WO2022246865A1 - 乙酰磺胺酸钾的制备方法 - Google Patents

乙酰磺胺酸钾的制备方法 Download PDF

Info

Publication number
WO2022246865A1
WO2022246865A1 PCT/CN2021/097013 CN2021097013W WO2022246865A1 WO 2022246865 A1 WO2022246865 A1 WO 2022246865A1 CN 2021097013 W CN2021097013 W CN 2021097013W WO 2022246865 A1 WO2022246865 A1 WO 2022246865A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
reaction
salt
acesulfame potassium
agent
Prior art date
Application number
PCT/CN2021/097013
Other languages
English (en)
French (fr)
Inventor
周睿
丁震
陈永旭
杨峰宝
刘刚
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to CN202180001422.9A priority Critical patent/CN113454075A/zh
Priority to PCT/CN2021/097013 priority patent/WO2022246865A1/zh
Publication of WO2022246865A1 publication Critical patent/WO2022246865A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D291/00Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms
    • C07D291/02Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms not condensed with other rings
    • C07D291/06Six-membered rings

Definitions

  • the invention belongs to the technical field of fine chemical manufacturing, and in particular relates to a preparation method of acesulfame potassium.
  • Acesulfame potassium also known as AK sugar
  • AK sugar is a widely used sugar substitute food additive. Its appearance is white crystalline powder.
  • As an organic synthetic salt its taste is similar to sugarcane, and it is easily soluble in water. , Slightly soluble in alcohol, its chemical properties are stable, and it is not easy to break down and fail; it does not participate in the body's metabolism and does not provide energy; it has high sweetness and low price; it has no cariogenicity; it has good stability to heat and acid.
  • the diketene-sulfur trioxide method is widely used.
  • the specific reaction steps include: reacting sulfamic acid with amine to form amine sulfamic acid salt, and then reacting amine sulfamic acid with diketene , forming acetylacetamide salt; in the presence of sulfur trioxide, acetylacetamide salt undergoes a cyclization reaction to form a cyclic sulfur trioxide adduct; the cyclic compound is hydrolyzed to obtain the hydrolyzate (ASH); subsequent oxidation with hydrogen Potassium treatment of the hydrolyzate yields acesulfame potassium (ASK).
  • acetic acid is usually added as a catalyst during the reaction process, which makes acetic acid impurities remain in the final product acesulfame potassium, resulting in poor color of acesulfame potassium and affecting people's experience in use.
  • the present application is proposed in order to provide a method for preparing acesulfame potassium that overcomes the above problems or at least partially solves the above problems.
  • a kind of preparation method of acesulfame potassium comprising:
  • Pretreatment step treating the acetoacetamide-N-sulfonic acid triethylamine salt solution with a weakly basic inorganic substance to obtain an intermediate solution;
  • Sulfonation and cyclization step dissolving sulfur trioxide in a solvent to form a cyclizing agent solution; performing a sulfonation and cyclization reaction between the intermediate solution and the cyclizing agent solution to obtain a sulfonation and cyclization product;
  • Hydrolysis step adding a hydrolyzing agent to the sulfonated cyclization product solution to carry out a hydrolysis reaction to obtain a hydrolyzate solution;
  • Salt-forming step adding a salt-forming agent to the organic phase of the hydrolyzate solution to carry out a salt-forming reaction to obtain acesulfame potassium.
  • the weakly basic inorganic substance is potassium carbonate.
  • the molar ratio of weakly basic inorganic substance to diketene is 0.6-0.8:1, preferably 0.65-0.75:1.
  • the salt-forming agent is an ethanol solution of potassium hydroxide or an ethanol solution of potassium ethoxide.
  • Sulfuric acid is added to the sulfonated cyclization product to remove excess weakly basic inorganic substances.
  • the hydrolysis agent is an aqueous ethanol solution, wherein the mass fraction of ethanol in the aqueous ethanol solution is 30-65%.
  • the ratio of the molar mass of sulfur trioxide to the molar mass of water in the hydrolyzing agent is 1:1-1.5.
  • the acetoacetamide-N-sulfonic acid triethylamine salt solution is prepared by the following method:
  • the solid acidic catalyst is a molecular sieve catalyst or a solid superacid catalyst.
  • the molecular sieve catalyst is HZSM-5 molecular sieve and/or Na-ZSM-5 molecular sieve;
  • the solid superacid catalyst is SO 4 2 ⁇ /Fe 2 O 3 type catalyst.
  • the beneficial effect of the present application is that the present application uses weakly basic inorganic substances to pretreat the intermediate acetoacetamide-N-sulfonic acid triethylamine salt solution for the preparation of acesulfame potassium, on the one hand, it removes the residues in the final product Acidic catalyst in honey; on the other hand, the reaction environment provided by weakly alkaline inorganic substances inhibits the formation of by-products and improves the purity of acesulfame K products; and can significantly increase the yield of acesulfame K and reduce the Generation costs.
  • the idea of the present application is that, in view of the high impurity content in the final product acesulfame potassium, which affects the appearance of the product and the user's experience of use, the inventors found that the intermediate acetoacetamide used for the preparation of acesulfame potassium is -N-sulfonic acid triethylamine salt solution is pretreated, the weakly alkaline inorganic substance can remove the residual acidic catalyst on the one hand, and on the other hand can be acetoacetamide-N-sulfonic acid triethylamine salt and sulfur trioxide
  • the cyclization reaction provides a weakly alkaline reaction environment, which can inhibit the generation of by-products and provide the purity of acesulfame potassium products;
  • the sulfonated cyclization product formed by ethylamine salt and sulfur trioxide has a stabilizing effect, which makes the reaction move forward towards the final product and can increase the yield of acesulfame potassium.
  • the preparation method of acesulfame potassium provided by the application at least includes step S110 to step S140:
  • Pretreatment step S110 treating the acetoacetamide-N-sulfonic acid triethylamine salt solution with a weakly basic inorganic substance to obtain an intermediate solution;
  • Acetoacetamide-N-sulfonic acid triethylamine salt is an intermediate for preparing acesulfame potassium, which can be prepared by any one or combination of several in the prior art. It is a mixture solution, in which at least There is residual acidic catalyst, usually acetic acid.
  • the intermediate acetoacetamide-N-sulfonic acid triethylamine salt solution for preparing acesulfame potassium is pretreated by using weakly basic inorganic substances.
  • weakly basic inorganic substances can remove residual acidic catalysts , on the other hand, it can provide a slightly alkaline reaction environment for the cyclization reaction of acetoacetamide-N-sulfonic acid triethylamine salt and sulfur trioxide.
  • an intermediate solution is formed.
  • the acidic catalyst such as acetic acid
  • the body solution is weakly alkaline as a whole, with a pH value in the range of 7-10, preferably around 8.
  • Sulfonation and cyclization step S120 dissolving sulfur trioxide in a solvent to form a cyclizing agent solution; performing a sulfonation and cyclization reaction between the intermediate solution and the cyclizing agent solution to obtain a sulfonation and cyclization product;
