可选的,在上述方法中,水解剂为乙醇水溶液,其中,乙醇水溶液中乙醇的质量分数为30-65%。
可选的,在上述方法中,三氧化硫的摩尔质量与水解剂中水的摩尔质量的比为1:1-1.5。
本申请的有益效果在于,本申请通过将采用乙醇钾的乙醇溶液代替传统的氢氧化钾或氢氧化钾水溶液与磺化环合产物溶液的有机相进行成盐反应,对得到的固体产物采用乙醇洗涤,可极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度;简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本;且能够提高乙酰磺胺酸钾的收率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手 段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
实施本发明的方式
下面将更详细地描述本申请的示例性实施例。应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
本申请的构思在于,针对现有技术中,制备安赛蜜过程中,将磺化环合产物溶液分离成有机相和无机相,其中有机相与氢氧化钾成盐反应过程中,存在大量的无机成分,例如氟化钾、硫酸钾等,严重影响终产物安赛蜜的纯度这一现状,发明人发现采用乙醇钾的乙醇溶液代替传统的氢氧化钾或氢氧化钾水溶液与磺化环合产物溶液的有机相进行成盐反应,对得到的固体产物采用乙醇洗涤,可极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度。
本申请提供的乙酰磺胺酸钾的制备方法至少包括了步骤S110~步骤S120:
成盐步骤S110:将磺化环合产物溶液分离成有机相和无机相,向有机相中加入乙醇钾的乙醇溶液进行成盐反应;其中,磺化环合产物溶液为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫环化加成的产物经水解获得。
在本申请中,磺化环合产物是指采用双乙烯酮-三氧化硫法制备安赛蜜的过程中,在三氧化硫存在下,乙酰基乙酰胺盐发生环化反应,形成环状三氧化硫加合物,然后将环状化合物水解获得的水解产物(ASH)为磺化环合产物。
在现有技术中,在得到磺化环合产物后,通常用氢氧化钾或氢氧化钾水溶液与水解产物进行成盐反应,从而获得乙酰磺胺酸钾(ASK)。所谓成盐反应是指氢氧化钾的阳离子与水解产物的阴离子进行交换,生成乙酰磺胺酸的钾盐的过程。
在本申请中,采用乙醇钾的乙醇溶液代替传统的氢氧化钾或氢氧化钾水溶液进行成盐反应,无机杂质包括但不限于氟化钾、硫酸钾等均不溶解于乙醇钾的乙醇溶液,有机相中的磺化环合产物在与乙醇钾的反应过程中,无机杂质均溶解在水相中,不会带入到终产物乙酰磺胺酸钾中;另外,使用乙醇钾的乙醇溶液去中和乙酰磺胺酸钾对应的酸ASH,在这个过程中,有利地减少了可能的乙酰乙酰胺和乙酰磺胺酸钾的氯化物,从而在成盐过程中,从源头上阻断了无机杂质的来源,从而提高了终产物乙酰磺胺酸钾的纯度,并简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了 对乙酰磺胺酸钾粗产品进行提纯的成本。
在本申请的一些实施例中,在成盐反应结束后,可对得到的混合物中的溶剂,如二氯甲烷等进行蒸馏,也可利用上述成盐反应的余热使得溶剂自动蒸发。
成盐反应能够在较短的时间内完成,在本申请的一些实施例中,成盐反应的反应时间为1-3min,在另一些实施例中,成盐反应的反应时间为1min。
在本申请中,对乙醇钾的乙醇溶液的用量不作限制,可根据制备磺化环合产物溶液采用的原料用量确定即可,可按照转化率为100%的理论值进行计算。进一步的,对乙醇钾的乙醇溶液中,对乙醇钾的质量分数不作限制,在本申请的另一些实施例中,在乙醇钾的乙醇溶液中,乙醇钾的质量分数可以为10%-80%。
洗涤步骤S120:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
待成盐反应结束后,过滤可得到固体产物,该固体产物为乙酰磺胺酸钾,进一步的,可采用乙醇进行一次或多次洗涤,即得到乙酰磺胺酸钾粗产品。
综上所述,本申请的有益效果在于,本申请通过将采用乙醇钾的乙醇溶液代替传统的氢氧化钾或氢氧化钾水溶液与磺化环合产物溶液的有机相进行成盐反应,对得到的固体产物采用乙醇洗涤,可极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度;简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本;且能够提高乙酰磺胺酸钾的收率。
