WO2021000429A1 - 一种用于制备高纯度牛磺酸的催化剂及其应用 - Google Patents

一种用于制备高纯度牛磺酸的催化剂及其应用 Download PDF

Info

Publication number
WO2021000429A1
WO2021000429A1 PCT/CN2019/106822 CN2019106822W WO2021000429A1 WO 2021000429 A1 WO2021000429 A1 WO 2021000429A1 CN 2019106822 W CN2019106822 W CN 2019106822W WO 2021000429 A1 WO2021000429 A1 WO 2021000429A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst
sodium
carbon atoms
taurine
Prior art date
Application number
PCT/CN2019/106822
Other languages
English (en)
French (fr)
Inventor
孙华君
杨尚金
江汝泳
郭晨
钱志强
Original Assignee
湖北远大生命科学与技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北远大生命科学与技术有限责任公司 filed Critical 湖北远大生命科学与技术有限责任公司
Publication of WO2021000429A1 publication Critical patent/WO2021000429A1/zh
Priority to US17/369,963 priority Critical patent/US11305267B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0225Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/04Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups
    • C07C303/06Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups by reaction with sulfuric acid or sulfur trioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids

Definitions

  • the invention relates to the technical field of catalysts, in particular to a catalyst for preparing taurine and its application.
  • Taurine is a sulfamic acid, which is naturally produced by most mammals, and is an important component of human and animal nutrition. Therefore, taurine is often added to various foods, including infant formula, energy drinks, and pet food.
  • the process includes three reaction steps:
  • sodium isethionate not only produces sodium taurate, but also produces a small amount of by-product sodium N,N-diaminoethanesulfonate (DD26023). Under high pressure, the sodium isethionate cannot be completely converted into sodium taurate, and the unreacted sodium isethionate still exists in the taurine mother liquor in free form.
  • DD26023 sodium N,N-diaminoethanesulfonate
  • the present invention provides a catalyst for preparing high-purity taurine and a method for preparing high-purity taurine, which can significantly reduce the amount of ammonia and increase the yield and purity of taurine, thereby Significantly reduce the cost of preparation.
  • the catalyst of the present invention is added in the ammonolysis step of preparing taurine.
  • the structure of the catalyst is similar to sodium N,N-diaminoethanesulfonate. In the ammonolysis reaction, adding this catalyst can significantly improve the ammonolysis. Yield, inhibit the generation of impurities, and reduce the amount of ammonia; and the catalyst provided by the present invention has the advantages of being cheap and easy to obtain, stable in physical properties, and easy to separate from the product.
  • the method for preparing taurine according to the present invention is easy to operate, easy to obtain raw materials, high yield, and can be used for industrial production, and the use of catalyst does not affect product quality, and the purity of the taurine can be as high as 98% or more. .
  • the catalyst provided by the present invention has a structure as shown in general formula I or a salt thereof:
  • R 1 and R 2 are independently selected from alkyl, alkenyl, alkynyl, alkoxy, benzyl, mercapto, thioether, aryl, heteroaryl, amino, amido, imido, cyano
  • R 1 and R 2 are independently selected from alkyl, alkenyl, alkynyl, alkoxy, benzyl, mercapto, thioether, aryl, heteroaryl, amino, amido, imido, cyano
  • the alkyl group refers to a C1-C18 (preferably C1-C12, more preferably C1-C6) linear or branched saturated hydrocarbon group, especially preferably the alkyl group is selected from methyl, ethyl, 1- Propyl or n-propyl ("n-Pr"), 2-propyl or isopropyl ("i-Pr"), 1-butyl or n-butyl ("n-Bu”), 2-methyl -1-propyl or isobutyl ("i-Bu”), 1-methylpropyl or sec-butyl (“s-Bu”), 1,1-dimethylethyl or tert-butyl (“ t-Bu”));
  • the alkynyl group is selected from linear or branched alkynyl groups containing at least one C ⁇ C triple bond and 2 to 12 carbon atoms, preferably linear or branched chain containing at least one C ⁇ C triple bond and 2 to 8 carbon atoms.
  • Branched alkynyl more preferably ethynyl, propynyl, butynyl;
  • the alkoxy group is selected from C1-C6 linear or branched alkoxy groups, preferably methoxy, ethoxy, propoxy, and isopropoxy;
  • the thioether group is selected from the group consisting of methyl sulfide, dimethyl sulfide, and ethyl sulfide;
  • the aryl group is selected from phenyl or substituted phenyl, and the substituted phenyl means that at least one hydrogen on the benzene ring is selected from its isotope, halogen, cyano, nitro, carboxyl, ester, unsubstituted or substituted
  • the substituted benzene ring is selected from 4-methylphenyl, 4-methoxyphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-trifluoromethyl Phenyl, 4-bromophenyl, 3-fluorophenyl, 3-chlorophenyl, 4-trifluoromethoxyphenyl, 4-cyanophenyl, 2-fluorophen
  • the heteroaryl group is selected from a 5- to 7-membered monocyclic aromatic ring or an 8- to 12-membered bicyclic aromatic ring containing at least one heteroatom, the heteroatom is selected from N, O or S, and the rest are carbon; preferably
  • the heteroaryl group is selected from pyrrolyl, thienyl, indolyl, and benzofuranyl;
  • the amido group is selected from C1-C18 linear or branched alkyl substituted amido groups, preferably formamide and acetamide;
  • the imido group is selected from C1-C18 linear or branched alkyl substituted imido groups, preferably formimide and acetimide;
  • the carbonyl group is selected from alkoxycarbonyl, preferably methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl and butoxycarbonyl;
  • the ester group is selected from C1-C18 linear or branched alkyl substituted ester groups or aryl ester groups or carboxylate groups, preferably formyloxy, acetoxy, isopropyl acyloxy, N-propyl acyloxy, allyl acyloxy, cyclopropyl acyloxy, n-butyl acyloxy, isobutyl acyloxy, sec-butyl acyloxy, tert-butyl acyloxy, n Pentyl acyloxy, isopentyl acyloxy, n-hexyl acyloxy, isohexyl acyloxy; the aryl ester group includes any one of phenyl acyloxy and tolyl acyloxy;
  • the carboxylic acid ester group is selected from the group consisting of carbethoxy group, methyl ester group, n-propyl ester group, isopropyl ester group,
  • X is selected from H, the first main group or the second main group metal element; wherein, the first main group metal element is preferably selected from lithium, sodium or potassium; the second main group metal element is selected from magnesium, calcium or barium.
  • the present invention proposes the following four types of structures or their salts, see general formula II-general formula V:
  • R 3 and R 4 are each independently selected from hydrogen, saturated or unsaturated alkyl or alkoxy having 1-20 carbon atoms.