  • the solvent can be an inert organic solvent for preparing acetoacetamide-N-sulfonic acid triethylamine salt, can be selected from the same or different solvents, preferably the same, such as dichloromethane.
  • the solvent has a stabilizing effect on sulfur trioxide, making it difficult for sulfur trioxide to escape, so that the cyclization reaction proceeds forward.
  • the above-obtained intermediate solution and the cyclizing agent solution are subjected to a sulfonation ring-closure reaction to obtain a solution whose main product is the sulfonation ring-closure product.
  • This step reaction is an exothermic reaction, preferably carried out at a lower temperature.
  • the cyclizing agent solution can be gradually dripped into the intermediate solution, and accompanied by Stir to obtain a sulfonated cyclization product solution, wherein the cyclization product is the precursor of acesulfame potassium.
  • adding sulfuric acid to the sulfonated cyclization product to remove excess weakly basic inorganic substances therein is an optional step. If the amount of weakly basic inorganic substances added is too large, this step can be used for adjustment.
  • Hydrolysis step S130 adding a hydrolyzing agent to the sulfonated cyclization product solution to carry out a hydrolysis reaction to obtain a hydrolyzate solution.
  • the cyclization product After the cyclization product is hydrolyzed, it becomes the precursor ASH of acesulfame potassium, which is different from the hydrolysis reaction using acidic solution in the traditional process.
  • This application uses a hydrolysis agent, which can shorten the hydrolysis time. With the reduction of the hydrolysis time, the hydrolysis may produce reduction of impurity content.
  • the hydrolyzing agent is water or an aqueous ethanol solution, which significantly reduces the content of impurities in the cyclization product ASH, reduces the difficulty of subsequent purification of acesulfame potassium, and reduces the cost of purification of acesulfame potassium.
  • Salt-forming step S140 adding a salt-forming agent to the organic phase of the hydrolyzate solution to carry out a salt-forming reaction to obtain acesulfame potassium.
  • potassium hydroxide or an aqueous potassium hydroxide solution is usually used to perform a salt-forming reaction with the hydrolyzed product, thereby obtaining acesulfame potassium (ASK).
  • ASK acesulfame potassium
  • salt-forming reaction refers to the process in which the cation of potassium hydroxide is exchanged with the anion of the hydrolyzate to generate the potassium salt of acesulfame.
  • a salt-forming agent is used instead of traditional potassium hydroxide or potassium hydroxide aqueous solution to carry out a salt-forming reaction.
  • Inorganic impurities including but not limited to potassium fluoride, potassium sulfate, etc.
  • the salt-forming agent includes, but is not limited to, an ethanol solution of potassium hydroxide or an ethanol solution of potassium
  • this application uses weakly alkaline inorganic substances to pretreat the intermediate acetoacetamide-N-sulfonic acid triethylamine salt solution for the preparation of acesulfame potassium, on the one hand, it removes the residues in the final product acesulfame potassium acidic catalyst; on the other hand, the reaction environment provided by weakly alkaline inorganic substances inhibits the formation of by-products and improves the purity of acesulfame K products; and can significantly increase the yield of acesulfame K and reduce the production cost of acesulfame K .
  • the application does not limit the types of weakly basic inorganic substances, as long as they can neutralize acidic catalysts and provide an alkaline reaction environment for subsequent reactions.
  • the weakly basic inorganic substances are potassium carbonate.
  • the weakly basic inorganic substances can be gradually added to the acetoacetamide-N-sulfonic acid triethylamine salt solution under stirring conditions, and determined by testing the pH value.
  • the molar ratio of weakly basic inorganic substance to diketene is 0.6-0.8:1, and in other embodiments is 0.65-0.75:1.
  • the salt-forming agent in the salt-forming step, is an ethanol solution of potassium hydroxide or an ethanol solution of potassium ethoxide.
  • the amount of ethanol solution of potassium hydroxide or potassium ethoxide there is no limit to the amount of ethanol solution of potassium hydroxide or potassium ethoxide, it can be determined according to the amount of raw materials used to prepare the sulfonated cyclization product solution, and can be based on the theoretical value of 100% conversion rate Calculation. Further, there is no limitation on the mass fraction of potassium ethoxide in the ethanol solution of potassium hydroxide or potassium ethoxide. In other embodiments of the present application, the mass fraction of potassium ethoxide can be 10%-80%.
  • the organic phase of the sulfonated cyclization product solution is subjected to a salt-forming reaction by replacing the traditional potassium hydroxide or aqueous potassium hydroxide solution with an ethanol solution of potassium ethoxide.
  • a salt-forming reaction by replacing the traditional potassium hydroxide or aqueous potassium hydroxide solution with an ethanol solution of potassium ethoxide.
  • the obtained solid product is washed with ethanol, which can greatly reduce the content of inorganic impurities in the crude product of acesulfame potassium, and significantly improve the purity of the final product acesulfame potassium; simplify the subsequent process for the crude product of acesulfame potassium , reducing the cost of purifying the crude product of acesulfame potassium.
  • the hydrolysis agent is deionized water or an aqueous ethanol solution, preferably an aqueous ethanol solution, wherein the mass concentration of ethanol in the aqueous ethanol solution is preferably 30-65%.
  • the inventor used a hydrolysis agent, especially an aqueous solution of ethanol, and controlled the water content in the hydrolysis agent, which can significantly reduce the content of impurities in the acesulfame precursor ASH, and reduce the difficulty of subsequent acesulfame potassium purification. The cost of acesulfame purification is reduced.
  • the application is not limited, the consumption of hydrolyzing agent can be determined according to the consumption of sulfur trioxide, specifically, in some embodiments of the application, the consumption of sulfur trioxide and the content of water in the hydrolyzing agent
  • the ratio of the amount of substances is 1:1-4, in some other embodiments, it is 1:1-1.5. That is to say, the amount of water in the hydrolyzing agent is preferably higher than that of sulfur trioxide.
  • the acetoacetamide-N-sulfonic acid triethylamine salt solution can be prepared by any one or a combination of several in the prior art, and can also be prepared by the following method: Add triethylamine in the sulfamic acid solution, carry out amination reaction, generate sulfamic acid ammonium salt solution; add diketene to the obtained sulfamic acid ammonium salt solution, under the action of solid acidic catalyst, carry out acylation reaction, obtain Acetoacetamide-N-sulfonic acid triethylamine salt solution.
  • acetoacetamide-N-sulfonic acid triethylamine salt solution can be more carefully divided into two small steps. First, it is the preparation of ammonium sulfamate, and then the intermediate is prepared by reacting ammonium sulfamate with diketene , That is, acetoacetamide-N-sulfonic acid triethylamine salt.