在本申请的一些实施例中,为了进一步提高乙酰磺胺酸钾的纯度,可对乙酰磺胺酸钾粗产品采用重结晶等精制手段,从而获得纯度更高的乙酰磺胺酸钾。如可将乙酰磺胺酸钾粗产品溶于乙醇水溶液中,进行重结晶,具体的,将乙醇水溶液加热到预设温度,其中,在乙醇水溶液中,乙醇和水的摩尔比为0.2-5:1,将乙酰磺胺酸钾粗产品溶解于乙醇水溶液中,并进行梯度降温,得到精制的乙酰磺胺酸钾。
在本申请的一些实施例中,预设温度最好设置在乙醇水溶液的沸点以下,乙醇水溶液的沸点与乙醇的含量有关,具体可参考现有技术。
在本申请的另一些实施例中,在乙醇水溶液中,乙醇和水的摩尔比可以为1:2-3。
在本申请的一些实施例中,采用乙醇水溶液进行重结晶的原因是安赛蜜是溶解于水但是微溶于乙醇,在加热条件下将上一步获得的安赛蜜粗产品溶解于乙醇溶 液,由于温度降低后,安赛蜜晶体就逐渐析出了,安赛蜜晶体沉淀后,较多的杂质留在了乙醇中;使用乙醇的水溶液进行重结晶,没有引入新的溶剂体系,相较于现有技术中,对水相沉淀后生成的安赛蜜固体进行重结晶,达到同样纯净度,重结晶的次数明显减少。
在本申请中,对于磺化环合产物溶液的来源并不作限制,可采用现有技术中的任意一种或几种的结合。
在本申请的另一些实施例中,可采用下述推荐的方法获得磺化环合产物溶液:在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液;将三氧化硫溶解在溶剂中,形成环化剂溶液,使乙酰乙酰胺-N-磺酸三乙胺盐溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液。
更加具体的,水解产物溶液的制备过程可描述如下:在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态超强酸催化剂的作用下,进行酰化反应,得到中间体溶液。
中间体的制备更细致地分为两个小步骤,首先,是氨基磺酸铵盐的制备,然后利用氨基磺酸铵盐与双乙烯酮反应制备中间体,即乙酰乙酰胺-N-磺酸三乙胺盐。
氨基磺酸铵盐采用的是在氨基磺酸溶液中加入三乙胺,进行胺化反应获得。具体的,在本申请的一些实施例中,将氨基磺酸溶解在第一溶剂中,配置成第一反应液;将三乙胺溶于第二溶剂,配置成第二反应液,将第二反应液加入第一反应液中进行胺化反应,形成氨基磺酸铵盐溶液。第一溶剂和第二溶剂是能够为胺化反应提供反应环境的惰性有机溶剂,如二氯甲烷。氨基磺酸和三乙胺放热反应,在反应过程中,产生的热量会将部分二氯甲烷汽化,汽化后的二氯甲烷会离开反应体系将产热带走,进一步地,汽化后的二氯甲烷也可循环利用。
在第一反应液与第二反应液混合的时候,最好将第二反应液逐渐滴入第一反应液,这样能够使得反应更加充分,不会造成局部反应物浓度过大,反应程度过于剧烈。
以下给出一种生成氨基磺酸铵盐溶液的具体实施方式,该实施方式仅作为示例性说明,氨基磺酸铵盐溶液的具体生产工艺可采用现有技术中的任意一种。按照预设的氨基磺酸、第一二氯甲烷、三乙胺和第二二氯甲烷的用量比准确称料,打开反 应度的计量槽阀门向干燥的反应釜中加入第一二氯甲烷,启动搅拌及循环泵;从投料孔投入氨基磺酸。关闭循环阀门,打开送料阀门,将溶料釜中混合物料送至干燥的合成釜中,利用循环水降温,待反应釜温度降至室温(约20-25℃),得到第一反应液。
同上述过程,得到三乙胺溶于二氯甲烷的第二反应液。
将第二反应液滴加入第一反应液中,滴加结束时,pH值为7-9,静置反应1小时,上述反应完毕的物料为氨基磺酸铵盐溶液。
在得到氨基磺酸溶液后,将氨基磺酸溶液与双乙烯酮反应,得到乙酰乙酰胺-N-磺酸三乙胺盐,作为制备安赛蜜的中间体。
现有技术中,氨基磺酸溶液与双乙烯酮反应是在乙酸的环境中进行的,在后续步骤中,乙酸很难从最终产物安赛蜜中被完全除去,残留在安赛蜜中的乙酸不仅会使安赛蜜成色不佳,而且还会带来异味。
在本申请中,采用固体超强酸代替传统的乙酸有效地克服了这个问题。固体超强酸能够为酰化反应提供足够的酸性位点,一方面能够有效地催化氨基磺酸铵盐和双乙烯酮酰化反应的顺利进行,另一方面,固体超强酸不会混合到反应产物中,后续不用特殊的处理工艺,节约了后处理的经济和时间成本;且避免了现有技术中没有除掉的乙酸杂质留存在最终产物中对最终产物的品相造成的不利影响。在本申请的一些实施例中,固态酸性催化剂为HZSM-5分子筛、Na-ZSM-5分子筛或SO 4 2-/Fe 2O 3型催化剂。
为了提高双乙烯酮的闪点,将双乙烯酮溶于第三溶剂中,配置成第三反应液,第三溶剂是能够为胺化反应提供反应环境的惰性有机溶剂,如二氯甲烷等。在反应器中装填固态超强酸催化剂,依次向反应器加入氨基磺酸铵盐溶液和第三反应液,在预设条件下反应,形成乙酰乙酰胺-N-磺酸三乙胺盐溶液作为中间体溶液。
为了实现反应的连续性,在本申请的一些实施例中,可以选择连续反应器来实现本申请,如固定床反应器、连续搅拌釜反应器或微通道反应器等。这里以固定床反应器为例,简要说明反应过程。