  • R 3 and R 4 are the same or different, Each is independently selected from hydrogen or saturated or unsaturated alkyl groups having 1-10 carbon atoms; more preferably, R 3 and R 4 are both hydrogen or methyl.
  • X is selected from H, the first main group or the second main group metal element; wherein, the first main group metal element is preferably selected from lithium, sodium or potassium; the second main group metal element is selected from magnesium, calcium or barium.
  • This type of catalyst has the advantage of good catalytic effect and easy separation.
  • the catalyst represented by the above general formula II is preferably
  • R 5 and R 6 are the same or different, and are each independently selected from saturated or unsaturated alkyl groups having 1 to 18 carbon atoms; preferably, R 5 and R 6 are the same or different, and are each independently selected from carbon atoms Saturated alkyl having 1-12; more preferably saturated alkyl having 8-12 carbon atoms.
  • X is selected from H, the first main group or the second main group metal element; wherein, the first main group metal element is preferably selected from lithium, sodium or potassium; the second main group metal element is selected from magnesium, calcium or barium.
  • This type of catalyst has the advantages of good solubility and easy separation.
  • the catalyst represented by the above general formula III is preferably
  • R 7 is selected from hydrogen, saturated or unsaturated alkyl or alkoxy with 1-20 carbon atoms, preferably selected from hydrogen or saturated or unsaturated alkyl with 1-10 carbon atoms; more preferably Hydrogen or methyl.
  • X is selected from H, the first main group or the second main group metal element; wherein, the first main group metal element is preferably selected from lithium, sodium or potassium; the second main group metal element is selected from magnesium, calcium or barium.
  • This type of catalyst has the advantages of good catalytic effect, easy separation and high product yield.
  • the catalyst represented by the above general formula IV is preferably
  • R 8 is selected from hydrogen or saturated or unsaturated alkyl having 1-18 carbon atoms;
  • X is selected from H, a metal element of main group 1 or main group 2, and is preferably H;
  • R 8 is selected from saturated or unsaturated alkyl groups with 1-12 carbon atoms; preferably methyl, ethyl or dodecyl.
  • This type of catalyst has the advantages of good solubility and good catalytic effect .
  • the catalyst represented by the above general formula V is preferably N-dodecyl-N,N-diethanesulfonic acid amine.
  • the salt is a sodium salt; more preferably, sodium N,N-disubstituted benzyl ethanesulfonate, sodium N,N-dialkyl ethanesulfonate, and N-substituted benzyl
  • the present invention proposes for the first time that the above compound is used as a catalyst for the preparation of taurine.
  • the provided catalyst has a secondary amine structure similar to sodium N,N-diaminoethanesulfonate, such as N,N-disubstituted benzylaminoethanesulfonic acid , N,N-disubstituted aminoethanesulfonic acid, N-substituted benzyl-N,N-diethanesulfonic acid amine, N-alkyl-N,N-diethanesulfonic acid amine, etc.
  • the present invention also provides a method for preparing high-purity taurine, which uses the above-mentioned catalyst in the ammonolysis process.
  • the impurity content of sodium N,N-diaminoethanesulfonate can be reduced from the source, the conversion rate of sodium isethionate can be increased, and the yield of sodium taurate can be improved.
  • the method includes the following steps:
  • S2 is specifically:
  • the sodium isethionate obtained in S1 is mixed with ammonia, and one or more catalysts of the present invention are added to obtain a reaction solution.
  • the ammonolysis reaction is carried out at high temperature and high pressure. After the reaction is completed, the reaction solution is removed by flash evaporation. A large amount of excess ammonia is discharged, and then through evaporation, the remaining ammonia and excess water are discharged, and the ammonia discharged through the flashing and evaporation steps is recycled as the raw material for the ammonolysis reaction.
  • S3 is specifically:
  • the taurine is separated from the unreacted sodium isethionate and the catalyst to obtain the product taurine solid.
  • sodium isethionate as a raw material is commercially available, or can be prepared by conventional methods in the art, for example, by combining ethylene oxide with hydrogen sulfite It is prepared by sodium reaction, which is not particularly limited in this application.
  • the molar amount of the catalyst relative to the sodium isethionate is 0.1-15%; more preferably 5-10%. At this amount, it has the advantages of good catalytic effect and completely inhibiting the formation of impurities.
  • the molar ratio of the ammonia to the sodium isethionate is 0.1-50:1; preferably 6-8:1 (especially 8:1). Under this molar ratio, the advantage of being able to improve the yield and quality of taurine.
  • the ammonia is provided in the form of ammonia water, and the concentration of the ammonia water is 20-35%, preferably 25-35%.
  • the reaction time of the ammonolysis reaction is 0.1-40h; preferably 1.5-2h.
  • the acid used in the direct acidification method includes organic acid and inorganic acid, as well as various acid gases and acidic polymer compounds.
  • the ion exchange acidification method includes a cation exchange method, an anion exchange method, and an anion-cation combined exchange method;
  • the electrolysis/electroosmotic acidification method includes a direct electrolysis method, an electrodialysis method, and a bipolar membrane electrodialysis method.
  • the method of the present invention further includes a step of recovering excess ammonia, that is, the ammonia recovered in the flashing and evaporation steps can be recovered and used in the next batch of ammonolysis reactions.
  • the recovery can be carried out by conventional methods in the field, and this application is not specifically limited.
  • the method of the present invention further includes a step of separating unreacted sodium isethionate and catalyst from taurine.
  • the separation can be performed by conventional methods in the field, and this application is not specifically limited.
  • the method for preparing taurine according to the present invention has simple operation, easy-to-obtain raw materials, high yield, and can be used for industrial production, and the purity of the prepared taurine can be as high as 98%.
  • Figure 1 is a process flow diagram for the preparation of taurine.
  • This example provides a catalyst (N,N-dibenzylaminoethanesulfonic acid) for the preparation of taurine.