  • the ammonium salt of sulfamic acid is obtained by adding triethylamine to the sulfamic acid solution for amination reaction.
  • sulfamic acid is dissolved in the first solvent to configure the first reaction solution
  • triethylamine is dissolved in the second solvent to configure the second reaction solution
  • the second The reaction solution is added to the first reaction solution to carry out amination reaction to form a sulfamic acid ammonium salt solution.
  • the first solvent and the second solvent are inert organic solvents that can provide a reaction environment for the amination reaction, such as dichloromethane.
  • Sulfamic acid and triethylamine react exothermicly. During the reaction, the heat generated will vaporize part of the dichloromethane, and the vaporized dichloromethane will leave the reaction system to take away the heat produced. Further, the vaporized dichloromethane Methane can also be recycled.
  • a kind of specific implementation of generating sulfamic acid ammonium salt solution is given below, and this embodiment is only used as an illustration, and the specific production process of sulfamic acid ammonium salt solution can adopt any one in the prior art.
  • the second reaction liquid is added dropwise into the first reaction liquid.
  • the pH value is 7-9, and the reaction is left to stand for 1 hour.
  • the above-mentioned reacted material is ammonium sulfamate solution.
  • Solid-state acidic catalysis can provide sufficient acidic sites for the acylation reaction. On the one hand, it can effectively catalyze the acylation reaction of ammonium sulfamate and diketene. On the other hand, solid-state acidic catalysis will not mix into the reaction product. , no special treatment process is required in the follow-up, which saves the post-treatment economy and time cost; and avoids the adverse effect on the product phase of the final product caused by the acetic acid impurities that are not removed in the prior art remaining in the final product.
  • diketene is dissolved in a third solvent to prepare a third reaction solution.
  • the third solvent is an inert organic solvent that can provide a reaction environment for the amination reaction, such as dichloromethane.
  • Fill the reactor with a solid acidic catalyst add the ammonium sulfamate solution and the third reaction solution to the reactor in sequence, and react under preset conditions to form acetoacetamide-N-sulfonic acid triethylamine salt solution as an intermediate solution.
  • a continuous reactor can be selected to realize the present application, such as a fixed bed reactor, a continuous stirred tank reactor or a microchannel reactor, etc.
  • the fixed bed reactor is taken as an example to briefly explain the reaction process.
  • the reaction can be ended after the preset reaction time is reached, and the product acetoacetamide-N-sulfonic acid triethylamine salt solution is obtained. Due to the characteristics of the fixed bed reactor, the reaction can be carried out continuously and is suitable for large-scale industrial production.
  • the solid acid catalysts in this application are molecular sieve catalysts or solid superacid catalysts.
  • the molecular sieve catalyst is HZSM-5 molecular sieve and/or Na-ZSM-5 molecular sieve;
  • the solid superacid catalyst is SO 4 2 ⁇ /Fe 2 O 3 type catalyst.
  • This application does not limit the amount of solid acid catalyst used, which can be determined according to the type and specification of the selected reactor.
  • Amination reaction steps Dissolve 98kg of sulfamic acid and the first dichloromethane at a molar ratio of 1:6, and control the dissolution temperature at about 20 to 25°C to obtain a dichloromethane solution of sulfamic acid, that is, the first The reaction solution.
  • Dissolution can be in a continuous mixing device or in a reactor.
  • Acylation reaction step dissolving diketene and third dichloromethane at a molar ratio of 1:1.5, controlling the dissolution temperature at 10 to 20° C. to obtain a third reaction solution.
  • the fixed bed reactor After the solid superacid catalyst is installed in the fixed bed reactor, the fixed bed reactor is started, and the circulating water is adjusted to make the circulating water work normally.
  • the amounts of the ammonium sulfonate salt solution and the third reaction solution are such that the molar ratio of sulfamic acid to diketene is 1:1.1. After the reaction starts, lower the temperature of the cooling water as much as possible, and control the temperature of the reaction system at 20 to 35°C; as the performance of the catalyst declines, the temperature can be slightly increased within the control range.
  • Example 1 (Example 1A, Example 1B, Example 1C, Example 1D, Example 1E, Example 1F)
  • Pretreatment step treating the acetoacetamide-N-sulfonic acid triethylamine salt solution with potassium carbonate in different ratios to obtain an intermediate solution.
  • Sulfonation and cyclization step dissolving sulfur trioxide in a solvent to form a cyclizing agent solution; performing a sulfonation and cyclization reaction between the intermediate solution and the cyclizing agent solution to obtain a sulfonation and cyclization product;
  • Hydrolysis step adding a hydrolyzing agent to the sulfonated cyclization product solution to carry out a hydrolysis reaction to obtain a hydrolyzate solution;
  • Salt-forming step adding an ethanol solution of potassium hydroxide to the organic phase of the hydrolyzate solution to carry out a salt-forming reaction to obtain acesulfame potassium.
  • acesulfame potassium In each embodiment, only the molar ratio of potassium carbonate and diketene is different, and other conditions remain the same. The experimental results are shown in Table 1.
  • Sulfonation and cyclization step dissolving sulfur trioxide in a solvent to form a cyclizing agent solution; performing a sulfonation and cyclization reaction between the acetoacetamide-N-sulfonic acid triethylamine salt solution and the cyclizing agent solution to obtain sulfonation Cyclization products;
  • Hydrolysis step adding a hydrolyzing agent to the sulfonated cyclization product solution to carry out a hydrolysis reaction to obtain a hydrolyzate solution;
  • Salt-forming step adding an ethanol solution of potassium hydroxide to the organic phase of the hydrolyzate solution to carry out a salt-forming reaction to obtain acesulfame potassium.
  • Example 1 there is no pretreatment step, and other conditions are kept consistent with Example 1.
  • the experimental results are shown in Table 1.
  • the yield of acesulfame potassium in Table 1 is based on diketene used to produce acetoacetamide-N-sulfonic acid triethylamine salt solution.
  • this application uses weakly alkaline inorganic substances to pretreat the intermediate acetoacetamide-N-sulfonic acid triethylamine salt solution for the preparation of acesulfame potassium, on the one hand, it removes the residues in the final product acesulfame potassium acidic catalyst; on the other hand, the reaction environment provided by weakly alkaline inorganic substances inhibits the formation of by-products and improves the purity of acesulfame K products; and can significantly increase the yield of acesulfame K and reduce the production cost of acesulfame K .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种乙酰磺胺酸钾的制备方法,包括:预处理步骤:将乙酰乙酰胺-N-磺酸三乙胺盐溶液采用弱碱性无机物进行处理,得到中间体溶液;磺化环合步骤:将三氧化硫溶解在溶剂中,形成环化剂溶液;使中间体溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;水解步骤:在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液;和成盐步骤:在水解产物溶液的有机相中加入成盐剂,进行成盐反应,得到乙酰磺胺酸钾。所述方法一方面去除了残留于终产物安赛蜜中的酸性催化剂;另一方面弱碱性无机物提供的反应环境,抑制了副产物的生成,提高安赛蜜产品的纯度;且能够显著提高安赛蜜收率,降低了安赛蜜的生成成本。