在固定床反应器中装填固体超强酸作为催化剂,将固定床反应器设置为预设的工作状态,先向固定床反应器通入氨基磺酸铵盐溶液,待氨基磺酸铵盐溶液正常流动后,然后再同向通入第三反应液,通过控制二者的流速,使得二者接触时间在预设条件内,同时,通过控制固定床反应器的换热装置,使得反应温度也在预设条件 内,待达到预设反应时长,即可结束反应,得到产物乙酰乙酰胺-N-磺酸三乙胺盐溶液。由于固定床反应器的特点,使得本反应能够连续不断进行,适合大规模的工业生产。
将三氧化硫溶解在溶剂中,形成环化剂溶液;将环化剂溶液加入中间体溶液,进行磺化环合反应,得到环合产物溶液。
区别于现有技术中直接使用三氧化硫,本申请将三氧化硫溶解在溶剂中,形成环化剂溶液,溶剂可为但不限于惰性有机溶剂,如二氯甲烷等。溶剂对三氧化硫具有稳定作用,使得三氧化硫不易升华,从而环化反应正向进行。
将环化剂溶液加入中间体溶液,进行磺化环合反应,得到环合产物溶液。该步反应为放热反应,最好在较低的温度下进行,为了增强反应可控性,不至于使得局部反应过于激烈,可以将环化剂溶液逐渐滴入到中间体溶液中,并伴随搅拌,获得环合产物溶液,其中环合产物为安赛蜜的前驱体ASH。
在环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液。
不同于传统工艺上采用酸性溶液进行水解反应,本申请采用水解剂,依赖固态超强酸的酸性进行环合产物的水解,能够显著提升水解反应的速率,缩短水解时间,伴随着水解时间降低的是水解可能产生的杂质含量的减少。在本申请的一些实施例中,水解剂为水或者乙醇水溶液,使用水解剂进行水解能够显著减少环化产物ASH中杂质的含量,降低了后续安赛蜜提纯的难度,减少了安赛蜜提纯的成本。
在本申请的一些实施例中,在上述方法中,水解剂为去离子水或乙醇水溶液,最好为乙醇的水溶液,其中,在乙醇水溶液中,乙醇的质量浓度最好为30~65%。发明人经过大量的实验,使用水解剂,尤其是乙醇的水溶液并控制水解剂中水的含量,可以明显地减少安赛蜜前驱体ASH中杂质的含量,降低了后续安赛蜜提纯的难度,减少了安赛蜜提纯的成本。
对于水解剂的用量,本申请不作限制,水解剂的用量可以根据三氧化硫的用量来确定,具体的,在本申请的一些实施例中,三氧化硫的用量与水解剂中水的含量的物质的量的比为1:1-4,在另一些实施例中,为1:1-1.5。也就是说水解剂中水的物质的量最好高于三氧化硫的物质的量。
对应上述未提及的实验条件可参考现有技术,另本申请中各原材料可使用市售产品或者实验室自制,本申请不作限制。
磺化环合产物溶液的制备:
胺化反应步骤:将98kg氨基磺酸和第一二氯甲烷以摩尔比为1:6的比例溶解,控制溶解温度约为20-25℃,获得氨基磺酸的二氯甲烷溶液,即第一反应液。溶解可以在连续混合装置中,也可以在反应釜中。
将三乙胺和第二二氯甲烷以摩尔比为1:1的比例溶解,控制溶解的温度为10-30℃,得到第二反应液,其中,氨基磺酸和三乙胺的质量比为1:1.2。将第二反应液逐渐滴加在第一反应液所在的反应釜中进行混合搅拌,控制体系温度为20-30℃,并控制体系呈弱碱性,混合均匀后,即得到氨基磺酸铵盐溶液。
酰化反应步骤:将双乙烯酮和第三二氯甲烷以摩尔比为1:1.5的比例溶解,控制溶解的温度为10-20℃,得到第三反应液。
将固体超强酸催化剂安装至固定床反应器后,启动固定床反应器,调节循环水使循环水工作正常。
将氨基磺酸铵盐溶液通入固定床反应器内,在氨基磺酸铵盐溶液正常流动后,将第三反应液与氨基磺酸铵盐溶液同向通入固定床反应器内,控制氨基磺酸铵盐溶液和第三反应液的量,使得氨基磺酸和双乙烯酮摩尔比为1:1.1。在反应开始后,尽量调低冷却水温度,反应体系的温度控制在20-35℃;随着催化剂性能的衰退,温度在控制范围内可以略微升高。
控制氨基磺酸铵盐溶液和双乙烯酮的流速,使得反应时间控制在100秒左右。得到的目标产物乙酰乙酰胺-N-磺酸三乙胺盐溶液,即中间体溶液。
磺化环合步骤:将三氧化硫溶解在二氯甲烷中,形成环化剂溶液;将环化剂溶液加入中间体溶液,进行磺化环合反应,得到环合产物溶液。
水解步骤:在环合产物溶液中加入乙醇水溶液作为水解剂,进行水解反应,得到水解产物溶液,记为磺化环合产物溶液。
分离步骤:将磺化环合产物溶液分离为有机相和水相备用。
在本申请中各实施例和对比例的磺化环合产物溶液如无特别说明,均采用上述方法制得,如有特殊说明,遵循特殊说明。
实施例1(实施例1A、实施例1B、实施例1C)
成盐步骤:将上述磺化环合产物溶液分离成有机相和无机相,向有机相中加入成盐试剂——乙醇钾的乙醇溶液进行成盐反应。具体反应条件见表1。
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