  • the catalyst is prepared by the following method:
  • This embodiment provides a catalyst N-benzyl-N,N-diethanesulfonic acid amine for preparing taurine, and the catalyst is prepared by the following method:
  • Example 3 Using N,N-didodecylaminoethanesulfonic acid as a catalyst, the results of the ammonolysis reaction at different times
  • This experimental example explored the effect of adding N,N-didodecyl ethanesulfonic acid as a catalyst at different times on the ammonolysis reaction.
  • the specific example of this experiment is: dissolving sodium isethionate (0.5mol, 74.06g) in 200mL 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N,N-didodecylaminoethanesulfonate Acid (0.05mol, 23.09g), sealed in a 1L autoclave, heated to 220°C, after a different time of reaction, pass in cold water to terminate the reaction, and the reaction solution is directly inspected to determine the content of each component.
  • Table 1. The results are shown in Table 1. .
  • Example 4 Using N,N-didodecylaminoethanesulfonic acid as a catalyst, the results under different amounts of ammonia
  • This experimental example explores the effect of adding N,N-didodecylaminoethanesulfonic acid as a catalyst to the ammonolysis reaction at different amounts of ammonia.
  • the specific example of this experiment is: dissolving sodium isethionate (0.5mol, 74.06g) in different amounts of 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N,N-didodecyl Aminoethanesulfonic acid (0.05mol, 23.09g), sealed in a 1L autoclave, heated to 220°C, reacted for 2h, then passed in cold water to terminate the reaction, the reaction solution was directly checked to determine the content of each component, the results are shown in the table 2.
  • Example 5 Using N,N-dibenzylaminoethanesulfonic acid as a catalyst, the results of the ammonolysis reaction at different reaction times
  • This experimental example explores the effect of adding N,N-dibenzyl ethanesulfonic acid as a catalyst to the ammonolysis reaction at different times.
  • the specific example of this experiment is: dissolving sodium isethionate (0.5mol, 74.06g) in 200mL 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N,N-dibenzylaminoethanesulfonic acid (0.05mol, 15.26g), sealed in a 1L autoclave, heated to 220°C, after a different time of reaction, pass in cold water to terminate the reaction, and the reaction solution is directly inspected to determine the content of each component.
  • Table 3 The results are shown in Table 3.
  • Example 6 The results of the ammonolysis reaction with different ammonia ratios using N,N-dibenzyl ethanesulfonic acid as a catalyst
  • This experimental example explores the effect of adding N,N-dibenzyl ethanesulfonic acid as a catalyst to the ammonolysis reaction under different molar ratios of ammonia to sodium isethionate.
  • This experimental example is specifically: dissolving sodium isethionate (0.5mol, 74.06g) in different amounts of 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N,N-dibenzylamino ethyl Sulfuric acid (0.05mol, 15.26g), sealed in a 1L autoclave, heated to 220°C, reacted for 2h, passed in cold water to terminate the reaction, and the reaction solution was directly inspected to determine the content of each component. The results are shown in Table 4.
  • Example 7 Using N-benzyl-N,N-diethanesulfonic acid amine as a catalyst, the results of the ammonolysis reaction at different reaction times
  • This experimental example explores the effect of adding N-benzyl-N,N-diethanesulfonic acid amine as a catalyst to the ammonolysis reaction at different times.
  • the specific example of this experiment is: dissolving sodium isethionate (0.5mol, 74.06g) in 200mL 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N-benzyl-N,N-diethylsulfonate Acid amine (0.05mol, 16.18g), sealed in a 1L autoclave, heated to 220°C, after different time of reaction, pass in cold water to terminate the reaction, the reaction solution is directly checked to determine the content of each component, the results are shown in the table 5.
  • Example 8 The results of the ammonolysis reaction with N-benzyl-N,N-diethanesulfonic acid amine as a catalyst and different ammonia ratios
  • This experimental example explores the effect of adding N-benzyl-N,N-diethanesulfonic acid amine as a catalyst to the ammonolysis reaction under different amounts of ammonia.
  • the specific example of this experiment is: dissolving sodium isethionate (0.5mol, 74.06g) in different amounts of 30% ammonia water, adding sodium hydroxide (0.0125mol, 5g) and N-benzyl-N,N- Ammonium diethanesulfonate (0.05mol, 16.18g), sealed in a 1L autoclave, heated to 220°C, reacted for 2h, then passed into cold water to terminate the reaction, the reaction solution was directly inspected to determine the content of each component, see the results Table 6.
  • Example 9 Catalytic results under optimal conditions using N-methyl-N,N-diethanesulfonic acid amine as catalyst
  • sodium isethionate (0.5mol, 74.06g) in 200ml of 30% ammonia water, add sodium hydroxide (0.0125mol, 5g) and N-methyl-N,N-diethanesulfonate (0.05 mol, 12.35g), sealed in a 1L autoclave, heated to 220°C, reacted for 2h, then pass in cold water to terminate the reaction, after removing excess ammonia, check the percentage of each substance in the reaction system, including sodium taurate
  • the content of sodium isethionate is 96% and the content of sodium isethionate is 4%.
  • Example 10 Using sodium N-methyl-ditaurate As a catalyst, the result of catalysis under optimal conditions.
  • the present invention provides a catalyst for the preparation of high-purity taurine.
  • the catalyst is N,N-disubstituted aminoethanesulfonic acid, which has a structure as shown in general formula I, wherein R 1 and R 2 are independent Selected from alkyl, alkenyl, alkynyl, alkoxy, benzyl, mercapto, thioether, aryl, substituted aryl, heteroaryl, substituted heteroaryl, amino, amido, imido, cyano One of group, aldehyde group, carbonyl group, carboxyl group, sulfonic acid group, substituted sulfonic acid group, and ester group.
  • the present invention also provides a method for preparing high-purity taurine.
  • the catalyst of the present invention is added in the ammonolysis step of preparing taurine, which has the effects of high yield, inhibiting the generation of impurities, and reducing the amount of ammonia; Moreover, the catalyst itself has the advantages of being cheap and easy to obtain, having stable physical properties, and being easily separated from the product.
  • the preparation method of the present invention is simple to operate, easy to obtain raw materials, high yield, and can be used for industrialized production.
  • the purity of the prepared taurine can be as high as 98%, which has good economic value and application prospects.

