WO2022178807A1 - 触觉反馈基板、触觉反馈装置及触觉反馈方法 - Google Patents

触觉反馈基板、触觉反馈装置及触觉反馈方法 Download PDF

Info

Publication number
WO2022178807A1
WO2022178807A1 PCT/CN2021/078073 CN2021078073W WO2022178807A1 WO 2022178807 A1 WO2022178807 A1 WO 2022178807A1 CN 2021078073 W CN2021078073 W CN 2021078073W WO 2022178807 A1 WO2022178807 A1 WO 2022178807A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
haptic feedback
electric field
alternating electric
Prior art date
Application number
PCT/CN2021/078073
Other languages
English (en)
French (fr)
Inventor
花慧
陈右儒
尹晓峰
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000340.2A priority Critical patent/CN115250626A/zh
Priority to US17/620,538 priority patent/US11847263B2/en
Priority to PCT/CN2021/078073 priority patent/WO2022178807A1/zh
Priority to CN202180003572.3A priority patent/CN115250640A/zh
Priority to PCT/CN2021/133249 priority patent/WO2022179219A1/zh
Priority to EP21927643.3A priority patent/EP4163986A4/en
Publication of WO2022178807A1 publication Critical patent/WO2022178807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Further insulation means against electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present application relates to the technical field of haptic feedback, and in particular, to a haptic feedback substrate, a haptic feedback device, and a haptic feedback method.
  • the present application discloses a haptic feedback substrate, the haptic feedback substrate comprising:
  • the deformation unit includes a first electrode, a piezoelectric material layer and a second electrode arranged in layers, the first electrode is arranged close to the substrate, the The first electrode and the second electrode are used to form an alternating electric field, and the piezoelectric material layer is used to vibrate under the action of the alternating electric field, and drive the substrate to resonate;
  • the difference between the frequency of the alternating electric field and the natural frequency of the substrate is less than or equal to a preset threshold.
  • the deformation unit is arranged at a position of a wave crest and/or a wave trough of the vibration of the substrate.
  • the haptic feedback substrate further includes:
  • the signal is an AC voltage signal
  • the wiring layer includes a wiring, and one end of the wiring and the second electrode are arranged on the insulating layer through The other end of the trace is connected to the binding electrode through a second via provided on the insulating layer.
  • the haptic feedback substrate further includes:
  • the resistance values between the lead electrodes and each of the first electrodes are equal.
  • there are multiple deformation units and a plurality of deformation unit arrays are arranged on one side of the substrate and located between the first electrodes of the deformation units in the same column communicated with each other, and the second electrodes of the deformation units located in the same column are all connected to the same trace of the trace layer.
  • the size of the deformation unit is smaller than a half wavelength of vibration of the substrate.
  • the thickness of the piezoelectric material layer is greater than or equal to 1 micrometer and less than or equal to 10 micrometers.
  • the edge of the second electrode is indented relative to the edge of the piezoelectric material layer.
  • the indentation of the edge of the second electrode relative to the edge of the piezoelectric material layer is greater than or equal to 100 micrometers and less than or equal to 500 micrometers.
  • the edge of the piezoelectric material layer is indented relative to the edge of the first electrode.
  • the present application discloses a haptic feedback device, the haptic feedback device comprising any one of the haptic feedback substrates.
  • the tactile feedback device further includes: a display substrate disposed on a side of the deformation unit away from the substrate, the display substrate comprising a display area and a display substrate located at the periphery of the display area a peripheral area, where the orthographic projection of the deformation unit on the display substrate is located in the peripheral area.
  • a touch electrode layer or a touch film is provided on the side of the substrate close to the display substrate, and the touch electrode layer or the touch film is on the display substrate.
  • An orthographic projection on the substrate covers the display area.
  • the present application discloses a tactile feedback method, which is applied to any one of the tactile feedback substrates, and the tactile feedback method includes:
  • FIG. 1 shows a schematic cross-sectional structure diagram of a haptic feedback substrate provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a plane structure and a schematic diagram of a simulation of a haptic feedback substrate provided by an embodiment of the present application
  • FIG. 3 shows a schematic plan view of the first electrode provided by the embodiment of the present application
  • FIG. 4 shows a schematic plan view of the insulating layer removal part provided by the embodiment of the present application
  • FIG. 5 shows a schematic diagram of a plane structure of a wiring layer provided by an embodiment of the present application
  • FIG. 6 shows a schematic plan view of a piezoelectric material layer provided by an embodiment of the present application
  • FIG. 7 shows a schematic plan view of the second electrode provided by the embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram and an equivalent circuit diagram of a first electrode and a lead electrode provided by an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first improved structure of the first electrode and the lead electrode provided by the embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a second improved structure of the first electrode and the lead electrode provided by the embodiment of the present application.
  • FIG. 11 shows a schematic cross-sectional structure diagram of the first haptic feedback device provided by the embodiment of the present application.
  • FIG. 12 shows a schematic cross-sectional structure diagram of a second haptic feedback device provided by an embodiment of the present application.
  • FIG. 13 shows a schematic plan view of the structure of the completed piezoelectric material layer provided by the embodiment of the present application.
  • FIG. 14 shows a schematic plan view of the structure provided by the embodiment of the present application after the preparation of the second electrode layer is completed;
  • FIG. 15 shows a schematic diagram of a plane structure provided by an embodiment of the present application after the preparation of the wiring layer is completed.
  • the haptic feedback substrate includes: a substrate 11 and a deformation unit 12 disposed on one side of the substrate 11 .
  • the substrate 11 may be a glass substrate or the like, which is not limited in this embodiment.
  • the first electrode 121 and the second electrode 123 can be, for example, transparent electrode materials such as ITO to improve the transmittance of the touch feedback substrate.
  • the application does not limit the specific materials of the first electrode 121 and the second electrode 123 .
  • the material of the piezoelectric material layer 122 may be inorganic piezoelectric materials such as piezoelectric crystals and piezoelectric ceramics, and may also be organic piezoelectric materials such as polyvinylidene fluoride, which is not limited in this embodiment. Among them, piezoelectric materials can realize the mutual conversion of mechanical vibration and alternating current.
  • the natural frequency of the substrate 11 is also referred to as a natural frequency.
  • an object such as the substrate 11 vibrates freely, its displacement varies with time according to the sine or cosine law, and the frequency of the vibration has nothing to do with the initial conditions, but only with the inherent characteristics of the object itself (such as mass, shape, material, etc.).
  • a ground voltage signal may be applied to the first electrode 121, and an AC voltage signal may be applied to the second electrode 123, so that an alternating electric field may be formed between the first electrode 121 and the second electrode 123,
  • the frequency of the alternating electric field is the same as the frequency of the alternating voltage signal.
  • the piezoelectric material layer 122 is deformed and generates a vibration signal.
  • the frequency of the vibration signal is the same as the frequency of the alternating electric field.
  • the frequency of the vibration signal is close to or equal to the natural frequency of the substrate 11, the The bottom 11 resonates, the amplitude increases, and a tactile feedback signal is generated.
