WO2022246821A1 - 一种压电传感器、其制作方法及触觉反馈装置 - Google Patents

一种压电传感器、其制作方法及触觉反馈装置 Download PDF

Info

Publication number
WO2022246821A1
WO2022246821A1 PCT/CN2021/096891 CN2021096891W WO2022246821A1 WO 2022246821 A1 WO2022246821 A1 WO 2022246821A1 CN 2021096891 W CN2021096891 W CN 2021096891W WO 2022246821 A1 WO2022246821 A1 WO 2022246821A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
piezoelectric
layer
piezoelectric film
insulating layer
Prior art date
Application number
PCT/CN2021/096891
Other languages
English (en)
French (fr)
Inventor
陈右儒
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001322.6A priority Critical patent/CN115701319A/zh
Priority to PCT/CN2021/096891 priority patent/WO2022246821A1/zh
Priority to JP2023523582A priority patent/JP2024521270A/ja
Priority to EP21942395.1A priority patent/EP4206635A4/en
Priority to US18/247,779 priority patent/US20240023448A1/en
Publication of WO2022246821A1 publication Critical patent/WO2022246821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present disclosure relates to the technical field of sensors, in particular to a piezoelectric sensor, its manufacturing method and a tactile feedback device.
  • Haptics Tactile feedback (Haptics) is the focus of current technology development. Specifically, haptic feedback can enable the terminal to interact with the human body through the sense of touch. Haptic feedback can be divided into two categories, one is vibration feedback, and the other is tactile reproduction technology.
  • the present disclosure provides a piezoelectric sensor, its manufacturing method and a tactile feedback device, and the specific scheme is as follows:
  • An embodiment of the present disclosure provides a piezoelectric sensor, including:
  • the side of the piezoelectric film layer facing away from the base substrate includes at least one hollow structure, and each of the hollow structures is filled with the insulating layer.
  • the orthographic projection of the insulating layer on the base substrate completely falls within the range of the orthographic projection of the piezoelectric film layer on the base substrate.
  • the insulating layer includes at least one of polyimide, silicon dioxide, and aluminum oxide.
  • the thickness relationship between the insulating layer and the piezoelectric film layer needs to satisfy the following relationship:
  • d PI represents the thickness of the insulating layer
  • d PZT represents the thickness of the piezoelectric film layer
  • the thickness range of the insulating layer is [50nm, 200nm].
  • the thickness range of the piezoelectric film layer is (0, 2 ⁇ m].
  • the capacitance relationship between the piezoelectric film layer and the insulating layer needs to satisfy the following relationship:
  • C PI represents the capacitance of the piezoelectric film layer
  • C PZT represents the capacitance of the insulating layer
  • the resistance relationship between the piezoelectric film layer and the insulating layer needs to satisfy the following relationship:
  • R PI represents the resistance of the piezoelectric film layer
  • R PZT represents the resistance of the insulating layer
  • a lyophilic material layer is provided on a side of the piezoelectric thin film layer away from the base substrate.
  • the piezoelectric film layer includes aluminum nitride, zinc oxide, lead zirconate titanate, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate, At least one of gallium lanthanum silicate.
  • a side of the first electrode layer close to the piezoelectric film layer has a plurality of first columnar structures.
  • a side of the second electrode layer close to the piezoelectric film layer has a plurality of second columnar structures.
  • the side of the first electrode layer close to the piezoelectric film layer has a plurality of third columnar structures, and the second electrode layer is close to a side of the piezoelectric film layer.
  • an embodiment of the present disclosure provides a tactile feedback device, which includes a tactile feedback circuit and the piezoelectric sensor as described in any one of the above; wherein:
  • the tactile feedback circuit is located on the side of the second electrode layer away from the first electrode layer, or on the side of the first electrode layer away from the second electrode layer, and the tactile feedback circuit is used for Received commands generate voltage pulses that cause the structure to vibrate.
  • an embodiment of the present disclosure provides a method for manufacturing a piezoelectric sensor, including:
  • a second electrode layer is formed on a side of the insulating layer away from the piezoelectric film layer.
  • the formation of an insulating layer in contact with at least part of the piezoelectric film layer on the side of the piezoelectric film layer away from the first electrode layer includes:
  • the polyimide material is cured at high temperature, and an insulating layer at least partially in contact with the piezoelectric film layer is formed on the side of the piezoelectric film layer away from the first electrode layer.
  • FIG. 1 is a schematic diagram of a top view structure showing cracks in a piezoelectric layer in a thin-film vibration chip in the related art
  • FIG. 2 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a tactile feedback device provided by an embodiment of the present disclosure.
  • Fig. 11 is a method flowchart of a method for manufacturing a piezoelectric sensor provided by an embodiment of the present disclosure
  • FIG. 12 is a flow chart of one method of step S103 in FIG. 11 .
  • the thin-film piezoelectric material has high dielectric constant and transparency, which is very suitable for the vibrator structure integrated with the screen.
  • the vibrator will break down.
  • the upper and lower electrodes remain open, but the structure of the piezoelectric film layer is damaged.
  • the upper and lower electrodes are short-circuited due to breakdown, resulting in the failure of the entire vibrator.
  • the main reason for the short circuit is that particles, particles or film stress during the process lead to cracks in the piezoelectric film layer. In this cracked state, if the electrode is directly deposited on the piezoelectric film layer, it will lead to a high risk of short circuit. As a result, how to avoid the short circuit of the piezoelectric sensor has become an urgent technical problem to be solved.
  • Fig. 1 is a schematic diagram of the top view structure of cracks in the piezoelectric layer in the thin-film vibration chip.
  • particles, particles or film stress often cause cracks in the piezoelectric layer. If the electrodes are directly deposited on the piezoelectric layer On the other hand, passing through the crack will lead to a short circuit of the thin-film vibrating chip, thereby reducing the product yield.
  • the embodiments of the present disclosure provide a piezoelectric sensor, a manufacturing method thereof, and a tactile feedback device, which are used to avoid a short circuit of the piezoelectric sensor and improve product yield.
  • FIG. 2 it is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure, and the piezoelectric sensor includes:
  • the base substrate 1 may be a substrate made of glass, a substrate made of silicon or silicon dioxide (SiO 2 ), a substrate made of sapphire, or a substrate made of sapphire. It may be a substrate made of a metal wafer, which is not limited here, and those skilled in the art may configure the base substrate 1 according to actual application requirements.
  • the first electrode layer 2 can be made of indium tin oxide (ITO), can also be made of indium zinc oxide (IZO), can also be made of titanium gold (Ti-Au) alloy , titanium-aluminum-titanium (Ti-Al-Ti) alloy, titanium-molybdenum (TiMo) alloy, in addition, it can also be made of titanium (Ti), gold (Au), silver (Ag), molybdenum (Mo ), copper (Cu), tungsten (W), chromium (Cr), and those skilled in the art can set the first electrode layer 2 according to actual application needs, which is not limited here.
  • the second electrode layer 5 can also be made of the same material as that of the first electrode layer 2 , which will not be described in detail here.
  • the piezoelectric film layer 3 can be aluminum nitride (AlN), ZnO (zinc oxide), lead zirconate titanate (Pb(Zr,Ti)O 3 , PZT), barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), gallium lanthanum silicate (La 3 Ga 5 SiO 14 ) at least One, in this way, while taking into account the transparency of the piezoelectric sensor, the vibration characteristics of the piezoelectric sensor are guaranteed.
  • the piezoelectric film layer 3 can be selected according to the actual needs of those skilled in the art.
  • the material is not limited here.
  • PZT when PZT is used to make the piezoelectric film layer 3, since PZT has a high piezoelectric coefficient, the piezoelectric characteristics of the corresponding piezoelectric sensor are guaranteed, and the corresponding piezoelectric sensor can be applied to the tactile sensor.
  • PZT has high light transmittance, when it is integrated into the display device, it will not affect the display quality of the display device.
  • the insulating layer 4 located between the piezoelectric film layer 3 and the second electrode layer 5 is in contact with at least part of the piezoelectric film layer 3, and the insulating layer 4 may be in contact with the piezoelectric film layer 3, for example, the insulating layer 4 completely covers the side of the piezoelectric film layer 3 away from the base substrate 1, and it is shown in FIG.
  • the insulating layer 4 completely covers the piezoelectric film
  • the side of the layer 3 away from the base substrate 1 can also be in contact with the part of the piezoelectric film layer 3, for example, the insulating layer 4 only fills the crack part in the piezoelectric film layer 3, another example , the insulating layer 4 is only disposed in a partial area of the piezoelectric film layer 3 away from the base substrate 1 .
  • the piezoelectric thin film layer 3 can be arranged as a whole layer on the side of the first electrode layer 2 away from the base substrate 1, which improves the manufacturing efficiency of the piezoelectric sensor.
  • the piezoelectric thin film layer 3 can also be patterned according to needs, for example, the piezoelectric thin film layer 3 is arranged in regions on the side of the first electrode layer 2 away from the base substrate 1, so as to realize The flexible design of the piezoelectric sensor is realized.
  • the insulating layer 4 since the insulating layer 4 is in at least partial contact with the piezoelectric film layer 3, even if there is a crack in the piezoelectric film layer 3, the insulating layer 4 can effectively filling the cracks, so that after depositing the second electrode layer 5, due to the existence of the insulating layer 4, the contact between the second electrode layer 5 and the first electrode layer 2 is avoided short circuit, thereby avoiding the short circuit risk of the piezoelectric sensor and improving the product yield.
  • FIG. 3 which is a schematic structural diagram of the piezoelectric sensor
  • the side of the piezoelectric film layer 3 away from the base substrate 1 includes at least one hollow structure f, each The hollow structures f are all filled with the insulating layer 4 .
  • the at least one hollow structure f may be one, and may also be multiple.
  • the situation in which the at least one hollow structure f is one is shown in FIG. .
  • the hollow structure f may be a crack existing in the piezoelectric film layer 3 .
  • the sizes of the hollow structures f may be unequal, and their distribution may be randomly distributed according to actual process conditions. As shown in FIG.
  • the insulating layer 4 completely fills each hollow structure f, and the thickness of the insulating layer 4 filled in each hollow structure f is equal to the depth of the corresponding hollow structure f, Wherein, the thickness direction of the insulating layer 4 and the depth direction of the hollow structure f are along the direction perpendicular to the plane where the base substrate 1 is located.