Abstract

本发明公开了一种用于制备高纯度牛磺酸的催化剂,所述催化剂为N,N-二取代氨基乙磺酸,其具有如通式I所示结构,其中,R 1、R 2独自的选自烷基、烯基、炔基、烷氧基、苄基、巯基、硫醚基、芳基、取代芳基、杂芳基、取代杂芳基、氨基、酰氨基、酰亚氨基、氰基、醛基、羰基、羧基、磺酸基、取代磺酸基、酯基中的一种。本发明同时公开了一种制备高纯度牛磺酸的方法,在制备牛磺酸的氨解步骤中加入本发明所述的催化剂,具有收率高、抑制杂质产生、减少氨的用量等作用;且催化剂本身具有廉价易得、物理性质稳定、容易与产物分离的优点。本发明所述制备方法操作简便,原料易得,收率高,可用于工业化生产,并且,所制得的牛磺酸纯度可高达98%以上。

Description

一种用于制备高纯度牛磺酸的催化剂及其应用 技术领域
本发明涉及催化剂技术领域,具体涉及一种用于制备牛磺酸的催化剂及其应用。
背景技术
牛磺酸是一种氨基磺酸,大多数哺乳动物均能自然产生,是人体和动物营养的重要成分。因此,牛磺酸常被添加到各种食品中,包括婴儿配方奶粉、能量饮料和宠物食品。
在过去的30年中,世界上大部分的牛磺酸均采用上世纪三十年代报道的环氧乙烷法合成牛磺酸的工艺(例如DE612994C、DE593968C、US1932907和US1999614)进行化学法合成得到。
该工艺包含三个反应步骤:
1、羟化反应
Figure PCTCN2019106822-appb-000001
2、氨解反应
Figure PCTCN2019106822-appb-000002
3、中和反应
Figure PCTCN2019106822-appb-000003
但在此工艺的氨解反应工序中,羟乙基磺酸钠除了生成牛磺酸钠之外,还会产生少量的副产物N,N-二氨基乙磺酸钠(DD26023),并且在高温高压下,羟乙基磺酸钠还不能完全转化成牛磺酸钠,未反应完的羟乙基磺酸钠仍以游离的形式存在于牛磺酸母液中。
发明内容
为解决上述技术问题,本发明提供一种用于制备高纯度牛磺酸的催化剂和制备高纯度牛磺酸的方法,可显著降低氨的用量,并且提高牛磺酸的产率及纯度,从而显著降低制备成本。
在制备牛磺酸的氨解步骤中加入本发明所述的催化剂,该催化剂的结构与N,N-二氨基乙磺酸钠相似,在氨解反应中,加入此催化剂,可显著提高氨解收率、抑制杂质产生、减少氨的用量;且本发明所提供的催化剂本身具有廉价易得、物理性质稳定、容易与产物分离的优点。本发明所述的制备牛磺酸的方法操作简便,原料易得,收率高,可用于工业化生产,并且,催化剂的使用不影响产品质量,所制得的牛磺酸纯度可高达98%以上。
具体而言,本发明提供的催化剂具有如通式I所示结构或其盐:
Figure PCTCN2019106822-appb-000004
其中,R 1、R 2独自的选自烷基、烯基、炔基、烷氧基、苄基、巯基、硫醚基、芳基、杂芳基、氨基、酰氨基、酰亚氨基、氰基、醛基、羰基、羧基、磺酸基、酯基中的一种或多种;上述基团中涉及的碳链为C1-C40的直链或支链;
优选地:所述烷基是指C1-C18(优选C1-C12,更优选C1-C6)的直链或支链的饱和烃基,尤其优选所述烷基选自甲基、乙基、1-丙基或正丙基(“n-Pr”)、2-丙基或异丙基(“i-Pr”)、1-丁基或正丁基(“n-Bu”)、2-甲基-1-丙基或异丁基(“i-Bu”)、1-甲基丙基或仲丁基(“s-Bu”)、1,1-二甲基乙基或叔丁基(“t-Bu”));
所述烯基选自包含至少一个C=C双键和2至12个碳原子的直链或支链烯基,优选包含至少一个C=C双键和2至8个碳原子的直 链或支链烯基,更优选乙烯基、丙烯基、异丙烯基;
所述炔基选自包含至少一个C≡C三键和2至12个碳原子的直链或支链炔基,优选包含至少一个C≡C三键和2至8个碳原子的直链或支链炔基,更优选乙炔基、丙炔基、丁炔基;
所述烷氧基选自C1-C6的直链或支链烷氧基,优选甲氧基、乙氧基、丙氧基、异丙氧基;
所述硫醚基选自甲硫醚基、二甲硫醚基、乙硫醚基;
所述芳基选自苯基或取代苯基,所述取代苯基是指苯环上至少一个氢被选自其同位素、卤素、氰基、硝基、羧基、酯基、未被取代或被1~3个氟原子取代的甲硫基、1-8个碳原子的烷基或烷氧基(所述烷基或烷氧基中的一个或多个氢任选被卤素取代)的取代基取代,优选所述取代苯环选自4-甲基苯基、4-甲氧基苯基、4-硝基苯基、4-氟苯基、4-氯苯基、4-三氟甲基苯基、4-溴苯基、3-氟苯基、3-氯苯基、4-三氟甲氧基苯基、4-氰基苯基、2-氟苯基、2-氯苯基、2-三氟甲氧基苯基、3,5-二氟苯基、3,5-二氯苯基、2,4-二氟苯基、2,4-二氯苯基、2,5-二氯苯基、2,5-二氟苯基、3-氯-4氟苯基、3,4-二氟苯基、3-氯-5-三氟甲基苯基或3,4,5-三氟苯基;
所述杂芳基选自至少包含一个杂原子的5至7元的单环芳香环或8元至12元的双环芳香环,所述杂原子选自N,O或S,其余为碳;优选所述杂芳基选自吡咯基、噻吩基、吲哚基、苯并呋喃基;
所述酰氨基选自由C1-C18的直链或支链的烷基取代的酰氨基,优选甲酰胺、乙酰胺;
所述酰亚氨基选自由C1-C18的直链或支链的烷基取代的酰亚氨基,优选甲酰亚胺、乙酰亚胺;
所述羰基选自烷氧基羰基,优选甲氧基羰基、乙氧基羰基、丙氧基羰基和丁氧基羰基;
所述酯基选自由C1-C18的直链或支链的烷基取代的酯基或芳基 酯基或羧酸酯基,优选甲酰氧基、乙酰氧基、异丙基酰氧基、正丙基酰氧基、烯丙基酰氧基、环丙基酰氧基、正丁基酰氧基、异丁基酰氧基、仲丁基酰氧基、叔丁基酰氧基、正戊基酰氧基、异戊基酰氧基、正己基酰氧基、异己基酰氧基;所述芳基酯基包括苯基酰氧基、甲苯基酰氧基的任一种;所述羧酸酯基选自乙酯基、甲酯基、正丙基酯基、异丙基酯基、正丁基酯基、仲丁基酯基和正己基酯基。
X选自H、第一主族或第二主族金属元素;其中,优选第一主族金属元素选自锂,钠或钾;第二主族金属元素选自镁,钙或钡。
作为尤其优选的方案,本发明提出了如下四类结构或其盐,见通式II-通式V:
Figure PCTCN2019106822-appb-000005
上述通式II结构中,R 3和R 4各自独立地选自氢、碳原子数为1-20的饱和或不饱和烷基或烷氧基,优选地,R 3和R 4相同或不同,各自独立地选自氢或碳原子数为1-10的饱和或不饱和烷基;更优选R 3和R 4均为氢或甲基。
X选自H、第一主族或第二主族金属元素;其中,优选第一主族金属元素选自锂,钠或钾;第二主族金属元素选自镁,钙或钡。
此类催化剂具有催化效果好易于分离的优势。
上述通式II所示催化剂,优选为
Figure PCTCN2019106822-appb-000006
Figure PCTCN2019106822-appb-000007
其中,R 5和R 6相同或不同,各自独立地选自碳原子数为1-18的饱和或不饱和烷基;优选地,R 5和R 6相同或不同,各自独立地选自碳原子数为1-12的饱和烷基;更优选碳原子数为8-12的饱和烷基。
X选自H、第一主族或第二主族金属元素;其中,优选第一主族金属元素选自锂,钠或钾;第二主族金属元素选自镁,钙或钡。
此类催化剂具有溶解性好,易于分离的优势。
上述通式III所示催化剂,优选为
Figure PCTCN2019106822-appb-000008