  • the friction force on the surface of the substrate 11 can be adjusted by the resonance generated between the piezoelectric material layer 122 and the substrate 11 , thereby realizing the texture reproduction of the object on the surface of the substrate 11 .
  • an alternating electric field is formed between the first electrode and the second electrode by applying voltage signals to the first electrode and the second electrode respectively, and the piezoelectric material layer is generated under the action of the alternating electric field. Deformation, when the frequency of the alternating electric field is close to the natural frequency of the substrate, the substrate can be driven to resonate, and the amplitude is enhanced, thereby realizing haptic feedback on the surface of the substrate.
  • the deformation unit 12 may be disposed at the position of the wave crest and/or the wave trough of the vibration of the substrate 11 .
  • the deformation unit When the number of deformation units 12 is one, the deformation unit may be located at the peak or valley position of the natural mode shape of the substrate 11; when the number of deformation units 12 is multiple, the deformation units 12 may all be located at the peak position, All of them may be located at the trough positions, and some may be located at the peak positions, and the other part may be located at the trough positions.
  • the deformation unit 12 can be set near the peak or trough position according to actual requirements, so as to be compatible with various natural modes of the substrate 11 (such as 0*6node mode, 0*7node mode, 0*8node mode , 0*9node mode shape, 0*10node mode shape, etc.), the position of the specific deformation unit 12 on the substrate 11 may be adjusted with the goal of maximizing the amplitude, which is not limited in this embodiment.
  • each deformation unit 12 may be independently driven, or the deformation units 12 in the same column may be driven in a row (column drive), or all deformation units 12 may be driven in a row.
  • the unit 12 is driven as a whole, and the specific driving manner of the plurality of deformation units 12 is not limited in this embodiment. Subsequent embodiments will introduce the specific structure of the column driver in detail.
  • FIG. 2 a shows a schematic diagram of the arrangement structure of a deformation unit on a substrate provided by this embodiment
  • FIG. 2 b shows the vibration waveform of the 0 ⁇ 10 node natural mode shape of the substrate (black dots).
  • the position is node
  • c in Fig. 2 shows the 0 ⁇ 10 node natural mode mode simulation diagram of the substrate.
  • the plurality of deformation units 12 shown in a in FIG. 2 are arranged on the substrate 11 in an axisymmetric manner.
  • Nine columns of deformation units 12 are arranged on the substrate 11 .
  • a row of deformation units 12 is correspondingly arranged at the position of the crest or the trough of the natural mode shape of 0 ⁇ 10 node.
  • the number of deformation units 12 located in odd-numbered columns is six, and the number of deformation units 12 located in even-numbered columns is two, which are located in the first row and the last row of the even-numbered column, respectively.
  • V pp ⁇ 35 V an AC voltage with a frequency of 24.2 kHz and a peak voltage V pp ⁇ 35 V is applied between the first electrode 121 and the second electrode 123 of the deformation unit shown in a in FIG. 2
  • the amplitude of the substrate 11 can be greater than 1 ⁇ m, and the wavelength Less than 15mm, in line with the industry standard for commercial haptic reproduction devices.
  • a finger touches the surface of the substrate 11 the change of the friction force can be clearly felt, thereby realizing tactile feedback.
  • the node node refers to a column of points in the natural mode shape of the substrate 11 where the amplitude is always 0 (corresponding to column driving).
  • the 0*10node mode shape means that there are 10 points on the substrate 11 under this mode shape whose amplitude is always 0, as shown in b in FIG. 2 .
  • the natural frequency and natural mode shape of the substrate 11 can be determined by simulation according to the parameters of the substrate 11 itself, such as mass, shape, material, etc. (when there are multiple natural frequencies and natural mode shapes, the amplitude is selected Relatively large natural frequency and natural mode shape), determine the position of the wave crest and wave trough of the vibration of the substrate 11, and then place the deformation unit at the position of the wave crest and/or wave trough, or at the position close to the wave crest and/or wave trough.
  • the amplitude of the substrate 11 is larger, and the haptic feedback signal is more uniform.
  • the number of deformation units 12 to be set in the touch feedback substrate can be determined according to factors such as wiring space, and as many deformation units 12 can be set as possible if the wiring space allows, the specific number of deformation units 12 is not limited in this embodiment .
  • the size of the deformation unit 12 may be smaller than the half wavelength of the vibration of the substrate 11 , that is, the size of the deformation unit 12 may be smaller than the half wavelength of the natural mode shape of the substrate 11 .
  • the size of the deformation unit 12 may be smaller than 7.5 mm.
  • the shape of the deformation unit 12 is not limited in this embodiment, and may be a rectangle as shown in a in FIG. 2 , or may be a circle, a pentagon, a hexagon, or the like.
  • the vibration propagation direction of the substrate 11 is parallel to the row direction of the deformation unit array arrangement shown in a in FIG. 2 .
  • the thickness of the piezoelectric material layer 122 may be greater than or equal to 1 micrometer and less than or equal to 10 micrometers.
  • the thickness of the piezoelectric material layer 122 may be 2 microns. Since the thickness of the piezoelectric material layer 122 is relatively thin, it can ensure high transparency of the haptic feedback substrate.
  • the haptic feedback substrate may further include:
  • the binding electrode 13 is arranged on the same layer as the first electrode 121, and the binding electrode 13 is arranged close to the edge of the substrate 11.
  • the binding electrode 13 is used to connect the driving voltage input terminal, and the voltage signal input by the driving voltage input terminal is an AC voltage signal .
  • the edge close to the binding electrode 13 may be the edge in the substrate 11 that is parallel to the vibration propagation direction, such as the upper edge and the lower edge in FIG. 3 .
  • the haptic feedback substrate may further include: an insulating layer 14 and a wiring layer 15 disposed on the side of the second electrode 123 away from the substrate 11 , the wiring layer 15 includes a wiring, and one end of the wiring is connected to the second electrode 123 The connection is made through the first via hole 141 provided on the insulating layer 14 , and the other end of the trace is connected to the bonding electrode 13 through the second via hole 142 provided on the insulating layer 14 .
  • the frequency of the AC voltage signal may be close to or equal to the natural frequency of the substrate 11 .
  • the haptic feedback substrate may further include:
  • the lead electrode 31 provided on the same layer as the first electrode 121 is connected to the first electrode 121 , the lead electrode 31 is used to connect the ground voltage input terminal, and the voltage signal input by the ground voltage input terminal is the ground voltage signal.
  • the first electrode 121 , the bonding electrode 13 and the lead electrode 31 may be formed of the same material and the same patterning process.
  • the insulating layer 14 may be a negative photoresist or a positive photoresist. After coating or depositing the insulating layer material on the entire surface, the pattern area shown in FIG. 4 is removed. The purpose of disposing the insulating layer 14 is to cover part of the first electrode 121 to avoid short-circuiting with other structures through the wiring layer, and at the same time, a first via 141 is formed at the position of the second electrode 123 and formed at the position of the binding electrode 13 The second via 142 is used to connect one end of the wiring in the wiring layer to the second electrode 123 through the first via 141 , and the other end of the wiring to the binding electrode 13 through the second via 142 . At the same time, a lead electrode via hole 41 may also be formed at the position of the lead electrode 31 , so that the external lead and the lead electrode 31 are connected by means of silver glue or the like.
  • the wiring 51 in the wiring layer 15 is used to connect the second electrode 123 to the bonding electrode 13 .