Description

乙酰磺胺酸钾的制备方法 技术领域
本发明属于精细化工制造技术领域,具体涉及一种乙酰磺胺酸钾的制备方法。
发明背景
乙酰磺胺酸钾(安赛蜜)又称AK糖,是一种广泛使用的代糖食品添加剂,外观为白色结晶性粉末,它作为一种有机合成盐,其口味与甘蔗相似,易溶于水,微溶于酒精,其化学性质稳定,不易出现分解失效现象;不参与机体代谢,不提供能量;甜度较高,价格便宜;无致龋齿性;对热和酸稳定性好。
目前在安赛蜜的合成中,普遍采用双乙烯酮-三氧化硫法,其具体的反应步骤包括:使氨基磺酸与胺反应以形成氨基磺酸胺盐,然后将氨基磺酸胺盐与双乙烯酮反应,形成乙酰基乙酰胺盐;在三氧化硫存在下,乙酰基乙酰胺盐发生环化反应,形成环状三氧化硫加合物;将环状化合物水解获得水解产物(ASH);随后用氢氧化钾处理水解产物从而获得乙酰磺胺酸钾(ASK)。
在现有技术中,一方面,在反应过程中通常加入乙酸作为催化剂,这使得乙酸杂质会留存在最终产品安赛蜜中,导致安赛蜜成色不好,影响人们的使用感受。
另一方面,在乙酰基乙酰胺盐与三氧化硫发生环化反应形成环状三氧化硫加合物的步骤中,会引入很多与终产物乙酰磺胺酸钾结构类似的杂质,如5-氯-乙酰磺胺酸钾等,在后续处理中这些杂质很难分离,杂质具有较深的颜色,导致乙酰磺胺酸钾的成品呈现出浅褐色,影响了乙酰磺胺酸钾的品质。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的一种乙酰磺胺酸钾的制备方法。
根据本申请的第一方面,提供了一种乙酰磺胺酸钾的制备方法,包括:
预处理步骤:将乙酰乙酰胺-N-磺酸三乙胺盐溶液采用弱碱性无机物进行处理,得到中间体溶液;
磺化环合步骤:将三氧化硫溶解在溶剂中,形成环化剂溶液;使中间体溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;
水解步骤:在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物 溶液;和
成盐步骤:在水解产物溶液的有机相中加入成盐剂,进行成盐反应,得到乙酰磺胺酸钾。
可选的,在上述方法中,弱碱性无机物为碳酸钾。
可选的,在上述方法中,弱碱性无机物与双乙烯酮的摩尔用量的比为0.6-0.8:1,优选为0.65-0.75:1。
可选的,在上述方法中,在成盐步骤中,成盐剂为氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液。
可选的,在上述方法中,在水解步骤之前还包括:
向磺化环合产物中加入硫酸,以除去其中过量的弱碱性无机物。
可选的,在上述方法中,水解剂为乙醇水溶液,其中,乙醇水溶液中,乙醇的质量分数为30-65%。
可选的,在上述方法中,三氧化硫的摩尔质量与水解剂中水的摩尔质量的比为1:1-1.5。
可选的,在上述方法中,乙酰乙酰胺-N-磺酸三乙胺盐溶液是通过下述方法制得的:
在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液。
可选的,在上述方法中,固态酸性催化剂为分子筛催化剂或固态超强酸催化剂。
可选的,在上述方法中,分子筛催化剂为HZSM-5分子筛和/或Na-ZSM-5分子筛;所述固态超强酸催化剂为SO 4 2-/Fe 2O 3型催化剂。
本申请的有益效果在于,本申请采用弱碱性无机物对制备安赛蜜的中间体乙酰乙酰胺-N-磺酸三乙胺盐溶液进行预处理,一方面去除了残留于终产物安赛蜜中的酸性催化剂;另一方面弱碱性无机物提供的反应环境,抑制了副产物的生成,提供安赛蜜产品的纯度;且能够显著提高安赛蜜收率,降低了安赛蜜的生成成本。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
实施本发明的方式
下面将更详细地描述本申请的示例性实施例。应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
本申请的构思在于,针对终产物安赛蜜中由于杂质含量高,影响产品品相和用户的使用感受的情况,发明人发现采用弱碱性无机物对制备安赛蜜的中间体乙酰乙酰胺-N-磺酸三乙胺盐溶液进行预处理,弱碱性无机物一方面能够去除残留的酸性催化剂,另一方面能够为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫的环合反应提供一个弱碱性的反应环境,弱碱性的反应环境能够抑制副产物的生成,提供安赛蜜产品的纯度;且弱碱性的反应环境对乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫形成的磺化环合产物有稳定作用,使得反应向终产物方向正向移动,能够提高安赛蜜产率。
本申请提供的乙酰磺胺酸钾的制备方法至少包括了步骤S110~步骤S140:
预处理步骤S110:将乙酰乙酰胺-N-磺酸三乙胺盐溶液采用弱碱性无机物进行处理,得到中间体溶液;
乙酰乙酰胺-N-磺酸三乙胺盐是制备安赛蜜的中间体,可采用现有技术中的任意一种或几种的组合制得,其为混合物溶液,在该溶液中至少还有残留的酸性催化剂,通常为乙酸。
在预处理步骤中,采用弱碱性无机物对制备安赛蜜的中间体乙酰乙酰胺-N-磺酸三乙胺盐溶液进行预处理,弱碱性无机物一方面能够去除残留的酸性催化剂,另一方面能够为乙酰乙酰胺-N-磺酸三乙胺盐与三氧化硫的环合反应提供一个弱碱性的反应环境。
乙酰乙酰胺-N-磺酸三乙胺盐溶液采用弱碱性无机物处理后,形成中间体溶液,在中间体溶液中,酸性催化剂,如乙酸已经被弱碱性无机物消耗殆尽,中间体溶液整体呈弱碱性,pH值约在7-10的范围内,最好在8左右。
磺化环合步骤S120:将三氧化硫溶解在溶剂中,形成环化剂溶液;使中间体溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;
将三氧化硫溶解在溶剂中,形成环化剂溶液,溶剂可以采用制备乙酰乙酰胺-N-磺酸三乙胺盐的惰性有机溶剂,可以选用与其相同或不同的溶剂,最好与其相同,如二氯甲烷。溶剂对三氧化硫具有稳定作用,使得三氧化硫不易逸出,从而环化反应正向进行。
使上述得到的中间体溶液与环化剂溶液进行磺化环合反应,得到以磺化环合产物为主产物的溶液。该步反应为放热反应,最好在较低的温度下进行,为了增强反应可控性,不至于使得局部反应过于激烈,可以将环化剂溶液逐渐滴入到中间体溶液中,并伴随搅拌,获得磺化环合产物溶液,其中环合产物为安赛蜜的前驱体。