Figure PCTCN2019106822-appb-000009
Figure PCTCN2019106822-appb-000010
其中,R 7选自氢、碳原子数为1-20的饱和或不饱和烷基或烷氧基,优选选自氢或碳原子数为1-10的饱和或不饱和烷基;更优选为氢或甲基。X选自H、第一主族或第二主族金属元素;其中,优选第 一主族金属元素选自锂,钠或钾;第二主族金属元素选自镁,钙或钡。
此类催化剂具有催化效果好,易于分离,产物产量高的优势。
上述通式IV所示催化剂,优选为
Figure PCTCN2019106822-appb-000011
Figure PCTCN2019106822-appb-000012
其中,R 8选自氢或碳原子数为1-18的饱和或不饱和烷基;X选自H、第一主族或第二主族金属元素,优选为H;
优选地,R 8选自选自碳原子数为1-12的饱和或不饱和烷基;优选为甲基、乙基或十二烷基,此类催化剂具有溶解性好、催化效果好的优势。
上述通式V所示催化剂,优选为N-十二烷基-N,N-二乙磺酸胺。
本发明所提供的催化剂,优选地,所述盐为钠盐;更优选N,N-二取代苄基氨基乙磺酸钠、N,N-二烷基氨基乙磺酸钠、N-取代苄基-N,N-二乙磺酸胺的钠盐、N-烷基-N,N-二乙磺酸胺的钠盐。
本发明首次提出将上述化合物作为制备牛磺酸的催化剂,所提供的催化剂具有与N,N-二氨基乙磺酸钠类似的仲胺结构,例如N,N-二取代苄基氨基乙磺酸、N,N-二取代氨基乙磺酸、N-取代苄基-N,N-二乙磺酸胺、N-烷基-N,N-二乙磺酸胺等。通过化学平衡原理,在氨解反应中抑制N,N-二氨基乙磺酸钠的形成,从源头上降低N,N-二氨基乙磺酸钠杂质含量,并使化学平衡反应向右移动,增加羟乙基磺酸钠的转化率,提高牛磺酸钠的产率。
本发明同时提供了一种制备高纯度牛磺酸的方法,所述方法在氨解过程中使用了上述催化剂。
加入该催化剂后,可从源头上降低N,N-二氨基乙磺酸钠杂质含量,增加羟乙基磺酸钠的转化率,提高牛磺酸钠的产率。
优选地,所述方法包括以下步骤:
S1,使环氧乙烷与亚硫酸氢钠经羟化反应生成羟乙基磺酸钠;
S2,使羟乙基磺酸钠在上述催化剂的作用下进行氨解;
S3,使氨解产物经中和反应制得高纯度牛磺酸。
在本发明的任一实施方式中,优选S2具体为:
将S1中得到的羟乙基磺酸钠与氨混合,加入本发明所述的一种或多种催化剂,得到反应溶液,高温高压下进行氨解反应,反应完成后通过闪蒸从反应溶液中排出大量多余的氨,再通过蒸发,排出剩余的氨和过量的水,通过闪蒸和蒸发步骤排出的氨并作为氨解反应的原料再循环。
在本发明的任一实施方式中,优选S3具体为:
通过直接酸化法、离子交换法、电解/电渗法等方式,酸化S2中蒸发后得到的反应溶液,置换牛磺酸钠分子中的钠离子为氢离子;
通过结晶等方式,使牛磺酸与未反应完的羟乙基磺酸钠和催化剂通过固液分离得产物牛磺酸固体。
上述制备高纯度牛磺酸的工艺流程如图1所示。
试验中发现,依据本发明所提供的方法,将最终得到的反应液进行分析检测后发现,溶液中除了含有牛磺酸钠、少量未反应完的羟乙基磺酸钠以及催化剂外,没有任何N,N-二氨基乙磺酸钠副产物。
本发明所述制备牛磺酸的方法中,作为原料的羟乙基磺酸钠可市售购得,或通过本领域的常规方法制备得到,例如,可通过使环氧乙烷与亚硫酸氢钠反应制得,本申请对此不作特别限定。
优选地,所述催化剂相对于所述羟乙基磺酸钠的摩尔用量为 0.1-15%;更优选为5-10%。在该用量下,具有催化效果良好、完全抑制杂质形成的优点。
优选地,所述氨与所述羟乙基磺酸钠的摩尔比为0.1-50∶1;优选为6-8∶1(尤其优选8∶1)。在该摩尔比下,能够提高牛磺酸产率与质量的优点。
优选地,所述氨以氨水形式提供,所述氨水的浓度为20-35%,优选为25-35%。
优选地,所述氨解反应的反应时间为0.1-40h;优选为1.5-2h。
优选地,直接酸化法中用的酸,包括有机酸和无机酸,还包括各种酸性气体及酸性高分子化合物。
优选地,所述离子交换法酸化法包括阳离子交换法、阴离子交换法、阴阳离子联合交换法;所述电解/电渗酸化法包括直接电解法、电渗析法、双极膜电渗析法。
优选地,本发明所述方法还包括对过量的氨进行回收的步骤,即闪蒸和蒸发步骤中回收的氨能回收继续用于下一批的氨解反应。所述回收可通过本领域常规方法进行,本申请不作具体限定。
优选地,本发明所述方法还包括对未反应完的羟乙基磺酸钠和催化剂与牛磺酸进行分离的步骤。所述分离可通过本领域常规方法进行,本申请不作具体限定。
本发明所述的制备牛磺酸的方法操作简便,原料易得,收率高,可用于工业化生产,并且,所制得的牛磺酸纯度可高达98%以上。
附图说明
图1为制备牛磺酸的工艺流程图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:催化剂N,N-二苄基氨基乙磺酸的制备
本实施例提供了一种用于制备牛磺酸的催化剂(N,N-二苄基氨基 乙磺酸),所述催化剂通过如下方法制备得到:
将牛磺酸(0.5mol,62.58g)与氢氧化钠(0.0125mol,5g)和苄醇(3mol,324.18g)于1L高压反应釜中密封,加热至220℃反应2小时后,自然冷却3小时以上,将反应液用浓硫酸中和然后酸化至中性,析出N,N-二苄基氨基乙磺酸,过滤干燥,即得,收率为80%。 1H NMR(DMSO-d 6)δ:2.01(brs,1H),2.92(m,2H),3.51(m,2H),3.62(m,4H),7.06-7.14(m,10H)ppm。
所述反应方程式如下:
Figure PCTCN2019106822-appb-000013
实施例2:催化剂N-苄基-N,N-二乙磺酸胺的制备
本实施例提供了一种用于制备牛磺酸的催化剂N-苄基-N,N-二乙磺酸胺,所述催化剂通过如下方法制备得到:
将苄胺(0.5mol,53.58mg)与氢氧化钠(0.0125mol,5g)和羟乙基磺酸钠(3mol,444.33mg)于1升高压反应釜中密封,加热至220℃反应2小时后,自然冷却3小时以上,将反应液用浓硫酸中和然后酸化至pH为2-3,析出N-苄基-N,N-二乙磺酸胺,过滤干燥,即得,收率为80%。 1H NMR(DMSO-d 6)δ:2.0(brs,2H),2.92(m,4H),3.35(m,4H),3.62(m,2H),7.06-7.14(m,5H)。
所述反应方程式如下:
Figure PCTCN2019106822-appb-000014
实施例3:以N,N-双十二烷基氨基乙磺酸作为催化剂,不同的时间氨解反应的结果
本实验例探究了加入N,N-双十二烷基氨基乙磺酸作为催化剂后,在不同的时间下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于200mL30%氨水中,加入氢氧化钠(0.0125mol,5g)和N,N-双十二烷基氨基乙磺酸(0.05mol,23.09g),于1L高压反应釜中密封,加热至220℃,反应不同的时间后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表1。
反应方程式如下:
