WO2023142038A1 - 振动面板及其驱动方法、触觉反馈装置 - Google Patents

振动面板及其驱动方法、触觉反馈装置 Download PDF

Info

Publication number
WO2023142038A1
WO2023142038A1 PCT/CN2022/074982 CN2022074982W WO2023142038A1 WO 2023142038 A1 WO2023142038 A1 WO 2023142038A1 CN 2022074982 W CN2022074982 W CN 2022074982W WO 2023142038 A1 WO2023142038 A1 WO 2023142038A1
Authority
WO
WIPO (PCT)
Prior art keywords
base substrate
substrate
layer
panel according
vibration panel
Prior art date
Application number
PCT/CN2022/074982
Other languages
English (en)
French (fr)
Inventor
齐德兴
陈右儒
花慧
王迎姿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000111.5A priority Critical patent/CN116897327A/zh
Priority to US18/006,458 priority patent/US20240260474A1/en
Priority to PCT/CN2022/074982 priority patent/WO2023142038A1/zh
Publication of WO2023142038A1 publication Critical patent/WO2023142038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present disclosure relates to the technical field of tactile feedback, and in particular to a vibrating panel, a driving method thereof, and a tactile feedback device.
  • Tactile feedback is the focus of current technology development. Specifically, haptic feedback can enable the terminal to interact with the human body through the sense of touch.
  • Embodiments of the present disclosure provide a vibrating panel, a driving method thereof, and a tactile feedback device, and the specific solutions are as follows:
  • a piezoelectric sensor located on one side of the base substrate, configured to vibrate under the drive of an excitation signal, so as to drive the base substrate to vibrate;
  • An adjustment structure configured to adjust the characteristic frequency of the base substrate, so that the resonant frequency of the base substrate satisfies a preset range.
  • the adjustment structure includes one or a combination of a support layer, a weight layer, and an adjustment film layer, the support layer, the weight layer One or a combination of the heavy layer and the adjusting film layer is fixedly connected to the base substrate.
  • the support layer and the piezoelectric sensor are located on the same side of the base substrate.
  • the support layer includes a first support portion located in a peripheral area of the base substrate and disposed around the piezoelectric sensor.
  • the shape of the orthographic projection of each of the first support parts on the base substrate includes a rectangle, a triangle, a circle, a trapezoid or a polygon .
  • the shape of the orthographic projection of the first support portion located at the four corners of the base substrate on the base substrate is L shape
  • the other orthographic shapes of the first supporting portion on the base substrate include rectangle, triangle, circle, trapezoid or polygon.
  • the first support part is a closed ring structure disposed around the piezoelectric sensor.
  • the piezoelectric sensor includes a plurality of piezoelectric devices distributed in an array, and the support layer further includes The second support part at the gap between them.
  • the shape of the orthographic projection of the second support part on the base substrate includes a rectangle, a triangle, a circle, a trapezoid or a polygon.
  • the material of the supporting layer includes at least one of the following: rubber, foam, and foam.
  • the material of the support layer includes polydimethylsiloxane.
  • the weight layer and the piezoelectric sensor are located on the same side of the base substrate.
  • the piezoelectric sensor includes a plurality of piezoelectric devices distributed in an array, and the weight layer includes mass in the gap between them.
  • the shape of the orthographic projection of the mass on the base substrate includes at least one of rectangle, circle, and polygon.
  • the material of the mass block is the same as that of the base substrate.
  • the adjustment film layer is located on a side of the base substrate away from the piezoelectric sensor.
  • the above vibration panel provided by the embodiments of the present disclosure further includes a touch layer located on the side of the base substrate away from the piezoelectric sensor.
  • the adjustment film layer is located on the side of the touch layer away from the base substrate, or the adjustment film layer is located on the between the base substrate and the touch layer.
  • the material of the adjustment film layer includes polyethylene terephthalate, polymethyl methacrylate or polyimide.
  • the thickness of the base substrate is 0.3mm ⁇ 0.8mm.
  • an embodiment of the present disclosure also provides a tactile feedback device, including the vibration panel mentioned above.
  • the above-mentioned tactile feedback device provided by the embodiments of the present disclosure further includes a support substrate located on the side of the piezoelectric sensor away from the base substrate, and the support substrate is a support frame or Support the slab.
  • the supporting substrate is a supporting plate
  • the adjusting structure includes both the supporting layer and the weight layer
  • the height of the support layer is greater than the height of the weight layer
  • an embodiment of the present disclosure also provides a driving method for driving the above vibration panel, including:
  • An excitation signal is applied to the piezoelectric sensor, and deformation of the piezoelectric sensor drives the substrate to vibrate.
  • changing the parameters of the adjustment structure specifically includes at least one of the following:
  • Adjust the thickness of the base substrate adjust the connection stiffness of the support layer, adjust the quality and distribution position of the weight layer, and adjust the stiffness and quality of the adjustment film layer.
  • Fig. 1 is a structural schematic diagram of a vibrating panel in the related art
  • Figures 2 to 7 are the displacement distributions (eigenmodes) calculated in several frequency domains corresponding to the characteristic frequency of the substrate shown in Figure 1 within 1100 Hz;
  • Fig. 8 is the corresponding frequency response curve of the substrate under the excitation of a specific frequency range
  • Figure 15 is a schematic cross-sectional view of Figures 9-11;
  • Figure 16 is a schematic cross-sectional view of Figures 12-14;
  • Fig. 23 is a schematic cross-sectional view of Fig. 17-Fig. 22;
  • FIGS 24-27 are schematic cross-sectional views of several other vibration panels
  • FIG. 28 is a schematic structural diagram of a piezoelectric sensor provided by an embodiment of the present disclosure.
  • Fig. 29 is a schematic cross-sectional view of a piezoelectric device in Fig. 28;
  • Fig. 30 is the corresponding eigenmode when the eigenfrequency of the base substrate with the support layer is 636.03 Hz;
  • Fig. 31 is the corresponding eigenmode when the eigenfrequency of the substrate with the support layer is 840.9 Hz;
  • Fig. 32 is the corresponding eigenmode when the eigenfrequency of the substrate with the support layer is 1143.9 Hz;
  • Fig. 33 is the corresponding frequency response curve of the base substrate corresponding to the excitation of a specific frequency range when the support layer adopts rubber with a modulus (Ela) of 2MPa, 5MPa, 15MPa, 25MPa and 50MPa respectively;
  • Fig. 34 is the frequency response curve corresponding to the corresponding substrate substrate under the excitation of a specific frequency range when the support layer adopts rubber with different thickness Rub_h (0.5mm, 0.8mm, 1.5mm);
  • Fig. 35 is the corresponding frequency response curve of the corresponding substrate substrate under the excitation of a specific frequency range when mass blocks with different thicknesses Mas_h (0.2mm, 0.5mm, 0.8mm) are used for the counterweight layer;
  • Figure 36 is the corresponding frequency response curves of the corresponding substrate substrates under the excitation of a specific frequency range when the substrate substrates adopt different thicknesses (0.3mm, 0.5mm, 0.8mm);
  • the working principle is usually to realize touch functions such as virtual buttons by pasting piezoelectric sheets, linear motors or piezoelectric films on the substrate and applying pulse excitation.
  • the linear motor solution is adopted. Because the linear motor has a large volume, it will greatly occupy the internal space of the electronic product, resulting in a reduction in the volume of the battery, thereby shortening the battery life of the product.
  • the solution of piezoelectric sheet requires the introduction of a voltage amplifying device. On the one hand, it will occupy the space of the battery, and on the other hand, high voltage will also cause a potential risk of electric shock.
  • the piezoelectric film solution is adopted, because the thickness of the film is usually less than 10 ⁇ m, so the thickness of the device is greatly reduced, the battery space is increased, and the overall battery life of the product is increased.
  • the use of piezoelectric film does not require high voltage, which ensures the voltage safety of the product.
  • the thickness of the piezoelectric film is too thin, it is difficult to excite the base substrate to generate sufficient displacement under the condition of equal electric field, so it is difficult to make the base substrate generate sufficient tactile feedback. This makes it difficult for piezo films to be used for buttons, keys, etc. types of tactile feedback in the lower frequency range (in the 1kHz range).
  • the vibration panel generally includes a base substrate 1 and a piezoelectric sensor 2 located on the base substrate.
  • the piezoelectric sensor 2 may include a plurality of piezoelectric devices 21 distributed in an array.
  • the piezoelectric devices 21 It generally includes a bottom electrode and a top electrode arranged opposite to each other and a piezoelectric layer between the bottom electrode and the top electrode.
  • the bottom electrode is generally grounded.
  • the piezoelectric layer deforms and drives the substrate.
  • the substrate 1 generates resonance to realize tactile reproduction.
  • the size of the base substrate 1 is 120 mm ⁇ 80 mm, and the thickness of the base substrate 1 is 0.8 mm as an example.
  • the eigenfrequency is an inherent characteristic of the structure, when the size and material of the substrate 1 are fixed, the eigenfrequency is fixed; the human tactile organ is only sensitive to vibration stimulation in a specific frequency range, according to the tactile and auditory sensitivity curves , usually the frequency of hearing insensitivity and tactile sensitivity is in the range of 400Hz to 600Hz, and each person's perception range will be different.
  • Figures 2 to 7 are respectively the displacement distributions (eigenmodes) calculated in several frequency domains corresponding to the characteristic frequency of the substrate 1 shown in Figure 1 within 1100 Hz
  • Figure 8 is The corresponding frequency response curve of the substrate 1 under the excitation of a specific frequency range (average displacement of the structure in the out-of-plane direction - resonance frequency), where Figure 2 shows the corresponding eigenmode when the characteristic frequency of the substrate 1 is 316.92Hz
  • Fig. 3 is the corresponding eigenmode when the eigenfrequency of substrate 1 is 329.73Hz
  • Fig. 4 is the corresponding eigenmode when the eigenfrequency of substrate 1 is 724Hz
  • the substrate substrate 1 has no corresponding resonance frequency in the range of 400Hz to 600Hz, which makes it difficult for piezoelectric devices to be used in buttons, buttons, etc. in the range of lower frequencies (within 1kHz). Haptic feedback therefore requires tuning the characteristic frequency of the base substrate 1 by a specific method.
  • the embodiment of the present disclosure provides a vibrating panel, as shown in Fig. 9-Fig. Schematic diagram, Figure 16 is a schematic cross-sectional view of Figure 12- Figure 14, Figure 17- Figure 22 is a schematic top view of the vibration panel, Figure 23 is a schematic cross-sectional view of Figure 17- Figure 22, and Figure 24- Figure 27 is another type of vibration panel Schematic cutaway, the vibrating panel includes:
  • the piezoelectric sensor 2 is located on one side of the base substrate 1, and the piezoelectric sensor 2 is configured to vibrate under the drive of the excitation signal, so as to drive the base substrate 1 to vibrate;
  • the adjustment structure 3 is configured to adjust the characteristic frequency of the base substrate 1 so that the resonance frequency of the base substrate 1 satisfies a preset range.
  • the adjustment structure can adjust the characteristic frequency and resonance mode of the substrate, so that the resonance frequency of the substrate satisfies the preset range, so that the preset range In the sensitive frequency range (400Hz-600Hz) of the human tactile organ, the use of the resonance frequency of the substrate can effectively improve the tactile feedback effect of the tactile feedback device based on the excitation vibration of the piezoelectric film in the low frequency range.