在本申请的一些实施例中,在水解步骤之前还包括:向磺化环合产物中加入硫酸,以除去其中过量的弱碱性无机物。该步骤为可选步骤,若弱碱性无机物的加量过大,可采用该步骤进行调整。
水解步骤S130:在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液。
环合产物经水解后为安赛蜜的前驱体ASH,不同于传统工艺上采用酸性溶液进行水解反应,本申请采用水解剂,水解剂能够缩短水解时间,伴随着水解时间降低的是水解可能产生的杂质含量的减少。在本申请的一些实施例中,水解剂为水或者乙醇水溶液,显著减少了环化产物ASH中杂质的含量,降低了后续安赛蜜提纯的难度,减少了安赛蜜提纯的成本。
成盐步骤S140:在水解产物溶液的有机相中加入成盐剂,进行成盐反应,得到乙酰磺胺酸钾。
在现有技术中,在将磺化环合产物水解后,通常用氢氧化钾或氢氧化钾水溶液与水解产物进行成盐反应,从而获得乙酰磺胺酸钾(ASK)。所谓成盐反应是指氢氧化钾的阳离子与水解产物的阴离子进行交换,生成乙酰磺胺酸的钾盐的过程。
在本申请中,采用成盐剂代替传统的氢氧化钾或氢氧化钾水溶液进行成盐反应,无机杂质包括但不限于氟化钾、硫酸钾等均不溶解于乙醇钾的乙醇溶液,有机相中的磺化环合产物在与成盐剂的反应过程中,无机杂质均溶解在水相中,不会带入到终产物乙酰磺胺酸钾中;另外,使用成盐剂去中和乙酰磺胺酸钾对应的酸ASH,在这个过程中,有利地减少了可能的乙酰乙酰胺和乙酰磺胺酸钾的氯化物,从而在成盐过程中,从源头上阻断了无机杂质的来源,从而提高了终产物乙酰磺胺酸钾的纯度,并简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本。在本申请的一些实施例中,成盐剂包括但不限于氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液。
综上所述,本申请采用弱碱性无机物对制备安赛蜜的中间体乙酰乙酰胺-N-磺酸三乙胺盐溶液进行预处理,一方面去除了残留于终产物安赛蜜中的酸性催化剂; 另一方面弱碱性无机物提供的反应环境,抑制了副产物的生成,提供安赛蜜产品的纯度;且能够显著提高安赛蜜收率,降低了安赛蜜的生成成本。
弱碱性无机物的种类和用量
本申请对弱碱性无机物的种类不作限制,凡是能够中和酸性催化剂且能为后续反应提供碱性反应环境即可,在本申请的一些实施例中,弱碱性无机物为碳酸钾。
由于碳酸钾的阴离子在反应后会分解生成气态物质,阳离子是后续成盐反应所需要的,因此不会产生额外需要处理的粒子,作为本申请的一种优选方案。
本申请对弱碱性无机物的用量不作限制,可以将弱碱性无机物在搅拌的条件下,逐渐加入到乙酰乙酰胺-N-磺酸三乙胺盐溶液中,并通过测试pH值确定何时停止加入弱碱性无机物。考虑到经济和效果的因素,在本申请的一些实施例中,弱碱性无机物与双乙烯酮的摩尔用量的比为0.6-0.8:1,在另一些实施例中为0.65-0.75:1。
成盐剂的种类和用量
在本申请的一些实施例中,在成盐步骤中,成盐剂为氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液。
在本申请中,对氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液的用量不作限制,可根据制备磺化环合产物溶液采用的原料用量确定即可,可按照转化率为100%的理论值进行计算。进一步的,对氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液中,对乙醇钾的质量分数不作限制,在本申请的另一些实施例中,乙醇钾的质量分数可以为10%-80%。
本实施例通过将采用乙醇钾的乙醇溶液代替传统的氢氧化钾或氢氧化钾水溶液与磺化环合产物溶液的有机相进行成盐反应,进一步的,在本申请的一些实施例中,可对得到的固体产物采用乙醇洗涤,可极大程度上降低乙酰磺胺酸钾粗产品中无机杂质的含量,显著提高终产物乙酰磺胺酸钾的纯度;简化了后续对乙酰磺胺酸钾粗产品的工艺,降低了对乙酰磺胺酸钾粗产品进行提纯的成本。
水解剂的种类和用量
在本申请的一些实施例中,在上述方法中,水解剂为去离子水或乙醇水溶液,最好为乙醇的水溶液,其中,在乙醇水溶液中,乙醇的质量浓度最好为30~65%。发明人经过大量的实验,使用水解剂,尤其是乙醇的水溶液并控制水解剂中水的含量,可以明显地减少安赛蜜前驱体ASH中杂质的含量,降低了后续安赛蜜提纯的 难度,减少了安赛蜜提纯的成本。
对于水解剂的用量,本申请不作限制,水解剂的用量可以根据三氧化硫的用量来确定,具体的,在本申请的一些实施例中,三氧化硫的用量与水解剂中水的含量的物质的量的比为1:1-4,在另一些实施例中,为1:1-1.5。也就是说水解剂中水的物质的量最好高于三氧化硫的物质的量。
乙酰乙酰胺-N-磺酸三乙胺盐溶液的制备
在本申请的一些实施例中,乙酰乙酰胺-N-磺酸三乙胺盐溶液可采用现有技术中的任意一种或几种的组合制得,也可以是通过下述方法制得:在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液。
乙酰乙酰胺-N-磺酸三乙胺盐溶液的制备可更细致地分为两个小步骤,首先,是氨基磺酸铵盐的制备,然后利用氨基磺酸铵盐与双乙烯酮反应制备中间体,即乙酰乙酰胺-N-磺酸三乙胺盐。
氨基磺酸铵盐采用的是在氨基磺酸溶液中加入三乙胺,进行胺化反应获得。具体的,在本申请的一些实施例中,在氨基磺酸溶解在第一溶剂中,配置成第一反应液;将三乙胺溶于第二溶剂,配置成第二反应液,将第二反应液加入第一反应液中进行胺化反应,形成氨基磺酸铵盐溶液。第一溶剂和第二溶剂是能够为胺化反应提供反应环境的惰性有机溶剂,如二氯甲烷。氨基磺酸和三乙胺放热反应,在反应过程中,产生的热量会将部分二氯甲烷汽化,汽化后的二氯甲烷会离开反应体系将产热带走,进一步地,汽化后的二氯甲烷也可循环利用。
在第一反应液与第二反应液混合的时候,最好将第二反应液逐渐滴入第一反应液,这样能够使得反应更加充分,不会造成局部反应物浓度过大,反应程度过于剧烈。
以下给出一种生成氨基磺酸铵盐溶液的具体实施方式,该实施方式仅作为示例性说明,氨基磺酸铵盐溶液的具体生产工艺可采用现有技术中的任意一种。按照预设的氨基磺酸、第一二氯甲烷、三乙胺和第二二氯甲烷的用量比准确称料,打开反应度的计量槽阀门向干燥的反应釜中加入第一二氯甲烷,启动搅拌及循环泵;从投料孔投入氨基磺酸。关闭循环阀门,打开送料阀门,将溶料釜中混合物料送至干燥的合成釜中,利用循环水降温,待反应釜温度降至室温(约20至25℃),得到第 一反应液。