实施对比例1
成盐步骤:将上述磺化环合产物溶液分离成有机相和无机相,向有机相中加入成盐试剂——乙醇钾进行成盐反应。具体反应条件见表1。
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
对比例1
成盐步骤:将上述磺化环合产物溶液分离成有机相和无机相,向有机相中加入成盐试剂——甲醇钾进行成盐反应。具体反应条件见表1。
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
对比例2(对比例2A、对比例2B)
成盐步骤:将上述磺化环合产物溶液分离成有机相和无机相,向有机相中加入成盐试剂——甲醇钾的甲醇溶液进行成盐反应。具体反应条件见表1。
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
对比例3(对比例3A、对比例3B)
成盐步骤:将上述磺化环合产物溶液分离成有机相和无机相,向有机相中加入成盐试剂——氢氧化钾的乙醇溶液进行成盐反应。具体反应条件见表1。
洗涤步骤:待成盐反应结束后,过滤得到固体产物,对固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
表1:
Figure PCTCN2021097016-appb-000001
Figure PCTCN2021097016-appb-000002
注:表1中乙酰磺胺酸钾的收率是以乙酰磺胺酸钾的实际产量和ASH转换为乙酰胺磺酸钾的理论产量的比率;其中,乙酰乙酰胺、乙酰磺胺酸钾的氯化物和无机物含量采用高效液相色谱测出。
从表1中可以看出,经过研究发现,制备获得磺化环合产物溶液ASH后,中和成盐制备安赛蜜ASK的过程中存在一些副反应,此外,ASH在反应过程中也可能发生分解,从而影响到终产物的纯度和产率。从实施例1和对比例3可以看出,采用KOH的水溶液效果相对来说比较差,硫酸盐无机杂质多。本发明使用乙醇钾的10%-80%的乙醇溶液,在收率较高的同时,有机物杂质和无机物杂质都相对较低。
从实施例1和实施对比例1可以看出,使用乙醇钾的乙醇溶液,相对于直接醇钾(尤其是乙醇钾),提供了不同的反应环境,从而减少了有机物杂质和无机物杂质的产生,减小了精制的难度,降低了生成成本。
综上所述,本申请的有益效果在于,本申请通过将采用乙醇钾的乙醇溶液代替 传统的氢氧化钾或氢氧化钾水溶液与磺化环合产物溶液的有机相进行成盐反应,对得到的固体产物采用乙醇洗涤,可极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度;简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本;且能够提高乙酰磺胺酸钾的收率。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (10)

  1. 一种乙酰磺胺酸钾的制备方法,其特征在于,包括:
    成盐步骤:将磺化环合产物溶液分离成有机相和无机相,向所述有机相中加入乙醇钾的乙醇溶液进行成盐反应;其中,所述磺化环合产物溶液为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫环化加成的产物经水解获得;
    洗涤步骤:待所述成盐反应结束后,过滤得到固体产物,对所述固体产物采用乙醇洗涤,得到乙酰磺胺酸钾粗产品。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    重结晶步骤:将所述乙酰磺胺酸钾粗产品溶于乙醇水溶液中,进行重结晶。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述乙酰磺胺酸钾粗产品溶于乙醇水溶液中,进行重结晶包括:
    将乙醇水溶液加热到预设温度,其中,在所述乙醇水溶液中,乙醇和水的摩尔比为0.2-5:1;
    将所述乙酰磺胺酸钾粗产品溶解于所述乙醇水溶液中,并进行梯度降温,得到精制的乙酰磺胺酸钾。
  4. 根据权利要求3所述的方法,其特征在于,在所述乙醇水溶液中,乙醇和水的摩尔比为1:2-3。
  5. 根据权利要求1所述的方法,其特征在于,在所述乙醇钾的乙醇溶液中,乙醇钾的质量分数为10%-80%。
  6. 根据权利要求1所述的方法,其特征在于,在所述成盐步骤中,所述成盐反应的反应时间为1-3min,优选1min。
  7. 根据权利要求1所述的方法,其特征在于,所述磺化环合产物溶液是通过下述方法制得的:
    在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液;