  • the "equal" mentioned here is not completely equal, but may be approximately equal. , roughly equal. In this way, each hollow structure f in the piezoelectric film layer 3 is effectively filled through the insulating layer 4, avoiding the short circuit risk of the piezoelectric sensor.
  • the insulating layer 4 Filling each of the hollow structures f completely, when the insulating layer 4 completely covers the side of the piezoelectric film layer 3 away from the base substrate 1 except for filling to each of the hollow structures f , realizing the flush arrangement of the side of the piezoelectric film layer 3 facing away from the base substrate 1 , ensuring the structural stability of the piezoelectric sensor in subsequent fabrication, and improving the performance of the piezoelectric sensor.
  • the orthographic projection of the insulating layer 4 on the base substrate 1 completely falls into the piezoelectric film layer 3 on the base substrate 1 within the area of the orthographic projection.
  • the insulating layer 4 may only be arranged in the region where the piezoelectric film layer 3 is prone to cracks, for example, only in the region where the hollow structure f exists, and the insulating layer 4 may only fill In the hollow structure f, it may also be partially filled in the hollow structure f, for example, the overall thickness of the piezoelectric film layer 3 along the direction perpendicular to the plane where the base substrate 1 is located is b, The depth of the hollow structure f is c, the thickness of the insulating layer 4 along the direction perpendicular to the plane where the base substrate 1 is located is d, c ⁇ b, d ⁇ c, wherein, as shown in FIG.
  • the orthographic projection of the insulating layer 4 on the base substrate 1 and the orthographic projection of the piezoelectric film layer 3 on the base substrate 1 overlap each other.
  • the insulating layer 4 can completely cover the side of the piezoelectric film layer 3 away from the base substrate 1, even if there is a crack in the piezoelectric film layer 3, through The insulating layer 4 effectively fills the hollow structure f, avoiding the short circuit risk of the piezoelectric sensor and improving the product yield.
  • the insulating layer 4 includes at least one of polyimide (PI), silicon dioxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ).
  • PI polyimide
  • SiO 2 silicon dioxide
  • Al 2 O 3 aluminum oxide
  • the insulating layer 4 can Flow into the hollow structure f through gravity leveling, for example, when using a wet process to coat PI on the side of the piezoelectric film layer 3 away from the base substrate 1, because PI is on the piezoelectric film layer 3
  • the surface of the film layer 3 has good leveling properties, and PI can quickly level the hollow structure f, while ensuring the surface smoothness of the piezoelectric film layer 3 away from the substrate 1 side, avoiding The short-circuit risk of the piezoelectric sensor, because PI has better high-temperature curing (cyclization) characteristics, after wet-coating PI on the side of the piezoelectric film layer 3 away from the base substrate 1, after 200
  • the insulating layer 4 is formed by curing the PI at a high temperature within °C to 300°C, thereby ensuring that the insulating layer 4 has stable insulating properties and improving the performance of the piezoelectric sensor.
  • a wet process can also be used to coat SiO 2 on the side of the piezoelectric film layer 3 away from the base substrate 1, so as to level the hollow structure f and ensure the piezoelectric film layer 3 While the surface of the thin film layer 3 away from the base substrate 1 is smooth, the short circuit risk of the piezoelectric sensor is avoided, and the side of the piezoelectric thin film layer 3 away from the base substrate 1 is wet
  • SiO 2 at a temperature not lower than 300°C, SiO 2 is cured at a high temperature to form the insulating layer 4, thereby ensuring that the insulating layer 4 has stable insulating properties and improving the use of the piezoelectric sensor performance.
  • Al 2 O 3 can also be coated on the side of the piezoelectric thin film layer 3 away from the base substrate 1 by using a dry deposition process. Due to the insulating properties of Al 2 O 3 , the The short-circuit risk of the piezoelectric sensor is eliminated, and the performance of the piezoelectric sensor is improved.
  • the piezoelectric film layer 3 may also be provided in other ways, which will not be described in detail here.
  • the thickness relationship between the insulating layer 4 and the piezoelectric film layer 3 needs to satisfy the following relationship:
  • d PI represents the thickness of the insulating layer 4
  • d PZT represents the thickness of the piezoelectric film layer 3 .
  • the inventors have found in actual research that when the thickness of the piezoelectric film layer 3 is constant, the coating on the side of the piezoelectric film layer 3 facing away from the base substrate 1 will
  • the thickness of the insulating layer 4 is set within 10% of the thickness of the piezoelectric film layer 3.
  • the thickness of the insulating layer 4 can be 200 nm, or It is 100nm, and can also be 50nm, which is not limited here. In this way, while ensuring the insulating properties of the insulating layer 4, the short circuit risk of the piezoelectric sensor can be avoided, and the piezoelectric sensor can be guaranteed.
  • the vibration characteristics of the sensor when it is driven by high-frequency AC thereby improving the performance of the piezoelectric sensor.
  • the thickness range of the insulating layer 4 is [50nm, 200nm].
  • the thickness of the insulating layer 4 is between 50nm and 200nm.
  • the thickness of the insulating layer 4 is 100nm.
  • the thickness of the insulating layer 4 is 60nm.
  • the insulating The thickness of the layer 4 is 50nm.
  • the thickness range of the piezoelectric film layer 3 is (0, 2 ⁇ m].
  • the thickness of the piezoelectric film layer 3 is between 0 and 2 ⁇ m, for example, the thickness of the piezoelectric film layer 3 is 0.5 ⁇ m, and for another example, the thickness of the piezoelectric film layer 3 is 1 ⁇ m For another example, the thickness of the piezoelectric film layer 3 is 2 ⁇ m. In practical applications, the thickness of the piezoelectric film layer 3 can be set as close to zero as possible, while ensuring that the piezoelectric film layer 3 is relatively While the vibration characteristics are good, the light and thin design of the piezoelectric sensor is taken into account.
  • the capacitance relationship between the piezoelectric film layer 3 and the insulating layer 4 needs to satisfy the following relationship:
  • C PI represents the capacitance of the piezoelectric film layer 3
  • C PZT represents the capacitance of the insulating layer 4 .
  • the capacitance of the piezoelectric film layer 3 can be determined as: Wherein, ⁇ PZT represents the dielectric constant of the piezoelectric film layer 3, and its range is 450 to 1500, d PZT represents the thickness of the piezoelectric film layer 3, and A represents the first electrode layer 2 and the second electrode layer.
  • ⁇ PZT represents the dielectric constant of the piezoelectric film layer 3
  • d PZT represents the thickness of the piezoelectric film layer 3
  • A represents the first electrode layer 2 and the second electrode layer.
  • the voltage applied to the piezoelectric film layer 3 is: In this way, when C PI ⁇ 100C PZT , it is avoided that the piezoelectric film layer 3 is loaded on the piezoelectric film layer 3 due to the insulating layer 4 being arranged on the surface of the piezoelectric film layer 3 away from the base substrate 1.
  • the large loss of the voltage above ensures that the piezoelectric sensor has better vibration characteristics under high-frequency AC driving, thereby ensuring the performance of the piezoelectric sensor.
  • the material and thickness of the insulating layer 4 can be selected according to the above capacitance relationship between the piezoelectric film layer 3 and the insulating layer 4, wherein , when the insulating layer 4 is made of PI material, the dielectric constant of the insulating layer 4 ranges from 2.3 to 2.8, and the insulating layer 4 can be set according to the actual situation of the piezoelectric film layer 3 in practical applications. Layer 4, thereby realizing the flexible preparation of the piezoelectric sensor.
  • the resistance relationship between the piezoelectric film layer 3 and the insulating layer 4 needs to satisfy the following relationship:
  • R PI represents the resistance of the piezoelectric film layer 3
  • R PZT represents the resistance of the insulating layer 4 .
  • the piezoelectric film layer 3 when the material used in the piezoelectric film layer 3 is constant, such as a film layer made of PbTiO 3 , and the thickness of the piezoelectric film layer 3 is constant, the piezoelectric film layer 3
  • the capacitance of the piezoelectric film layer 3 can be determined as: Wherein, ⁇ PZT represents the resistivity of the piezoelectric film layer 3, and its range is greater than or equal to 10 9 ⁇ cm, d PZT represents the thickness of the piezoelectric film layer 3, and A represents that the piezoelectric film layer 3 is parallel to the
  • the cross-sectional area of the plane where the base substrate 1 is located may be equal to the facing area between the first electrode layer 2 and the second electrode layer 5 .
  • the insulating layer 4 When the resistance relationship between the piezoelectric film layer 3 and the insulating layer 4 satisfies R PI ⁇ 1000R PZT , the insulating layer 4 has better insulating properties, which effectively avoids the short circuit risk of the piezoelectric sensor.
  • the resistance of the piezoelectric film layer 3 is constant, the material of the insulating layer 4 and the corresponding thickness range can be determined according to the resistance calculation formula, which can be set according to the actual situation of the piezoelectric film layer 3 in practical applications
  • the insulating layer 4 realizes the flexible preparation of the piezoelectric sensor.
  • a lyophilic material layer is provided on the side of the piezoelectric film layer 3 facing away from the base substrate 1 .
  • the lyophilic material layer can not only ensure the rapid leveling of the insulating layer 4 on the side of the piezoelectric film layer 3 away from the base substrate 1, but also has better high-temperature curing properties, ensuring The stable insulating property of the insulating layer 4 further improves the performance of the piezoelectric sensor.
  • the following four implementations can be used to set the first electrode layer 2 and the second electrode layer 5.
  • the first implementation is still shown in FIG. 2, the first electrode layer 2 and the second electrode layer 5 are all plate-like structures, or at least one of the first electrode layer 2 and the second electrode layer 5 may also include a pattern design, and the second electrode layer 5 is in the
  • the orthographic projection on the base substrate 1 completely falls within the range of the orthographic projection of the first electrode layer 2 on the base substrate 1 .
  • the first electrode layer 2 has a plurality of first columnar structures 10 on the side close to the piezoelectric film layer 3 , and the second electrode
  • the layer 5 is a whole-layer plate-like structure, or the second electrode layer 5 may also include a pattern design, so that while the insulating layer 4 is used to avoid the short circuit of the piezoelectric sensor, the plurality of first electrode layers
  • a columnar structure 10 increases the contact area between the piezoelectric film layer 3 and the first electrode layer 2, ensuring the structure between the piezoelectric film layer 3 and the first electrode layer 2 Stability improves the performance of the piezoelectric sensor.
  • the size of each of the first columnar structures 10 is the same size, and each of the first columnar structures 10 may be distributed at unequal intervals or evenly distributed at equal intervals.
  • the distribution of the first columnar structures 10 is set according to actual application needs, which is not limited here. Wherein, when each of the first columnar structures 10 is distributed at equal intervals, the uniformity of the transmittance at each position of the piezoelectric sensor is guaranteed, and the performance of the piezoelectric sensor is guaranteed.