同上述过程,得到三乙胺溶于二氯甲烷的第二反应液。
将第二反应液滴加入第一反应液中,滴加结束时,pH值为7-9,静置反应1小时,上述反应完毕的物料为氨基磺酸铵盐溶液。
在得到氨基磺酸溶液后,将氨基磺酸溶液与双乙烯酮反应,得到乙酰乙酰胺-N-磺酸三乙胺盐,作为制备安赛蜜的中间体。
现有技术中,氨基磺酸溶液与双乙烯酮反应是在乙酸的环境中进行的,在后续步骤中,乙酸很难从最终产物安赛蜜中被完全除去,残留在安赛蜜中的乙酸不仅会使安赛蜜成色不佳,颜色呈现出棕黄色,需要增加处理工艺步骤,这样会带来额外的处理成本。
在本申请中,采用固态酸性催化剂代替传统的乙酸有效地克服了这个问题。固态酸性催化能够为酰化反应提供足够的酸性位点,一方面能够有效地催化氨基磺酸铵盐和双乙烯酮酰化反应的顺利进行,另一方面,固态酸性催化加不会混合到反应产物中,后续不用特殊的处理工艺,节约了后处理经济和时间成本;且避免了现有技术中没有除掉的乙酸杂质留存在最终产物中对最终产物的品相造成的不利影响。
为了提高双乙烯酮的闪点,将双乙烯酮溶于第三溶剂中,配置成第三反应液,第三溶剂是能够为胺化反应提供反应环境的惰性有机溶剂,如二氯甲烷等。在反应器中装填固态酸性催化剂,依次向反应器加入氨基磺酸铵盐溶液和第三反应液,在预设条件下反应,形成乙酰乙酰胺-N-磺酸三乙胺盐溶液作为中间体溶液。
为了实现反应的连续性,在本申请的一些实施例中,可以选择连续反应器来实现本申请,如固定床反应器、连续搅拌釜反应器或微通道反应器等。这里以固定床反应器为例,简要说明反应过程。
在固定床反应器中装填固态酸性催化剂作为催化剂,将固定床反应器设置为预设的工作状态,先向固定床反应器通入氨基磺酸铵盐溶液,待氨基磺酸铵盐溶液正常流动后,然后再同向通入第三反应液,通过控制二者的流速,使得二者接触时间在预设条件内,同时,通过控制固定床反应器的换热装置,使得反应温度也在预设条件内,待达到预设反应时长,即可结束反应,得到产物乙酰乙酰胺-N-磺酸三乙胺盐溶液。由于固定床反应器的特点,使得本反应能够连续不断进行,适合大规模的工业生产。
固态酸性催化剂的种类和用量
在本申请的一些固态酸性催化剂为分子筛催化剂或固态超强酸催化剂。其中,分子筛催化剂为HZSM-5分子筛和/或Na-ZSM-5分子筛;固态超强酸催化剂为SO 4 2-/Fe 2O 3型催化剂。
本申请对固态酸性催化剂的用量不作限制,可根据选用的反应器的类型和规格确定。
对于上述其他未提及的反应物料的用量以及反应条件,均可参考现有技术,如在中国专利文献CN112142687A中,氨基磺酸和双乙烯酮的摩尔比例n(氨基磺酸):n(双乙烯酮):n(三乙胺)=1:1.0-3.0:1.0-4.0;酰化反应温度为-40至15℃;其滴加时间10min-300min;其反应时间1-15h等。
乙酰乙酰胺-N-磺酸三乙胺盐溶液的制备:
胺化反应步骤:将98kg氨基磺酸和第一二氯甲烷以摩尔比为1:6的比例溶解,控制溶解温度约为20至25℃,获得氨基磺酸的二氯甲烷溶液,即第一反应液。溶解可以在连续混合装置中,也可以在反应釜中。
将三乙胺和第二二氯甲烷以摩尔比为1:1的比例溶解,控制溶解的温度为10至30℃,得到第二反应液,其中,氨基磺酸和三乙胺的质量比为1:1.2。将第二反应液逐渐滴加在第一反应液所在的反应釜中进行混合搅拌,控制体系温度为20至30℃,并控制体系呈弱碱性,混合均匀后,即得到氨基磺酸铵盐溶液。
酰化反应步骤:将双乙烯酮和第三二氯甲烷以摩尔比为1:1.5的比例溶解,控制溶解的温度为10至20℃,得到第三反应液。
将固体超强酸催化剂安装至固定床反应器后,启动固定床反应器,调节循环水使循环水工作正常。
将氨基磺酸铵盐溶液通入固定床反应器内,在氨基磺酸铵盐溶液正常流动后,将第三反应液与氨基磺酸铵盐溶液同向通入固定床反应器内,控制氨基磺酸铵盐溶液和第三反应液的量,使得氨基磺酸和双乙烯酮摩尔比为1:1.1。在反应开始后,尽量调低冷却水温度,反应体系的温度控制在20至35℃;随着催化剂性能的衰退,温度在控制范围内可以略微升高。
控制氨基磺酸铵盐溶液和双乙烯酮的流速,使得反应时间控制在100秒左右。得到目标产物乙酰乙酰胺-N-磺酸三乙胺盐溶液。
在本申请中各实施例和对比例的乙酰乙酰胺-N-磺酸三乙胺盐溶液如无特别说 明,均采用上述方法制得,如有特殊说明,遵循特殊说明。
实施例1(实施例1A、实施例1B、实施例1C、实施例1D、实施例1E、实施例1F)
预处理步骤:采用不同用量比的碳酸钾对乙酰乙酰胺-N-磺酸三乙胺盐溶液进行处理,得到中间体溶液。
磺化环合步骤:将三氧化硫溶解在溶剂中,形成环化剂溶液;使中间体溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;
水解步骤:在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液;和
成盐步骤:在水解产物溶液的有机相中加入氢氧化钾的乙醇溶液,进行成盐反应,得到乙酰磺胺酸钾。各实施例中,只有碳酸钾与双乙烯酮摩尔比不同,其他条件均保持一致。实验结果见表1。
对比例1
没有预处理步骤。
磺化环合步骤:将三氧化硫溶解在溶剂中,形成环化剂溶液;使乙酰乙酰胺-N-磺酸三乙胺盐溶液与环化剂溶液进行磺化环合反应,得到磺化环合产物;
水解步骤:在磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液;和
成盐步骤:在水解产物溶液的有机相中加入氢氧化钾的乙醇溶液,进行成盐反应,得到乙酰磺胺酸钾。在对比例中,没有预处理步骤,其他条件均与实施例1保持一致。实验结果见表1。
表1:
Figure PCTCN2021097013-appb-000001
Figure PCTCN2021097013-appb-000002
注:表1中乙酰磺胺酸钾的收率是以用于生产乙酰乙酰胺-N-磺酸三乙胺盐溶液的双乙烯酮计。
从表1可以看出,采用碳酸钾对乙酰乙酰胺-N-磺酸三乙胺盐溶液进行处理的实施例1,相对于没有采用碳酸钾进行处理的对比例1来说,安赛蜜收率高出约6-10个百分点,同时有机物杂质含量明显低于对比例。
综上所述,本申请采用弱碱性无机物对制备安赛蜜的中间体乙酰乙酰胺-N-磺酸三乙胺盐溶液进行预处理,一方面去除了残留于终产物安赛蜜中的酸性催化剂;另一方面弱碱性无机物提供的反应环境,抑制了副产物的生成,提供安赛蜜产品的纯度;且能够显著提高安赛蜜收率,降低了安赛蜜的生成成本。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (10)