    将三氧化硫溶解在溶剂中,形成环化剂溶液,使所述乙酰乙酰胺-N-磺酸三乙胺盐溶液与所述环化剂溶液进行磺化环合反应,得到磺化环合产物;
    在所述磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液。
  8. 根据权利要求7所述的方法,其特征在于,所述固态酸性催化剂为HZSM-5分子筛、Na-ZSM-5分子筛或SO 4 2-/Fe 2O 3型催化剂。
  9. 根据权利要求7所述的方法,其特征在于,所述水解剂为乙醇水溶液,其中,所述乙醇水溶液中乙醇的质量分数为30-65%。
  10. 根据权利要求9所述的方法,其特征在于,所述三氧化硫的摩尔质量与所述水解剂中水的摩尔质量的比为1:1-1.5。
PCT/CN2021/097016 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法 WO2022246868A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001414.4A CN113454071B (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法
PCT/CN2021/097016 WO2022246868A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097016 WO2022246868A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Publications (1)

Publication Number Publication Date
WO2022246868A1 true WO2022246868A1 (zh) 2022-12-01

Family

ID=77819477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097016 WO2022246868A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Country Status (2)

Country Link
CN (1) CN113454071B (zh)
WO (1) WO2022246868A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411693A (zh) * 2012-06-08 2015-03-11 鹿特诺瓦营养品和食品有限公司 用于生产乙酰磺胺酸钾的方法
CN111377882A (zh) * 2018-12-30 2020-07-07 南通醋酸化工股份有限公司 一种连续化生产安赛蜜的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531359A1 (de) * 1985-09-03 1987-03-12 Hoechst Ag Verfahren zur herstellung von 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-on-2,2-dioxid sowie zu dessen reinigung
CN1198809C (zh) * 2001-05-15 2005-04-27 张家港浩波化学品有限公司 乙酰磺胺酸及其钾盐的合成方法
CN1400208A (zh) * 2001-08-03 2003-03-05 丁红辉 制备6-甲基-1,2,3-噁噻嗪-4(3h)-酮-2,2-二氧钾盐的方法
US9617234B1 (en) * 2015-12-18 2017-04-11 Wisconsin Alumni Research Foundation Method to produce furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF)
RS59840B1 (sr) * 2016-09-21 2020-02-28 Celanese Int Corp Kompozicije acesulfam-kalijuma i postupci za njihovu proizvodnju
CN107820491A (zh) * 2016-09-21 2018-03-20 国际人造丝公司 乙酰舒泛钾组合物和用于生产其的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411693A (zh) * 2012-06-08 2015-03-11 鹿特诺瓦营养品和食品有限公司 用于生产乙酰磺胺酸钾的方法