  • the third implementation is shown in FIG. 7, the first electrode layer 2 is a whole-layer plate structure, or the first electrode layer 2 may include a pattern design, and the second electrode layer
  • the side of the layer 5 close to the piezoelectric thin film layer 3 has a plurality of second columnar structures 20, so that while the insulating layer 4 is used to avoid the short circuit of the piezoelectric sensor, the plurality of second The columnar structure 20 increases the contact area between the piezoelectric film layer 3 and the second electrode layer 5, ensuring the structural stability between the piezoelectric film layer 3 and the second electrode layer 5 The performance of the piezoelectric sensor is improved.
  • the size of each of the second columnar structures 20 is the same size, and the distribution of each of the second columnar structures 20 can be unequal intervals or evenly distributed at equal intervals.
  • the distribution of the second columnar structures 20 is set according to actual application requirements, which is not limited here. Wherein, when each of the second columnar structures 20 is distributed at equal intervals, the uniformity of light transmittance at each position of the piezoelectric sensor is ensured, and the performance of the piezoelectric sensor is guaranteed.
  • the fourth implementation is shown in FIG. 8 , the side of the first electrode layer 2 close to the piezoelectric film layer 3 has a plurality of third columnar structures 30 , and the second electrode The side of the layer 5 close to the piezoelectric film layer 3 has a plurality of fourth columnar structures 40, and the orthographic projection of any of the third columnar structures 30 on the base substrate 1 is the same as that of any of the fourth columnar structures 30.
  • the orthographic projections of the structures 40 on the base substrate 1 do not overlap each other, and the contact between the piezoelectric thin film layer 3 and the first electrode layer 2 is increased by the plurality of third columnar structures 30 area, the contact area between the piezoelectric film layer 3 and the second electrode layer 5 is increased through the plurality of fourth columnar structures 40, thereby ensuring that the piezoelectric film layer 3 is connected to the
  • the structural stability between the first electrode layer 2 and the second electrode layer 5 improves the performance of the piezoelectric sensor.
  • any of the third columnar structures 30 and any of the fourth columnar structures 40 on the base substrate 1 do not overlap each other, for example, any of the fourth columnar structures 40 in the
  • the orthographic projection on the base substrate 1 completely falls within the range of the orthographic projection on the base substrate 1 of the interval region between two adjacent third columnar structures 30, while taking structural stability into account, it is ensured that The uniformity of the thickness of the piezoelectric film layer 3 is ensured, and the occurrence of easy breakdown at the thinner position due to the uneven thickness of the piezoelectric film layer 3 is avoided, thereby ensuring the performance of the piezoelectric sensor.
  • the size of each of the third columnar structures 30 is the same size
  • the size of each of the fourth columnar structures 40 is the same size
  • the distance between each of the third columnar structures 30 can be unequal
  • the distribution can also be a uniform distribution of equal intervals
  • the distribution of each of the fourth columnar structures 40 can be unequal intervals or uniform distributions of equal intervals.
  • the The distribution of the third columnar structures 30 and the fourth columnar structures 40 is not limited here. Wherein, when each of the third columnar structures 30 is equally spaced, and each of the fourth columnar structures 40 is equally spaced, the uniformity of light transmittance at each position of the piezoelectric sensor is guaranteed, and the Performance of piezoelectric sensors.
  • the thickness of the first electrode layer 2 is between 50nm and 500nm, and the thickness of the second electrode layer 5 is between 50nm and 500nm.
  • the thickness of the first electrode layer 2 is 200nm, so The thickness of the second electrode layer 5 is 150nm, and the thicknesses of the first electrode layer 2 and the second electrode layer 5 can be set according to actual application requirements in the actual implementation process, which is not limited here.
  • the "sameness" mentioned in the present disclosure is not exactly the same, but may be approximately the same or roughly the same.
  • the piezoelectric sensor may also include , the piezoelectric film layer 3 , the insulating layer 4 , the protective layer 6 around the second electrode layer 5 , and the wiring layer 7 coupled through the via hole penetrating through the protective layer 6 .
  • the first electrode layer 2 is grounded by using the inverse piezoelectric effect, and the piezoelectric film layer is realized by applying a high-frequency AC voltage signal (V AC ) to the second electrode layer 5.
  • V AC high-frequency AC voltage signal
  • the protection layer may be SiO 2 , silicon nitride (Si 3 N 4 ), etc., which is not limited here.
  • the piezoelectric sensor can also be provided with other film layers according to actual applications, and for details, reference can be made to the settings in the related art.
  • the area of each orthographic projection on the base substrate 1 tends to decrease, that is to say, the orthographic projection of the second electrode layer 5 on the base substrate 1 completely falls into the insulating layer 4 Within the range of the orthographic projection on the base substrate 1, the orthographic projection of the insulating layer 4 on the base substrate 1 completely falls into the piezoelectric film layer 3 on the base substrate 1 Within the area range of the orthographic projection of the piezoelectric film layer 3 on the base substrate 1, the orthographic projection of the piezoelectric film layer 3 on the base substrate 1 completely falls within the area range of the orthographic projection of the first electrode layer 2 on the base substrate 1 Inside.
  • the piezoelectric sensor can be applied to fields such as medical treatment, automotive electronics, and motion tracking systems. It is especially suitable for the field of wearable devices, monitoring and treatment outside the body or implanted in the human body, or electronic skin applied to artificial intelligence and other fields.
  • the piezoelectric sensor can be applied to devices that can generate vibration and mechanical characteristics, such as brake pads, keyboards, mobile terminals, game handles, and vehicles.
  • an embodiment of the present disclosure further provides a tactile feedback device, which includes a tactile feedback circuit 100 and a piezoelectric sensor 200 as described above; wherein:
  • the tactile feedback circuit 100 is located on the side of the second electrode layer 5 away from the first electrode layer 2 , or on the side of the first electrode layer 2 away from the second electrode layer 5 , the haptic The feedback circuit 100 is used to generate voltage pulses according to received instructions to make the structure vibrate.
  • the tactile feedback circuit 100 is located on the side of the first electrode layer 2 away from the second electrode layer 5 .
  • the tactile feedback device can be combined with a touch screen, and the touch position of the human body can be determined through the touch screen, so as to generate corresponding vibration waveforms, amplitudes and frequencies, and human-computer interaction can be realized.
  • the tactile feedback device can also be reused as a piezoelectric body, and the position touched by the human body can be determined through the piezoelectric sensor, so as to generate corresponding vibration waveforms, amplitudes and frequencies, and human-computer interaction can be realized.
  • the tactile feedback device can also be applied in fields such as medical treatment, automotive electronics, and motion tracking systems according to actual needs, which will not be described in detail here.
  • the problem-solving principle of the tactile feedback device is similar to that of the aforementioned piezoelectric sensor. Therefore, the relevant structure of the piezoelectric sensor 200 in the tactile feedback device can refer to the implementation of the aforementioned piezoelectric sensor 200, and the repetition will not be repeated. .
  • an embodiment of the present disclosure also provides a method for manufacturing a piezoelectric sensor, which includes:
  • S103 Form an insulating layer in contact with at least part of the piezoelectric film layer on a side of the piezoelectric film layer away from the first electrode layer;
  • S104 Form a second electrode layer on a side of the insulating layer away from the piezoelectric film layer.
  • step S101 to step S103 is as follows:
  • the first electrode layer 2 is formed on the base substrate 1, for example, ITO is sputtered on the base substrate 1, and then the ITO is patterned by photolithography and etching to form the desired pattern.
  • the piezoelectric film layer 3 is deposited on one side of the substrate 1, and then the piezoelectric film layer 3 is patterned by photolithography and etching to form the piezoelectric film layer 3 of the required pattern; then, in The side of the piezoelectric film layer 3 away from the first electrode layer 2 is coated with an insulating layer 4 in contact with at least part of the piezoelectric film layer 3; then, on the insulating layer 4 away from the piezoelectric
  • One side of the thin film layer 3 forms the second electrode layer 5, for example, sputtering ITO on the side of the insulating layer 4
  • step S103 forming an insulating layer in contact with at least part of the piezoelectric film layer on the side of the piezoelectric film layer away from the first electrode layer, including :
  • S202 Perform high-temperature curing on the polyimide material, and form an insulating layer at least partially in contact with the piezoelectric film layer on a side of the piezoelectric film layer away from the first electrode layer.
  • step S201 to step S202 is as follows:
  • the polyimide material is cured at high temperature, and an insulating layer 4 that is at least partially in contact with the piezoelectric film layer 3 is formed on the side of the piezoelectric film layer 3 away from the first electrode layer 2
  • curing the polyimide material at 200° C. ensures that the insulating layer 4 has a stable insulating property, thereby ensuring the performance of the piezoelectric sensor.
  • the problem-solving principle of the above-mentioned piezoelectric sensor manufacturing method is similar to that of the aforementioned piezoelectric sensor. Therefore, the manufacturing method of the piezoelectric sensor can refer to the implementation of the aforementioned piezoelectric sensor part, and the repetition will not be repeated.
  • Embodiments of the present disclosure provide a piezoelectric sensor and a manufacturing method thereof, wherein the piezoelectric sensor includes the base substrate 1, and the first electrode layer 2, the The piezoelectric film layer 3, the insulating layer 4 and the second electrode layer 5 are in contact with at least part of the piezoelectric film layer 3 through the insulating layer 4, even if the piezoelectric film layer 3 exists In the case of cracks, the cracks are effectively filled by the insulating layer 4, so that after the deposition of the second electrode layer 5, the second electrode layer 5 is prevented from contacting the second electrode layer 5 by the insulating layer 4. The risk of short circuit due to contact between the first electrode layers 2 is avoided, that is, the risk of short circuit of the piezoelectric sensor is avoided, thereby improving the product yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压电传感器,包括:衬底基板(1),以及依次背离衬底基板(1)设置的第一电极层(2)、压电薄膜层(3)、绝缘层(4)和第二电极层(5),其中,绝缘层(4)与压电薄膜层(3)的至少部分接触。用于避免压电传感器短路,提高产品良率。还提供一种压电传感器的制作方法及触觉反馈装置。