Figure PCTCN2019106822-appb-000015
表1:加入N,N-双十二烷基氨基乙磺酸作为催化剂后,反应时间变化对氨解产物的影响(氨与羟乙基磺酸钠的摩尔比为8)
Figure PCTCN2019106822-appb-000016
实施例4:以N,N-双十二烷基氨基乙磺酸作为催化剂,不同的氨的用量下的结果
本实验例探究了加入N,N-双十二烷基氨基乙磺酸作为催化剂后, 在不同的氨用量下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于不同量的30%氨水中,加入氢氧化钠(0.0125mol,5g)和N,N-双十二烷基氨基乙磺酸(0.05mol,23.09g),于1L高压反应釜中密封,加热至220℃,反应2h后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表2。
表2:加入N,N-双十二烷基氨基乙磺酸作为催化剂后,氨的用量对氨解产物的影响(反应时间为2小时)
Figure PCTCN2019106822-appb-000017
实施例5:以N,N-二苄基氨基乙磺酸作为催化剂,不同反应时间的氨解反应结果
本实验例探究了加入N,N-二苄基氨基乙磺酸作为催化剂后,在不同的时间下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于200mL 30%氨水中,加入氢氧化钠(0.0125mol,5g)和N,N-二苄基氨基乙磺酸(0.05mol,15.26g),于1L高压反应釜中密封,加热至220℃,反应不同的时间后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表3。
表3:加入N,N-二苄基氨基乙磺酸作为催化剂后,反应时间变化对氨解产物的影响(氨与羟乙基磺酸钠的摩尔比为8)
Figure PCTCN2019106822-appb-000018
实施例6:以N,N-二苄基氨基乙磺酸作为催化剂,不同氨比例的氨解反应结果
本实验例探究了加入N,N-二苄基氨基乙磺酸作为催化剂后,在不同的氨与羟乙基磺酸钠的摩尔比下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于不同量的30%氨水中,加入氢氧化钠(0.0125mol,5g)和N,N-二苄基氨基乙磺酸(0.05mol,15.26g),于1L高压反应釜中密封,加热至220℃,反应2h后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表4。
表4:加入N,N-二苄基氨基乙磺酸作为催化剂后,氨与羟乙基磺酸钠摩尔比变化对氨解产物的影响(反应时间2h)。
Figure PCTCN2019106822-appb-000019
Figure PCTCN2019106822-appb-000020
结合表3和表4的数据可知,当以N,N-二苄基氨基乙磺酸作为催化剂时,最适合工业化生产的氨解反应条件为,控制氨和羟乙基磺酸钠的摩尔比为8,反应时间为2h,该条件下,可以最高效的得到高纯度牛磺酸。
实施例7:以N-苄基-N,N-二乙磺酸胺为催化剂,不同反应时间的氨解反应结果
本实验例探究了加入N-苄基-N,N-二乙磺酸胺作为催化剂后,在不同的时间下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于200mL30%氨水中,加入氢氧化钠(0.0125mol,5g)和N-苄基-N,N-二乙磺酸胺(0.05mol,16.18g),于1L高压反应釜中密封,加热至220℃,反应不同的时间后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表5。
表5:加入N-苄基-N,N-二乙磺酸胺作为催化剂后,反应时间变化,对氨解产物的影响
Figure PCTCN2019106822-appb-000021
Figure PCTCN2019106822-appb-000022
实施例8:以N-苄基-N,N-二乙磺酸胺为催化剂,不同氨比例的氨解反应结果
本实验例探究了加N-苄基-N,N-二乙磺酸胺作为催化剂后,在不同的氨用量下,对氨解反应的影响。本实验例具体为:将羟乙基磺酸钠(0.5mol,74.06g)溶于不同量的30%氨水中,加入氢氧化钠(0.0125mol,5g)和N-苄基-N,N-二乙磺酸胺(0.05mol,16.18g),于1L高压反应釜中密封,加热至220℃,反应2h后,通入冷水终止反应,反应液直接进行检查确定各个组分的含量,结果见表6。
表6:加入N-苄基-N,N-二乙磺酸胺作为催化剂后,氨与羟乙基磺酸钠摩尔比变化,对氨解产物的影响(反应时间2h)
Figure PCTCN2019106822-appb-000023
由以上实施例可以看出,当反应时间为两个小时,氨与羟乙基磺酸钠的物质的量的比例为8时,羟乙基磺酸钠的转化率已经可以达到98%,再提高氨的比例,可使转化率提高到99%及以上,综合考虑成 本和效率因素,因此我们认为,最佳反应时间为2小时,最佳氨与羟乙基磺酸钠的物质量的比例为8。
实施例9:以N-甲基-N,N-二乙磺酸胺为催化剂,在最优条件下的催化结果
将羟乙基磺酸钠(0.5mol,74.06g)溶于200ml的30%氨水中,加入氢氧化钠(0.0125mol,5g)和N-甲基-N,N-二乙磺酸胺(0.05mol,12.35g),于1L高压反应釜中密封,加热至220℃,反应2h后,通入冷水终止反应,除去多余的氨后,检测反应体系中,各物质的百分比,其中牛磺酸钠的含量为96%,羟乙基磺酸钠的含量为4%。
实施例10:以N-甲基-二牛磺酸钠
Figure PCTCN2019106822-appb-000024
为催化剂,在最优条件下的催化结果。
将羟乙基磺酸钠(0.5mol,74.06g)溶于200ml的30%氨水中,加入氢氧化钠(0.0125mol,5g)和N-甲基-二牛磺酸钠(0.05mol,14.55g),于1L高压反应釜中密封,加热至220℃,反应2h后,通入冷水终止反应,除去多余的氨后,检测反应体系中,各物质的百分比,其中牛磺酸钠的含量为95%,羟乙基磺酸钠的含量为5%。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提供一种用于制备高纯度牛磺酸的催化剂,所述催化剂为N,N-二取代氨基乙磺酸,其具有如通式I所示结构,其中,R 1、R 2独自的选自烷基、烯基、炔基、烷氧基、苄基、巯基、硫醚基、芳基、 取代芳基、杂芳基、取代杂芳基、氨基、酰氨基、酰亚氨基、氰基、醛基、羰基、羧基、磺酸基、取代磺酸基、酯基中的一种。本发明同时提供了一种制备高纯度牛磺酸的方法,在制备牛磺酸的氨解步骤中加入本发明所述的催化剂,具有收率高、抑制杂质产生、减少氨的用量等作用;且催化剂本身具有廉价易得、物理性质稳定、容易与产物分离的优点。本发明所述制备方法操作简便,原料易得,收率高,可用于工业化生产,并且,所制得的牛磺酸纯度可高达98%以上,具有较好的经济价值和应用前景。
Figure PCTCN2019106822-appb-000025