  • the embodiments of the present disclosure are described by taking the sensitive frequency range of human tactile organs as 400Hz-600Hz as an example. Of course, in actual situations, the sensitive frequency range of each person's tactile organs will be different (for example, 200Hz ⁇ 600 Hz, etc.), the embodiment of the present disclosure adjusts the characteristic frequency of the base substrate 1 through the adjustment structure 3 according to the actual range of the sensitive frequency of the human tactile organ.
  • the piezoelectric sensor 2 includes a plurality of piezoelectric devices 21 distributed in an array, as shown in Figure 29, Figure 29 is a schematic cross-sectional view of a piezoelectric device 21 in Figure 28, the piezoelectric device 21 includes a relative The bottom electrode 211 and the top electrode 212 that are set and the piezoelectric layer 213 between the bottom electrode 211 and the top electrode 212, the piezoelectric sensor 2 can also include: a binding electrode 214 arranged on the same layer as the bottom electrode 211, the binding electrode 214 is arranged close to the edge of the base substrate 1, and the binding electrode 214 is used to connect to the input terminal of the driving voltage, and the voltage signal input by the input terminal of the driving voltage is an AC voltage signal; the piezoelectric sensor 2 can also include: The insulating layer 215 on one side of the electrical layer 213, and the wiring layer
  • the insulating layer 215 has a first via hole V1 corresponding to the top electrode 212, one end of the wiring layer 216 is electrically connected to the top electrode 212 through the first via hole V1, and the other end of the wiring layer 216 passes through the first via hole V1 that penetrates the insulating layer 215.
  • the second via hole V2 is electrically connected to the bonding electrode 214 .
  • the bottom electrode 211 is grounded, and the binding electrode 214 is connected to the driving voltage input terminal.
  • the voltage signal input by the driving voltage input terminal is an AC voltage signal, and an AC voltage signal (V AC ) is applied to the top electrode 212 through the driving voltage input terminal.
  • An alternating electric field may be formed between the top electrode 212 and the bottom electrode 211, and the frequency of the alternating electric field is the same as that of the AC voltage signal.
  • the piezoelectric layer 213 deforms and generates a vibration signal.
  • the frequency of the vibration signal is the same as the frequency of the alternating electric field.
  • the substrate resonates, the amplitude is enhanced, and a tactile feedback signal is generated.
  • the friction force on the surface of the substrate can be adjusted through the resonance generated between the piezoelectric layer and the substrate, so as to realize the texture reproduction of the object on the surface of the substrate.
  • the bottom electrode 211 and the binding electrode 24 can be formed with the same material and using the same patterning process.
  • the bottom electrodes 211 of all piezoelectric devices 21 in FIG. 28 can be a patterned structure, or can be a whole-surface structure;
  • the top electrode 212 of the piezoelectric device 21 is a patterned structure corresponding to the piezoelectric layer 212 .
  • the material of the piezoelectric layer of the piezoelectric device can be lead zirconate titanate (Pb(Zr,Ti)O 3 , PZT), aluminum nitride (AlN), ZnO (zinc oxide), titanium Barium oxide (BaTiO 3 ), lead titanate (PbTiO 3 ), potassium niobate (KNbO 3 ), lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lanthanum gallium silicate (La 3 Ga 5 SiO 14 ), and the material for making the piezoelectric layer can be selected according to the actual needs of those skilled in the art, which is not limited here.
  • PZT when PZT is used to make the piezoelectric layer, since PZT has a high piezoelectric coefficient, the piezoelectric characteristics of the corresponding vibration panel are guaranteed, and the corresponding vibration panel can be applied to the tactile feedback device, and PZT has a high Light transmittance, when it is integrated into a display device, does not affect the display quality of the display device.
  • the top electrode and the bottom electrode of the piezoelectric device can be made of indium tin oxide (ITO), can also be made of indium zinc oxide (IZO), can also be made of titanium gold (Ti-Au ) alloy, titanium-aluminum-titanium (Ti-Al-Ti) alloy, titanium-molybdenum (Ti-Mo) alloy, in addition, it can also be made of titanium (Ti), gold (Au), silver (Ag) , molybdenum (Mo), copper (Cu), tungsten (W), chromium (Cr), those skilled in the art can set the above-mentioned electrodes according to the needs of practical applications, which is not limited here.
  • the layer 31 , the weight layer 32 , and the adjustment film layer 33 is fixedly connected to the base substrate 1 .
  • the characteristic frequency of the base substrate 1 can be changed, so that the resonance frequency of the base substrate 1 meets the requirements of the human tactile organ.
  • the sensitive frequency range can effectively improve the tactile feedback effect of the tactile reproduction device based on piezoelectric film excitation vibration in the low frequency range.
  • Supporting layers 31 with different modulus parameters are arranged on the substrate 1 to adjust the resonant frequency and resonant modes of the base substrate 1 .
  • the supporting layer 31 includes a first supporting part located in the peripheral area of the substrate 1 and surrounding the piezoelectric sensor 2 311.
  • the support layer 31 mainly plays the role of connecting the base substrate 1 and the support substrate (described later), and the connection stiffness along the normal direction of the base substrate 1 is mainly determined by the elastic modulus of the material of the support layer 31, the connection area and the support layer.
  • connection stiffness of the support layer 31 is determined by the thickness of the support layer 31, and the eigenfrequency and eigenmode of the substrate 1 are adjusted by changing the connection stiffness of the support layer 31; wherein the material constituting the support layer 31 can be but not limited to rubber, foam, foam, polydimethyl Silicone (PDMS), etc., by selecting materials with different elastic moduli, the connection stiffness of the support layer 31 is changed. The greater the connection stiffness, the higher the characteristic frequency of the substrate 1.
  • PDMS polydimethyl Silicone
  • an adhesive layer (such as optical glue, OCA) or the like may be used for fixed connection between the support layer and the base substrate.
  • the number of first support parts 311 may be multiple.
  • the connection stiffness along the normal direction of the base substrate 1 is mainly determined by the connection area of the support layer 31, the larger the area, the greater the connection stiffness, and the characteristic frequency of the base substrate 1 higher.
  • the shape of the orthographic projection of the support part 311 on the substrate 1 may also include a triangle, a circle, a trapezoid or a polygon.
  • the first supporting parts 311 located at the four corners of the The projected shape is L-shaped, and the orthographic projection shapes of the remaining first support parts 311 on the base substrate 1 may include rectangles.
  • the orthographic projection shapes of each first support part 311 on the base substrate 1 may also include triangles, circles, etc. , trapezoidal or polygonal.
  • the first support portion 311 may be a closed ring structure disposed around the piezoelectric sensor 2 .
  • the second support portion 312 at the gap between the electrical components 21 may be distributed inside the base substrate 1.
  • each second support portion 312 is evenly distributed inside the base substrate 1.
  • the second support portions 312 may also be distributed in a local area.
  • the connection stiffness of the support layer 31 can be changed by changing the distribution of the second support portion 312 inside the base substrate 1.
  • connection stiffness along the normal direction of the base substrate 1 is mainly Determined by the connection area of the support layer 31, the larger the area, the greater the connection rigidity, and the higher the characteristic frequency of the substrate substrate 1; after the material and thickness of the support layer 31 are determined, the second support portion 312 can be changed by changing the second support portion 312 on the substrate The distribution of specific positions inside the substrate 1 adjusts the characteristic modes of the base substrate 1 .
  • the shape of the orthographic projection of the portion 312 on the substrate 1 may also include a triangle, a circle, a trapezoid or a polygon.
  • the central position of the piezoelectric devices 21 in two rows and two columns is provided with a second support portion 312, of course, the respective conditions of the second support portion 312 can be determined according to the characteristic frequency of the base substrate 1 actually required, for example, on the entire base substrate 1
  • the second support portions 312 are uniformly distributed, or the second support portions 312 are distributed in a local area of the base substrate 1 .
  • the support layer 31 is a connection structure with a certain thickness, when the material of the support layer 31 and the connection with the base substrate 1 After the area is determined, the connection stiffness along the normal direction of the base substrate 1 is mainly determined by the thickness of the support layer 31. The smaller the thickness, the greater the stiffness and the higher the characteristic frequency of the base substrate 1. According to the actual needs of the substrate The thickness of the support layer 31 is designed based on the characteristic frequency of the substrate 1 .
  • Fig. 30-Fig. 32 are several frequency domain calculations corresponding to the characteristic frequency of the substrate 1 provided with the support layer 31 on the substrate 1 within 1200 Hz provided by the embodiment of the present disclosure.
  • Displacement distribution (eigenmode) of the displacement distribution (eigenmode) wherein Fig. 30 is the corresponding eigenmode when the eigenfrequency of the base substrate 1 with the support layer 31 is 636.03 Hz, and Fig. 31 is the eigenfrequency of the base substrate 1 with the support layer 31 is the corresponding eigenmode at 840.9 Hz, and FIG. 32 is the corresponding eigenmode when the eigenfrequency of the base substrate 1 on which the support layer 31 is set is 1143.9 Hz.
  • the supporting layer 31 is provided on the base substrate 1 to change the characteristic frequency of the base substrate 1 .
  • Figure 33 is the corresponding frequency response curve of the base substrate 1 under the excitation of a specific frequency range when the supporting layer 31 uses rubber with a modulus (Ela) of 2MPa, 5MPa, 15MPa, 25MPa and 50MPa respectively.
  • the characteristic frequency of the substrate 1 can be changed, and then the resonance frequency of the substrate 1 can be changed, wherein the mode
  • the resonant frequency of the substrate 1 corresponding to the rubber with a quantity of 2MPa is 460Hz
  • the resonant frequency of the substrate 1 corresponding to the rubber with a modulus of 5MPa is 500Hz
  • the resonant frequency of the substrate 1 corresponding to the rubber with a modulus of 15MPa is 550Hz
  • the resonant frequency of the substrate 1 corresponding to the rubber with a modulus of 25MPa is 585Hz
  • the resonant frequency of the substrate 1 corresponding to the rubber with a modulus of 50MPa is 635Hz, so that the resonant frequency of the substrate 1 is in the human Within the sensitive frequency range (400Hz-600Hz) of the tactile organ, thereby improving the tactile feedback effect in the low
  • Figure 34 is the corresponding frequency response curve (structural Average displacement in the out-of-plane direction-resonant frequency), it can be seen that by changing the thickness of the support layer 31 material, the characteristic frequency of the substrate 1 can be changed, and then the resonance frequency of the substrate 1 can be changed, wherein the thickness is 0.5mm
  • the resonant frequency of the base substrate 1 corresponding to the rubber is 540 Hz
  • the resonant frequency of the base substrate 1 corresponding to the rubber with a thickness of 0.8 mm is 590 Hz
  • the resonant frequency of the base substrate 1 corresponding to the rubber with a thickness of 1.5 mm is 640 Hz
  • the resonant frequency of the base substrate 1 is within the sensitive frequency range (400Hz-600Hz) of the human tactile organ, thereby improving the tactile feedback effect of the tactile reproduction device based on the excitation vibration of the piezoelectric film in the low frequency range.
  • Figure 17- Figure 22 is the structure set on the basis of Figure 9- Figure 14 respectively, and the weight layer 32
  • the piezoelectric sensor 2 is located on the same side of the base substrate 1 .
  • the resonant frequency and resonance mode of the base substrate 1 can be adjusted by setting weight layers 32 of different numbers and masses on the base substrate 1 .
  • the embodiment of the present disclosure takes the weight layer 32 and the piezoelectric sensor 2 on the same side of the base substrate 1 as an example.
  • the weight layer 32 may also be located on the side of the base substrate 1 away from the piezoelectric sensor 2.
