WO2024082255A1 - 一种触觉反馈基板及触觉反馈装置 - Google Patents

一种触觉反馈基板及触觉反馈装置 Download PDF

Info

Publication number
WO2024082255A1
WO2024082255A1 PCT/CN2022/126595 CN2022126595W WO2024082255A1 WO 2024082255 A1 WO2024082255 A1 WO 2024082255A1 CN 2022126595 W CN2022126595 W CN 2022126595W WO 2024082255 A1 WO2024082255 A1 WO 2024082255A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
tactile feedback
piezoelectric material
material layer
Prior art date
Application number
PCT/CN2022/126595
Other languages
English (en)
French (fr)
Inventor
花慧
陈右儒
王迎姿
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/126595 priority Critical patent/WO2024082255A1/zh
Publication of WO2024082255A1 publication Critical patent/WO2024082255A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present disclosure relates to the technical field of tactile feedback, and in particular to a tactile feedback substrate and a tactile feedback device.
  • the present disclosure provides a tactile feedback substrate and a tactile feedback device, and the specific scheme is as follows:
  • the embodiment of the present disclosure provides a tactile feedback substrate, including a base substrate and a piezoelectric element arranged on one side of the base substrate, the piezoelectric element includes a first electrode, a piezoelectric material layer, and a second electrode stacked, the first electrode is arranged close to the base substrate, the first electrode and the second electrode are used to form an alternating electric field, the piezoelectric material layer is used to vibrate under the action of the alternating electric field, and drive the base substrate to resonate; wherein,
  • An insulating flat layer is disposed at least one of between the first electrode and the piezoelectric material layer and between the second electrode and the piezoelectric material layer, and the dielectric constant of the insulating flat layer is smaller than the dielectric constant of the piezoelectric material layer.
  • the material of the insulating flat layer includes at least one of HfO 2 , Al 2 O 3 , AlN, and PbZrO 3 .
  • the insulating flat layer is provided between the first electrode and the piezoelectric material layer or between the second electrode and the piezoelectric material layer, and the thickness of the insulating flat layer satisfies the following relationship:
  • l2 is the thickness of the insulating flat layer
  • l1 is the thickness of the piezoelectric material layer
  • ⁇ 1 is the dielectric constant of the piezoelectric material layer
  • ⁇ 2 is the dielectric constant of the insulating flat layer.
  • a first insulating flat layer is provided between the first electrode and the piezoelectric material layer
  • a second insulating flat layer is provided between the second electrode and the piezoelectric material layer
  • the thickness of the first insulating flat layer and the thickness of the second insulating flat layer satisfy the following relationship:
  • l0 is the sum of the thickness of the first insulating flat layer and the thickness of the second insulating flat layer
  • l1 is the thickness of the piezoelectric material layer
  • ⁇ 1 is the dielectric constant of the piezoelectric material layer
  • ⁇ 2 is the dielectric constant of the first insulating flat layer.
  • the tactile feedback substrate provided in the embodiment of the present disclosure, there are multiple piezoelectric elements, and the multiple piezoelectric element arrays are arranged on one side of the base substrate;
  • the first electrodes of all the piezoelectric elements are planar electrodes of an integrated structure, the second electrodes of the piezoelectric elements in the same column are electrically connected to each other through a conductive connecting portion, the second electrodes of the piezoelectric elements in different columns are insulated from each other, and the piezoelectric material layers of the piezoelectric elements in the same column are connected to each other through a piezoelectric connecting portion;
  • the insulating flat layer has the same shape and size as the piezoelectric material layer.
  • an edge of the second electrode is retracted relative to an edge of the piezoelectric material layer.
  • the indentation amount of the edge of the second electrode relative to the edge of the piezoelectric material layer is greater than or equal to 50 micrometers and less than or equal to 100 micrometers.
  • the piezoelectric elements in the same column have the same size, and the piezoelectric elements in the same row are arranged alternately according to a first size and a second size, and the first size is larger than the second size.
  • the tactile feedback substrate provided in the embodiment of the present disclosure further includes:
  • a binding electrode disposed in the same layer as the first electrode, the binding electrode being disposed close to an edge of the base substrate, the binding electrode being used to connect to a driving voltage input terminal, and the voltage signal inputted by the driving voltage input terminal being an alternating voltage signal;
  • An insulating layer disposed on a side of the second electrode facing away from the substrate;
  • a routing layer is arranged on the side of the insulating layer away from the base substrate, the routing layer includes a routing, one end of the routing is connected to the second electrode through a first via hole arranged on the insulating layer, and the other end of the routing is connected to the binding electrode through a second via hole arranged on the insulating layer.
  • the tactile feedback substrate provided in the embodiment of the present disclosure further includes a lead electrode disposed on the same layer as the first electrode, the lead electrode being connected to the first electrode, the lead electrode being used to connect to a ground voltage input terminal, and the voltage signal input to the ground voltage input terminal being a ground voltage signal.
  • the material of the insulating layer is SiO 2 or photoresist.
  • the material of the first electrode and the second electrode is a transparent conductive material
  • the material of the wiring layer is Ti/Ni/Au or Ti/Al/Ti.
  • the thickness of the piezoelectric material layer is 500 nm to 2000 nm.
  • the piezoelectric material layer includes at least one of lead zirconate titanate, aluminum nitride, zinc oxide, barium titanate, lead titanate, potassium niobate, lithium niobate, lithium tantalate, and lanthanum gallium silicate.
  • an embodiment of the present disclosure further provides a tactile feedback device, including the above-mentioned tactile feedback substrate provided by an embodiment of the present disclosure.
  • FIG1 is a schematic diagram of the structure of a piezoelectric element provided in the related art
  • FIG2 is a schematic structural diagram of a tactile feedback substrate provided in an embodiment of the present disclosure.
  • FIG3 is a schematic structural diagram of another tactile feedback substrate provided in an embodiment of the present disclosure.
  • FIG4 is a schematic structural diagram of another tactile feedback substrate provided in an embodiment of the present disclosure.
  • FIG5 is an atomic force microscope photograph of a piezoelectric material layer provided in an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing the height of the needle-shaped protrusions on the surface of the piezoelectric material layer corresponding to FIG. 5 ;
  • FIG7 is a schematic diagram of a structure in which an insulating flat layer is provided on the surface of a piezoelectric material layer having needle-shaped protrusions;
  • FIG8 is a schematic diagram showing the relationship between the thickness l2 of the insulating flat layer (materials are HfO 2 , Al 2 O 3 , AlN, and PbZrO 3 ) and E1/E;
  • FIG9 is a schematic plan view of a tactile feedback substrate provided in an embodiment of the present disclosure.
  • FIG10 is a schematic cross-sectional view along the CC' direction in FIG9;
  • FIG. 11 is a schematic structural diagram of another tactile feedback substrate provided in an embodiment of the present disclosure.
  • the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by persons with ordinary skills in the field to which the present disclosure belongs.
  • the words “include” or “comprise” and the like used in the present disclosure mean that the elements or objects appearing before the word include the elements or objects listed after the word and their equivalents, without excluding other elements or objects.
  • the words “connect” or “connected” and the like are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Inside”, “outside”, “upper”, “lower”, etc. are only used to indicate relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • Thin film piezoelectric materials have high dielectric constant and transparency, and are very suitable for screen-integrated vibrator structures.
  • Lead zirconate titanate piezoelectric ceramics are currently widely used due to their excellent piezoelectric properties.
  • the piezoelectric element includes: a first electrode 1 (such as ITO), a piezoelectric material layer 2 (such as PZT) disposed on the first electrode 1, and a second electrode 3 (such as ITO) disposed on the piezoelectric material layer 2.
  • a first electrode 1 such as ITO
  • a piezoelectric material layer 2 such as PZT
  • a second electrode 3 such as ITO
  • the first electrode 1 is grounded by utilizing the inverse piezoelectric effect, and a high-frequency AC voltage signal (V AC ) is applied to the second electrode 3 to achieve the application of a high-frequency AC voltage signal to the piezoelectric material layer 2, thereby generating high-frequency vibration.
  • V AC high-frequency AC voltage signal
  • the breakdown damage of the piezoelectric element is mainly due to the serious damage to the second electrode 3 (ITO) and the piezoelectric material layer 2 (PZT).
  • the specific reasons for the serious damage to the second electrode 3 and the piezoelectric material layer 2 are as follows:
  • PZT films are generally produced by dry coating (sputtering) or wet coating (sol-gel), but the PZT films produced by these two methods have a large number of defects, such as internal defects such as grain boundaries and holes.
  • the surface of the PZT film has needle-shaped uneven protrusions, which lead to direct breakdown and become a conductor under the electric field. The current value rises sharply and the heat surges, which makes the piezoelectric element prone to breakdown and damage under the working voltage.