Description

一种压电传感器、其制作方法及触觉反馈装置 技术领域
本公开涉及传感器技术领域,特别涉及一种压电传感器、其制作方法及触觉反馈装置。
背景技术
触觉反馈(Haptics)为现今科技开发的重点,具体地,触觉反馈能够透过触觉,使终端跟人体产生交互。触觉反馈又可以分为两类,一类为振动反馈,一类为触觉再现技术。
发明内容
本公开提供了一种压电传感器、其制作方法及触觉反馈装置,具体方案如下:
本公开实施例提供了一种压电传感器,其中,包括:
衬底基板,以及依次背离所述衬底基板设置的第一电极层、压电薄膜层、绝缘层和第二电极层,其中,所述绝缘层与所述压电薄膜层的至少部分接触。
可选地,在本公开实施例中,所述压电薄膜层背离所述衬底基板的一侧包括至少一个镂空结构,各个所述镂空结构内均填充有所述绝缘层。
可选地,在本公开实施例中,所述绝缘层在所述衬底基板上的正投影完全落入所述压电薄膜层在所述衬底基板上的正投影的区域范围内。
所述绝缘层在所述衬底基板上的正投影与所述压电薄膜层在衬底基板上的正投影相互重叠。
可选地,在本公开实施例中,所述绝缘层包括聚酰亚胺、二氧化硅、氧化铝中的至少一种。
可选地,在本公开实施例中,所述绝缘层和所述压电薄膜层之间的厚度关系需满足如下关系式:
d PI≤0.1*d PZT
其中,d PI表示所述绝缘层的厚度,d PZT表示所述压电薄膜层的厚度。
可选地,在本公开实施例中,所述绝缘层的厚度范围为[50nm,200nm]。
可选地,在本公开实施例中,所述压电薄膜层的厚度范围为(0,2μm]。
可选地,在本公开实施例中,所述压电薄膜层和所述绝缘层之间的电容关系需满足如下关系式:
C PI≥100C PZT
其中,C PI表示所述压电薄膜层的电容,C PZT表示所述绝缘层的电容。
可选地,在本公开实施例中,所述压电薄膜层和所述绝缘层之间的电阻关系需满足如下关系式:
R PI≥1000R PZT
其中,R PI表示所述压电薄膜层的电阻,R PZT表示所述绝缘层的电阻。
可选地,在本公开实施例中,所述压电薄膜层背离所述衬底基板的一侧设置有亲液性材料层。
可选地,在本公开实施例中,所述压电薄膜层包括氮化铝、氧化锌、锆钛酸铅、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
可选地,在本公开实施例中,所述第一电极层靠近所述压电薄膜层的一侧具有多个第一柱状结构。
可选地,在本公开实施例中,所述第二电极层靠近所述压电薄膜层的一侧具有多个第二柱状结构。
可选地,在本公开实施例中,所述第一电极层靠近所述压电薄膜层的一侧具有多个第三柱状结构,所述第二电极层靠近所述压电薄膜层的一侧具有多个第四柱状结构,任一所述第三柱状结构在所述衬底基板上的正投影与任一所述第四柱状结构在所述衬底基板上的正投影互不交叠。
相应地,本公开实施例提供了一种触觉反馈装置,其中,包括触觉反馈电路和如上面任一项所述的压电传感器;其中:
所述触觉反馈电路位于所述第二电极层背离所述第一电极层的一侧,或位于所述第一电极层背离所述第二电极层的一侧,所述触觉反馈电路用于根据接收的指令产生电压脉冲,以使结构体产生振动。
相应地,本公开实施例提供了一种压电传感器的制作方法,其中,包括:
在衬底基板上形成第一电极层;
在所述第一电极层背离所述衬底基板的一侧形成压电薄膜层;
在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的至少部分接触的绝缘层;
在所述绝缘层背离所述压电薄膜层的一侧形成第二电极层。
可选地,在本公开实施例中,所述在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的至少部分接触的绝缘层,包括:
采用湿法工艺,在所述压电薄膜层背离所述第一电极层的一侧涂布聚酰亚胺材料;
对所述聚酰亚胺材料进行高温固化,在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层至少部分接触的绝缘层。
附图说明
图1为相关技术中薄膜振动芯片中压电层存在裂痕的俯视结构示意图;
图2为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图3为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图4为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图5为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图6为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图7为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图8为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图9为本公开实施例提供的一种压电传感器的其中一种结构示意图;
图10为本公开实施例提供的一种触觉反馈装置的其中一种结构示意图;
图11为本公开实施例提供的一种压电传感器的制作方法的方法流程图;
图12为图11中步骤S103的其中一种方法流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
其中,薄膜压电材料具有高介电常数与透明的特性,非常适合于屏幕集成的振动器结构,当表面电荷分布不均发生积累或是电压过高时,振动器就会发生击穿现象,比如,上下电极维持开路,但是压电薄膜层结构毁损,再比如,上下电极因为击穿产生短路,导致整个振动器失效。产生短路的原因主要是工艺过程中,微粒、颗粒或者薄膜应力,导致压电薄膜层产生裂痕,在此裂痕状态下,若直接将电极沉积在压电薄膜层上,将导致高度短路风险。如此一来,如何避免压电传感器短路就成为急需解决的技术问题。
在相关技术中,图1为薄膜振动芯片中压电层存在裂痕的俯视结构示意图,在工艺过程中,微粒、颗粒或者薄膜应力往往导致压电层产生裂痕,若直接将电极沉积在压电层上,通过该裂痕将导致薄膜振动芯片短路,从而降低产品良率。
有鉴于此,本公开实施例提供了一种压电传感器、其制作方法及触觉反馈装置,用于避免压电传感器短路,提高产品良率。
如图2所示为本公开实施例提供的一种压电传感器的其中一种结构示意图,所述压电传感器包括:
衬底基板1,以及依次背离所述衬底基板1设置的第一电极层2、压电薄膜层3、绝缘层4和第二电极层5,其中,所述绝缘层4与所述压电薄膜层3的至少部分接触。
在具体实施过程中,所述衬底基板1可以为由玻璃制成的基板,还可以为由硅或二氧化硅(SiO 2)制成的基板,还可以为由蓝宝石制成的基板,还可以为由金属晶圆制成的基板,在此不做限定,本领域技术人员可以根据实际应用需要来设置所述衬底基板1。
在具体实施过程中,所述第一电极层2可以是由氧化铟锡(ITO)制成,还可以是由氧化铟锌(IZO)制成,还可以是由钛金(Ti-Au)合金、钛铝钛(Ti-Al-Ti)合金、钛钼(TiMo)合金中的一种制成,此外,还可以是由钛(Ti)、金(Au)、银(Ag)、钼(Mo)、铜(Cu)、钨(W)、铬(Cr)中的一种制成,本领域技术人员可以根据实际应用需要来设置所述第一电极层2,在此不做限定。相应地,所述第二电极层5也可以采用和所述第一电极层2相同的材料来制作,在此不做详述。
在具体实施过程中,所述压电薄膜层3可以是氮化铝(AlN)、ZnO(氧化锌)、锆钛酸铅(Pb(Zr,Ti)O 3,PZT)、钛酸钡(BaTiO 3)、钛酸铅(PbTiO 3)、铌酸钾(KNbO 3)、铌酸锂(LiNbO 3)、钽酸锂(LiTaO 3)、硅酸镓镧(La 3Ga 5SiO 14)中的至少一种,如此一来,在兼顾所述压电传感器透明的同时,保证了所述压电传感器的振动特性,具体可以根据本领域技术人员的实际使用需要来选择制作所述压电薄膜层3的材料,在此不做限定。其中,在使用PZT制成所述压电薄膜层3时,由于PZT具有高压电系数,保证了相应的所述压电传感器的压电特性,可以将相应的所述压电传感器应用到触觉反馈器件中,而且PZT具有较高的透光性,在将其集成到显示器件中时,不影响显示器件的显示质量。
位于所述压电薄膜层3和所述第二电极层5之间的所述绝缘层4与所述 压电薄膜层3的至少部分接触,所述绝缘层4可以与所述压电薄膜层3的全部接触,比如,所述绝缘层4完全覆盖所述压电薄膜层3背离所述衬底基板1的一侧,图2中示意出了所述绝缘层4完全覆盖所述压电薄膜层3背离所述衬底基板1的一侧,还可以与所述压电薄膜层3的部分接触,比如,所述绝缘层4仅填充所述压电薄膜层3中的裂痕部分,再比如,所述绝缘层4仅设置在所述压电薄膜层3背离所述衬底基板1的部分区域内。