  • the weight layer 32 is located on the same side of the base substrate 1 as the piezoelectric sensor 2 .
  • the piezoelectric sensor 2 includes a plurality of piezoelectric devices 21 distributed in an array, and the Mass blocks 321 at gaps between electrical components 21 .
  • the constituent material of mass block 321 can be the same material as base substrate 1, and can also be other materials different from the material of base substrate 1.
  • mass block 321 materials with different densities the overall mass of base substrate 1 can be changed. , the greater the overall mass, the lower the characteristic frequency of the base substrate 1 .
  • the base substrate in the embodiments of the present disclosure may be a substrate made of glass, a substrate made of silicon or silicon dioxide (SiO 2 ), or a substrate made of sapphire.
  • the substrate may also be a substrate made of a metal wafer, which is not limited herein, and those skilled in the art may set the substrate substrate according to actual application requirements.
  • mass blocks 321 there are multiple mass blocks 321 between every two adjacent columns of piezoelectric devices 21, and every two adjacent rows
  • the central positions of the two columns of piezoelectric devices 21 are provided with mass blocks 321.
  • the respective conditions of the mass blocks 321 can be determined according to the characteristic frequency of the substrate 1 actually required. For example, mass blocks 321 are evenly distributed on the entire substrate 1. , or mass blocks 321 are distributed in a local area of the substrate 1 .
  • the shape of the orthographic projection of the mass on the substrate 1 includes at least one of rectangle, circle and polygon.
  • the shape of the orthographic projection of the mass 321 on the substrate 1 is a rectangle; as shown in Figures 20-22, the shape of the orthographic projection of the mass 321 on the substrate 1 is a circle .
  • the volume of the mass block 321 is determined by the cross-section and height of the mass block 321.
  • the overall mass of the substrate 1 is changed.
  • the mass blocks 321 can be distributed at any position inside the substrate 1, and the characteristic frequency of the substrate 1 can be adjusted by changing the distribution of the mass blocks 321.
  • the total mass of the mass blocks 321 is determined In this case, the more the masses 321 are concentrated in the middle area of the substrate 1 , the lower the characteristic frequency of the substrate 1 is, and the distribution of the masses 321 is designed according to the characteristic frequency of the substrate 1 actually required.
  • Figure 35 shows the corresponding frequency response of the base substrate 1 under the excitation of a specific frequency range when the weight layer 32 respectively adopts mass blocks 321 with different thicknesses Mas_h (0.2mm, 0.5mm, 0.8mm).
  • curve average displacement of the structure in the out-of-plane direction-resonance frequency
  • the thickness is The resonance frequency of the substrate 1 corresponding to the mass block 321 of 0.2 mm is 530 Hz
  • the resonance frequency of the substrate 1 corresponding to the mass block 321 with a thickness of 0.5 mm is 565 Hz
  • the resonant frequency of the substrate 1 is 605 Hz, so that the resonant frequency of the substrate 1 is within the sensitive frequency range (400 Hz to 600 Hz) of the human tactile organ, thereby
  • the adjustment film layer 33 is located on the side of the substrate 1 away from the piezoelectric sensor 2, specifically by An adjustment film layer 33 is provided on the substrate 1 to adjust the resonant frequency and resonant mode of the base substrate 1 .
  • the tactile feedback effect in the low frequency range of the tactile reproduction device based on piezoelectric film excitation vibration can be effectively improved.
  • the embodiment of the present disclosure takes the adjustment film layer 33 on the side of the base substrate 1 away from the piezoelectric sensor 2 as an example.
  • the adjustment film layer 33 may also be located on the side of the piezoelectric sensor 2 away from the base substrate 1 .
  • the adjustment film layer 33 is preferably located on the side of the substrate 1 away from the piezoelectric sensor 2 .
  • the above vibration panel provided by the embodiment of the present disclosure, as shown in Figure 15, Figure 16, Figure 23-27, it also includes a touch layer located on the side of the base substrate 1 away from the piezoelectric sensor 2 4.
  • touch functions such as determining a touch position
  • tactile reproduction functions can be realized.
  • the adjustment film layer 33 is located on the side of the touch layer 4 away from the base substrate 1, or as shown in Figure 26 and Figure 25 As shown in 27 , the adjustment film layer 33 is located between the base substrate 1 and the touch layer 4 .
  • adjusting the film layer 33 mainly adjusts the eigenfrequency and eigenmode of the base substrate 1 by comprehensively changing the overall mass and stiffness of the substrate 1, and adjusting the quality of the film layer 33 is determined by adjusting the thickness and film layer density of the film layer 33. It is determined that the rigidity of the regulating film layer 33 is determined by the thickness of the film layer and the elastic modulus of the film layer material.
  • the base substrate 1 When the effect of the regulating film layer 33 on the increase of the overall mass of the base substrate 1 exceeds the effect of the rigidity increase, the base substrate 1 The eigenfrequency of the base substrate 1 will decrease, and when the effect of the adjustment film layer 33 on increasing the overall stiffness of the base substrate 1 exceeds the effect of increasing the mass, the eigenfrequency of the base substrate 1 will increase.
  • PMMA methyl acrylate
  • PI polyimide
  • the thickness of the base substrate 1 may be 0.3mm ⁇ 0.8mm.
  • the present disclosure can also adjust the characteristic frequency of the base substrate 1 by changing the thickness of the base substrate 1 .
  • the characteristic frequency of the base substrate 1 can be adjusted by changing the thickness of the base substrate 1 on the basis of the vibrating panel in the related art.
  • Figure 36 is the corresponding frequency response curve of the base substrate 1 under the excitation of a specific frequency range when the base substrate 1 adopts different thicknesses (0.3mm, 0.5mm, 0.8mm) respectively (the structure is on the surface The average displacement in the outer direction-resonance frequency), it can be seen that by changing the thickness of the substrate 1, the characteristic frequency of the substrate 1 can be changed, and then the resonance frequency and resonance mode of the substrate 1 can be changed, wherein the thickness is The resonance frequency of the base substrate 1 of 0.3 mm is 605 Hz, the resonance frequency of the base substrate 1 with a thickness of 0.5 mm is 475 Hz, and the resonance frequency of the base substrate 1 with a thickness of 0.8 mm is 960 Hz, so that the resonance frequency of the base substrate 1 The frequency exists within the sensitive frequency range (400Hz-600Hz) of the human tactile organ, thereby improving the tactile feedback effect of the tactile reproduction device based on piezoelectric film excitation vibration in the low frequency range.
  • the sensitive frequency range 400Hz-600Hz
  • the characteristic frequency of the base substrate 1 can be adjusted accordingly. ground change, so that the resonant frequency of the base substrate 1 is within the sensitive frequency range of the human tactile organ.
  • the thickness range of the base substrate 1 can be changed accordingly, so that the resonance frequency of the base substrate 1 is within the sensitive frequency range of human tactile organs.
  • the vibrating panel can also be provided with other film layers according to practical applications.
  • the embodiments of the present disclosure can make the resonant frequency of the substrate within the sensitive frequency range (400 Hz-600 Hz) of the human tactile organ through any one of the following single solutions or any superimposed solution among the four.
  • the specific scheme is as follows: (1) by adding a support layer on the substrate and the substrate, the overall stiffness of the structure is changed, and the eigenfrequency and eigenmode of the substrate are adjusted; (2) by adding a mass block on the substrate, the The overall quality and mass distribution of the structure can adjust the eigenfrequency and eigenmode of the substrate; (3) by setting the adjustment film layer on the substrate, the stiffness and quality of the whole structure can be changed, and the eigenfrequency and eigenmode of the substrate can be adjusted.
  • Eigenmode (4) By changing the thickness of the substrate, the stiffness and quality of the overall structure are changed, and the eigenfrequency and eigenmode of the substrate are adjusted.
  • the vibration panel provided by the embodiments of the present disclosure can be applied to fields such as medical treatment, automotive electronics, and motion tracking systems. It is especially suitable for the field of wearable devices, monitoring and treatment outside the body or implanted in the human body, or electronic skin applied to artificial intelligence and other fields.
  • the vibration panel can be applied to vibration panels that can generate vibration and mechanical characteristics, such as brake pads, keyboards, mobile terminals, game handles, vehicles, and smart homes.
  • an embodiment of the present disclosure also provides a driving method for driving the above vibration panel, including:
  • An excitation signal is applied to the piezoelectric sensor, and the deformation of the piezoelectric sensor drives the substrate to vibrate.
  • changing the parameters of the adjustment structure specifically includes at least one of the following:
  • Adjust the thickness of the base substrate adjust the connection stiffness of the support layer, adjust the quality and distribution position of the weight layer, and adjust the stiffness and quality of the film layer.
  • the implementation of the above-mentioned driving method provided by the embodiments of the present disclosure can be referred to in the aforementioned vibration panel by adjusting the thickness of the substrate, adjusting the connection stiffness of the support layer, adjusting the mass and distribution position of the weight layer, and adjusting the stiffness of the film layer. and quality to realize the method of changing the characteristic frequency of the substrate substrate, which will not be repeated here.
  • embodiments of the present disclosure also provide a tactile feedback device, as shown in FIGS. 37-43 , including the above-mentioned vibration panel provided by the embodiments of the present disclosure. Since the problem-solving principle of the tactile feedback device is similar to that of the aforementioned vibration panel, the implementation of the tactile feedback device can refer to the implementation of the aforementioned vibration panel, and the repetition will not be repeated.
  • the tactile feedback device can be any product or component with display or touch function, such as a mobile phone, a tablet computer, a television set, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • the supporting substrate 5 mainly plays the role of supporting the tactile feedback device system, and may be a frame of a display screen, a frame of a touchpad of a notebook, and the like.
  • the height of the supporting layer 31 is greater than that of the counterweight layer 32, so as to realize the fixed connection between the supporting layer 31 and the supporting substrate 5.
  • the support substrate 5 and the support layer 31 may be fixedly connected through an adhesive layer (such as optical glue, OCA) or the like.
  • an adhesive layer such as optical glue, OCA
  • the above-mentioned tactile feedback device provided by the embodiments of the present disclosure may also include other film layers well known to those skilled in the art, which will not be described in detail here.
  • the touch position of the human body can be determined through the tactile feedback device, thereby generating corresponding vibration waveforms, amplitudes and frequencies, and human-computer interaction can be realized.
  • the tactile feedback device can also be applied in fields such as medical treatment, automotive electronics, and motion tracking systems according to actual needs, which will not be described in detail here.
  • Embodiments of the present disclosure provide a vibration panel, its driving method, and a tactile feedback device.
  • the adjustment structure can adjust the characteristic frequency and resonance mode of the substrate, so that the resonance frequency of the substrate Satisfy the preset range, so that the preset range is within the sensitive frequency range (400Hz ⁇ 600Hz) of the human tactile organ, and the use of the resonance frequency of the substrate can effectively improve the tactile feedback device based on piezoelectric film excitation vibration in the low frequency range. feedback effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本公开实施例提供了一种振动面板及其驱动方法、触觉反馈装置,该振动面板包括:衬底基板;压电传感器,位于衬底基板的一侧,压电传感器被配置为在激励信号的驱动下发生振动,以带动衬底基板振动;调节结构,调节结构被配置为调节衬底基板的特征频率,使得衬底基板的共振频率满足预设范围。