  1. 一种乙酰磺胺酸钾的制备方法,其特征在于,包括:
    预处理步骤:将乙酰乙酰胺-N-磺酸三乙胺盐溶液采用弱碱性无机物进行处理,得到中间体溶液;
    磺化环合步骤:将三氧化硫溶解在溶剂中,形成环化剂溶液;使所述中间体溶液与所述环化剂溶液进行磺化环合反应,得到磺化环合产物;
    水解步骤:在所述磺化环合产物溶液中加入水解剂,进行水解反应,得到水解产物溶液;和
    成盐步骤:在所述水解产物溶液的有机相中加入成盐剂,进行成盐反应,得到乙酰磺胺酸钾。
  2. 根据权利要求1所述的方法,其特征在于,所述弱碱性无机物为碳酸钾。
  3. 根据权利要求1或2所述的方法,其特征在于,弱碱性无机物与双乙烯酮的摩尔用量的比为0.6-0.8:1,优选为0.65-0.75:1。
  4. 根据权利要求1所述的方法,其特征在于,在所述成盐步骤中,所述成盐剂为氢氧化钾的乙醇溶液或乙醇钾的乙醇溶液。
  5. 根据权利要求1所述的方法,其特征在于,在所述水解步骤之前还包括:
    向所述磺化环合产物中加入硫酸,以除去其中过量的弱碱性无机物。
  6. 根据权利要求1所述的方法,其特征在于,所述水解剂为乙醇水溶液,其中,所述乙醇水溶液中乙醇的质量分数为30-65%。
  7. 根据权利要求1所述的方法,其特征在于,所述三氧化硫的摩尔质量与所述水解剂中水的摩尔质量的比为1:1-1.5。
  8. 根据权利要求1所述的方法,其特征在于,所述乙酰乙酰胺-N-磺酸三乙胺盐溶液是通过下述方法制得的:
    在氨基磺酸溶液中加入三乙胺,进行胺化反应,生成氨基磺酸铵盐溶液;向得到的氨基磺酸铵盐溶液加入双乙烯酮,在固态酸性催化剂的作用下,进行酰化反应,得到乙酰乙酰胺-N-磺酸三乙胺盐溶液。
  9. 根据权利要求8所述的方法,其特征在于,所述固态酸性催化剂为分子筛催化剂或固态超强酸催化剂。
  10. 根据权利要求9所述的方法,其特征在于,所述分子筛催化剂为HZSM-5 分子筛和/或Na-ZSM-5分子筛;所述固态超强酸催化剂为SO 4 2-/Fe 2O 3型催化剂。
PCT/CN2021/097013 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法 WO2022246865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001422.9A CN113454075A (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法
PCT/CN2021/097013 WO2022246865A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097013 WO2022246865A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Publications (1)