CN111377882A (zh) * 2018-12-30 2020-07-07 南通醋酸化工股份有限公司 一种连续化生产安赛蜜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Inorganic and Analytical Chemistry Experiments", 28 February 2007, HIGHER EDUCATION PRESS, CN, ISBN: 978-7-04-020551-0, article NI, JINGAN ET AL.: "Experiment 89: Preparation and Characterization of Solid Superacid", pages: 1 - 3, XP009543004 *
MA QIANLI; SUO YANHUA; MENG FANLONG; ZHANG WEI; WANG YINGJUN: "Research Advance in Modification and Application of SO42-/MxOy Solid Superacid Catalyst", INDUSTRIAL CATALYSIS, NORTHWEST RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA, vol. 22, no. 2, 1 February 2014 (2014-02-01), China , pages 85 - 91, XP009541276, ISSN: 1008-1143, DOI: 10.3969/j.issn.1008-1143.2014.02.002 *
X. DUAN ET AL.: "Synthesis of Acesulfame Potassium", FINE CHEMICALS, vol. 13, no. 5, 1 January 1996 (1996-01-01), pages 22 - 24, XP055436957, ISSN: 1003-5214, DOI: 10.13550/j .jxhg.1996.05.007 *

Also Published As

Publication number Publication date
CN113454071A (zh) 2021-09-28
CN113454071B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN107312004B (zh) 一种叶酸的生产方法
CN111170898B (zh) 全氟丁磺酸钾的制备方法
WO2022246867A1 (zh) 乙酰磺胺酸钾的制备方法
WO2022246869A1 (zh) 乙酰磺胺酸钾的制备方法
CN106496038A (zh) 一种高选择性的3‑甲基‑2‑硝基苯甲酸的制备方法
CN108440403A (zh) 一种瑞戈非尼的制备方法
CN107163051A (zh) 一种叶酸的制备方法
US20240083862A1 (en) Method for preparing acesulfame potassium
CN102108063A (zh) 一种马来酰肼的制备方法
CN104119243A (zh) 一种亚氨基二乙酸的节能清洁生产方法
CN102531968A (zh) L-精氨酸α-酮戊二酸的制备工艺
WO2022246868A1 (zh) 乙酰磺胺酸钾的制备方法
CN106810481B (zh) 一种聚二硫二丙烷磺酸钠的合成方法
CN105949075B (zh) 一种甲芬那酸的合成方法
CN104355990B (zh) 一种d-乙酯生产中回收和套用l-(+)-酒石酸的方法
CN102409354A (zh) 一种2-吡啶甲酸的电解合成方法
CN107311950A (zh) 一种氰尿酸镧的制备方法
WO2022246865A1 (zh) 乙酰磺胺酸钾的制备方法
WO2022246862A1 (zh) 乙酰磺胺酸钾组合物
CN108558710B (zh) 一种n,n-二丁基间氨基苯酚的制备方法
JPS6317057B2 (zh)
CN1191013C (zh) 杀虫单铵新农药及生产工艺
CN103910695B (zh) 一种非布索坦的合成方法
CN111689881B (zh) 一种阿佐塞米中间体的合成方法
CN107556217B (zh) 一种氨基k酸的生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942439

Country of ref document: EP

Kind code of ref document: A1