在具体实施过程中,所述压电薄膜层3可以是整层设置在所述第一电极层2背离所述衬底基板1的一侧,提高了所述压电传感器的制作效率,此外,还可以根据需要对所述压电薄膜层3进行图案化处理,比如,在所述第一电极层2背离所述衬底基板1的一侧分区域设置所述压电薄膜层3,从而实现了对所述压电传感器的灵活设计。在具体实施过程中,由于所述绝缘层4与所述压电薄膜层3的至少部分接触,即便是在所述压电薄膜层3存在裂痕的情况下,通过所述绝缘层4能够有效地对裂痕进行填充,如此一来,在沉积所述第二电极层5之后,由于所述绝缘层4的存在,避免了所述第二电极层5与所述第一电极层2之间因接触而短路,从而避免了所述压电传感器的短路风险,提高了产品良率。
在本公开实施例中,如图3所示为所述压电传感器的其中一种结构示意图,所述压电薄膜层3背离所述衬底基板1的一侧包括至少一个镂空结构f,各个所述镂空结构f内均填充有所述绝缘层4。其中,所述至少一个镂空结构f可以是一个,还可以是多个,图3中示意出了所述至少一个镂空结构f为一个的情况,当然还可以是其它个数,在此不做限定。所述镂空结构f可以是所述压电薄膜层3中所存在的裂痕。在所述镂空结构f为多个时,各个所述镂空结构f的尺寸可以是不相等,其分布可以是根据实际工艺条件随机分布的。如图4所示为所述绝缘层4完全填充各个所述镂空结构f,而且每个所述镂空结构f内所填充的所述绝缘层4的厚度等于相应的所述镂空结构f的深度,其中,所述绝缘层4的厚度方向和所述镂空结构f的深度方向均为沿垂直于所述衬底基板1所在平面的方向,这里所说的“相等”并非完全相等,可以是近似相 等,大致相等。如此一来,通过所述绝缘层4对所述压电薄膜层3中每个所述镂空结构f进行了有效填充,避免了所述压电传感器的短路风险,此外,由于所述绝缘层4完全填充各个所述镂空结构f,在所述绝缘层4除填充至每个所述镂空结构f之外的其它部分完全覆盖所述压电薄膜层3背离所述衬底基板1的一侧时,实现了所述压电薄膜层3背离所述衬底基板1的一侧的齐平设置,保证了后续制作所述压电传感器的结构稳定性,提高了所述压电传感器的使用性能。
在本公开实施例中,结合图4和图5所示,所述绝缘层4在所述衬底基板1上的正投影完全落入所述压电薄膜层3在所述衬底基板1上的正投影的区域范围内。在具体实施过程中,所述绝缘层4可以仅设置在所述压电薄膜层3易产生裂痕的区域,比如,仅设置在存在所述镂空结构f的区域,所述绝缘层4可以仅填充在所述镂空结构f中,还可以是部分填充在所述镂空结构f中,比如,所述压电薄膜层3沿垂直于所述衬底基板1所在平面的方向上的整体厚度为b,所述镂空结构f的深度为c,所述绝缘层4沿垂直于所述衬底基板1所在平面的方向上的厚度为d,c≤b,d≤c,其中,如图5所示在所述绝缘层4完全填充所述镂空结构f时,b=c=d,如图6所示,在所述绝缘层4部分填充所述镂空结构f时,b=c,d<c。如此一来,通过所述绝缘层4对所述压电薄膜层3上的所述镂空结构f进行了填充,避免了所述压电传感器的短路风险。
在本公开实施例中,仍结合图3所示,所述绝缘层4在所述衬底基板1上的正投影与所述压电薄膜层3在衬底基板1上的正投影相互重叠。在具体实施过程中,所述绝缘层4可以完全覆盖所述压电薄膜层3背离所述衬底基板1的一侧,即便是在所述压电薄膜层3原本存在裂痕的情况下,通过所述绝缘层4有效地填充了所述镂空结构f,避免了所述压电传感器的短路风险,提高了产品良率。
在本公开实施例中,所述绝缘层4包括聚酰亚胺(PI)、二氧化硅(SiO 2)、氧化铝(Al 2O 3)中的至少一种。在具体实施过程中,若所述压电薄膜层3存 在所述镂空结构f,所述镂空结构f处往往具有较强的毛细力与孔隙,在采用湿法工艺时,所述绝缘层4可以透过重力流平流入所述镂空结构f中,比如,在采用湿法工艺在所述压电薄膜层3背离所述衬底基板1的一侧涂布PI时,由于PI在所述压电薄膜层3表面具有较好的流平特性,PI可以快速流平所述镂空结构f,在保证所述压电薄膜层3背离所述衬底基板1一侧的表面平整性的同时,避免了所述压电传感器的短路风险,由于PI具有较好的高温固化(环化)特性,在所述压电薄膜层3背离所述衬底基板1的一侧湿法涂布PI之后,在200℃~300℃内对PI进行高温固化形成所述绝缘层4,从而保证了所述绝缘层4具有稳定的绝缘特性,提高了所述压电传感器的使用性能。
在具体实施过程中,还可以采用湿法工艺在所述压电薄膜层3背离所述衬底基板1的一侧涂布SiO 2,从而流平所述镂空结构f,在保证所述压电薄膜层3背离所述衬底基板1一侧的表面平整性的同时,避免了所述压电传感器的短路风险,在所述压电薄膜层3背离所述衬底基板1的一侧湿法涂布SiO 2之后,在不低于300℃下,对SiO 2进行高温固化形成所述绝缘层4,从而保证了所述绝缘层4具有稳定的绝缘特性,提高了所述压电传感器的使用性能。
在具体实施过程中,还可以采用干式沉积工艺在所述压电薄膜层3背离所述衬底基板1的一侧涂布Al 2O 3,由于Al 2O 3的绝缘特性从而避免了所述压电传感器的短路风险,提高了所述压电传感器的使用性能。当然,还可以采用其它方式来设置所述压电薄膜层3,在此不再详述。
在本公开实施例中,所述绝缘层4和所述压电薄膜层3之间的厚度关系需满足如下关系式:
d PI≤0.1*d PZT
其中,d PI表示所述绝缘层4的厚度,d PZT表示所述压电薄膜层3的厚度。
在具体实施过程中,本发明人在实际研究中发现,在所述压电薄膜层3的厚度一定时,将涂布在所述压电薄膜层3背离所述衬底基板1一侧的所述绝缘层4的厚度设置为所述压电薄膜层3厚度的10%以内,比如,在所述压电薄膜层3的厚度为2μm时,所述绝缘层4的厚度可以为200nm,还可以为 100nm,还可以为50nm,在此不做限定,如此一来,可以在保证所述绝缘层4的绝缘特性的同时,避免了所述压电传感器的短路风险,而且保证了所述压电传感器的高频交流驱动时的振动特性,从而提高了所述压电传感器的使用性能。
在本公开实施例中,所述绝缘层4的厚度范围为[50nm,200nm]。
在具体实施过程中,所述绝缘层4的厚度介于50nm~200nm,比如,所述绝缘层4的厚度为100nm,再比如,所述绝缘层4的厚度为60nm,再比如,所述绝缘层4的厚度为50nm,在所述绝缘层4的厚度处于上述范围内时,所述绝缘层4具有较好的绝缘特性,从而有效避免了所述压电传感器的短路风险。
在本公开实施例中,所述压电薄膜层3的厚度范围为(0,2μm]。
在具体实施过程中,所述压电薄膜层3的厚度介于0~2μm,比如,所述压电薄膜层3的厚度为0.5μm,再比如,所述压电薄膜层3的厚度为1μm,再比如,所述压电薄膜层3的厚度为2μm,在实际应用中,可以将所述压电薄膜层3的厚度设置为尽可能地接近零,在保证所述压电薄膜层3较好振动特性的同时,兼顾了所述压电传感器的轻薄化设计。
在本公开实施例中,所述压电薄膜层3和所述绝缘层4之间的电容关系需满足如下关系式:
C PI≥100C PZT
其中,C PI表示所述压电薄膜层3的电容,C PZT表示所述绝缘层4的电容。
在具体实施过程中,在所述压电薄膜层3所采用的材料一定时,比如,由PbTiO 3制成的膜层,以及所述压电薄膜层3的厚度一定,所述第一电极层2和所述第二电极层5之间的正对面积一定时,根据电容计算公式,可以确定出所述压电薄膜层3的电容为:
Figure PCTCN2021096891-appb-000001
其中,ε PZT表示所述压电薄膜层3的介电常数,其范围为450~1500,d PZT表示所述压电薄膜层3的厚度,A表示所述第一电极层2和所述第二电极层5之间的正对面积。
在所述压电薄膜层3和所述绝缘层4之间的电容关系满足:C PI≥100C PZT时,加载在所述压电薄膜层3上的电压为:
Figure PCTCN2021096891-appb-000002
如此一来,在C PI≥100C PZT时,避免了因在所述压电薄膜层3背离所述衬底基板1一侧的表面设置所述绝缘层4致使加载在所述压电薄膜层3上的电压大幅损失,保证了所述压电传感器在高频交流驱动下具有较好的振动特性,从而保证了所述压电传感器的使用性能。此外,在所述压电薄膜层3的电容一定时,可以根据上述所述压电薄膜层3与所述绝缘层4之间的电容关系,来选择所述绝缘层4的材料以及厚度,其中,在所述绝缘层4由PI材料制成时,所述绝缘层4的介电常数的范围为2.3~2.8,实际应用中可以根据所述压电薄膜层3的实际情况来设置所述绝缘层4,从而实现了对所述压电传感器的灵活制备。
在本公开实施例中,所述压电薄膜层3和所述绝缘层4之间的电阻关系需满足如下关系式:
R PI≥1000R PZT
其中,R PI表示所述压电薄膜层3的电阻,R PZT表示所述绝缘层4的电阻。
在具体实施过程中,在所述压电薄膜层3所采用的材料一定时,比如,由PbTiO 3制成的膜层,以及所述压电薄膜层3的厚度一定,所述压电薄膜层3平行于所述衬底基板1所在平面的横截面积一定时,根据电阻计算公式,可以确定出所述压电薄膜层3的电容为:
Figure PCTCN2021096891-appb-000003
其中,ρ PZT表示所述压电薄膜层3的电阻率,其范围为大于等于10 9Ωcm,d PZT表示所述压电薄膜层3的厚度,A表示所述压电薄膜层3平行于所述衬底基板1所在平面的横截面积,其可以和所述第一电极层2和所述第二电极层5之间的正对面积相等。