Claims (10)

  1. 一种用于制备牛磺酸的催化剂,其特征在于:所述催化剂具有如通式I所示结构或其盐:
    Figure PCTCN2019106822-appb-100001
    其中,R 1、R 2独自的选自烷基、烯基、炔基、烷氧基、苄基、巯基、硫醚基、芳基、杂芳基、氨基、酰氨基、酰亚氨基、氰基、醛基、羰基、羧基、磺酸基、酯基中的一种或多种;上述基团中涉及的碳链为C1-C40的直链或支链;X选自H、第一主族或第二主族金属元素;
    优选地:
    其中,所述烷基是指C1-C18的直链或支链的饱和烃基;优选C1-C12的直链或支链的饱和烃基,更优选C1-C6的直链或支链的饱和烃基;
    所述烯基选自包含至少一个C=C双键和2至12个碳原子的直链或支链烯基;优选包含至少一个C=C双键和2至8个碳原子的直链或支链烯基,更优选乙烯基、丙烯基、异丙烯基;
    所述炔基选自包含至少一个C≡C三键和2至12个碳原子的直链或支链炔基,优选包含至少一个C≡C三键和2至8个碳原子的直链或支链炔基,更优选乙炔基、丙炔基、丁炔基;
    所述烷氧基选自C1-C6的直链或支链烷氧基,优选甲氧基、乙氧基、丙氧基、异丙氧基;
    所述硫醚基选自甲硫醚基、二甲硫醚基、乙硫醚基;
    所述芳基选自苯基或取代苯基,所述取代苯基是指苯环上至少一个氢被选自其同位素、卤素、氰基、硝基、羧基、酯基、未被取代或被1~3 个氟原子取代的甲硫基、1-8个碳原子的烷基或烷氧基的取代基取代;
    所述杂芳基选自至少包含一个杂原子的5至7元的单环芳香环或8元至12元的双环芳香环,所述杂原子选自N,O或S,其余为碳;优选所述杂芳基选自吡咯基、噻吩基、吲哚基、苯并呋喃基;
    所述酰氨基选自由C1-C18的直链或支链的烷基取代的酰氨基,优选甲酰胺、乙酰胺;
    所述酰亚氨基选自由C1-C18的直链或支链的烷基取代的酰亚氨基,优选甲酰亚胺、乙酰亚胺;
    所述羰基选自烷氧基羰基,优选甲氧基羰基、乙氧基羰基、丙氧基羰基和丁氧基羰基;
    所述酯基选自由C1-C18的直链或支链的烷基取代的酯基或芳基酯基或羧酸酯基。
  2. 根据权利要求1所述的催化剂,其特征在于:所述催化剂具有如选自通式II-V任一项所示结构或其盐:
    Figure PCTCN2019106822-appb-100002
    上述通式II结构中,R 3和R 4各自独立地选自氢、碳原子数为1-20的饱和或不饱和烷基或烷氧基,优选地,R 3和R 4相同或不同,各自独立地选自氢或碳原子数为1-10的饱和或不饱和烷基;更优选R 3和R 4均为氢或甲基;X选自H、第一主族或第二主族金属元素;
    Figure PCTCN2019106822-appb-100003
    其中,R 5和R 6相同或不同,各自独立地选自碳原子数为1-18的饱和或不饱和烷基;优选地,R 5和R 6相同或不同,各自独立地选自碳原子数为1-12的饱和烷基;更优选碳原子数为8-12的饱和烷基;X选自H、第一主族或第二主族金属元素;
    Figure PCTCN2019106822-appb-100004
    其中,R 7选自氢、碳原子数为1-20的饱和或不饱和烷基或烷氧基,优选选自氢或碳原子数为1-10的饱和或不饱和烷基;更优选为氢或甲基;X选自H、第一主族或第二主族金属元素;
    Figure PCTCN2019106822-appb-100005
    其中,R 8选自氢或碳原子数为1-18的饱和或不饱和烷基;X选自H、第一主族或第二主族金属元素;
    优选R 8选自选自碳原子数为1-12的饱和或不饱和烷基;更优选为甲基、乙基或十二烷基;X为H。
  3. 根据权利要求2所述的催化剂,其特征在于,所述盐为钠盐,优选N,N-二取代苄基氨基乙磺酸钠、N,N-二烷基氨基乙磺酸钠、N-取代苄基-N,N-二乙磺酸胺的钠盐、N-烷基-N,N-二乙磺酸胺的钠盐。
  4. 根据权利要求2所述的催化剂,其特征在于,选自如下结构中的至少一种:
    Figure PCTCN2019106822-appb-100006
    Figure PCTCN2019106822-appb-100007
    N-十二烷基-N,N-二乙磺酸胺。
  5. 一种制备高纯度牛磺酸的方法,其特征在于:所述方法在氨解过程中使用了权利要求1-4中任一项所述催化剂。
  6. 根据权利要求5所述的方法,其特征在于:包括如下步骤:
    S1,使环氧乙烷与亚硫酸氢钠经羟化反应生成羟乙基磺酸钠;
    S2,使羟乙基磺酸钠在权利要求1-4中任一项所述催化剂的一种或多种作用下进行氨解;
    S3,使氨解产物经中和反应制得高纯度牛磺酸。
  7. 根据权利要求6所述的方法,其特征在于:包括如下步骤:
    S1,使环氧乙烷与亚硫酸氢钠溶液反应生成羟乙基磺酸钠;
    S2,将S1中得到的羟乙基磺酸钠与氨混合,加入权利要求1-4中任一项所述的一种或多种催化剂,得到反应溶液,高温高压下进行氨解反应,反应完成后通过闪蒸从反应溶液中排出大量多余的氨,再通过蒸发,排出剩余的氨和过量的水,通过闪蒸和蒸发步骤排出的氨并作为氨解反应的原料再循环;
    S3,通过直接酸化法、离子交换法或电解/电渗法,酸化S2中蒸发后 得到的反应溶液,置换牛磺酸钠分子中的钠离子为氢离子;
    使牛磺酸与未反应完的羟乙基磺酸钠和催化剂通过固液分离得产物牛磺酸固体。
  8. 根据权利要求6或7所述的方法,其特征在于:所述催化剂相对于所述羟乙基磺酸钠的摩尔用量为0.1-15%。
  9. 根据权利要求6或7所述的方法,其特征在于,所述氨与所述羟乙基磺酸钠的摩尔比为0.1-50∶1;优选为6-8∶1;
    和/或,所述氨以氨水形式提供,所述氨水的浓度为20-35%,优选为25-35%;
    和/或,所述氨解反应的反应时间为0.1-40h;优选为1.5-2h。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,直接酸化法中用的酸包括有机酸和无机酸,还包括各种酸性气体及酸性高分子化合物;所述离子交换法酸化法包括阳离子交换法、阴离子交换法、阴阳离子联合交换法;所述电解/电渗酸化法包括直接电解法、电渗析法、双极膜电渗析法。
PCT/CN2019/106822 2019-07-01 2019-09-20 一种用于制备高纯度牛磺酸的催化剂及其应用 WO2021000429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/369,963 US11305267B2 (en) 2019-07-01 2021-07-08 Catalyst for preparing high purity taurine and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910583398.9 2019-07-01
CN201910583398.9A CN110252395B (zh) 2019-07-01 2019-07-01 一种用于制备高纯度牛磺酸的催化剂及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/369,963 Continuation US11305267B2 (en) 2019-07-01 2021-07-08 Catalyst for preparing high purity taurine and use thereof