Publication Number Publication Date
WO2022246865A1 true WO2022246865A1 (zh) 2022-12-01

Family

ID=77819503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097013 WO2022246865A1 (zh) 2021-05-28 2021-05-28 乙酰磺胺酸钾的制备方法

Country Status (2)

Country Link
CN (1) CN113454075A (zh)
WO (1) WO2022246865A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411693A (zh) * 2012-06-08 2015-03-11 鹿特诺瓦营养品和食品有限公司 用于生产乙酰磺胺酸钾的方法
CN111377882A (zh) * 2018-12-30 2020-07-07 南通醋酸化工股份有限公司 一种连续化生产安赛蜜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410439A1 (de) * 1984-03-22 1985-09-26 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-on-2,2-dioxid und dessen nichttoxischen salzen sowie der dabei als zwischenprodukt(e) auftretenden acetoacetamind-n-sulfonsaeure(salze)
DE3531359A1 (de) * 1985-09-03 1987-03-12 Hoechst Ag Verfahren zur herstellung von 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-on-2,2-dioxid sowie zu dessen reinigung
CN1115340C (zh) * 1999-12-17 2003-07-23 刘纪才 乙酰磺胺酸及其盐类的合成方法
CN103450114B (zh) * 2013-08-19 2015-09-02 苏州浩波科技股份有限公司 5-氯-6-甲基-1,2,3-氧噁嗪-4(3h)-酮-2,2-二氧化物的合成方法
LT3317260T (lt) * 2016-09-21 2020-01-27 Celanese International Corporation Acesulfamo kalio kompozicijos ir jų gamybos būdai
CN107835807A (zh) * 2016-09-21 2018-03-23 国际人造丝公司 乙酰舒泛钾组合物和其生产方法
CN112110876A (zh) * 2020-09-26 2020-12-22 安徽金禾实业股份有限公司 一种安赛蜜生产中连续磺化环合的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104411693A (zh) * 2012-06-08 2015-03-11 鹿特诺瓦营养品和食品有限公司 用于生产乙酰磺胺酸钾的方法
CN111377882A (zh) * 2018-12-30 2020-07-07 南通醋酸化工股份有限公司 一种连续化生产安赛蜜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Inorganic and Analytical Chemistry Experiments", 28 February 2007, HIGHER EDUCATION PRESS, CN, ISBN: 978-7-04-020551-0, article NI, JINGAN ET AL: "Experiment 89: Preparation and Characterization of Solid Superacid", pages: 1 - 3, XP009543004 *
MA QIANLI; SUO YANHUA; MENG FANLONG; ZHANG WEI; WANG YINGJUN: "Research Advance in Modification and Application of SO42-/MxOy Solid Superacid Catalyst", INDUSTRIAL CATALYSIS, vol. 22, no. 2, 31 December 1996 (1996-12-31), China , pages 85 - 91, XP009541276, ISSN: 1008-1143, DOI: 10.3969/j.issn.1008-1143.2014.02.002 *
X. DUAN ET AL.: "Synthesis of Acesulfame Potassium", FINE CHEMICALS, vol. 13, no. 5, 1 January 1996 (1996-01-01), pages 22 - 24, XP055436957, ISSN: 1003-5214, DOI: 10.13550/j .jxhg.1996.05.007 *

Also Published As

Publication number Publication date
CN113454075A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN113454056B (zh) 乙酰乙酰胺-n-磺酸三乙胺盐的制备方法
WO2022246867A1 (zh) 乙酰磺胺酸钾的制备方法
US20240083862A1 (en) Method for preparing acesulfame potassium
WO2022246869A1 (zh) 乙酰磺胺酸钾的制备方法
WO2021000429A1 (zh) 一种用于制备高纯度牛磺酸的催化剂及其应用
WO2022246865A1 (zh) 乙酰磺胺酸钾的制备方法
JP4426104B2 (ja) ヒドロキシメチルチオ酪酸の製造方法
CN113454071B (zh) 乙酰磺胺酸钾的制备方法
CN108017561A (zh) 一种精制卡谷氨酸的方法
CN102409354A (zh) 一种2-吡啶甲酸的电解合成方法
CN102627589A (zh) 一种两步合成制备4-异丙基苯磺酰氯的方法和工艺
WO2022246862A1 (zh) 乙酰磺胺酸钾组合物
CN108003070B (zh) 一种h酸生产中磺化的方法
JPS6317057B2 (zh)
CN108558710B (zh) 一种n,n-二丁基间氨基苯酚的制备方法
CN113454060B (zh) 乙酰乙酰胺-n-磺酸三乙胺盐的制备方法
CN1191013C (zh) 杀虫单铵新农药及生产工艺
CN104529807B (zh) 一种n‑氯乙酰‑l‑谷氨酰胺的制备方法
CN111689881B (zh) 一种阿佐塞米中间体的合成方法
SU1370078A1 (ru) Способ получени раствора сульфата титана (1у)
CN113773212B (zh) 一种连续化制备亚氨基二乙酸钠盐的方法及其应用
CN114702410B (zh) 一种胍基乙酸的制备方法
SU1698239A1 (ru) Способ получени аммонийно-магниевого удобрени
US2724724A (en) Preparation of concentrated solutions of alkylchlorophenoxyacetates
JPH10259170A (ja) アミノポリカルボン酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942436

Country of ref document: EP

Kind code of ref document: A1