在所述压电薄膜层3和所述绝缘层4之间的电阻关系满足R PI≥1000R PZT时,所述绝缘层4具有较好绝缘特性,有效避免了所述压电传感器的短路风险。在所述压电薄膜层3的电阻一定时,可以根据电阻计算公式,确定所述 绝缘层4的材料以及相应的厚度范围,实际应用中可以根据所述压电薄膜层3的实际情况来设置所述绝缘层4,从而实现了对所述压电传感器的灵活制备。
在本公开实施例中,所述压电薄膜层3背离所述衬底基板1的一侧设置有亲液性材料层。其中,通过所述亲液材料层不仅可以保证所述绝缘层4在所述压电薄膜层3背离所述衬底基板1的一侧快速流平,而且具有较好的高温固化特性,保证了所述绝缘层4稳定的绝缘特性,进而提高了所述压电传感器的使用性能。
在本公开实施例中,可以采用以下四种实现方式来设置所述第一电极层2和所述第二电极层5,第一种实现方式仍结合图2所示,所述第一电极层2和所述第二电极层5均为整层的板状结构,或者第一电极层2和第二电极层5中的至少一个也可以包括有图案设计,且所述第二电极层5在所述衬底基板1上正投影完全落入所述第一电极层2在所述衬底基板1上的正投影的区域范围内。
在本公开实施例中,第二种实现方式如图6所示,所述第一电极层2靠近所述压电薄膜层3一侧的具有多个第一柱状结构10,所述第二电极层5为整层的板状结构,或者第二电极层5也可以包括有图案设计,如此一来,在通过所述绝缘层4避免所述压电传感器短路的同时,通过所述多个第一柱状结构10,增大了所述压电薄膜层3与所述第一电极层2之间的接触面积,保证了所述压电薄膜层3与所述第一电极层2之间的结构稳定性,提高了所述压电传感器的使用性能。
在具体实施过程中,各个所述第一柱状结构10的尺寸为相同尺寸,各个所述第一柱状结构10彼此之间可以是不等间距的分布,还可以是等间距的均匀分布,具体可以根据实际应用需要来设置所述第一柱状结构10的分布情况,在此不做限定。其中,在各个所述第一柱状结构10等间距分布时,保证了所述压电传感器各个位置处透过率的均一性,保证了所述压电传感器的使用性能。
在本公开实施例中,第三种实现方式如图7所示,所述第一电极层2为 整层的板状结构,或者第一电极层2可以包括有图案设计,所述第二电极层5靠近所述压电薄膜层3的一侧具有多个第二柱状结构20,如此一来,在通过所述绝缘层4避免所述压电传感器短路的同时,通过所述多个第二柱状结构20,增大了所述压电薄膜层3与所述第二电极层5之间的接触面积,保证了所述压电薄膜层3与所述第二电极层5之间的结构稳定性,提高了所述压电传感器的使用性能。
在具体实施过程中,各个所述第二柱状结构20的尺寸为相同尺寸,各个所述第二柱状结构20彼此之间可以是不等间距的分布,还可以是等间距的均匀分布,具体可以根据实际应用需要来设置所述第二柱状结构20的分布情况,在此不做限定。其中,在各个所述第二柱状结构20等间距分布时,保证了所述压电传感器各个位置处透光率的均一性,保证了所述压电传感器的使用性能。
在本公开实施例中,第四种实现方式如图8所示,所述第一电极层2靠近所述压电薄膜层3的一侧具有多个第三柱状结构30,所述第二电极层5靠近所述压电薄膜层3的一侧具有多个第四柱状结构40,任一所述第三柱状结构30在所述衬底基板1上的正投影与任一所述第四柱状结构40在所述衬底基板1上的正投影互不交叠,通过所述多个第三柱状结构30增大了所述压电薄膜层3与所述第一电极层2之间的接触面积,通过所述多个第四柱状结构40增大了所述压电薄膜层3与所述第二电极层5之间的接触面积,从而保证了所述压电薄膜层3分别与所述第一电极层2和所述第二电极层5之间的结构稳定性,提高了所述压电传感器的使用性能。此外,任一所述第三柱状结构30与任一所述第四柱状结构40在所述衬底基板1上的正投影互不交叠,比如,任一所述第四柱状结构40在所述衬底基板1上的正投影完全落入相邻两第三柱状结构30之间的间隔区域在所述衬底基板1上的正投影的区域范围内,在兼顾结构稳定性的同时,保证了所述压电薄膜层3厚度的均一性,避免因所述压电薄膜层3厚度不均,较薄位置处易击穿情况的出现,进而保证了所述压电传感器的使用性能。
在具体实施过程中,各个所述第三柱状结构30的尺寸为相同尺寸,各个所述第四柱状结构40的尺寸为相同尺寸,各个所述第三柱状结构30彼此之间可以是不等间距的分布,还可以是等间距的均匀分布,各个所述第四柱状结构40彼此之间可以是不等间距的分布,还可以是等间距的均匀分布,具体可以根据实际应用需要来设置所述第三柱状结构30和所述第四柱状结构40的分布情况,在此不做限定。其中,在各个所述第三柱状结构30等间距分布,以及各个所述第四柱状结构40等间距分布时,保证了所述压电传感器各个位置处透光率的均一性,保证了所述压电传感器的使用性能。
当然,在实际应用中除了可以采用以上四种实现方式来设置所述第一电极层2和所述第二电极层5之外,还可以根据实际需要采用其它方式来设置所述第一电极层2和所述第二电极层5,在此不再详述。
需要说明的是,所述第一电极层2的厚度介于50nm~500nm,所述第二电极层5的厚度介于50nm~500nm,比如,所述第一电极层2的厚度为200nm,所述第二电极层5的厚度为150nm,在具体实施过程中可以根据实际应用需要来设置所述第一电极层2和所述第二电极层5的厚度,在此不做限定。本公开所说的“相同”并非完全相同,可以是近似相同,大致相同。
本公开实施例中,如图9所示为所述压电传感器的其中一种结构示意图,所述压电传感器除了上述提及的膜层外,还可以包括设置在所述第一电极层2、所述压电薄膜层3、所述绝缘层4、所述第二电极层5外围的保护层6,以及通过贯穿所述保护层6的过孔耦接的走线层7。在具体实施过程中,利用逆压电效应,将所述第一电极层2接地,通过向所述第二电极层5加载高频交流电压信号(V AC),实现对所述压电薄膜层3和所述绝缘层4的高频交流电压信号的施加,从而产生高频振动,可以采用激光来实现对振动位移的测量,从而保证所述压电传感器的使用性能。其中,所述保护层可以是SiO 2、氮化硅(Si 3N 4)等,在此不做限定。当然,所述压电传感器除了上述提及的各种膜层之外,还可以根据实际应用设置其它膜层,具体可以参照相关技术中的设置。
需要说明的是,本公开实施例中,沿所述衬底基板1依次层叠设置的所述第一电极层2、所述压电薄膜层3、所述绝缘层4、所述第二电极层5,各自在所述衬底基板1上的正投影面积呈减小趋势,也就是说,所述第二电极层5在所述衬底基板1上的正投影完全落入所述绝缘层4在所述衬底基板1上的正投影的区域范围内,所述绝缘层4在所述衬底基板1上的正投影完全落入所述压电薄膜层3在所述衬底基板1上的正投影的区域范围内,所述压电薄膜层3在所述衬底基板1上的正投影完全落入所述第一电极层2在所述衬底基板1上的正投影的区域范围内。如此一来,各膜层彼此之间存在段差,一方面保证了各膜层湿法工艺中的快速流平,另一方面,保证了所述压电传感器的结构稳定性,从而提高了所述压电传感器的使用性能。此外,所述压电传感器可应用于医疗,汽车电子,运动追踪系统等领域。尤其适用于可穿戴设备领域,医疗体外或植入人体内部的监测及治疗使用,或者应用于人工智能的电子皮肤等领域。具体地,可以将所述压电传感器应用于刹车片、键盘、移动终端、游戏手柄、车载等可产生振动和力学特性的装置中。
基于同一公开构思,如图10所示,本公开实施例还提供了一种触觉反馈装置,其中,包括触觉反馈电路100和如上面所述的压电传感器200;其中:
所述触觉反馈电路100位于所述第二电极层5背离所述第一电极层2的一侧,或位于所述第一电极层2背离所述第二电极层5的一侧,所述触觉反馈电路100用于根据接收的指令产生电压脉冲,以使结构体产生振动。
在具体实施过程中,如图10示意出了所述触觉反馈电路100位于所述第一电极层2背离所述第二电极层5的一侧。比如,可以将所述触觉反馈装置与触控屏在一起,通过所述触控屏可以确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。再比如,还可以将所述触觉反馈装置复用为压电体,通过所述压电传感器确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。当然,还可以根据实际需要将所述触觉反馈装置应用在医疗,汽车电子,运动追踪系统等领域,在此不再详述。
此外,所述触觉反馈装置解决问题的原理和前述压电传感器相似,因此,所述触觉反馈装置中压电传感器200的相关结构可以参照前述压电传感器200部分的实施,重复之处不再赘述。
基于同一公开构思,如图11所示,本公开实施例还提供了一种压电传感器的制作方法,其中,包括:
S101:在衬底基板上形成第一电极层;
S102:在所述第一电极层背离所述衬底基板的一侧形成压电薄膜层;
S103:在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的至少部分接触的绝缘层;
S104:在所述绝缘层背离所述压电薄膜层的一侧形成第二电极层。