Publications (1)

Publication Number Publication Date
WO2021000429A1 true WO2021000429A1 (zh) 2021-01-07

Family

ID=67923450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106822 WO2021000429A1 (zh) 2019-07-01 2019-09-20 一种用于制备高纯度牛磺酸的催化剂及其应用

Country Status (3)

Country Link
US (1) US11305267B2 (zh)
CN (1) CN110252395B (zh)
WO (1) WO2021000429A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574412B (zh) * 2020-06-11 2022-03-11 万华化学集团股份有限公司 一种制备牛磺酸的方法
CN112574075A (zh) * 2020-12-29 2021-03-30 江苏远洋药业股份有限公司 一种高纯度牛磺酸制取方法
CN112979505B (zh) 2021-03-04 2023-02-03 潜江永安药业股份有限公司 一种制备牛磺酸的方法
CN116283670A (zh) * 2023-03-17 2023-06-23 胜利油田凯渡石油技术开发有限公司 一种稠油降粘剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220702A (zh) * 1996-05-30 1999-06-23 拜尔公司 制备光学活性胺类的方法
CN1635911A (zh) * 2001-06-21 2005-07-06 辉瑞产品公司 胆固醇酯转运蛋白抑制剂的自乳化制剂
CN101148427A (zh) * 2007-10-16 2008-03-26 北京大学 一种取代牛磺酸的制备方法
CN106588710A (zh) * 2016-12-12 2017-04-26 黄冈市富驰制药有限责任公司 一种应用微波合成n‑酰基‑n‑甲基牛磺酸盐的方法
CN108299263A (zh) * 2018-01-30 2018-07-20 北京德默高科医药技术有限公司 一种普罗布考衍生物及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210179551A1 (en) * 2014-04-18 2021-06-17 Vitaworks Ip, Llc Process for producing alkali taurinate
US9598357B1 (en) * 2016-02-29 2017-03-21 Vitaworks Ip, Llc Process for producing taurine from alkali taurinates
US10683264B2 (en) * 2016-09-16 2020-06-16 Vitaworks Ip, Llc Process for producing taurine
CN109020839B (zh) * 2018-10-29 2021-06-29 吴江 一种氨解羟基乙磺酸钠制备牛磺酸循环利用工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220702A (zh) * 1996-05-30 1999-06-23 拜尔公司 制备光学活性胺类的方法
CN1635911A (zh) * 2001-06-21 2005-07-06 辉瑞产品公司 胆固醇酯转运蛋白抑制剂的自乳化制剂
CN101148427A (zh) * 2007-10-16 2008-03-26 北京大学 一种取代牛磺酸的制备方法
CN106588710A (zh) * 2016-12-12 2017-04-26 黄冈市富驰制药有限责任公司 一种应用微波合成n‑酰基‑n‑甲基牛磺酸盐的方法
CN108299263A (zh) * 2018-01-30 2018-07-20 北京德默高科医药技术有限公司 一种普罗布考衍生物及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STNEXT, CAS REGISTRY NUMBER: 857752-50-2. 01.08.2005 NOSEK ET AL.: "Adrenolytic compounds. I. Derivatives of N-(2-chloroethyl)dibenzylamine", CHEMICKE LISTY PRO VEDU A PRUMYSL, vol. 46, DOI: 20200317145747X *

Also Published As

Publication number Publication date
CN110252395A (zh) 2019-09-20
CN110252395B (zh) 2020-10-16
US11305267B2 (en) 2022-04-19
US20210331148A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021000429A1 (zh) 一种用于制备高纯度牛磺酸的催化剂及其应用
WO2015158157A1 (zh) 由羟乙基磺酸碱金属盐和乙烯基磺酸碱金属盐循环制备牛磺酸的方法
SU505357A3 (ru) Способ получени 3-метилмеркаптопропионового альдегида
US8680329B2 (en) Process for preparation of α-ketoglutaric acid
TW201918474A (zh) 一種亞托敏(Azoxystrobin)中間體的製備方法
CN107325015B (zh) 一种羟基乙腈连续化制备甘氨酸的方法
CN108892627B (zh) 一锅法合成牛磺酸的工艺
US8754256B2 (en) Process for preparation of L-Arginine α-ketoglutarate 1:1 and 2:1
WO2013159742A1 (zh) Dl-甲硫氨酸的制备装置及方法
CN106946722B (zh) 一种氘交换合成l-天冬氨酸(3,3-d2)的方法
CN109206365A (zh) 一种氟尼辛葡甲胺的制备方法
CN108164423B (zh) 一种盐酸萘替芬的制备方法
CN108017561A (zh) 一种精制卡谷氨酸的方法
CN102643264A (zh) 一种三聚甲醛的合成方法
CN105037186A (zh) 一种氨甲苯酸的制备方法
CN107805222B (zh) 一种尿囊素合成母液的综合利用方法
CN114685300A (zh) 一种邻氯苯甘氨酸的制备方法
CN107698462A (zh) 一种1‑氨基‑1‑环丙腈盐酸盐的制备方法
CN111004184A (zh) 一种4,6-二氯嘧啶的合成工艺
CN104292133A (zh) 一种抗癌药物伏立诺他的合成方法
CN109897002B (zh) 1-苯基-2,3-二甲基-4-甲氨基吡唑啉-5-酮-n-甲基磺酸镁六水合物的制备
CN115611791B (zh) 一种聚二硫二丙烷磺酸钠的制备方法
CN102850241A (zh) 胍基乙酸硝酸盐的制备方法
CA3216107A1 (en) Process for synthesizing apremilast
CN102531974A (zh) 一种胍基牛磺酸的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936380

Country of ref document: EP

Kind code of ref document: A1