Description

振动面板及其驱动方法、触觉反馈装置 技术领域
本公开涉及触觉反馈技术领域,特别涉及一种振动面板及其驱动方法、触觉反馈装置。
背景技术
触觉反馈(Haptics)为现今科技开发的重点,具体地,触觉反馈能够透过触觉,使终端跟人体产生交互。
发明内容
本公开实施例提供了一种振动面板及其驱动方法、触觉反馈装置,具体方案如下:
本公开实施例提供的一种振动面板,包括:
衬底基板;
压电传感器,位于所述衬底基板的一侧,所述压电传感器被配置为在激励信号的驱动下发生振动,以带动所述衬底基板振动;
调节结构,所述调节结构被配置为调节所述衬底基板的特征频率,使得所述衬底基板的共振频率满足预设范围。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述调节结构包括支撑层、配重层、调节膜层其中之一或组合,所述支撑层、所述配重层、所述调节膜层其中之一或组合与所述衬底基板固定连接。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述支撑层与所述压电传感器位于所述衬底基板的同一侧。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述支撑层包括位于所述衬底基板的周边区域且围绕所述压电传感器设置的 第一支撑部。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述第一支撑部的数量为多个。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,各所述第一支撑部在所述衬底基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,位于所述衬底基板的四个拐角处的第一支撑部在所述衬底基板上的正投影形状为L型,其余所述第一支撑部在所述衬底基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述第一支撑部为围绕所述压电传感器设置的封闭环形结构。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述压电传感器包括阵列分布的多个压电器件,所述支撑层还包括位于相邻所述压电器件之间间隙处的第二支撑部。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述第二支撑部在所述衬底基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,每相邻两列所述压电器件之间具有多个所述第二支撑部,且每相邻两行两列所述压电器件的中心位置设置有所述第二支撑部。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述支撑层的材料包括以下至少之一:橡胶、泡沫、泡棉。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述支撑层的材料包括聚二甲基硅氧烷。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述配重层与所述压电传感器位于所述衬底基板的同一侧。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述压电传感器包括阵列分布的多个压电器件,所述配重层包括位于相邻所述压电器件之间间隙处的质量块。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,每相邻两列所述压电器件之间具有多个所述质量块,且每相邻两行两列所述压电器件的中心位置设置有所述质量块。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述质量块在所述衬底基板上的正投影形状包括矩形、圆形、多边形其中至少之一。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述质量块的材料与所述衬底基板的材料相同。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述调节膜层位于所述衬底基板背离所述压电传感器的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,还包括位于所述衬底基板背离所述压电传感器一侧的触控层。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述调节膜层位于所述触控层背离所述衬底基板的一侧,或所述调节膜层位于所述衬底基板和所述触控层之间。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述调节膜层的材料包括聚对苯二甲酸乙二酯、聚甲基丙烯酸甲酯或聚酰亚胺。
在一种可能的实现方式中,在本公开实施例提供的上述振动面板中,所述衬底基板的厚度为0.3mm~0.8mm。
相应地,本公开实施例还提供了一种触觉反馈装置,包括上述所述的振动面板。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈装置中,还包括位于所述压电传感器背离所述衬底基板一侧的支撑基板,所述支撑基板为支撑框架或支撑平板。
在一种可能的实现方式中,在本公开实施例提供的上述触觉反馈装置中,当所述支撑基板为支撑平板时,且当所述调节结构同时包括所述支撑层和所述配重层时,所述支撑层的高度大于所述配重层的高度。
相应地,本公开实施例还提供了一种用于驱动上述振动面板的驱动方法,包括:
改变所述调节结构的参数,调节所述衬底基板的特征频率,使得所述衬底基板的共振频率满足预设范围;
向所述压电传感器加载激励信号,所述压电传感器发生变形带动所述衬底基板振动。
在一种可能的实现方式中,在本公开实施例提供的上述驱动方法中,改变所述调节结构的参数,具体包括以下至少之一:
调节所述衬底基板的厚度、调节所述支撑层的连接刚度、调节所述配重层的质量和分布位置、调节所述调节膜层的刚度和质量。
附图说明
图1为相关技术中振动面板的结构示意图;
图2-图7分别为图1所示的衬底基板在1100Hz以内的特征频率对应的几种频域计算的位移分布(特征模态);
图8为衬底基板在特定频率范围的激励下对应的频率响应曲线;
图9-图14为振动面板的俯视示意图;
图15为图9-图11的剖面示意图;
图16为图12-图14的剖面示意图;
图17-图22为振动面板的俯视示意图;
图23为图17-图22的剖面示意图;
图24-图27为振动面板的另外几种剖面示意图;
图28为本公开实施例提供的压电传感器的结构示意图;
图29为图28中一个压电器件的剖面示意图;
图30为设置支撑层的衬底基板的特征频率为636.03Hz时对应的特征模态;
图31为设置支撑层的衬底基板的特征频率为840.9Hz时对应的特征模态;
图32为设置支撑层的衬底基板的特征频率为1143.9Hz时对应的特征模态;
图33为支撑层分别采用模量(Ela)为2MPa、5MPa、15MPa、25MPa和50MPa的橡胶时对应的衬底基板在特定频率范围的激励下对应的频率响应曲线;
图34为支撑层分别采用不同厚度Rub_h(0.5mm、0.8mm、1.5mm)的橡胶时对应的衬底基板在特定频率范围的激励下对应的频率响应曲线;
图35为配重层分别采用不同厚度Mas_h(0.2mm、0.5mm、0.8mm)的质量块时对应的衬底基板在特定频率范围的激励下对应的频率响应曲线;
图36为衬底基板分别采用不同厚度(0.3mm、0.5mm、0.8mm)时对应的衬底基板在特定频率范围的激励下对应的频率响应曲线;
图37-图43分别为本公开实施例还提供的触觉反馈装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地 改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
针对基于振动的触觉再现器件,其工作原理通常是通过在衬底基板上粘贴压电片、线性马达或者压电薄膜并施加脉冲激励实现虚拟按键等触控功能。其中采用线性马达的方案,因为线性马达的体积较大,会较大侵占电子产品内部空间,致使电池的体积减小,从而缩短了产品的续航时间。采用压电片的方案,则需要引入电压放大装置,一方面侵占电池空间,一方面高电压也会产生潜在的触电风险。采用压电薄膜的方案,因为薄膜的厚度通常在10μm以下,因此极大缩减了器件的厚度,增加了电池空间,增加了产品的综合续航。此外,采用压电薄膜不需要高电压,保证了产品的电压安全。但是因为压电薄膜厚度太薄,在等电场条件下,很难激励衬底基板产生足够的位移,因此很难使衬底基板产生足够的触觉反馈。这使得压电薄膜很难在较低频率(1kHz以内)范围内用于按钮、按键等类型的触觉反馈。
相关技术中,如图1所示,振动面板一般包括衬底基板1以及位于衬底基板上的压电传感器2,压电传感器2可以包括阵列分布的多个压电器件21,压电器件21一般包括相对设置的底电极和顶电极以及位于底电极和顶电极之间的压电层,底电极一般接地设置,通过向顶电极加载高频交流信号,压电层发生变形,并且带动衬底基板1产生共振,实现触觉再现。以衬底基板1为玻璃基板,衬底基板1的尺寸为120mm×80mm,衬底基板1的厚度为0.8mm为例。由于特征频率为结构的固有特性,当衬底基板1的尺寸和材料固定时,特征频率是固定的;人的触觉器官只针对特定频率范围内的振动刺激较为敏感,根据触觉和听觉敏感度曲线,通常听觉不敏感且触觉敏感的频率在400Hz~600Hz范围内,每个人的感受范围会有所差异。如图2-图8所示,图2-图7分别为图1所示的衬底基板1在1100Hz以内的特征频率对应的几种频域计算的位移分布(特征模态),图8为衬底基板1在特定频率范围的激励下 对应的频率响应曲线(结构在面外方向的位移平均-共振频率),其中图2为衬底基板1的特征频率为316.92Hz时对应的特征模态,图3为衬底基板1的特征频率为329.73Hz时对应的特征模态,图4为衬底基板1的特征频率为724Hz时对应的特征模态,图5为衬底基板1的特征频率为757.74Hz时对应的特征模态,图6为衬底基板1的特征频率为896.65Hz时对应的特征模态,图7为衬底基板1的特征频率为1015Hz时对应的特征模态,从图2-图8可以看出,衬底基板1在400Hz~600Hz范围内没有相应的共振频率,这使得压电器件很难在较低频率(1kHz以内)范围内用于按钮、按键等类型的触觉反馈,因此需要通过特定方法调节衬底基板1的特征频率。
为了解决相关技术中的问题,本公开实施例提供了一种振动面板,如图9-图27所示,图9-图14为振动面板的俯视示意图,图15为图9-图11的剖面示意图,图16为图12-图14的剖面示意图,图17-图22为振动面板的俯视示意图,图23为图17-图22的剖面示意图,图24-图27为振动面板的另外几种剖面示意图,该振动面板包括:
衬底基板1;
压电传感器2,位于衬底基板1的一侧,压电传感器2被配置为在激励信号的驱动下发生振动,以带动衬底基板1振动;
调节结构3,调节结构3被配置为调节衬底基板1的特征频率,使得衬底基板1的共振频率满足预设范围。
本公开实施例提供的振动面板,通过在振动面板中设置调节结构,调节结构可以调节衬底基板的特征频率和共振模态,使得衬底基板的共振频率满足预设范围,使预设范围处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,利用衬底基板的共振频率可以有效提高基于压电薄膜激励振动的触觉反馈器件在低频范围内触觉反馈效果。
需要说明的是,本公开实施例是以人类触觉器官的敏感频率范围为400Hz~600Hz为例进行说明的,当然在实际情况下,每个人的触觉器官的敏感频率范围会有所差别(例如200Hz~600Hz等),本公开实施例根据人类触觉 器官的敏感频率实际范围来通过调节结构3进行调节衬底基板1的特征频率。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9-图27所示,衬底基板1是直接与手指等触觉感官接触的基板,可以是笔记本触摸板、显示屏等;如图28所示,压电传感器2包括阵列分布的多个压电器件21,如图29所示,图29为图28中一个压电器件21的剖面示意图,该压电器件21包括相对设置的底电极211和顶电极212以及位于底电极211和顶电极212之间的压电层213,压电传感器2还可以包括:与底电极211同层设置的绑定电极214,绑定电极214靠近衬底基板1的边缘设置,绑定电极214用于连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号;压电传感器2还可以包括:位于第顶电极212背离压电层213一侧的绝缘层215,以及位于绝缘层215背离压电层213一侧的走线层216;其中,
绝缘层215具有与顶电极212对应设置的第一过孔V1,走线层216的一端通过第一过孔V1与顶电极212电连接,走线层216的另一端通过贯穿绝缘层215的第二过孔V2与绑定电极214电连接。具体地,底电极211接地,绑定电极214连接驱动电压输入端,驱动电压输入端输入的电压信号为交流电压信号,通过驱动电压输入端向顶电极212加载交流电压信号(V AC),这样在顶电极212和底电极211之间可以形成交变电场,交变电场的频率与交流电压信号的频率相同。在交变电场的作用下,压电层213发生形变并产生振动信号,该振动信号的频率与交变电场的频率相同,当振动信号的频率接近或等于衬底基板的固有频率时,衬底基板发生共振,振幅增强,产生触觉反馈信号,当手指触摸衬底基板的表面时,可以明显感受到摩擦力的变化。在实际应用中,可以通过压电层与衬底基板之间产生的共振来调节衬底基板表面的摩擦力,从而在衬底基板的表面实现物体的纹理再现。
本实施例中,底电极211、绑定电极24可以材料相同且采用同一构图工艺形成。
需要说明的是,图28中所有压电器件21的底电极211可以为图案化的结构,也可以为一整面的结构;所有压电器件21的压电层213为图案化的结 构,所有压电器件21的顶电极212为与压电层212对应的图案化结构。
在具体实施时,压电器件的压电层的材料可以为锆钛酸铅(Pb(Zr,Ti)O 3,PZT),还可以为氮化铝(AlN)、ZnO(氧化锌)、钛酸钡(BaTiO 3)、钛酸铅(PbTiO 3)、铌酸钾(KNbO 3)、铌酸锂(LiNbO 3)、钽酸锂(LiTaO 3)、硅酸镓镧(La 3Ga 5SiO 14)中的至少一种,具体可以根据本领域技术人员的实际使用需要来选择制作压电层的材料,在此不做限定。其中,在使用PZT制成压电层时,由于PZT具有高压电系数,保证了相应的振动面板的压电特性,可以将相应的振动面板应用到触觉反馈器件中,而且PZT具有较高的透光性,在将其集成到显示器件中时,不影响显示器件的显示质量。
在具体实施过程中,压电器件的顶电极和底电极可以是由氧化铟锡(ITO)制成,还可以是由氧化铟锌(IZO)制成,还可以是由钛金(Ti-Au)合金、钛铝钛(Ti-Al-Ti)合金、钛钼(Ti-Mo)合金中的一种制成,此外,还可以是由钛(Ti)、金(Au)、银(Ag)、钼(Mo)、铜(Cu)、钨(W)、铬(Cr)中的一种制成,本领域技术人员可以根据实际应用需要来设置上述电极,在此不做限定。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9-图27所示,调节结构3包括支撑层31、配重层32、调节膜层33其中之一或组合,支撑层31、配重层32、调节膜层33其中之一或组合与衬底基板1固定连接。过在衬底基板1上设置支撑层31、配重层32、调节膜层33其中之一或组合,可以改变衬底基板1的特征频率,使得衬底基板1的共振频率满足人的触觉器官的敏感频率范围,有效提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9-图16所示,支撑层31与压电传感器2位于衬底基板1的同一侧,具体可以通过在衬底基板1上设置不同模量参数的支撑层31来调节衬底基板1的共振频率和共振模态。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9-图16所 示,支撑层31包括位于衬底基板1的周边区域且围绕压电传感器2设置的第一支撑部311。具体地,支撑层31主要起连接衬底基板1和支撑基板(后续介绍)的作用,沿衬底基板1法线方向的连接刚度主要由支撑层31材料的弹性模量、连接面积和支撑层31的厚度决定,通过改变支撑层31的连接刚度来调节衬底基板1的特征频率和特征模态;其中构成支撑层31的材料可以是但不限于橡胶、泡沫、泡棉、聚二甲基硅氧烷(PDMS)等,通过选用不同弹性模量的材料,改变支撑层31的连接刚度,连接刚度越大,衬底基板1的特征频率越高,根据实际需要(实际需要的衬底基板1的特征频率)选择支撑层31材料的弹性模量、连接面积和支撑层31的厚度来调节衬底基板的特征频率和共振模态,使得衬底基板1的共振频率处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
具体地,支撑层与衬底基板之间可以采用黏胶层(例如光学胶,OCA)等进行固定连接。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9、图10、图12和图13所示,第一支撑部311的数量可以为多个。当支撑层31的材料及厚度确定之后,此时沿衬底基板1法线方向的连接刚度主要由支撑层31的连接面积决定,面积越大,连接刚度越大,衬底基板1的特征频率越高。
在具体实施时,在本公开实施例提供的上述振动面板中,如图9和图12所示,各第一支撑部311在衬底基板1上的正投影形状可以包括矩形,当然各第一支撑部311在衬底基板1上的正投影形状还可以包括三角形、圆形、梯形或多边形。
在具体实施时,在本公开实施例提供的上述振动面板中,如图10和图13所示,位于衬底基板1的四个拐角处的第一支撑部311在衬底基板1上的正投影形状为L型,其余第一支撑部311在衬底基板1上的正投影形状可以包括矩形,当然各第一支撑部311在衬底基板1上的正投影形状还可以包括三角形、圆形、梯形或多边形。
在具体实施时,在本公开实施例提供的上述振动面板中,如图11和图14所示,第一支撑部311可以为围绕压电传感器2设置的封闭环形结构。
在具体实施时,在本公开实施例提供的上述振动面板中,如图12-图14所示,压电传感器2包括阵列分布的多个压电器件21,支撑层31还包括位于相邻压电器件21之间间隙处的第二支撑部312。即第二支撑部312可以分布在衬底基板1内部,例如本公开实施例是以各第二支撑部312均匀分布在衬底基板1内部,当然也可以局部区域分布有第二支撑部312,通过改变第二支撑部312在衬底基板1内部的分布情况可以改变支撑层31的连接刚度,当支撑层31的材料及厚度确定之后,此时沿衬底基板1法线方向的连接刚度主要由支撑层31的连接面积决定,面积越大,连接刚度越大,衬底基板1的特征频率越高;当支撑层31的材料及厚度确定之后,可以通过改变第二支撑部312在衬底基板1内部具体位置的分布调节衬底基板1的特征模态。
在具体实施时,在本公开实施例提供的上述振动面板中,如图12-图14所示,第二支撑部312在衬底基板1上的正投影形状可以包括矩形,当然各第二支撑部312在衬底基板1上的正投影形状还可以包括三角形、圆形、梯形或多边形。
在具体实施时,在本公开实施例提供的上述振动面板中,如图12-图14所示,每相邻两列压电器件21之间具有多个第二支撑部312,且每相邻两行两列压电器件21的中心位置设置有第二支撑部312,当然第二支撑部312的分别情况可以根据实际需要的衬底基板1的特征频率来决定,例如整个衬底基板1上均匀分布有第二支撑部312,或者衬底基板1的局部区域分布有第二支撑部312。
在具体实施时,在本公开实施例提供的上述振动面板中,如图15和图16所示,支撑层31为具有一定厚度的连接结构,当支撑层31材料和与衬底基板1的连接面积确之后,此时沿衬底基板1法线方向的连接刚度主要由支撑层31的厚度决定,厚度越小,刚度越大,衬底基板1的特征频率越高,根据实际需要的衬底基板1的特征频率来设计支撑层31的厚度。
如图30-图32所示,图30-图32分别为本公开实施例提供的在衬底基板1上设置支撑层31的衬底基板1在1200Hz以内的特征频率对应的几种频域计算的位移分布(特征模态),其中图30为设置支撑层31的衬底基板1的特征频率为636.03Hz时对应的特征模态,图31为设置支撑层31的衬底基板1的特征频率为840.9Hz时对应的特征模态,图32为设置支撑层31的衬底基板1的特征频率为1143.9Hz时对应的特征模态,与图2-图8相比,本公开实施例通过在衬底基板1上设置支撑层31,可以改变衬底基板1的特征频率。如图33所示,图33为支撑层31分别采用模量(Ela)为2MPa、5MPa、15MPa、25MPa和50MPa的橡胶时对应的衬底基板1在特定频率范围的激励下对应的频率响应曲线(结构在面外方向的位移平均-共振频率),可以看出,通过改变支撑层31材料的模量,可以改变衬底基板1的特征频率,进而改变衬底基板1的共振频率,其中模量为2MPa的橡胶对应的衬底基板1的共振频率为460Hz,模量为5MPa的橡胶对应的衬底基板1的共振频率为500Hz,模量为15MPa的橡胶对应的衬底基板1的共振频率为550Hz,模量为25MPa的橡胶对应的衬底基板1的共振频率为585Hz,模量为50MPa的橡胶对应的衬底基板1的共振频率为635Hz,使得衬底基板1的共振频率处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
如图34所示,图34为支撑层31分别采用不同厚度Rub_h(0.5mm、0.8mm、1.5mm)的橡胶时对应的衬底基板1在特定频率范围的激励下对应的频率响应曲线(结构在面外方向的位移平均-共振频率),可以看出,通过改变支撑层31材料的厚度,可以改变衬底基板1的特征频率,进而改变衬底基板1的共振频率,其中厚度为0.5mm的橡胶对应的衬底基板1的共振频率为540Hz,厚度为0.8mm的橡胶对应的衬底基板1的共振频率为590Hz,厚度为1.5mma的橡胶对应的衬底基板1的共振频率为640Hz,使得衬底基板1的共振频率存在处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
在具体实施时,在本公开实施例提供的上述振动面板中,如图17-图23所示,图17-图22分别为在图9-图14结构基础上设置的结构,配重层32与压电传感器2位于衬底基板1的同一侧,具体可以通过在衬底基板1上设置不同数目和质量的配重层32来调节衬底基板1的共振频率和共振模态。
具体地,本公开实施例是以配重层32与压电传感器2位于衬底基板1的同一侧为例,当然,配重层32也可以位于衬底基板1背离压电传感器2的一侧。但由于衬底基板1背离压电传感器2的一侧一般设置有其它膜层,本公开实施例优选配重层32与压电传感器2位于衬底基板1的同一侧。
在具体实施时,在本公开实施例提供的上述振动面板中,如图17-图23所示,压电传感器2包括阵列分布的多个压电器件21,配重层32包括位于相邻压电器件21之间间隙处的质量块321。其中质量块321的构成材料可以是与衬底基板1相同的材料,也可以是与衬底基板1材料不同的其它材料,通过选择不同密度的质量块321材料,改变衬底基板1的整体质量,整体质量越大,衬底基板1的特征频率越低。
在具体实施过程中,本公开实施例中的衬底基板可以为由玻璃制成的基板,还可以为由硅或二氧化硅(SiO 2)制成的基板,还可以为由蓝宝石制成的基板,还可以为由金属晶圆制成的基板,在此不做限定,本领域技术人员可以根据实际应用需要来设置衬底基板。
在具体实施时,在本公开实施例提供的上述振动面板中,如图17-图23所示,每相邻两列压电器件21之间具有多个质量块321,且每相邻两行两列压电器件21的中心位置设置有质量块321,当然质量块321的分别情况可以根据实际需要的衬底基板1的特征频率来决定,例如整个衬底基板1上均匀分布有质量块321,或者衬底基板1的局部区域分布有质量块321。
在具体实施时,在本公开实施例提供的上述振动面板中,质量块在衬底基板1的正投影形状包括矩形、圆形、多边形其中至少之一。例如,如图17-图19所示,质量块321在衬底基板1的正投影形状为矩形;如图20-图22所示,质量块321在衬底基板1的正投影形状为圆形。
如图17-图23所示,质量块321的体积由质量块321的截面和高度决定,通过改变质量块321的体积来改变衬底基板1的整体质量,整体质量越大,衬底基板1的特征频率越低,根据实际需要的衬底基板1的特征频率来设计质量块321的质量。
如图17-图23所示,质量块321可以分布在衬底基板1内部任意位置,通过改变质量块321的分布情况可以调节衬底基板1的特征频率,在质量块321的总质量确定的情况下,质量块321越集中在衬底基板1的中间区域,衬底基板1的特征频率越低,根据实际需要的衬底基板1的特征频率来设计质量块321的分布情况。
如图35所示,图35为配重层32分别采用不同厚度Mas_h(0.2mm、0.5mm、0.8mm)的质量块321时对应的衬底基板1在特定频率范围的激励下对应的频率响应曲线(结构在面外方向的位移平均-共振频率),可以看出,通过改变质量块321的厚度,可以改变衬底基板1的特征频率,进而改变衬底基板1的共振频率,其中厚度为0.2mm的质量块321对应的衬底基板1的共振频率为530Hz,厚度为0.5mm的质量块321对应的衬底基板1的共振频率为565Hz,厚度为0.8mm的质量块321对应的衬底基板1的共振频率为605Hz,使得衬底基板1的共振频率存在处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
在具体实施时,在本公开实施例提供的上述振动面板中,如图24和图25所示,调节膜层33位于衬底基板1背离压电传感器2的一侧,具体可以通过在衬底基板1上设置调节膜层33来调节衬底基板1的共振频率和共振模态。通过在衬底基板1上设置调节膜层33,可以有效提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
具体地,本公开实施例是以调节膜层33位于衬底基板1背离压电传感器2的一侧为例,当然,调节膜层33还可以位于压电传感器2背离衬底基板1的一侧。但由于在压电传感器2上方设置调节膜层33,会发生损坏压电传感 器2的风险,因此本公开实施例优选调节膜层33位于衬底基板1背离压电传感器2的一侧。
在具体实施时,在本公开实施例提供的上述振动面板中,如图15、图16、图23-图27所示,还包括位于衬底基板1背离压电传感器2一侧的触控层4。通过采用衬底基板1和触控层4集成的结构,可以实现触控功能(例如判断触摸位置)以及触觉再现功能。
在具体实施时,在本公开实施例提供的上述振动面板中,如图24和图25所示,调节膜层33位于触控层4背离衬底基板1的一侧,或如图26和图27所示,调节膜层33位于衬底基板1和触控层4之间。具体地,调节膜层33主要通过综合改变衬底基板1的整体质量和刚度调节衬底基板1的特征频率和特征模态,调节膜层33的质量由调节膜层33的厚度和膜层密度决定,调节膜层33的刚度由膜层的厚度和膜层材料的弹性模量决定,当调节膜层33对衬底基板1的整体质量增加的效果超过刚度增加的效果时,衬底基板1的特征频率会降低,当调节膜层33对衬底基板1的整体刚度增加的效果超过质量增加的效果时,衬底基板1的特征频率会提高。
在具体实施时,在本公开实施例提供的上述振动面板中,如图24-图27所示,调节膜层33的材料包括但不限于聚对苯二甲酸乙二酯(PET)、聚甲基丙烯酸甲酯(PMMA)或聚酰亚胺(PI)。通过选择调节膜层33的材料,来对调节膜层33的整体刚度和整体质量进行调节,来改变衬底基板1的特征频率,使得衬底基板1的共振频率处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
在具体实施时,在本公开实施例提供的上述振动面板中,如图24-图27所示,衬底基板1的厚度可以为0.3mm~0.8mm。本公开还可以通过改变衬底基板1的厚度来调节衬底基板1的特征频率。例如,可以在相关技术中的振动面板的基础上改变衬底基板1的厚度来调节衬底基板1的特征频率,也可以在设置有支撑层、配重层、调节膜层其中之一或组合的方案的基础上改变 衬底基板1的厚度来调节衬底基板1的特征频率,使得衬底基板1的共振频率满足人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
如图36所示,图36为衬底基板1分别采用不同厚度(0.3mm、0.5mm、0.8mm)时对应的衬底基板1在特定频率范围的激励下对应的频率响应曲线(结构在面外方向的位移平均-共振频率),可以看出,通过改变衬底基板1的厚度,可以改变衬底基板1的特征频率,进而改变衬底基板1的共振频率和共振模态,其中厚度为0.3mm的衬底基板1的共振频率为605Hz,厚度为0.5mm的衬底基板1的共振频率为475Hz,厚度为0.8mm的衬底基板1的共振频率为960Hz,使得衬底基板1的共振频率存在处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,从而提高基于压电薄膜激励振动的触觉再现器件在低频范围内的触觉反馈效果。
需要说明的是,本公开实施例是以衬底基板1的尺寸为120mm×80mm时,衬底基板1的厚度在0.3mm~0.8mm范围内调节时,衬底基板1的特征频率可以发生相应地变化,使得衬底基板1的共振频率处在人类触觉器官的敏感频率范围内。当然,当衬底基板1的尺寸为其它尺寸时,衬底基板1的厚度范围可以发生相应地改变,以使得衬底基板1的共振频率处在人类触觉器官的敏感频率范围内。
当然,该振动面板除了上述提及的各种膜层之外,还可以根据实际应用设置其它膜层。
综上所述,本公开实施例通过以下任一单独方案或者四者之间的任意叠加方案,可以实现使得衬底基板的共振频率处在人类触觉器官的敏感频率范围(400Hz~600Hz)内。具体方案为:(1)通过在衬底基板和上增加支撑层,改变结构的整体刚度,调节衬底基板的特征频率和特征模态;(2)通过在衬底基板上增加质量块,改变结构的整体质量及质量分布,调节衬底基板的特征频率和特征模态;(3)通过在衬底基板上设置调节膜层,改变结构整体的刚度和质量,调节衬底基板的特征频率和特征模态;(4)通过改变衬底基板 的厚度,改变结构整体的刚度和质量,调节衬底基板的特征频率和特征模态。
本公开实施例提供的振动面板可应用于医疗,汽车电子,运动追踪系统等领域。尤其适用于可穿戴设备领域,医疗体外或植入人体内部的监测及治疗使用,或者应用于人工智能的电子皮肤等领域。具体地,可以将振动面板应用于刹车片、键盘、移动终端、游戏手柄、车载、智慧家居等可产生振动和力学特性的振动面板中。
基于同一发明构思,本公开实施例还提供了一种用于驱动上述振动面板的驱动方法,包括:
改变调节结构的参数,调节衬底基板的特征频率,使得衬底基板的共振频率满足预设范围;
向压电传感器加载激励信号,压电传感器发生变形带动衬底基板振动。
在具体实施时,在本公开实施例提供的上述驱动方法中,改变调节结构的参数,具体包括以下至少之一:
调节衬底基板的厚度、调节支撑层的连接刚度、调节配重层的质量和分布位置、调节调节膜层的刚度和质量。
本公开实施例提供的上述驱动方法的实施可以参见前述一种振动面板中通过调节衬底基板的厚度、调节支撑层的连接刚度、调节配重层的质量和分布位置、调节调节膜层的刚度和质量来实现改变衬底基板的特征频率的方法,在此不做赘述。
基于同一发明构思,本公开实施例还提供了一种触觉反馈装置,如图37-图43所示,包括本公开实施例提供的上述振动面板。由于该触觉反馈装置解决问题的原理与前述一种振动面板相似,因此该触觉反馈装置的实施可以参见前述振动面板的实施,重复之处不再赘述。该触觉反馈装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示或触控功能的产品或部件。
在具体实施时,在本公开实施例提供的上述触觉反馈装置中,如图37-图43所示,还包括位于压电传感器2背离衬底基板1一侧的支撑基板5,支 撑基板5可以为支撑框架或支撑平板。具体地,支撑基板5主要起承托触觉反馈装置系统的作用,可以是显示屏的边框、笔记本触摸板的边框等。
在具体实施时,在本公开实施例提供的上述触觉反馈装置中,如图37-图43所示,当支撑基板5为支撑平板时,且当调节结构3同时包括支撑层31和配重层32时,支撑层31的高度大于配重层32的高度,以实现支撑层31和支撑基板5之间的固定连接。
具体地,支撑基板5与支撑层31之间可以通过黏胶层(例如光学胶,OCA)等进行固定连接。
在具体实施时,本公开实施例提供的上述触觉反馈装置还可以包括本领域技术人员熟知的其他膜层,在此不做详述。
在具体实施时,通过触觉反馈装置可以确定人体触控的位置,从而产生对应的振动波形、振幅和频率,可以实现人机交互。当然,还可以根据实际需要将触觉反馈装置应用在医疗,汽车电子,运动追踪系统等领域,在此不再详述。
本公开实施例提供了一种振动面板及其驱动方法、触觉反馈装置,通过在振动面板中设置调节结构,调节结构可以调节衬底基板的特征频率和共振模态,使得衬底基板的共振频率满足预设范围,使预设范围处在人类触觉器官的敏感频率范围(400Hz~600Hz)内,利用衬底基板的共振频率可以有效提高基于压电薄膜激励振动的触觉反馈器件在低频范围内触觉反馈效果。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (28)

  1. 一种振动面板,其中,包括:
    衬底基板;
    压电传感器,位于所述衬底基板的一侧,所述压电传感器被配置为在激励信号的驱动下发生振动,以带动所述衬底基板振动;
    调节结构,所述调节结构被配置为调节所述衬底基板的特征频率,使得所述衬底基板的共振频率满足预设范围。
  2. 如权利要求1所述的振动面板,其中,所述调节结构包括支撑层、配重层、调节膜层其中之一或组合,所述支撑层、所述配重层、所述调节膜层其中之一或组合与所述衬底基板固定连接。
  3. 如权利要求2所述的振动面板,其中,所述支撑层与所述压电传感器位于所述衬底基板的同一侧。
  4. 如权利要求3所述的振动面板,其中,所述支撑层包括位于所述衬底基板的周边区域且围绕所述压电传感器设置的第一支撑部。
  5. 如权利要求4所述的振动面板,其中,所述第一支撑部的数量为多个。
  6. 如权利要求5所述的振动面板,其中,各所述第一支撑部在所述衬底基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
  7. 如权利要求5所述的振动面板,其中,位于所述衬底基板的四个拐角处的第一支撑部在所述衬底基板上的正投影形状为L型,其余所述第一支撑部在所述衬底基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
  8. 如权利要求4所述的振动面板,其中,所述第一支撑部为围绕所述压电传感器设置的封闭环形结构。
  9. 如权利要求3-8任一项所述的振动面板,其中,所述压电传感器包括阵列分布的多个压电器件,所述支撑层还包括位于相邻所述压电器件之间间隙处的第二支撑部。
  10. 如权利要求9所述的振动面板,其中,所述第二支撑部在所述衬底 基板上的正投影形状包括矩形、三角形、圆形、梯形或多边形。
  11. 如权利要求9所述的振动面板,其中,每相邻两列所述压电器件之间具有多个所述第二支撑部,且每相邻两行两列所述压电器件的中心位置设置有所述第二支撑部。
  12. 如权利要求2-11任一项所述的振动面板,其中,所述支撑层的材料包括以下至少之一:橡胶、泡沫、泡棉。
  13. 如权利要求2-11任一项所述的振动面板,其中,所述支撑层的材料包括聚二甲基硅氧烷。
  14. 如权利要求2所述的振动面板,其中,所述配重层与所述压电传感器位于所述衬底基板的同一侧。
  15. 如权利要求14所述的振动面板,其中,所述压电传感器包括阵列分布的多个压电器件,所述配重层包括位于相邻所述压电器件之间间隙处的质量块。
  16. 如权利要求15所述的振动面板,其中,每相邻两列所述压电器件之间具有多个所述质量块,且每相邻两行两列所述压电器件的中心位置设置有所述质量块。
  17. 如权利要求16所述的振动面板,其中,所述质量块在所述衬底基板上的正投影形状包括矩形、圆形、多边形其中至少之一。
  18. 如权利要求16所述的振动面板,其中,所述质量块的材料与所述衬底基板的材料相同。
  19. 如权利要求2所述的振动面板,其中,所述调节膜层位于所述衬底基板背离所述压电传感器的一侧。
  20. 如权利要求19所述的振动面板,其中,还包括位于所述衬底基板背离所述压电传感器一侧的触控层。
  21. 如权利要求20所述的振动面板,其中,所述调节膜层位于所述触控层背离所述衬底基板的一侧,或所述调节膜层位于所述衬底基板和所述触控层之间。
  22. 如权利要求19-21任一项所述的振动面板,其中,所述调节膜层的材料包括聚对苯二甲酸乙二酯、聚甲基丙烯酸甲酯或聚酰亚胺。
  23. 如权利要求1-22任一项所述的振动面板,其中,所述衬底基板的厚度为0.3mm~0.8mm。
  24. 一种触觉反馈装置,其中,包括如权利要求1-23任一项所述的振动面板。
  25. 如权利要求24所述的触觉反馈装置,其中,还包括位于所述压电传感器背离所述衬底基板一侧的支撑基板,所述支撑基板为支撑框架或支撑平板。
  26. 如权利要求25所述的触觉反馈装置,其中,当所述支撑基板为支撑平板时,且当所述调节结构同时包括所述支撑层和所述配重层时,所述支撑层的高度大于所述配重层的高度。
  27. 一种用于驱动如权利要求1-23任一项所述的振动面板的驱动方法,其中,包括:
    改变所述调节结构的参数,调节所述衬底基板的特征频率,使得所述衬底基板的共振频率满足预设范围;
    向所述压电传感器加载激励信号,所述压电传感器发生变形带动所述衬底基板振动。
  28. 如权利要求27所述的驱动方法,其中,改变所述调节结构的参数,具体包括以下至少之一:
    调节所述衬底基板的厚度、调节所述支撑层的连接刚度、调节所述配重层的质量和分布位置、调节所述调节膜层的刚度和质量。
PCT/CN2022/074982 2022-01-29 2022-01-29 振动面板及其驱动方法、触觉反馈装置 WO2023142038A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280000111.5A CN116897327A (zh) 2022-01-29 2022-01-29 振动面板及其驱动方法、触觉反馈装置
US18/006,458 US20240260474A1 (en) 2022-01-29 2022-01-29 Vibration panel and drive method therefor, and haptic feedback device
PCT/CN2022/074982 WO2023142038A1 (zh) 2022-01-29 2022-01-29 振动面板及其驱动方法、触觉反馈装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074982 WO2023142038A1 (zh) 2022-01-29 2022-01-29 振动面板及其驱动方法、触觉反馈装置

Publications (1)

Publication Number Publication Date
WO2023142038A1 true WO2023142038A1 (zh) 2023-08-03

Family

ID=87470162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074982 WO2023142038A1 (zh) 2022-01-29 2022-01-29 振动面板及其驱动方法、触觉反馈装置

Country Status (3)

Country Link
US (1) US20240260474A1 (zh)
CN (1) CN116897327A (zh)
WO (1) WO2023142038A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990240A (zh) * 2024-04-07 2024-05-07 华景传感科技(无锡)有限公司 一种微机电系统压力传感器和微机电系统压力换能器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595798A (zh) * 2003-09-09 2005-03-16 三星电子株式会社 薄膜谐振器及其制造方法以及具有薄膜谐振器的滤波器
CN103092336A (zh) * 2011-10-28 2013-05-08 三星电机株式会社 振动装置及包括该振动装置的触觉反馈装置
CN103116396A (zh) * 2011-11-16 2013-05-22 三星电机株式会社 触觉反馈装置
CN110178380A (zh) * 2016-11-08 2019-08-27 Lg 电子株式会社 显示设备
CN111754901A (zh) * 2019-03-29 2020-10-09 乐金显示有限公司 显示设备
CN112445334A (zh) * 2019-08-29 2021-03-05 太阳诱电株式会社 振动面板和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1595798A (zh) * 2003-09-09 2005-03-16 三星电子株式会社 薄膜谐振器及其制造方法以及具有薄膜谐振器的滤波器
CN103092336A (zh) * 2011-10-28 2013-05-08 三星电机株式会社 振动装置及包括该振动装置的触觉反馈装置
CN103116396A (zh) * 2011-11-16 2013-05-22 三星电机株式会社 触觉反馈装置
CN110178380A (zh) * 2016-11-08 2019-08-27 Lg 电子株式会社 显示设备
CN111754901A (zh) * 2019-03-29 2020-10-09 乐金显示有限公司 显示设备
CN112445334A (zh) * 2019-08-29 2021-03-05 太阳诱电株式会社 振动面板和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117990240A (zh) * 2024-04-07 2024-05-07 华景传感科技(无锡)有限公司 一种微机电系统压力传感器和微机电系统压力换能器

Also Published As

Publication number Publication date
US20240260474A1 (en) 2024-08-01
CN116897327A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN105654851B (zh) 显示装置及电子设备
JP6474562B2 (ja) 表示装置
US9046949B2 (en) Electronic device
JP5476513B1 (ja) 電子機器
KR101216892B1 (ko) 햅틱 디바이스 구동용 압전 액추에이터
US20120249459A1 (en) Touch panel device and electronic device having the same
KR20190014975A (ko) 표시장치
CN101882023B (zh) 具有振动功能的触控显示装置及振动式触控板
WO2023142038A1 (zh) 振动面板及其驱动方法、触觉反馈装置
JP2011060261A (ja) タッチスクリーン装置
KR20210121976A (ko) 진동발생장치 및 이를 구비한 표시장치
US20180314331A1 (en) Force Transducer for Electronic Devices
JP6133619B2 (ja) 振動装置、電子機器、および携帯端末
WO2024179200A1 (zh) 一种触觉反馈基板、其驱动方法及触控装置
US20240224809A1 (en) Piezoelectric sensor and haptic feedback apparatus
KR20210018703A (ko) 표시 장치
TWI397845B (zh) 具有振動功能的觸控顯示裝置及振動式觸控板
WO2023159362A1 (zh) 触觉反馈面板、其驱动方法及触觉反馈装置
WO2023024081A1 (zh) 振动面板、其制作方法、其驱动方法及振动装置
WO2023092540A1 (zh) 触觉反馈面板、其触觉反馈方法及触觉反馈装置
WO2023159440A1 (zh) 振动面板及触控显示装置
WO2023178676A1 (zh) 触觉反馈基板及触觉反馈装置
CN116643653A (zh) 一种触觉反馈面板、其触觉反馈方法及触觉反馈装置
CN116185228A (zh) 触觉反馈面板及触觉反馈装置
WO2023139928A1 (ja) 触覚発生装置、触覚発生システム及び触覚発生装置の駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000111.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18006458

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922869

Country of ref document: EP

Kind code of ref document: A1