在具体实施过程中,所述制作方法中的所述压电传感器的具体结构同前述部分的描述,在此不再详述。对于步骤S101至步骤S103的具体实现过程如下:
首先,在所述衬底基板1上形成第一电极层2,比如,在所述衬底基板1上溅射ITO,然后通过光刻以及刻蚀对ITO进行图案化处理,形成所需图案的所述第一电极层2;然后,在所述第一电极层2背离所述衬底基板1的一侧形成压电薄膜层3,比如,在所述第一电极层2背离所述衬底基板1的一侧沉积所述压电薄膜层3,然后通过光刻及刻蚀对所述压电薄膜层3进行图案化处理,形成所需图案的所述压电薄膜层3;然后,在所述压电薄膜层3背离所述第一电极层2的一侧涂布与所述压电薄膜层3的至少部分接触的绝缘层4;然后,在所述绝缘层4背离所述压电薄膜层3的一侧形成所述第二电极层5,比如,在所述绝缘层4背离所述压电薄膜层3的一侧溅射ITO,然后通过光刻以及刻蚀对ITO进行图案化处理,形成所需图案的所述第二电极层5。
在本公开实施例中,如图12所示,步骤S103:在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的至少部分接触的绝缘层,包括:
S201:采用湿法工艺,在所述压电薄膜层背离所述第一电极层的一侧涂布聚酰亚胺材料;
S202:对所述聚酰亚胺材料进行高温固化,在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层至少部分接触的绝缘层。
在具体实施过程中,步骤S201至步骤S202的具体实现过程如下:
首先,采用湿法工艺,在所述压电薄膜层3背离所述第一电极层2的一侧涂布聚酰亚胺材料,在所述压电薄膜层3存在裂痕的情况下,由于裂痕处具有较强的毛细力与孔隙,所述聚酰亚胺材料会透过重力流平流入裂痕中,从而保证了所述压电薄膜层3与所述第二电极层5之间的绝缘特性;然后,对所述聚酰亚胺材料进行高温固化,在所述压电薄膜层3背离所述第一电极层2的一侧形成与所述压电薄膜层3至少部分接触的绝缘层4,比如,在200℃对所述聚酰亚胺材料进行固化,保证了所述绝缘层4具有稳定的绝缘特性,从而保证了所述压电传感器的使用性能。
在具体实施过程中,上述压电传感器的制作方法解决问题的原理和前述压电传感器相似,因此,采用压电传感器的制作方法可以参照前述压电传感器部分的实施,重复之处不再赘述。
本公开实施例提供了一种压电传感器及制作方法,其中,所述压电传感器包括所述衬底基板1,以及依次背离所述衬底基板1的所述第一电极层2、所述压电薄膜层3、所述绝缘层4和所述第二电极层5,通过所述绝缘层4与所述压电薄膜层3的至少部分接触,即便是在所述压电薄膜层3存在裂痕的情况下,通过所述绝缘层4有效地裂痕进行了填充,如此一来,在沉积所述第二电极层5之后,通过所述绝缘层4避免了所述第二电极层5与所述第一电极层2之间因接触而短路的风险,即避免了所述压电传感器的短路风险,从而提高了产品良率。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要 求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种压电传感器,其中,包括:
    衬底基板,以及依次背离所述衬底基板设置的第一电极层、压电薄膜层、绝缘层和第二电极层,其中,所述绝缘层与所述压电薄膜层的至少部分接触。
  2. 如权利要求1所述的压电传感器,其中,所述压电薄膜层背离所述衬底基板的一侧包括至少一个镂空结构,各个所述镂空结构内均填充有所述绝缘层。
  3. 如权利要求1-2任一项所述的压电传感器,其中,所述绝缘层在所述衬底基板上的正投影完全落入所述压电薄膜层在所述衬底基板上的正投影的区域范围内。
  4. 如权利要求1-2任一项所述的压电传感器,其中,所述绝缘层在所述衬底基板上的正投影与所述压电薄膜层在衬底基板上的正投影相互重叠。
  5. 如权利要求1-4任一项所述的压电传感器,其中,所述绝缘层包括聚酰亚胺、二氧化硅、氧化铝中的至少一种。
  6. 如权利要求1-5任一项所述的压电传感器,其中,所述绝缘层和所述压电薄膜层之间的厚度关系需满足如下关系式:
    d PI≤0.1*d PZT
    其中,d PI表示所述绝缘层的厚度,d PZT表示所述压电薄膜层的厚度。
  7. 如权利要求1-6任一项所述的压电传感器,其中,所述绝缘层的厚度范围为[50nm,200nm]。
  8. 如权利要求1-7任一项所述的压电传感器,其中,所述压电薄膜层的厚度范围为(0,2μm]。
  9. 如权利要求1-8任一项所述的压电传感器,其中,所述压电薄膜层和所述绝缘层之间的电容关系需满足如下关系式:
    C PI≥100C PZT
    其中,C PI表示所述压电薄膜层的电容,C PZT表示所述绝缘层的电容。
  10. 如权利要求1-9任一项所述的压电传感器,其中,所述压电薄膜层和所述绝缘层之间的电阻关系需满足如下关系式:
    R PI≥1000R PZT
    其中,R PI表示所述压电薄膜层的电阻,R PZT表示所述绝缘层的电阻。
  11. 如权利要求1-10任一项所述的压电传感器,其中,所述压电薄膜层背离所述衬底基板的一侧设置有亲液性材料层。
  12. 如权利要求1-11任一项所述的压电传感器,其中,所述压电薄膜层包括氮化铝、氧化锌、锆钛酸铅、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
  13. 如权利要求1-12任一项所述的压电传感器,其中,所述第一电极层靠近所述压电薄膜层的一侧具有多个第一柱状结构。
  14. 如权利要求1-12任一项所述的压电传感器,其中,所述第二电极层靠近所述压电薄膜层的一侧具有多个第二柱状结构。
  15. 如权利要求1-12任一项所述的压电传感器,其中,所述第一电极层靠近所述压电薄膜层的一侧具有多个第三柱状结构,所述第二电极层靠近所述压电薄膜层的一侧具有多个第四柱状结构,任一所述第三柱状结构在所述衬底基板上的正投影与任一所述第四柱状结构在所述衬底基板上的正投影互不交叠。
  16. 一种触觉反馈装置,其中,包括触觉反馈电路和如权利要求1-15任一项所述的压电传感器;其中:
    所述触觉反馈电路位于所述第二电极层背离所述第一电极层的一侧,或位于所述第一电极层背离所述第二电极层的一侧,所述触觉反馈电路用于根据接收的指令产生电压脉冲,以使结构体产生振动。
  17. 一种压电传感器的制作方法,其中,包括:
    在衬底基板上形成第一电极层;
    在所述第一电极层背离所述衬底基板的一侧形成压电薄膜层;
    在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的 至少部分接触的绝缘层;
    在所述绝缘层背离所述压电薄膜层的一侧形成第二电极层。
  18. 如权利要求17所述的制作方法,其中,所述在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层的至少部分接触的绝缘层,包括:
    采用湿法工艺,在所述压电薄膜层背离所述第一电极层的一侧涂布聚酰亚胺材料;
    对所述聚酰亚胺材料进行高温固化,在所述压电薄膜层背离所述第一电极层的一侧形成与所述压电薄膜层至少部分接触的绝缘层。
PCT/CN2021/096891 2021-05-28 2021-05-28 一种压电传感器、其制作方法及触觉反馈装置 WO2022246821A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180001322.6A CN115701319A (zh) 2021-05-28 2021-05-28 一种压电传感器、其制作方法及触觉反馈装置
PCT/CN2021/096891 WO2022246821A1 (zh) 2021-05-28 2021-05-28 一种压电传感器、其制作方法及触觉反馈装置
JP2023523582A JP2024521270A (ja) 2021-05-28 2021-05-28 圧電センサ、その作製方法及び触覚フィードバック装置
EP21942395.1A EP4206635A4 (en) 2021-05-28 2021-05-28 PIEZOELECTRIC SENSOR, PRODUCTION METHOD THEREOF AND DEVICE WITH HAPTIC FEEDBACK
US18/247,779 US20240023448A1 (en) 2021-05-28 2021-05-28 Piezoelectric sensor, fabrication method therefor, and haptic feedback device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/096891 WO2022246821A1 (zh) 2021-05-28 2021-05-28 一种压电传感器、其制作方法及触觉反馈装置