  • the embodiment of the present disclosure provides a tactile feedback substrate, as shown in Figures 2 to 4, including a base substrate 10 and a piezoelectric element 20 arranged on one side of the base substrate 10, the piezoelectric element 20 includes a first electrode 11, a piezoelectric material layer 13 and a second electrode 12 stacked, the first electrode 11 is arranged close to the base substrate 10, the first electrode 11 and the second electrode 12 are used to form an alternating electric field, and the piezoelectric material layer 13 is used to vibrate under the action of the alternating electric field and drive the base substrate 11 to resonate; wherein,
  • An insulating flat layer 30 is disposed at least one of between the first electrode 11 and the piezoelectric material layer 13 and between the second electrode 12 and the piezoelectric material layer 13 .
  • the dielectric constant of the insulating flat layer 30 is smaller than the dielectric constant of the piezoelectric material layer 13 .
  • the tactile feedback substrate provided in the embodiment of the present disclosure is provided with an insulating flat layer 30 having a dielectric constant smaller than that of the piezoelectric material layer 13 between the second electrode 12 and the piezoelectric material layer 13.
  • the insulating flat layer 30 can prevent the Pb in the piezoelectric material layer 13 (e.g., PZT) from diffusing into the second electrode 12 (e.g., ITO), and the insulating flat layer 30 can also flatten the hole defects existing in the piezoelectric material layer 13, thereby achieving the effect of stabilizing the electric field and reducing the leakage current, thereby solving the problem of partial breakdown of the piezoelectric material layer 13 under an alternating electric field, and further improving the working stability and reliability of the piezoelectric element 20.
  • PZT the piezoelectric material layer 13
  • ITO the second electrode 12
  • a dielectric flat layer 30 is provided between the first electrode 11 and the piezoelectric material layer 13.
  • An insulating flat layer 30 having a dielectric constant smaller than the dielectric constant of the piezoelectric material layer 13 can prevent Pb in the piezoelectric material layer 13 (e.g., PZT) from diffusing into the first electrode 11 (e.g., ITO) during deposition and high-temperature crystallization heat treatment, thereby improving the conductivity of the first electrode 11; as shown in FIG4 , by providing insulating flat layers (31 and 32) having a dielectric constant smaller than the dielectric constant of the piezoelectric material layer 13 between the second electrode 12 and the piezoelectric material layer 13 and between the first electrode 11 and the piezoelectric material layer 13, on the one hand, Pb in the piezoelectric material layer 13 (e.g., PZT) can be prevented from diffusing into the second electrode 12 and the first electrode 11, and on the other hand, the hole defects in the piezoelectric material layer 13 can be flat
  • the base substrate 10 can be a substrate made of glass, a substrate made of silicon or silicon dioxide (SiO 2 ), a substrate made of sapphire, or a substrate made of a metal wafer, which is not limited here, and those skilled in the art can set the above-mentioned base substrate 10 according to actual application requirements.
  • the material of the insulating flat layer may include at least one of HfO 2 , Al 2 O 3 , AlN, and PbZrO 3.
  • the atomic layer deposition (ALD) technology may be used.
  • ALD is a thin film preparation technology that grows atomic-level film layers one by one.
  • the insulating flat layer is PbZrO3, it can be prepared by sol-gel or magnetron sputtering.
  • the insulating flat layer is made of AlN material, it can not only be used as a flat layer and an insulating layer, but also because AlN is also a piezoelectric material, it can also contribute part of the piezoelectric function, which is beneficial to enhance the overall vibration displacement of the piezoelectric element.
  • FIG. 5 is an atomic force microscope (AFM) photograph of a piezoelectric material layer (PZT) prepared by sputtering or sol-gel method. It can be seen that there are a large number of needle-like protrusions on the surface of the original PZT film layer; as shown in FIG. 6 , FIG. 6 is the height of the needle-like protrusions on the surface of the PZT film layer, wherein the maximum height difference ⁇ H of the needle-like protrusions is greater than 8 nm. Therefore, in order to fully cover the PZT film layer, as shown in FIG. 7 , FIG. 7 is a schematic diagram of covering the surface of the PZT film layer with an insulating flat layer 30. The thickness of the insulating flat layer 30 should be greater than 10 nm.
  • the upper limit of the thickness of the insulating flat layer 30 is also limited. Because for the piezoelectric element structure of Glass/ITO/PZT/ITO, the thickness of the PZT film layer is usually set to 2 ⁇ m. When the same voltage is applied to both ends of the electrode, the material selection and thickness of the insulating flat layer need to be fully designed to ensure that the effective electric field strength at both ends of the PZT film layer will not be lost too much.
  • E is the electric field formed in the piezoelectric element when voltage is applied to the first electrode and the second electrode
  • E1 and E2 are the electric fields in the piezoelectric material layer and the insulating flat layer, respectively
  • ⁇ 1 and ⁇ 2 are the dielectric constants of the piezoelectric material layer and the insulating flat layer, respectively
  • l1 and l2 are the thicknesses of the piezoelectric material layer and the insulating flat layer, respectively. Since the insulating flat layer will divide the voltage, the electric field E1 in the piezoelectric material layer is smaller than the external electric field E.
  • the insulating flat layer should have different thicknesses according to different materials to prevent the Pb in PZT from diffusing into ITO and the surface of the flat PZT film layer to prevent the piezoelectric element from being broken down and failing.
  • Table 1 shows the dielectric constants of four materials: PZT, HfO 2 , Al 2 O 3 , AlN, and PbZrO 3 .
  • the material of the insulating flat layer is Al 2 O 3 .
  • the material of the insulating flat layer is AlN
  • FIG8 is a schematic diagram of the relationship between the thickness l 2 of the insulating flat layer (materials are HfO 2 , Al 2 O 3 , AlN, and PbZrO 3 ) and E1/E. It can be seen that if E1/E ⁇ 50%, when the material of the insulating flat layer is Al 2 O 3 , l 2 needs to be less than or equal to 16 nm, that is, 10 nm ⁇ l 2 ⁇ 16 nm; when the material of the insulating flat layer is AlN, l 2 needs to be less than or equal to 19 nm, that is, 10 nm ⁇ l 2 ⁇ 19 nm; when the material of the insulating flat layer is HfO 2 , l 2 needs to be less than or equal to 48 nm, that is, 10 nm ⁇ l 2 ⁇ 48 nm; when the material of the insulating flat layer is PbZrO 3 , l 2 meets E1/
  • the thickness of the insulating flat layer 30 is derived by the above formulas (1)-(4) to satisfy the following relationship:
  • l 0 is the sum of the thickness of the first insulating planar layer 31 and the thickness of the second insulating planar layer 32 .
  • the number of the piezoelectric elements 20 may be multiple, and the multiple piezoelectric elements 20 are arrayed on one side of the base substrate 10 ;
  • the first electrodes 11 of all the piezoelectric elements 20 may be planar electrodes of an integrated structure, the second electrodes 12 of the piezoelectric elements 20 in the same column are electrically connected to each other via a conductive connection portion 14, the second electrodes 12 of the piezoelectric elements 20 in different columns are insulated from each other, and the piezoelectric material layers 13 of the piezoelectric elements 20 in the same column are connected to each other via a piezoelectric connection portion (not shown); in this way, the piezoelectric elements 20 in the same column can be driven as a whole, thereby realizing column driving;
  • the insulating flat layer 30 has the same shape and size as the piezoelectric material layer 13 , so that the insulating flat layer 30 can completely flatten the piezoelectric material layer 13 and completely block Pb in the piezoelectric material layer 13 from diffusing toward the first electrode 11 or the second electrode 12 .
  • the first electrode 11 is arranged on the entire surface, the piezoelectric material layer 13 and the insulating flat layer 30 are patterned, and the edge position is etched to facilitate the exposure of the first electrode 11 to apply an electrical signal, and the second electrode 12 is deposited and patterned on the insulating flat layer 30, and the pattern of the second electrode 12 is consistent with that of the piezoelectric material layer 13 and the insulating flat layer 30 to realize a plurality of piezoelectric elements 20 distributed in an array on the base substrate 10.
  • FIG. 9 of the embodiment of the present disclosure takes the first electrode 11 as an example of a whole-surface arrangement.
  • the shape of the first electrode 11 may be the same as the shape of the second electrode 12, but the orthographic projection area of the first electrode 11 on the base substrate 10 is larger than the orthographic projection area of the second electrode 12 on the base substrate 10, so as to facilitate exposure of the first electrode 11 to apply an electrical signal.
  • FIG10 is a schematic cross-sectional view of FIG9 along the CC' direction
  • the edge of the second electrode 12 can be retracted relative to the edge of the piezoelectric material layer 13.
  • the amount of retraction of the edge of the second electrode 12 relative to the edge of the piezoelectric material layer 13 is greater than or equal to 50 microns, and less than or equal to 100 microns.
  • the retraction amount can be 100 microns.
  • the stress of the entire piezoelectric element 20 can be reduced, the warping of the base substrate 10 can be reduced, and the reliability of the piezoelectric element in preparation and operation can be improved.
  • the edge of the piezoelectric material layer 13 may be retracted relative to the edge of the first electrode 11 .
  • the sizes of the piezoelectric elements 20 in the same column are the same, and the piezoelectric elements 20 in the same row are arranged alternately according to the first size W1 and the second size W2, and the first size W1 is larger than the second size W2.
  • the purpose of arranging the piezoelectric elements 20 in this way is that when tactile feedback is required, an AC voltage signal can be loaded only on the piezoelectric elements 20 of the first size, while no AC voltage signal is loaded on the piezoelectric elements 20 of the second size, so that the vibration of the piezoelectric elements 20 of the first size drives the vibration of the substrate to achieve tactile feedback; the piezoelectric elements 20 of the second size can use the positive piezoelectric effect of the piezoelectric material layer to achieve pressure detection, so that tactile feedback and pressure detection can be achieved simultaneously.
  • the size of the piezoelectric elements 20 of the second size can be set smaller, while the size of the piezoelectric elements 20 of the first size is set larger, which can improve the tactile feedback effect.
  • the piezoelectric element 20 of the first size is arranged at the peak position of the vibration of the base substrate, and the piezoelectric element 20 of the second size is arranged at the trough position of the vibration of the base substrate.
  • the tactile feedback substrate provided in the embodiment of the present disclosure, as shown in FIG11 , it further includes:
  • the binding electrode 15 is arranged in the same layer as the first electrode 11, and is arranged near the edge of the base substrate 10.
  • the binding electrode 15 is used to connect to the driving voltage input terminal, and the voltage signal input to the driving voltage input terminal is an AC voltage signal;
  • An insulating layer 40 disposed on a side of the second electrode 12 away from the substrate 10;
  • the routing layer 50 is arranged on the side of the insulating layer 40 away from the base substrate 10, and the routing layer 50 includes a routing, one end of the routing is connected to the second electrode 12 through a first via 41 arranged on the insulating layer 40, and the other end of the routing is connected to the binding electrode 15 through a second via 42 arranged on the insulating layer 40.
  • the tactile feedback substrate in the above-mentioned tactile feedback substrate provided in the embodiment of the present disclosure, as shown in FIG. 11 , it also includes a lead electrode (not shown) arranged in the same layer as the first electrode 11, and the lead electrode is connected to the first electrode 11.
  • the lead electrode is used to connect to the ground voltage input terminal, and the voltage signal input to the ground voltage input terminal is a ground voltage signal.
  • the first electrode 11 , the binding electrode 15 , and the lead electrode may be formed of the same material and by the same patterning process.
  • the insulating layer 40 may be made of SiO 2 , negative photoresist or positive photoresist. After the insulating layer material film layer is coated or deposited on the entire surface, the insulating layer material film layer is groove patterned. The purpose of setting the insulating layer 40 is to cover part of the first electrode 11 to avoid short circuit with other structures through the wiring layer 50, and at the same time, a first via hole 41 is formed at the position of the second electrode 12, and a second via hole 42 is formed at the position of the binding electrode 15, so that one end of the wiring in the wiring layer 50 is connected to the second electrode 12 through the first via hole 41, and the other end of the wiring is connected to the binding electrode 15 through the second via hole 42. At the same time, a lead electrode via hole can also be formed at the position of the lead electrode, so that the external lead and the lead electrode are connected by silver glue or the like.
  • FIG11 is an example of providing an insulating layer 40 and a wiring layer 50 on the basis of FIG2 .
  • the insulating layer 40 and the wiring layer 50 may also be provided on the basis of FIG3 and FIG4 .
  • the aspect ratio of the entire base substrate may be 1.8 to 2.0, and the thickness of the base substrate may be 0.5 mm to 1 mm.
  • the length and width of the second electrode corresponding to the piezoelectric element 20 of the first size W1 can be equal, for example, 5mm to 10mm; the width of the piezoelectric element 20 of the second size W2 can be equal to the width of the second electrode of the piezoelectric element 20 of the first size, and the length of the piezoelectric element 20 of the second size W2 can be half of the width.
  • the material of the first electrode 11 and the second electrode 12 can be a transparent conductive material, such as indium tin oxide (ITO), or indium zinc oxide (IZO), etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the structure of the tactile feedback substrate provided in the embodiment of the present disclosure can be a glass-based transparent tactile feedback device, which can be used for display integration. Its overall average transmittance is >75%.
  • ITO and PZT are both metal oxides, which have better adhesion and prevent the electrode from peeling off and splitting during vibration use.
  • the material of the wiring layer may be Ti/Ni/Au, or the material of the wiring layer may be Ti/Al/Ti.
  • the thickness of the piezoelectric material layer can be 500nm to 2000nm.
  • the thickness of the piezoelectric material layer is 500nm, 1000nm or 2000nm.
  • the thickness of the piezoelectric material layer can be set to be as close to zero as possible, while ensuring the good vibration characteristics of the piezoelectric material layer and taking into account the lightweight design of the tactile feedback substrate.
  • the piezoelectric material layer is not limited to the lead zirconate titanate (Pb(Zr,Ti)O 3 , PZT) mentioned above, and can also be at least one of aluminum nitride (AlN), ZnO (zinc oxide), barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), and lanthanum gallium silicate (La 3 Ga 5 SiO 14 ).
  • AlN aluminum nitride
  • ZnO zinc oxide
  • barium titanate BaTiO 3
  • lead titanate PbTiO 3
  • KNbO 3 potassium niobate
  • LiNbO 3 lithium niobate
  • LiTaO 3 lithium tantalate
  • La 3 Ga 5 SiO 14 lanthanum gallium silicate
  • the material for making the piezoelectric material layer can be selected according to the actual use needs of those skilled in the art, and is not limited here. Among them, when PZT is used to make the piezoelectric material layer, since PZT has a high piezoelectric coefficient, the piezoelectric characteristics of the corresponding tactile feedback substrate are guaranteed, and the corresponding tactile feedback substrate can be applied to the tactile feedback device. In addition, PZT has a high light transmittance, and when it is integrated into a display device, it does not affect the display quality of the display device.
  • the tactile feedback substrate provided by the embodiments of the present disclosure can be applied to the fields of medical treatment, automotive electronics, sports tracking systems, etc. It is particularly suitable for the field of wearable devices, medical monitoring and treatment outside the body or implanted inside the human body, or applied to the fields of electronic skin for artificial intelligence.
  • the tactile feedback substrate can be applied to brake pads, keyboards, mobile terminals, game controllers, car-mounted devices, etc. that can generate vibration and mechanical properties.
  • the embodiment of the present disclosure also provides a tactile feedback device, including the tactile feedback substrate provided in the embodiment of the present disclosure. Since the principle of solving the problem of the tactile feedback device is similar to that of the aforementioned tactile feedback substrate, the implementation of the tactile feedback device can refer to the implementation of the aforementioned tactile feedback substrate, and the repeated parts will not be repeated.
  • the tactile feedback device can be combined with a touch screen, and the touch screen can determine the position of human touch, thereby generating corresponding vibration waveforms, amplitudes and frequencies, and realizing human-computer interaction.
  • the tactile feedback device can be reused as a piezoelectric body, and the position of human touch can be determined through a tactile feedback substrate, thereby generating corresponding vibration waveforms, amplitudes and frequencies, and realizing human-computer interaction.
  • the tactile feedback device can also be applied to medical, automotive electronics, sports tracking systems and other fields according to actual needs, which will not be described in detail here.
  • An embodiment of the present invention provides a tactile feedback substrate and a tactile feedback device.
  • An insulating flat layer having a dielectric constant smaller than that of the piezoelectric material layer is provided between the second electrode and the piezoelectric material layer.
  • the insulating flat layer can prevent Pb in the piezoelectric material layer (e.g., PZT) from diffusing into the second electrode (e.g., ITO).
  • the insulating flat layer can also flatten the hole defects in the piezoelectric material layer, thereby stabilizing the electric field and reducing the leakage current. The problem of partial breakdown of the piezoelectric material layer under an alternating current electric field is solved, and the stability and reliability of the piezoelectric element can be further improved.
  • An insulating flat layer with a dielectric constant smaller than that of the piezoelectric material layer is arranged between the electrode and the piezoelectric material layer.
  • the insulating flat layer can prevent Pb in the piezoelectric material layer (such as PZT) from diffusing into the first electrode (such as ITO) during deposition and high-temperature crystallization heat treatment, thereby improving the conductivity of the first electrode.
  • Pb in the piezoelectric material layer (such as PZT) can be prevented from diffusing into the second electrode and the first electrode, and on the other hand, hole defects in the piezoelectric material layer can be flattened.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本公开实施例提供了一种触觉反馈基板及触觉反馈装置,包括衬底基板以及设置在衬底基板一侧的压电元件,压电元件包括层叠设置的第一电极、压电材料层和第二电极,第一电极靠近衬底基板设置,第一电极与第二电极用于形成交变电场,压电材料层用于在交变电场的作用下发生振动,并驱动衬底基板发生共振;其中,第一电极与压电材料层之间、第二电极与压电材料层之间中的至少其中之一设置绝缘平坦层,绝缘平坦层的介电常数小于压电材料层的介电常数。

Description

一种触觉反馈基板及触觉反馈装置 技术领域
本公开涉及触觉反馈技术领域,特别涉及一种触觉反馈基板及触觉反馈装置。
背景技术
随着显示技术的发展,触摸屏得到了越来越广泛的应用,并且逐渐成为最便捷的人机交互设备之一。近年来,为了进一步提高人机交互的使用体验,触觉反馈技术应运而生,得到了越来越多的关注和研究。
发明内容
本公开实施例提供了一种触觉反馈基板及触觉反馈装置,具体方案如下:
本公开实施例提供了一种触觉反馈基板,包括衬底基板以及设置在所述衬底基板一侧的压电元件,所述压电元件包括层叠设置的第一电极、压电材料层和第二电极,所述第一电极靠近所述衬底基板设置,所述第一电极与所述第二电极用于形成交变电场,所述压电材料层用于在所述交变电场的作用下发生振动,并驱动所述衬底基板发生共振;其中,
所述第一电极与所述压电材料层之间、所述第二电极与所述压电材料层之间中的至少其中之一设置绝缘平坦层,所述绝缘平坦层的介电常数小于所述压电材料层的介电常数。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述绝缘平坦层的材料包括HfO 2、Al 2O 3、AlN、PbZrO 3中的至少其中之一。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述第一电极与所述压电材料层之间或所述第二电极与所述压电材料层之间设置所述绝缘平坦层,所述绝缘平坦层的厚度满足如下关系:
Figure PCTCN2022126595-appb-000001
其中,l 2为所述绝缘平坦层的厚度,l 1为所述压电材料层的厚度,ε 1为所述压电材料层的介电常数,ε 2为所述绝缘平坦层的介电常数。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述第一电极与所述压电材料层之间设置第一绝缘平坦层,所述第二电极与所述压电材料层之间设置第二绝缘平坦层,所述第一绝缘平坦层的厚度和所述第二绝缘平坦层的厚度满足如下关系:
Figure PCTCN2022126595-appb-000002
其中,l 0为所述第一绝缘平坦层的厚度和所述第二绝缘平坦层的厚度之和,l 1为所述压电材料层的厚度,ε 1为所述压电材料层的介电常数,ε 2为所述第一绝缘平坦层的介电常数。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述压电元件的数量有多个,且多个所述压电元件阵列排布在所述衬底基板的一侧;
所有所述压电元件的第一电极为一体结构的面状电极,位于同一列的各所述压电元件的第二电极之间通过导电连接部相互电连接,位于不同列的所述压电元件的第二电极之间相互绝缘,位于同一列的各所述压电元件的压电材料层之间通过压电连接部相互连通;
所述绝缘平坦层与所述压电材料层的形状相同、尺寸相同。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述第二电极的边缘相对于所述压电材料层的边缘缩进。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述第二电极的边缘相对于所述压电材料层的边缘的缩进量大于或等于50微米,且小于或等于100微米。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,位于同一列的各所述压电元件的尺寸相同,位于同一行的各所述压电元件按 第一尺寸和第二尺寸交替排列,所述第一尺寸大于所述第二尺寸。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,还包括:
与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;
设置在所述第二电极背离所述衬底基板一侧的绝缘层;
设置在所述绝缘层背离所述衬底基板一侧的走线层,所述走线层包括走线,所述走线的一端与所述第二电极通过设置在所述绝缘层上的第一过孔连接,所述走线的另一端与所述绑定电极通过设置在所述绝缘层上的第二过孔连接。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,还包括与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述绝缘层的材料为SiO 2或光刻胶。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述第一电极和所述第二电极的材料为透明导电材料,所述走线层的材料为Ti/Ni/Au或Ti/Al/Ti。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述压电材料层的厚度为500nm~2000nm。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈基板中,所述压电材料层包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
相应地,本公开实施例还提供了一种触觉反馈装置,包括本公开实施例提供的上述触觉反馈基板。
附图说明
图1为相关技术中提供的一种压电元件的结构示意图;
图2为本公开实施例提供的一种触觉反馈基板的结构示意图;
图3为本公开实施例提供的又一种触觉反馈基板的结构示意图;
图4为本公开实施例提供的又一种触觉反馈基板的结构示意图;
图5为本公开实施例提供的压电材料层的原子力显微镜照片;
图6为图5对应的压电材料层表面的针状凸起的高度;
图7为在具有针状凸起的压电材料层表面设置绝缘平坦层的结构示意图;
图8为绝缘平坦层(材料分别为HfO 2、Al 2O 3、AlN、PbZrO 3)的厚度l 2与E1/E之间的关系示意图;
图9为本公开实施例提供的一种触觉反馈基板的平面示意图;
图10为对图9中沿CC’方向的截面示意图;
图11为本公开实施例提供的又一种触觉反馈基板的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位 置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
薄膜压电材料具有高介电常数与透明的特性,非常适合用于屏幕集成的振动器结构。锆钛酸铅压电陶瓷(PZT)由于优异的压电性能,目前应用的较多。
在相关技术中,如图1所示,压电元件包括:第一电极1(例如ITO),设置在第一电极1上的压电材料层2(例如PZT),以及设置在压电材料层2上的第二电极3(例如ITO)。在压电元件工作过程中,利用逆压电效应,将第一电极1接地,通过向第二电极3加载高频交流电压信号(V AC),实现对压电材料层2的高频交流电压信号的施加,从而产生高频振动。经本案的发明人研究发现,压电元件发生击穿损毁主要是由于第二电极3(ITO)和压电材料层2(PZT)存在严重损伤,导致第二电极3和压电材料层2存在严重损伤的具体原因如下:
(1)因PZT膜层中的Pb离子极易扩散至ITO膜层中,导致ITO阻值上升,当电流通过大电阻时,电流做功而消耗电能,产生了更多的热量,导致压电元件击穿。
(2)PZT膜层一般采用干法镀膜(溅射,Sputter)或湿法镀膜(溶胶-凝胶法,Sol-Gel)工艺制作,但是这两种方法制作得到的PZT膜层存在大量缺陷,内部如晶界、孔洞等缺陷,PZT膜层表面具有针状不平整的凸起,导致在电场下直接击穿变成导体,电流值急剧上升,热量激增,从而导致压电元件在工作电压下易发生击穿损毁的现象。
有鉴于此,为了避免压电元件发生击穿导致压电元件损毁的问题,本公开实施例提供了一种触觉反馈基板,如图2-图4所示,包括衬底基板10以及设置在衬底基板10一侧的压电元件20,压电元件20包括层叠设置的第一电极11、压电材料层13和第二电极12,第一电极11靠近衬底基板10设置, 第一电极11与第二电极12用于形成交变电场,压电材料层13用于在交变电场的作用下发生振动,并驱动衬底基板11发生共振;其中,
第一电极11与压电材料层13之间、第二电极12与压电材料层13之间中的至少其中之一设置绝缘平坦层30,绝缘平坦层30的介电常数小于压电材料层13的介电常数。
本公开实施例提供的上述触觉反馈基板,如图2所示,通过在第二电极12与压电材料层13之间设置介电常数小于压电材料层13介电常数的绝缘平坦层30,该绝缘平坦层30可以防止压电材料层13(例如PZT)内的Pb扩散至第二电极12(例如ITO)中,并且该绝缘平坦层30还可以平坦压电材料层13中存在的孔洞缺陷,可以达到稳定电场,降低漏电流的效果,从而解决压电材料层13在交流电场下局部被击穿的问题,可进一步提高压电元件20工作的稳定性和可靠性;如图3所示,通过在第一电极11与压电材料层13之间设置介电常数小于压电材料层13介电常数的绝缘平坦层30,该绝缘平坦层30可以防止压电材料层13(例如PZT)在沉积和高温晶化热处理过程中的Pb扩散至第一电极11(例如ITO)中,从而提高第一电极11的导电性;如图4所示,通过在第二电极12与压电材料层13之间以及第一电极11与压电材料层13之间均设置介电常数小于压电材料层13介电常数的绝缘平坦层(31和32),一方面可以防止压电材料层13(例如PZT)内的Pb扩散至第二电极12和第一电极11中,另一方面可以平坦压电材料层13中存在的孔洞缺陷。
在具体实施过程中,衬底基板10可以为由玻璃制成的基板,还可以为由硅或二氧化硅(SiO 2)制成的基板,还可以为由蓝宝石制成的基板,还可以为由金属晶圆制成的基板,在此不做限定,本领域技术人员可以根据实际应用需要来设置上述衬底基板10。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,绝缘平坦层的材料可以包括HfO 2、Al 2O 3、AlN、PbZrO 3中的至少其中之一。具体的,当绝缘平坦层的材料为HfO 2、Al 2O 3、AlN时,可以采用原子层沉积技术(ALD)技术,ALD是一种原子级膜层一层一层生长的薄膜制备技术,传统的蒸镀、 溅射、化学气相沉积技术会产生孔隙和表面层缺陷,而原子层沉积技术能有效的保证厚度的均匀性,重现性好,应力低,化学计量准确,低缺陷密度的非晶结构,可当作有效的电子阻挡层。当绝缘平坦层的材料为PbZrO3时,可采用溶胶凝胶或磁控溅射的方法进行制备。
需要说明的是,相对于HfO 2,PbZrO 3绝缘材料,若绝缘平坦层采用AlN材料,其不仅可以当作平坦层和绝缘层,更因AlN也是压电材料,同样可以贡献一部分压电功能,有利于增强压电元件的整体振动位移。
如图5所示,图5为采用溅射或溶胶-凝胶法制备压电材料层(PZT)的原子力显微镜(AFM)照片,可以看出,原始的PZT膜层表面存在大量的针状凸起;如图6所示,图6为PZT膜层表面针状凸起的高度,其中针状凸起的最大高度差ΔH>8nm,因此为了充分覆盖PZT膜层,如图7所示,图7为在PZT膜层表面覆盖绝缘平坦层30的示意图,该绝缘平坦层30的厚度应大于10nm。
但是,绝缘平坦层30的厚度上限也有限制,因为对于Glass/ITO/PZT/ITO的压电元件结构,PZT膜层厚度通常设置为2μm,当电极两端施加相同的电压,需要对绝缘平坦层的材料选择以及厚度上进行充分的设计,从而保证PZT膜层两端的有效电场强度不会损耗太多。
Figure PCTCN2022126595-appb-000003
E=E1+E2         公式(2)
α 1=l 1/(l 1+l 2)   公式(3)
其中,E是对第一电极和第二电极施加电压时在压电元件内形成的电场,E1和E2分别是压电材料层和绝缘平坦层中的电场,ε 1和ε 2分别是压电材料层和绝缘平坦层的介电常数,l 1和l 2分别为压电材料层和绝缘平坦层的厚度,由于绝缘平坦层会分压,因此压电材料层中的电场E1小于外加电场E。
从上述公式可以看出,绝缘平坦层的介电常数ε 2越小,厚度l 2越高,使得压电材料层中的有效电场耗散的越严重。一般情况下,希望压电材料层两 端的电场损失不超过50%,那绝缘平坦层根据不同的材料就要选取不同的厚度,来阻挡PZT中的Pb向ITO扩散以及平坦PZT膜层的表面,以避免压电元件被击穿失效。
如下表1所示,表1为PZT、HfO 2、Al 2O 3、AlN、PbZrO 3四种材料的介电常数。
表1
Figure PCTCN2022126595-appb-000004
例如,当绝缘平坦层的材料为HfO 2时,压电材料层(PZT)的厚度设置为2000nm,若使PZT膜层两端的有效电场E1≥50%E(公式(4)),ε 1=1000,ε 2=23代入上述公式(1),可得E1/E与HfO 2的厚度l 2关系,即:
Figure PCTCN2022126595-appb-000005
同理,当绝缘平坦层的材料为Al 2O 3时,
Figure PCTCN2022126595-appb-000006
当绝缘平坦层的材料为PbZrO 3时,
Figure PCTCN2022126595-appb-000007
当绝缘平坦层的材料为AlN时,
Figure PCTCN2022126595-appb-000008
如图8所示,图8为绝缘平坦层(材料分别为HfO 2、Al 2O 3、AlN、PbZrO 3)的厚度l 2与E1/E之间的关系示意图,可以看出,若要让E1/E≥50%,当绝缘平坦层的材料为Al 2O 3时,l 2需小于或等于16nm,即10nm<l 2≤16nm;当绝缘平坦层的材料为AlN时,l 2需小于或等于19nm,即10nm<l 2≤19nm;当绝缘平坦层的材料为HfO 2时,l 2需小于或等于48nm,即10nm<l 2≤48nm;当绝缘平坦层的材料为PbZrO 3时,l 2在小于或等于50nm范围内均符合E1/E≥50%,为了在不增加压电元件厚度的基础上,可以选择10nm<l 2≤15nm, 当然不限于此。
基于以上分析,如图2和图3所示,绝缘平坦层30的厚度通过上述公式(1)-(4)推导,可以满足如下关系:
Figure PCTCN2022126595-appb-000009
如图4所示,由于在第一电极11与压电材料层13之间设置第一绝缘平坦层31,在第二电极12与压电材料层13之间设置第二绝缘平坦层32,第一绝缘平坦层31的厚度和第二绝缘平坦层32的厚度之和通过上述公式(1)-(4)推导,可以满足如下关系:
Figure PCTCN2022126595-appb-000010
其中,l 0为第一绝缘平坦层31的厚度和第二绝缘平坦层32的厚度之和。
综上,当图2和图3中的绝缘平坦层30的厚度满足
Figure PCTCN2022126595-appb-000011
Figure PCTCN2022126595-appb-000012
关系时,压电材料层20两端的有效电场E1≥50%E;当图4中的绝缘平坦层(31和32)的厚度之和满足
Figure PCTCN2022126595-appb-000013
Figure PCTCN2022126595-appb-000014
关系时,压电材料层20两端的有效电场E1≥50%E。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,如图9所示,压电元件20的数量可以有多个,且多个压电元件20阵列排布在衬底基板10的一侧;
所有压电元件20的第一电极11可以为一体结构的面状电极,位于同一列的各压电元件20的第二电极12之间通过导电连接部14相互电连接,位于不同列的压电元件20的第二电极12之间相互绝缘,位于同一列的各压电元件20的压电材料层13之间通过压电连接部(未示出)相互连通;这样,同一列的压电元件20可以进行整体驱动,从而实现列驱动;
绝缘平坦层30与压电材料层13的形状相同、尺寸相同,这样绝缘平坦层30可以完全平坦压电材料层13以及完全阻挡压电材料层13中的Pb向第一电极11或第二电极12扩散。
具体的,第一电极11采用整面设置,压电材料层13和绝缘平坦层30图案化,刻蚀出边缘位置,便于第一电极11露出以施加电信号,第二电极12在绝缘平坦层30上沉积并图案化,并且第二电极12与压电材料层13、绝缘平坦层30的图形保持一致,以实现阵列分布在衬底基板10上的多个压电元件20。
需要说明的是,本公开实施例图9是以第一电极11为整面设置为例,当然第一电极11的形状也可以与第二电极12的形状相同,但第一电极11在衬底基板10上的正投影面积要大于第二电极12在衬底基板10上的正投影,便于第一电极11露出以施加电信号。
在具体实施时,为了降低短路风险,在本公开实施例提供的上述触觉反馈基板中,如图10所示,图10为图9张沿CC’方向的截面示意图,第二电极12的边缘可以相对于压电材料层13的边缘缩进。在具体实现中,第二电极12的边缘相对于压电材料层13的边缘的缩进量大于或等于50微米,且小于或等于100微米。例如,缩进量可以为100微米。并且,对比上面整的压电材料层13和绝缘平坦层30,可以降低整个压电元件20的应力,减少衬底基板10的翘曲,提升压电元件在制备和工作中的可靠性。
为了进一步降低短路风险,如图10所示,压电材料层13的边缘可以相对于第一电极11的边缘缩进。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,如图9所示,位于同一列的各压电元件20的尺寸相同,位于同一行的各压电元件20按第一尺寸W1和第二尺寸W2交替排列,第一尺寸W1大于第二尺寸W2。这样设置压电元件20的目的是为了当需要进行触觉反馈时,可以仅对第一尺寸的压电元件20加载交流电压信号,而对第二尺寸的压电元件20不加载交流电压信号,这样第一尺寸的压电元件20发生振动带动衬底基板振动以实现触觉反馈;第二尺寸的压电元件20可以利用压电材料层的正压电效应实现压力检测,从而可以实现触觉反馈与压力检测同时进行。由于第二尺寸的压电元件20只用于压力检测,因此第二尺寸的压电元件20的尺寸可以设置的较 小,而第一尺寸的压电元件20的尺寸设置的较大,可以提高触觉反馈效果。
具体的,第一尺寸的压电元件20设置在衬底基板振动的波峰位置处,第二尺寸的压电元件20设置在衬底基板振动的波谷位置处。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,如图11所示,还包括:
与第一电极11同层设置的绑定电极15,绑定电极15靠近衬底基板10的边缘设置,绑定电极15用于连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号;
设置在第二电极12背离衬底基板10一侧的绝缘层40;
设置在绝缘层40背离衬底基板10一侧的走线层50,走线层50包括走线,走线的一端与第二电极12通过设置在绝缘层40上的第一过孔41连接,走线的另一端与绑定电极15通过设置在绝缘层40上的第二过孔42连接。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,如图11所示,还包括与第一电极11同层设置的引线电极(未示出),引线电极与第一电极11连接,引线电极用于连接地电压输入端,地电压输入端输入的电压信号为接地电压信号。
在本公开实施例中,第一电极11、绑定电极15以及引线电极可以材料相同且同一构图工艺形成。
其中,绝缘层40可以采用SiO 2、负性光刻胶或者正性光刻胶。通过整面涂覆或者沉积完绝缘层材料膜层后,对绝缘层材料膜层进行沟构图。设置绝缘层40的目的是覆盖住部分第一电极11以避免通过走线层50与其他结构短路,同时在第二电极12的位置处形成第一过孔41,在绑定电极15的位置处形成第二过孔42,以使走线层50中走线的一端与第二电极12通过第一过孔41连接,走线的另一端与绑定电极15通过第二过孔42连接。同时,还可以在引线电极的位置处形成引线电极过孔,以使外接引线与引线电极通过银胶等方式连接。
需要说明的是,图11是以在图2的基础上设置绝缘层40和走线层50为 例,当然也可以是在图3和图4的基础上设置绝缘层40和走线层50。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,除了上述提及的各种膜层之外,还可以根据实际应用设置其它膜层。
可选地,整个衬底基板的长宽比可以为1.8~2.0,衬底基板的厚度可以为0.5mm~1mm。
可选地,如图9所示,第一尺寸W1的压电元件20对应的第二电极的长和宽可以相等,例如为5mm~10mm;第二尺寸W2的压电元件20的宽可以和第一尺寸的压电元件20的第二电极的宽相等,第二尺寸W2的压电元件20的长可以为宽的一半。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,第一电极11和第二电极12的材料可以为透明导电材料,例如可以氧化铟锡(ITO),还可以是氧化铟锌(IZO)等,本领域技术人员可以根据实际应用需要来设置第一电极11和第二电极12的材料,在此不做限定。本公开实施例提供的触觉反馈基板得结构可以为玻璃基透明的触觉反馈器件,可用于显示集成。其整体平均透过率>75%。相对于相关技术中的Ti/Pt电极,ITO与PZT均为金属氧化物,有更好的黏附性,防止在振动使用过程中电极产生剥离和劈裂的现象。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,走线层的材料可以为Ti/Ni/Au,或走线层的材料可以为Ti/Al/Ti。
在具体实施时,在本公开实施例提供的上述触觉反馈基板中,压电材料层的厚度可以为500nm~2000nm,例如,压电材料层的厚度为500nm、1000nm或2000nm,在实际应用中,可以将压电材料层的厚度设置为尽可能地接近零,在保证压电材料层较好振动特性的同时,兼顾了触觉反馈基板的轻薄化设计。
在具体实施时,压电材料层不限于是上述所说的锆钛酸铅(Pb(Zr,Ti)O 3,PZT),还可以是氮化铝(AlN)、ZnO(氧化锌)、钛酸钡(BaTiO 3)、钛酸铅(PbTiO 3)、铌酸钾(KNbO 3)、铌酸锂(LiNbO 3)、钽酸锂(LiTaO 3)、硅酸镓镧(La 3Ga 5SiO 14)中的至少一种,如此一来,在兼顾触觉反馈基板透明的 同时,保证了触觉反馈基板的振动特性,具体可以根据本领域技术人员的实际使用需要来选择制作压电材料层的材料,在此不做限定。其中,在使用PZT制成压电材料层时,由于PZT具有高压电系数,保证了相应的触觉反馈基板的压电特性,可以将相应的触觉反馈基板应用到触觉反馈器件中,而且PZT具有较高的透光性,在将其集成到显示器件中时,不影响显示器件的显示质量。
本公开实施例提供的触觉反馈基板可应用于医疗,汽车电子,运动追踪系统等领域。尤其适用于可穿戴设备领域,医疗体外或植入人体内部的监测及治疗使用,或者应用于人工智能的电子皮肤等领域。具体地,可以将触觉反馈基板应用于刹车片、键盘、移动终端、游戏手柄、车载等可产生振动和力学特性的装置中。
基于同一发明构思,本公开实施例还提供了一种触觉反馈装置,包括本公开实施例提供的上述触觉反馈基板。由于该触觉反馈装置解决问题的原理与前述一种触觉反馈基板相似,因此该触觉反馈装置的实施可以参见前述触觉反馈基板的实施,重复之处不再赘述。
在具体实施时,可以将触觉反馈装置与触控屏在一起,通过触控屏可以确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。再比如,还可以将触觉反馈装置复用为压电体,通过触觉反馈基板确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。当然,还可以根据实际需要将触觉反馈装置应用在医疗,汽车电子,运动追踪系统等领域,在此不再详述。
本发明实施例提供的一种触觉反馈基板及触觉反馈装置,通过在第二电极与压电材料层之间设置介电常数小于压电材料层介电常数的绝缘平坦层,该绝缘平坦层可以防止压电材料层(例如PZT)内的Pb扩散至第二电极(例如ITO)中,并且该绝缘平坦层还可以平坦压电材料层中存在的孔洞缺陷,可以达到稳定电场,降低漏电流的效果,从而解决压电材料层在交流电场下局部被击穿的问题,可进一步提高压电元件工作的稳定性和可靠性;通过在第一 电极与压电材料层之间设置介电常数小于压电材料层介电常数的绝缘平坦层,该绝缘平坦层可以防止压电材料层(例如PZT)在沉积和高温晶化热处理过程中的Pb扩散至第一电极(例如ITO)中,从而提高第一电极的导电性;通过在第二电极与压电材料层之间以及第一电极与压电材料层之间均设置介电常数小于压电材料层介电常数的绝缘平坦层,一方面可以防止压电材料层(例如PZT)内的Pb扩散至第二电极和第一电极中,另一方面可以平坦压电材料层中存在的孔洞缺陷。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种触觉反馈基板,其中,包括衬底基板以及设置在所述衬底基板一侧的压电元件,所述压电元件包括层叠设置的第一电极、压电材料层和第二电极,所述第一电极靠近所述衬底基板设置,所述第一电极与所述第二电极用于形成交变电场,所述压电材料层用于在所述交变电场的作用下发生振动,并驱动所述衬底基板发生共振;其中,
    所述第一电极与所述压电材料层之间、所述第二电极与所述压电材料层之间中的至少其中之一设置绝缘平坦层,所述绝缘平坦层的介电常数小于所述压电材料层的介电常数。
  2. 根据权利要求1所述的触觉反馈基板,其中,所述绝缘平坦层的材料包括HfO 2、Al 2O 3、AlN、PbZrO 3中的至少其中之一。
  3. 根据权利要求1所述的触觉反馈基板,其中,所述第一电极与所述压电材料层之间或所述第二电极与所述压电材料层之间设置所述绝缘平坦层,所述绝缘平坦层的厚度满足如下关系:
    Figure PCTCN2022126595-appb-100001
    其中,l 2为所述绝缘平坦层的厚度,l 1为所述压电材料层的厚度,ε 1为所述压电材料层的介电常数,ε 2为所述绝缘平坦层的介电常数。
  4. 根据权利要求1所述的触觉反馈基板,其中,所述第一电极与所述压电材料层之间设置第一绝缘平坦层,所述第二电极与所述压电材料层之间设置第二绝缘平坦层,所述第一绝缘平坦层的厚度和所述第二绝缘平坦层的厚度满足如下关系:
    Figure PCTCN2022126595-appb-100002
    其中,l 0为所述第一绝缘平坦层的厚度和所述第二绝缘平坦层的厚度之和,l 1为所述压电材料层的厚度,ε 1为所述压电材料层的介电常数,ε 2为所述第一绝缘平坦层的介电常数。
  5. 根据权利要求1-4任一项所述的触觉反馈基板,其中,所述压电元件的数量有多个,且多个所述压电元件阵列排布在所述衬底基板的一侧;
    所有所述压电元件的第一电极为一体结构的面状电极,位于同一列的各所述压电元件的第二电极之间通过导电连接部相互电连接,位于不同列的所述压电元件的第二电极之间相互绝缘,位于同一列的各所述压电元件的压电材料层之间通过压电连接部相互连通;
    所述绝缘平坦层与所述压电材料层的形状相同、尺寸相同。
  6. 根据权利要求5所述的触觉反馈基板,其中,所述第二电极的边缘相对于所述压电材料层的边缘缩进。
  7. 根据权利要求6所述的触觉反馈基板,其中,所述第二电极的边缘相对于所述压电材料层的边缘的缩进量大于或等于50微米,且小于或等于100微米。
  8. 根据权利要求5所述的触觉反馈基板,其中,位于同一列的各所述压电元件的尺寸相同,位于同一行的各所述压电元件按第一尺寸和第二尺寸交替排列,所述第一尺寸大于所述第二尺寸。
  9. 根据权利要求1-8任一项所述的触觉反馈基板,其中,还包括:
    与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底基板的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;
    设置在所述第二电极背离所述衬底基板一侧的绝缘层;
    设置在所述绝缘层背离所述衬底基板一侧的走线层,所述走线层包括走线,所述走线的一端与所述第二电极通过设置在所述绝缘层上的第一过孔连接,所述走线的另一端与所述绑定电极通过设置在所述绝缘层上的第二过孔连接。
  10. 根据权利要求9所述的触觉反馈基板,其中,还包括与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
  11. 根据权利要求9所述的触觉反馈基板,其中,所述绝缘层的材料为SiO 2或光刻胶。
  12. 根据权利要求9所述的触觉反馈基板,其中,所述第一电极和所述第二电极的材料为透明导电材料,所述走线层的材料为Ti/Ni/Au或Ti/Al/Ti。
  13. 根据权利要求1-12任一项所述的触觉反馈基板,其中,所述压电材料层的厚度为500nm~2000nm。
  14. 根据权利要求1-12任一项所述的触觉反馈基板,其中,所述压电材料层包括锆钛酸铅、氮化铝、氧化锌、钛酸钡、钛酸铅、铌酸钾、铌酸锂、钽酸锂、硅酸镓镧中的至少一种。
  15. 一种触觉反馈装置,其中,包括权利要求1-14任一项所述的触觉反馈基板。
PCT/CN2022/126595 2022-10-21 2022-10-21 一种触觉反馈基板及触觉反馈装置 WO2024082255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126595 WO2024082255A1 (zh) 2022-10-21 2022-10-21 一种触觉反馈基板及触觉反馈装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126595 WO2024082255A1 (zh) 2022-10-21 2022-10-21 一种触觉反馈基板及触觉反馈装置

Publications (1)

Publication Number Publication Date
WO2024082255A1 true WO2024082255A1 (zh) 2024-04-25

Family

ID=90736688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126595 WO2024082255A1 (zh) 2022-10-21 2022-10-21 一种触觉反馈基板及触觉反馈装置

Country Status (1)

Country Link
WO (1) WO2024082255A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051914A (en) * 1997-02-04 2000-04-18 Seiko Epson Corporation Piezoelectric device, actuator using the same, and ink-jet recording head
US20050078154A1 (en) * 2002-01-15 2005-04-14 Takanori Nakano Piezoelectric actuator and ink-jet head, and ink-jet recorder
JP2009130182A (ja) * 2007-11-26 2009-06-11 Hitachi Cable Ltd 圧電薄膜素子
JP2010118447A (ja) * 2008-11-12 2010-05-27 Nec Tokin Corp 圧電膜型素子
US20200044138A1 (en) * 2018-08-02 2020-02-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device based on alkali metal niobate comprising a barrier layer and manufacturing process
WO2022178807A1 (zh) * 2021-02-26 2022-09-01 京东方科技集团股份有限公司 触觉反馈基板、触觉反馈装置及触觉反馈方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051914A (en) * 1997-02-04 2000-04-18 Seiko Epson Corporation Piezoelectric device, actuator using the same, and ink-jet recording head
US20050078154A1 (en) * 2002-01-15 2005-04-14 Takanori Nakano Piezoelectric actuator and ink-jet head, and ink-jet recorder
JP2009130182A (ja) * 2007-11-26 2009-06-11 Hitachi Cable Ltd 圧電薄膜素子
JP2010118447A (ja) * 2008-11-12 2010-05-27 Nec Tokin Corp 圧電膜型素子
US20200044138A1 (en) * 2018-08-02 2020-02-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device based on alkali metal niobate comprising a barrier layer and manufacturing process
WO2022178807A1 (zh) * 2021-02-26 2022-09-01 京东方科技集团股份有限公司 触觉反馈基板、触觉反馈装置及触觉反馈方法

Similar Documents

Publication Publication Date Title
WO2020156257A1 (zh) 指纹识别模组及其制作方法和电子装置
US4900970A (en) Energy-trapping-type piezoelectric resonance device
TW202014867A (zh) 感測膜及其製備方法、電子裝置
CN111446359A (zh) 一种压电器件及其制作方法、电子装置及控制方法
WO2019201521A1 (en) Bulk acoustic wave resonator and method for manufacturing the same
WO2024082255A1 (zh) 一种触觉反馈基板及触觉反馈装置
US11437560B2 (en) Multilayer piezoelectric element, piezoelectric vibration apparatus, and electronic device
CN109155357A (zh) 透明的压电器件及其制造方法
JP7071172B2 (ja) 積層圧電素子、圧電振動装置、及び電子機器
US20240224809A1 (en) Piezoelectric sensor and haptic feedback apparatus
JP2001168674A (ja) 圧電共振子及び電子機器
JP3551078B2 (ja) 積層型圧電トランスとこれを用いた電子機器
WO2023005605A1 (zh) 压电传感器及触觉反馈装置
WO2022246821A1 (zh) 一种压电传感器、其制作方法及触觉反馈装置
WO2023184298A1 (zh) 压电传感器、其驱动方法及触觉反馈装置
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置
JP2001068752A (ja) 圧電トランス
CN117412659A (zh) 一种触觉再现器件、其制作方法及触觉再现装置
TWI379140B (en) Pixel structure and active device array substrate
JP3659309B2 (ja) 圧電トランス
CN213125989U (zh) 一种背硅刻蚀型剪切波滤波器
JP2568505B2 (ja) 強誘電体薄膜素子
JP3551089B2 (ja) 積層型圧電トランスとこれを用いた電子機器
CN115933865A (zh) 振动面板及振动装置
JP3709114B2 (ja) 圧電トランス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962441

Country of ref document: EP

Kind code of ref document: A1