  • the first electrodes 121 of all the deformation units 12 may be connected to each other.
  • the first electrodes 121 of the same column are set to be connected to each other, as shown in FIG. 3 .
  • the piezoelectric material layers 122 and the second electrodes 123 of each deformation unit 12 may be discrete. Referring to FIG. 6 , a schematic structural diagram of the piezoelectric material layers is shown, and FIG. 7 is a schematic structural diagram of the second electrode. , which can facilitate maintenance. For example, when a deformation unit 12 is short-circuited, the second electrode 123 of the deformation unit 12 at the short-circuit position may be isolated to avoid the short-circuit point from affecting other deformation units 12 .
  • the edge of the second electrode 123 may be indented relative to the edge of the piezoelectric material layer 122 .
  • the indentation of the edge of the second electrode 123 relative to the edge of the piezoelectric material layer 122 is greater than or equal to 100 micrometers and less than or equal to 500 micrometers.
  • the indentation can be 150 microns.
  • edges of the piezoelectric material layer 122 may be indented relative to the edges of the first electrodes 121 .
  • the first electrode 121 , the piezoelectric material layer 122 , the second electrode 123 , the insulating layer 14 and the wiring layer 15 may be sequentially formed on the substrate 11 .
  • FIG. 3 it shows a schematic diagram of the plane structure of the preparation of the first electrode.
  • FIG. 13 it shows a schematic diagram of the plane structure of the preparation of the piezoelectric material layer.
  • FIG. 14 it shows a schematic diagram of the plane structure of the preparation of the second electrode.
  • FIG. 15 shows a schematic diagram of a plane structure after the preparation of the wiring layer is completed. The schematic diagram of the cross-sectional structure at the position of the bold black line in FIG. 15 is shown in FIG. 1 .
  • referring to a in FIG. 2 there are multiple deformation units 12 , and a plurality of deformation units 12 are arranged in an array on one side of the substrate 11 , and the deformation units 12 located in the same column
  • the first electrodes 121 are connected to each other (as shown in FIG. 3 ), and the second electrodes 123 of the deformation units 12 located in the same column are all connected to the same trace 51 of the trace layer 15 (as shown in FIG. 5 ), that is,
  • the second electrodes 123 of the deformation units 12 located in the same column are connected to each other through the same wiring 51 of the wiring layer 15 .
  • the deformation units 12 that communicate with each other between the first electrodes 121 and the second electrodes 123 in the same column can be driven as a whole, thereby realizing column driving. It should be noted that, when the deformation unit 12 on the touch feedback substrate needs to be driven as a whole, all the second electrodes 123 can be communicated with each other through the wiring in the wiring layer 15 .
  • FIG. 8 a shows a schematic structural diagram of the first electrodes 121 and the lead electrodes 31, and FIG. 8 b shows the first electrodes 121 and the The equivalent circuit diagram of the lead electrode 31
  • the resistance R1 between the first electrode 121 (the first electrode in the middle) and the lead electrode 31 that is closer to the lead electrode 31 is smaller, and the first electrode that is farther from the lead electrode 31 has a smaller resistance R1
  • the resistances R2 and R3 between 121 and the lead electrode 31 are relatively large, that is, R1 ⁇ R2, and R1 ⁇ R3, under the condition of high voltage such as AC peak voltage V ac, pp > 40V, or DC voltage V DC > 14V , the local current density between the first electrode 121 and the lead electrode 31 with a short distance is relatively large, and line burnout is very likely to occur.
  • the resistance values between the lead electrodes 31 and the first electrodes 121 may be set to be equal.
  • the current density generated by the driving electrical signal in the line can be dispersed or uniform, and the current density caused by the local excessive current density can be reduced. caused device failure.
  • An embodiment of the present application further provides a haptic feedback device, where the haptic feedback device includes the haptic feedback substrate described in any embodiment.
  • the haptic feedback device may further include: a display substrate 111 disposed on the side of the deformation unit 12 away from the substrate 11 , and the display substrate 111 includes a display area A and is located at the periphery of the display area A In the peripheral area B, the orthographic projection of the deformation unit 12 on the display substrate 111 is located in the peripheral area B.
  • two rows of deformation units 12 may be provided, respectively located in the peripheral area B on the left and right sides, as shown in FIG. 11 .
  • only one row of deformation units 12 may also be provided, which are located in the peripheral area B on the left or right side.
  • the above-mentioned row of deformation units 12 may include a plurality of deformation units 12 .
  • the deformation unit 12 since the deformation unit 12 is not disposed in the display area A, the transmittance of the haptic feedback substrate can be further improved.
  • a touch function layer 121 may be provided on the side of the substrate 11 close to the display substrate 111 , and the touch function layer 121 may be a touch electrode layer or a touch film,
  • the orthographic projection of the touch electrode layer or the touch film (ie, the touch function layer 121 ) on the display substrate 111 covers the display area A.
  • transparent ITO touch screen traces are arranged on the side of the substrate 11 close to the display substrate 111 or a transparent touch film is attached, so that the touch function can be realized.
  • the display area A may be located within the orthographic projection range of the touch functional layer 121 on the display substrate 111 , or completely overlap with the orthographic projection of the touch functional layer 121 on the display substrate 111 , which is not limited in this embodiment.
  • the orthographic projection of the deformation unit 12 on the display substrate 111 can also be located in the display area A, which can be designed according to actual needs.
  • An embodiment of the present application further provides a haptic feedback method, which is applied to the haptic feedback substrate described in any of the embodiments, and the haptic feedback method includes:
  • a voltage signal is applied to the first electrode 121 and the second electrode 123 respectively, so that the first electrode 121 and the second electrode 123 form an alternating electric field, the piezoelectric material layer 122 vibrates under the action of the alternating electric field, and drives the substrate 11 Resonance occurs; wherein the difference between the frequency of the alternating electric field and the natural frequency of the substrate 11 is less than or equal to a preset threshold.
  • the voltage signal applied to the first electrode 121 may be a ground voltage signal, and the voltage signal applied to the second electrode 123 may be an AC voltage signal.
  • the frequency of the AC voltage signal may be close to or equal to the natural frequency of the substrate 11 .
  • Embodiments of the present application provide a tactile feedback substrate, a tactile feedback device, and a tactile feedback method
  • the tactile feedback substrate includes: a substrate and a deformation unit disposed on one side of the substrate, and the deformation unit includes a first electrode arranged in layers, A piezoelectric material layer and a second electrode, the first electrode is arranged close to the substrate, the first electrode and the second electrode are used to form an alternating electric field, and the piezoelectric material layer is used to vibrate under the action of the alternating electric field and drive the substrate
  • the substrate resonates; wherein, the difference between the frequency of the alternating electric field and the natural frequency of the substrate is less than or equal to a preset threshold.
  • an alternating electric field is formed between the first electrode and the second electrode, and the piezoelectric material layer is deformed under the action of the alternating electric field.
  • the frequency of the variable electric field is close to the natural frequency of the substrate, the substrate can be driven to resonate, and the amplitude is enhanced, thereby realizing tactile feedback on the surface of the substrate.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Abstract

本申请提供了一种触觉反馈基板、触觉反馈装置及触觉反馈方法,其中,触觉反馈基板包括:衬底以及设置在衬底一侧的形变单元,形变单元包括层叠设置的第一电极、压电材料层以及第二电极,第一电极靠近衬底设置,第一电极与第二电极用于形成交变电场,压电材料层用于在交变电场的作用下发生振动,并驱动衬底发生共振;其中,交变电场的频率与衬底的固有频率之差小于或等于预设阈值。本申请技术方案,通过向第一电极和第二电极分别施加电压信号,在第一电极与第二电极之间形成交变电场,压电材料层在交变电场的作用下发生形变,当交变电场的频率接近或等于衬底的固有频率时,可以驱动衬底发生共振,振幅增强,从而在衬底表面实现触觉反馈。

Description

触觉反馈基板、触觉反馈装置及触觉反馈方法 技术领域
本申请涉及触觉反馈技术领域,特别是涉及触觉反馈基板、触觉反馈装置及触觉反馈方法。
背景技术
随着技术的发展,触摸屏得到了越来越广泛的应用,并且逐渐成为最便捷的人机交互设备之一。近年来,为了进一步提高人机交互的使用体验,触觉反馈技术应运而生,得到了越来越多的关注和研究。
发明内容
本申请公开了一种触觉反馈基板,所述触觉反馈基板包括:
衬底以及设置在所述衬底一侧的形变单元,所述形变单元包括层叠设置的第一电极、压电材料层以及第二电极,所述第一电极靠近所述衬底设置,所述第一电极与所述第二电极用于形成交变电场,所述压电材料层用于在所述交变电场的作用下发生振动,并驱动所述衬底发生共振;
其中,所述交变电场的频率与所述衬底的固有频率之差小于或等于预设阈值。
在一种可选的实现方式中,所述形变单元设置在所述衬底振动的波峰和/或波谷的位置处。
在一种可选的实现方式中,所述触觉反馈基板还包括:
与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;
设置在所述第二电极背离所述衬底一侧的绝缘层和走线层,所述走线层包括走线,所述走线的一端与所述第二电极通过设置在所述绝缘层上的第一过孔连接,所述走线的另一端与所述绑定电极通过设置在所述绝缘层上的第二过孔连接。
在一种可选的实现方式中,所述触觉反馈基板还包括:
与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
在一种可选的实现方式中,当连接所述引线电极的第一电极有多个时,所述引线电极与各所述第一电极之间的电阻值相等。
在一种可选的实现方式中,所述形变单元的数量有多个,多个所述形变单元阵列排布在所述衬底的一侧,位于同一列的形变单元的第一电极之间相互连通,位于同一列的形变单元的第二电极均连接至所述走线层的同一条走线。
在一种可选的实现方式中,在平行于所述衬底的平面内,所述形变单元的尺寸小于所述衬底振动的半波长。
在一种可选的实现方式中,所述压电材料层的厚度大于或等于1微米,且小于或等于10微米。
在一种可选的实现方式中,所述第二电极的边缘相对于所述压电材料层的边缘缩进。
在一种可选的实现方式中,所述第二电极的边缘相对于所述压电材料层的边缘的缩进量大于或等于100微米,且小于或等于500微米。
在一种可选的实现方式中,所述压电材料层的边缘相对于所述第一电极的边缘缩进。
本申请公开了一种触觉反馈装置,所述触觉反馈装置包括任一项所述的触觉反馈基板。
在一种可选的实现方式中,所述触觉反馈装置还包括:设置在所述形变单元背离所述衬底一侧的显示基板,所述显示基板包括显示区域以及位于所述显示区域外围的周边区域,所述形变单元在所述显示基板上的正投影位于所述周边区域内。
在一种可选的实现方式中,在所述衬底靠近所述显示基板的一侧设置有触控电极层或者触控膜,所述触控电极层或所述触控膜在所述显示基板上的正投影覆盖所述显示区域。
本申请公开了一种触觉反馈方法,应用于任一项所述的触觉反馈基板,所述触觉反馈方法包括:
分别向所述第一电极和所述第二电极施加电压信号,使所述第一电极与所述第二电极形成交变电场,所述压电材料层在所述交变电场的作用下发生振动,并驱动所述衬底发生共振;其中,所述交变电场的频率与所述衬底的固有频率之差小于或等于预设阈值。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的一种触觉反馈基板的剖面结构示意图;
图2示出了本申请实施例提供的一种触觉反馈基板的平面结构示意图以及仿真示意图;
图3示出了本申请实施例提供的第一电极的平面结构示意图;
图4示出了本申请实施例提供的绝缘层去除部分的平面结构示意图;
图5示出了本申请实施例提供的走线层的平面结构示意图;
图6示出了本申请实施例提供的压电材料层的平面结构示意图;
图7示出了本申请实施例提供的第二电极的平面结构示意图;
图8示出了本申请实施例提供的第一电极与引线电极的结构示意图和等效电路图;
图9示出了本申请实施例提供的第一电极与引线电极的第一种改进结构示意图;
图10示出了本申请实施例提供的第一电极与引线电极的第二种改进结构示意图;
图11示出了本申请实施例提供的第一种触觉反馈装置的剖面结构示意图;
图12示出了本申请实施例提供的第二种触觉反馈装置的剖面结构示意图;
图13示出了本申请实施例提供的完成压电材料层制备的平面结构示意图;
图14示出了本申请实施例提供的完成第二电极层制备的平面结构示意图;
图15示出了本申请实施例提供的完成走线层制备的平面结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请一实施例提供了一种触觉反馈基板,参照图1,触觉反馈基板包括:衬底11以及设置在衬底11一侧的形变单元12,形变单元12包括层叠设置的第一电极121、压电材料层122以及第二电极123,第一电极121靠近衬底11设置,第一电极121与第二电极123用于形成交变电场,压电材料层122用于在交变电场的作用下发生振动,并驱动衬底11发生共振;其中,交变电场的频率与衬底11的固有频率之差小于或等于预设阈值。
其中,衬底11可以为玻璃衬底等,本实施例对此不作限定。
第一电极121和第二电极123例如可以为ITO等透明电极材料,以提高触控反馈基板的透过率,本申请对第一电极121和第二电极123的具体材料不作限定。
压电材料层122的材料可以为压电晶体、压电陶瓷等无机压电材料,还 可以为聚偏氟乙烯等有机压电材料,本实施例对此不作限定。其中,压电材料能够实现机械振动和交流电的互相转换。
其中,衬底11的固有频率也称为自然频率(natural frequency)。当物体如衬底11做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与物体本身的固有特性有关(如质量、形状、材质等)。
在具体实现中,参照图1,例如可以向第一电极121施加接地电压信号,向第二电极123施加交流电压信号,这样在第一电极121和第二电极123之间可以形成交变电场,交变电场的频率与交流电压信号的频率相同。在交变电场的作用下,压电材料层122发生形变并产生振动信号,该振动信号的频率与交变电场的频率相同,当振动信号的频率接近或等于衬底11的固有频率时,衬底11发生共振,振幅增强,产生触觉反馈信号,当手指触摸衬底11的表面时,可以明显感受到摩擦力的变化。在实际应用中,可以通过压电材料层122与衬底11之间产生的共振来调节衬底11表面的摩擦力,从而在衬底11的表面实现物体的纹理再现。
交流电压信号的电压值越大,衬底11发生振动的振幅越大,用户的触觉体验越明显,因此,通过调节交流电压信号的电压大小,可以实现触觉反馈信号的大小。
本实施例提供的触觉反馈基板,通过向第一电极和第二电极分别施加电压信号,在第一电极与第二电极之间形成交变电场,压电材料层在交变电场的作用下发生形变,当交变电场的频率接近衬底的固有频率时,可以驱动衬底发生共振,振幅增强,从而在衬底表面实现触觉反馈。
在一种可选的实现方式中,参照图2,形变单元12可以设置在衬底11振动的波峰和/或波谷的位置处。
当形变单元12的数量为一个时,该形变单元可以位于衬底11固有振型的波峰或波谷位置处;当形变单元12的数量为多个时,这些形变单元12可以全部位于波峰位置处,也可以全部位于波谷位置处,还可以一部分位于波峰位置处,另一部分位于波谷位置处。需要说明的是,形变单元12可以根据实际需求设置在波峰或波谷位置附近,以兼容衬底11的多种固有振型(如 0*6node振型、0*7node振型、0*8node振型、0*9node振型以及0*10node振型等),具体形变单元12在衬底11上的位置可以以振幅最大为目标进行调整,本实施例对此不作限定。
本实施例中,参照图2,形变单元12的数量可以有多个,多个形变单元12阵列排布在衬底11的一侧。当形变单元12的数量为多个时,可以对每个形变单元12分别进行独立驱动,也可以以列为单位对同一列的形变单元12进行整列驱动(列驱动),还可以对所有的形变单元12进行整体驱动,本实施例对多个形变单元12的具体驱动方式不作限定。后续实施例会详细介绍列驱动的具体结构。
参照图2中a示出的是本实施例提供的一种衬底上的形变单元的排布结构示意图,图2中b示出了衬底的0×10node固有振型的振动波形(黑点位置为node),图2中c示出了衬底的0×10node固有振型模态仿真图。图2中a示出的多个形变单元12在衬底11上为轴对称排布。衬底11上设置有9列形变单元12。在0×10node固有振型的波峰或波谷位置均对应设置一列形变单元12。其中,位于奇数列的形变单元12的数量为六个,位于偶数列的形变单元12的数量为两个,分别位于该偶数列的首行和尾行。当在图2中a所示的形变单元的第一电极121与第二电极123之间施加频率为24.2kHz,峰值电压V pp<35V的交流电压时,衬底11的振幅可以大于1μm,波长小于15mm,符合商用的触觉再现设备的行业标准。当手指触摸衬底11的表面时,能明显感受到摩擦力的变化,从而实现触觉反馈。
其中,节点node指的是衬底11的固有振型中振幅始终为0的一列点(对应列驱动)。0*10node振型表示该振型下衬底11上有10列振幅始终为0的点,如图2中b所示。
在实际应用中,可以首先根据衬底11本身的参数如质量、形状、材质等,通过仿真确定衬底11的固有频率和固有振型(当固有频率和固有振型有多个时,选取振幅相对较大的固有频率和固有振型),确定衬底11振动的波峰和波谷位置,然后将形变单元放置在波峰和/或波谷的位置处,或者靠近波峰和/或波谷的位置处。
在具体实现中,当触控反馈基板中设置多个形变单元12时,相同振型 的条件下,衬底11的振幅更大,且触觉反馈信号更加均匀。触控反馈基板中所需设置的形变单元12的数量可以根据布线空间等因素确定,在布线空间允许的情况下可以尽量多地设置形变单元12,本实施例对形变单元12的具体数量不作限定。
为了使形变单元12避开衬底11的节点位置,并且为了确保波长小于15毫米,在一种可选的实现方式中,在平行于衬底11的平面内,沿着衬底11的振动传播方向上,形变单元12的尺寸可以小于衬底11振动的半波长,即形变单元12的尺寸可以小于衬底11的固有振型的半波长。例如,当衬底11固有振型的波长为15mm时,形变单元12的尺寸可以小于7.5mm。需要说明的是,本实施例对形变单元12的形状不作限定,可以为图2中a示出的矩形,还可以为圆形、五边形、六边形等。其中,衬底11的振动传播方向平行于图2中a示出的形变单元阵列排布的行方向。
在一种可选的实现方式中,压电材料层122的厚度可以大于或等于1微米,且小于或等于10微米。例如,压电材料层122的厚度可以为2微米。由于压电材料层122的厚度较薄,因此可以确保触觉反馈基板的透明度较高。
在一种可选的实现方式中,参照图1和图3,触觉反馈基板还可以包括:
与第一电极121同层设置的绑定电极13,绑定电极13靠近衬底11的边缘设置,绑定电极13用于连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号。其中,绑定电极13靠近的边缘可以是衬底11中平行于振动传播方向的边缘,如图3中的上边缘和下边缘。
参照图1,触觉反馈基板还可以包括:设置在第二电极123背离衬底11一侧的绝缘层14和走线层15,走线层15包括走线,走线的一端与第二电极123通过设置在绝缘层14上的第一过孔141连接,走线的另一端与绑定电极13通过设置在绝缘层14上的第二过孔142连接。其中,交流电压信号的频率可以接近或等于衬底11的固有频率。
在一种可选的实现方式中,参照图3,触觉反馈基板还可以包括:
与第一电极121同层设置的引线电极31,引线电极31与第一电极121连接,引线电极31用于连接地电压输入端,地电压输入端输入的电压信号为接地电压信号。
本实施例中,第一电极121、绑定电极13以及引线电极31可以材料相同且同一构图工艺形成。
其中,绝缘层14可以采用负性光刻胶或者正性光刻胶。通过整面涂覆或者沉积完绝缘层材料后,对图4所示的图形区域进行去除。设置绝缘层14的目的是覆盖住部分第一电极121以避免通过走线层与其他结构短路,同时在第二电极123的位置处形成第一过孔141,在绑定电极13的位置处形成第二过孔142,以使走线层中走线的一端与第二电极123通过第一过孔141连接,走线的另一端与绑定电极13通过第二过孔142连接。同时,还可以在引线电极31的位置处形成引线电极过孔41,以使外接引线与引线电极31通过银胶等方式连接。
参照图5示出了走线层的结构示意图。走线层15中的走线51用于将第二电极123连接至绑定电极13。
需要说明的是,所有形变单元12的第一电极121之间可以是相互连通的,本实施例中,为了减小寄生电容,设置同一列的第一电极121之间相互连通,如图3所示。各形变单元12的压电材料层122之间以及第二电极123之间可以是分立的,参照图6示出了压电材料层的结构示意图,参照图7示出了第二电极的结构示意图,这样可以方便维修。例如,当某个形变单元12发生短路时,可以将短路位置处的形变单元12的第二电极123进行隔离,避免短路点对其它形变单元12造成影响。
为了降低短路风险,参照图1,第二电极123的边缘可以相对于压电材料层122的边缘缩进。在具体实现中,第二电极123的边缘相对于压电材料层122的边缘的缩进量大于或等于100微米,且小于或等于500微米。例如,缩进量可以为150微米。
为了进一步降低短路风险,压电材料层122的边缘可以相对于第一电极121的边缘缩进。
在实际制备的过程中,可以在衬底11上依次形成第一电极121、压电材料层122、第二电极123、绝缘层14以及走线层15。参照图3示出了完成第一电极制备的平面结构示意图,参照图13示出了完成压电材料层制备的平面结构示意图,参照图14示出了完成第二电极制备的平面结构示意图,参 照图15示出了完成走线层制备的平面结构示意图。其中,图15中的加粗黑线位置处的剖面结构示意图如图1所示。
在一种可选的实现方式中,参照图2中的a,形变单元12的数量有多个,多个形变单元12阵列排布在衬底11的一侧,位于同一列的形变单元12的第一电极121之间相互连通(如图3所示),位于同一列的形变单元12的第二电极123均连接至走线层15的同一条走线51(如图5所示),即位于同一列的形变单元12的第二电极123之间通过走线层15的同一条走线51相互连通。这样,同一列的第一电极121之间以及第二电极123之间相互连通的形变单元12可以进行整体驱动,从而实现列驱动。需要说明的是,当需要对触控反馈基板上的形变单元12进行整体驱动时,可以通过走线层15中的走线将所有的第二电极123之间进行连通。
发明人发现,当一个引线电极31连接多个第一电极121时,参照图8中a示出了第一电极121与引线电极31的结构示意图,图8中b示出了第一电极121与引线电极31的等效电路图,距离引线电极31位置较近的第一电极121(中间的第一电极)与引线电极31之间的电阻R1较小,距离引线电极31位置较远的第一电极121与引线电极31之间的电阻R2和R3较大,即R1<<R2,且R1<<R3,在高压如交流峰值电压V ac,pp>40V,或者直流电压V DC>14V的条件下,距离较近的第一电极121与引线电极31之间的局部电流密度较大,极易发生线路烧毁。
为了解决上述问题,在一种可选的实现方式中,当连接引线电极31的第一电极121有多个时,可以设置引线电极31与各第一电极121之间的电阻值相等。
在具体实现中,根据电阻计算公式R=ρ×l/A,可以通过延长距离较近的第一电极121与引线电极31之间的走线长度,缩小电阻差,实现R1=R2=R3,使电流密度分布均匀,如图9所示。
另外,还可以通过降低距离较近的第一电极121与引线电极31之间的走线宽度,缩小电阻差,实现R1=R2=R3,使电流密度分布均匀,如图10所示。
本实施例中,通过调整第一电极121与引线电极31之间走线的长度和/ 或宽度,可以分散或均匀化驱动电信号在线路中产生的电流密度,减少因电流密度局部过大而引起的器件失效问题。
本申请一实施例还提供了一种触觉反馈装置,触觉反馈装置包括任一实施例所述的触觉反馈基板。
在一种可选的实现方式中,参照图11,触觉反馈装置还可以包括:设置在形变单元12背离衬底11一侧的显示基板111,显示基板111包括显示区域A以及位于显示区域A外围的周边区域B,形变单元12在显示基板111上的正投影位于周边区域B内。
在具体实现中,当显示基板111的周边区域B位于显示区域A的左右两侧时,可以设置两排形变单元12,分别位于左、右两侧的周边区域B内,如图11所示。当然,也可以仅设置一排形变单元12,位于左侧或右侧的周边区域B内。上述的一排形变单元12可以包括多个形变单元12。
本实现方式中,由于显示区域A内未设置形变单元12,因此,可以进一步提高触觉反馈基板的透过率。
在一种可选的实现方式中,参照图12,在衬底11靠近显示基板111的一侧可以设置有触控功能层121,触控功能层121可以为触控电极层或者触控膜,触控电极层或触控膜(即触控功能层121)在显示基板111上的正投影覆盖显示区域A。
在具体实现中,在衬底11靠近显示基板111的一侧排布透明的ITO触屏走线或者贴附透明的触控膜,从而可以实现触控功能。显示区域A可以位于触控功能层121在显示基板111上的正投影范围内,或者与触控功能层121在显示基板111上的正投影完全重叠,本实施例对此不作限定。
需要说明的是,由于触觉反馈基板中形变单元12的透过率较高,因此,形变单元12在显示基板111上的正投影也可以位于显示区域A内,具体可以根据实际需求设计。
本申请一实施例还提供了一种触觉反馈方法,应用于任一实施例所述的触觉反馈基板,触觉反馈方法包括:
分别向第一电极121和第二电极123施加电压信号,使第一电极121与第二电极123形成交变电场,压电材料层122在交变电场的作用下发生振 动,并驱动衬底11发生共振;其中,交变电场的频率与衬底11的固有频率之差小于或等于预设阈值。
其中,向第一电极121施加的电压信号可以为地电压信号,向第二电极123施加的电压信号可以为交流电压信号。交流电压信号的频率可以接近或等于衬底11的固有频率。
本申请实施例提供了一种触觉反馈基板、触觉反馈装置及触觉反馈方法,其中,触觉反馈基板包括:衬底以及设置在衬底一侧的形变单元,形变单元包括层叠设置的第一电极、压电材料层以及第二电极,第一电极靠近衬底设置,第一电极与第二电极用于形成交变电场,压电材料层用于在交变电场的作用下发生振动,并驱动衬底发生共振;其中,交变电场的频率与衬底的固有频率之差小于或等于预设阈值。本申请技术方案,通过向第一电极和第二电极分别施加电压信号,在第一电极与第二电极之间形成交变电场,压电材料层在交变电场的作用下发生形变,当交变电场的频率接近衬底的固有频率时,可以驱动衬底发生共振,振幅增强,从而在衬底表面实现触觉反馈。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本申请所提供的一种触觉反馈基板、触觉反馈装置及触觉反馈方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实 施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种触觉反馈基板,其特征在于,所述触觉反馈基板包括:
    衬底以及设置在所述衬底一侧的形变单元,所述形变单元包括层叠设置的第一电极、压电材料层以及第二电极,所述第一电极靠近所述衬底设置,所述第一电极与所述第二电极用于形成交变电场,所述压电材料层用于在所述交变电场的作用下发生振动,并驱动所述衬底发生共振;
    其中,所述交变电场的频率与所述衬底的固有频率之差小于或等于预设阈值。
  2. 根据权利要求1所述的触觉反馈基板,其特征在于,所述形变单元设置在所述衬底振动的波峰和/或波谷的位置处。
  3. 根据权利要求1或2所述的触觉反馈基板,其特征在于,所述触觉反馈基板还包括:
    与所述第一电极同层设置的绑定电极,所述绑定电极靠近所述衬底的边缘设置,所述绑定电极用于连接驱动电压输入端,所述驱动电压输入端输入的电压信号为交流电压信号;
    设置在所述第二电极背离所述衬底一侧的绝缘层和走线层,所述走线层包括走线,所述走线的一端与所述第二电极通过设置在所述绝缘层上的第一过孔连接,所述走线的另一端与所述绑定电极通过设置在所述绝缘层上的第二过孔连接。
  4. 根据权利要求3所述的触觉反馈基板,其特征在于,所述触觉反馈基板还包括:
    与所述第一电极同层设置的引线电极,所述引线电极与所述第一电极连接,所述引线电极用于连接地电压输入端,所述地电压输入端输入的电压信号为接地电压信号。
  5. 根据权利要求4所述的触觉反馈基板,其特征在于,当连接所述引线电极的第一电极有多个时,所述引线电极与各所述第一电极之间的电阻值相等。
  6. 根据权利要求3至5任一项所述的触觉反馈基板,其特征在于,所 述形变单元的数量有多个,多个所述形变单元阵列排布在所述衬底的一侧,位于同一列的形变单元的第一电极之间相互连通,位于同一列的形变单元的第二电极均连接至所述走线层的同一条走线。
  7. 根据权利要求1至6任一项所述的触觉反馈基板,其特征在于,在平行于所述衬底的平面内,所述形变单元的尺寸小于所述衬底振动的半波长。
  8. 根据权利要求1至7任一项所述的触觉反馈基板,其特征在于,所述压电材料层的厚度大于或等于1微米,且小于或等于10微米。
  9. 根据权利要求1至8任一项所述的触觉反馈基板,其特征在于,所述第二电极的边缘相对于所述压电材料层的边缘缩进。
  10. 根据权利要求9所述的触觉反馈基板,其特征在于,所述第二电极的边缘相对于所述压电材料层的边缘的缩进量大于或等于100微米,且小于或等于500微米。
  11. 根据权利要求1至10任一项所述的触觉反馈基板,其特征在于,所述压电材料层的边缘相对于所述第一电极的边缘缩进。
  12. 一种触觉反馈装置,其特征在于,所述触觉反馈装置包括权利要求1至11任一项所述的触觉反馈基板。
  13. 根据权利要求12所述的触觉反馈装置,其特征在于,所述触觉反馈装置还包括:设置在所述形变单元背离所述衬底一侧的显示基板,所述显示基板包括显示区域以及位于所述显示区域外围的周边区域,所述形变单元在所述显示基板上的正投影位于所述周边区域内。
  14. 根据权利要求13所述的触觉反馈装置,其特征在于,在所述衬底靠近所述显示基板的一侧设置有触控电极层或者触控膜,所述触控电极层或所述触控膜在所述显示基板上的正投影覆盖所述显示区域。
  15. 一种触觉反馈方法,其特征在于,应用于权利要求1至11任一项所述的触觉反馈基板,所述触觉反馈方法包括:
    分别向所述第一电极和所述第二电极施加电压信号,使所述第一电极与所述第二电极形成交变电场,所述压电材料层在所述交变电场的作用下发生振动,并驱动所述衬底发生共振;其中,所述交变电场的频率与所述衬底的固有频率之差小于或等于预设阈值。
PCT/CN2021/078073 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法 WO2022178807A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180000340.2A CN115250626A (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法
US17/620,538 US11847263B2 (en) 2021-02-26 2021-02-26 Haptic feedback base plate, haptic feedback apparatus and haptic feedback method
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法
CN202180003572.3A CN115250640A (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置
PCT/CN2021/133249 WO2022179219A1 (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置
EP21927643.3A EP4163986A4 (en) 2021-02-26 2021-11-25 PIEZOELECTRIC SENSOR AND HAPTIC DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法

Publications (1)

Publication Number Publication Date
WO2022178807A1 true WO2022178807A1 (zh) 2022-09-01

Family

ID=83047773

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/078073 WO2022178807A1 (zh) 2021-02-26 2021-02-26 触觉反馈基板、触觉反馈装置及触觉反馈方法
PCT/CN2021/133249 WO2022179219A1 (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133249 WO2022179219A1 (zh) 2021-02-26 2021-11-25 压电传感器及触觉反馈装置

Country Status (4)

Country Link
US (1) US11847263B2 (zh)
EP (1) EP4163986A4 (zh)
CN (2) CN115250626A (zh)
WO (2) WO2022178807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082255A1 (zh) * 2022-10-21 2024-04-25 京东方科技集团股份有限公司 一种触觉反馈基板及触觉反馈装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101632054A (zh) * 2007-02-12 2010-01-20 里尔科学技术大学 振动触觉界面
US20110043477A1 (en) * 2009-08-21 2011-02-24 Samsung Electro-Mechanics Co., Ltd. Touch feedback panel, and touch screen device and electronic device inluding the same
CN103247461A (zh) * 2012-02-02 2013-08-14 阿尔卑斯电气株式会社 膜片开关单元及使用了该膜片开关单元的键盘装置
US20180150164A1 (en) * 2016-11-30 2018-05-31 Japan Display Inc. Display device with input function
CN108846318A (zh) * 2018-05-24 2018-11-20 业成科技(成都)有限公司 超声波指纹识别装置及其制作方法以及应用其的电子装置
CN109240485A (zh) * 2018-05-28 2019-01-18 厦门大学 一种纹理触觉再现装置、显示装置与弧度再现装置
CN111749874A (zh) * 2019-03-29 2020-10-09 研能科技股份有限公司 微机电泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798287B2 (ja) * 2001-10-10 2006-07-19 Smk株式会社 タッチパネル入力装置
JP5398315B2 (ja) 2009-03-13 2014-01-29 富士フイルム株式会社 圧電素子及びその製造方法並びにインクジェットヘッド
JP2014197576A (ja) 2013-03-29 2014-10-16 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波トランスデューサー及び超音波デバイス
JP6233581B2 (ja) * 2013-12-26 2017-11-22 セイコーエプソン株式会社 超音波センサー及びその製造方法
US20170092838A1 (en) 2015-09-29 2017-03-30 Seiko Epson Corporation Piezoelectric driving apparatus, method of manufacturing the same, motor, robot, and pump
JP6641943B2 (ja) * 2015-12-03 2020-02-05 セイコーエプソン株式会社 モーター用圧電駆動装置およびその製造方法、モーター、ロボット、ならびにポンプ
US11132059B2 (en) * 2017-09-14 2021-09-28 Logitech Europe S.A. Input device with haptic interface
CN111769080B (zh) 2020-06-24 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101632054A (zh) * 2007-02-12 2010-01-20 里尔科学技术大学 振动触觉界面
US20110043477A1 (en) * 2009-08-21 2011-02-24 Samsung Electro-Mechanics Co., Ltd. Touch feedback panel, and touch screen device and electronic device inluding the same
CN103247461A (zh) * 2012-02-02 2013-08-14 阿尔卑斯电气株式会社 膜片开关单元及使用了该膜片开关单元的键盘装置
US20180150164A1 (en) * 2016-11-30 2018-05-31 Japan Display Inc. Display device with input function
CN108846318A (zh) * 2018-05-24 2018-11-20 业成科技(成都)有限公司 超声波指纹识别装置及其制作方法以及应用其的电子装置
CN109240485A (zh) * 2018-05-28 2019-01-18 厦门大学 一种纹理触觉再现装置、显示装置与弧度再现装置
CN111749874A (zh) * 2019-03-29 2020-10-09 研能科技股份有限公司 微机电泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082255A1 (zh) * 2022-10-21 2024-04-25 京东方科技集团股份有限公司 一种触觉反馈基板及触觉反馈装置

Also Published As

Publication number Publication date
WO2022179219A1 (zh) 2022-09-01
US11847263B2 (en) 2023-12-19
US20230152892A1 (en) 2023-05-18
EP4163986A4 (en) 2024-02-21
CN115250626A (zh) 2022-10-28
CN115250640A (zh) 2022-10-28
EP4163986A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
TWI405114B (zh) 具有一揚聲器功能之觸摸面板及液晶顯示裝置
US10162441B2 (en) Capacitive touch panel
TWI609299B (zh) 內嵌式觸控顯示裝置
US9471164B2 (en) Display device
TW201124890A (en) Touch panel and manufacturing method thereof
JP2011008749A (ja) アレイ式触覚フィードバックのタッチパネル
TW201250558A (en) Touch screen
TWI412819B (zh) 電容式觸控面板
TW201439829A (zh) 觸控面板
WO2021147775A1 (zh) 触控显示装置
WO2022178807A1 (zh) 触觉反馈基板、触觉反馈装置及触觉反馈方法
CN106249953A (zh) 一种压感触摸屏及显示装置
WO2021203510A1 (zh) 显示面板及显示装置
US20140022464A1 (en) Liquid crystal display module
US9151977B2 (en) Liquid crystal display module comprising a polarizer having a plurality of conductive layers and having a touch sensing capability
WO2014183393A1 (zh) 触摸定位结构及其制造方法、触摸屏和显示装置
US9256095B2 (en) Liquid crystal display module
CN203232398U (zh) 一种触摸定位结构、触摸屏和显示装置
WO2014000368A1 (zh) 一种电容式触摸液晶显示面板
CN112181212A (zh) 内嵌式触控显示装置
TWM584918U (zh) 可降低寄生電容之觸控面板
TW201928638A (zh) 觸控面板液晶顯示裝置以及其驅動方法
TWI472965B (zh) 影像顯示系統
TW201635108A (zh) 內嵌式觸控顯示面板
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.01.2024)