Publications (1)

Publication Number Publication Date
WO2022246821A1 true WO2022246821A1 (zh) 2022-12-01

Family

ID=84228381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096891 WO2022246821A1 (zh) 2021-05-28 2021-05-28 一种压电传感器、其制作方法及触觉反馈装置

Country Status (5)

Country Link
US (1) US20240023448A1 (zh)
EP (1) EP4206635A4 (zh)
JP (1) JP2024521270A (zh)
CN (1) CN115701319A (zh)
WO (1) WO2022246821A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297579B1 (en) * 2000-11-13 2001-10-02 Sandia National Laboratories Electron gun controlled smart structure
JP2006339834A (ja) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology スピーカ装置又はマイクロフォン装置
CN105765750A (zh) * 2013-11-21 2016-07-13 3M创新有限公司 多层压电聚合物膜装置和方法
CN205919915U (zh) * 2016-08-25 2017-02-01 贝骨新材料科技(上海)有限公司 压电薄膜传感器元件
CN108267263A (zh) * 2018-01-25 2018-07-10 杨松 传感体及其制备方法
CN111916555A (zh) * 2020-07-14 2020-11-10 欧菲微电子技术有限公司 压电复合薄膜及其制备方法
CN112129432A (zh) * 2020-09-15 2020-12-25 中国科学院深圳先进技术研究院 一种压电传感器的制备方法与压电传感器
WO2020261963A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 高分子複合圧電体および圧電フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041049A1 (ja) * 2013-09-20 2015-03-26 株式会社村田製作所 圧電センサ
JP2019216165A (ja) * 2018-06-12 2019-12-19 スタンレー電気株式会社 圧電素子及び圧電アクチュエータ並びに圧電素子の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297579B1 (en) * 2000-11-13 2001-10-02 Sandia National Laboratories Electron gun controlled smart structure
JP2006339834A (ja) * 2005-05-31 2006-12-14 National Institute Of Advanced Industrial & Technology スピーカ装置又はマイクロフォン装置
CN105765750A (zh) * 2013-11-21 2016-07-13 3M创新有限公司 多层压电聚合物膜装置和方法
CN205919915U (zh) * 2016-08-25 2017-02-01 贝骨新材料科技(上海)有限公司 压电薄膜传感器元件
CN108267263A (zh) * 2018-01-25 2018-07-10 杨松 传感体及其制备方法
WO2020261963A1 (ja) * 2019-06-28 2020-12-30 富士フイルム株式会社 高分子複合圧電体および圧電フィルム
CN111916555A (zh) * 2020-07-14 2020-11-10 欧菲微电子技术有限公司 压电复合薄膜及其制备方法
CN112129432A (zh) * 2020-09-15 2020-12-25 中国科学院深圳先进技术研究院 一种压电传感器的制备方法与压电传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206635A4 *

Also Published As

Publication number Publication date
EP4206635A4 (en) 2024-02-28
JP2024521270A (ja) 2024-05-31
EP4206635A1 (en) 2023-07-05
CN115701319A (zh) 2023-02-07
US20240023448A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
CN107317560B (zh) 一种温度补偿表面声波器件及其制备方法
JPS5861686A (ja) 表面弾性波素子
US11088314B2 (en) Ultrasonic transducer and method for manufacturing the same, display substrate and method for manufacturing the same
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
WO1998048464A1 (fr) Element piezo-electrique a couche mince
WO2022246821A1 (zh) 一种压电传感器、其制作方法及触觉反馈装置
JP2019525448A (ja) 透明圧電デバイス及び同デバイスを製造するための方法
US20240224809A1 (en) Piezoelectric sensor and haptic feedback apparatus
JP2005033379A (ja) 薄膜バルク波振動子およびその製造方法
JP2001168674A (ja) 圧電共振子及び電子機器
JP5862368B2 (ja) 圧電デバイスの製造方法
WO2023142038A1 (zh) 振动面板及其驱动方法、触觉反馈装置
WO2024082255A1 (zh) 一种触觉反馈基板及触觉反馈装置
JP2011087154A (ja) 圧電振動片、圧電振動子、発振器、圧電振動片の製造方法
JP2014099779A (ja) 弾性波デバイスおよびその製造方法
CN115711693A (zh) 压电传感器及其驱动方法、振动装置
CN115699574A (zh) 弹性波装置
JP2009100367A (ja) 圧電振動装置
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置
JP2010087577A (ja) 薄膜圧電共振器の製造方法
CN117412659A (zh) 一种触觉再现器件、其制作方法及触觉再现装置
WO2023184298A1 (zh) 压电传感器、其驱动方法及触觉反馈装置
WO2023087324A1 (zh) 压电器件、振动面板及触觉反馈装置
JP2002009579A (ja) 圧電共振子およびそれを用いた圧電フィルタ
US20240241582A1 (en) Touch panel and touch device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18247779

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021942395

Country of ref document: EP

Effective date: 20230328

WWE Wipo information: entry into national phase

Ref document number: 2023523582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE