WO2022244703A1 - 光吸収体、光吸収体付物品、及び光吸収性組成物 - Google Patents

光吸収体、光吸収体付物品、及び光吸収性組成物 Download PDF

Info

Publication number
WO2022244703A1
WO2022244703A1 PCT/JP2022/020277 JP2022020277W WO2022244703A1 WO 2022244703 A1 WO2022244703 A1 WO 2022244703A1 JP 2022020277 W JP2022020277 W JP 2022020277W WO 2022244703 A1 WO2022244703 A1 WO 2022244703A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
transmittance
light absorber
transmission spectrum
Prior art date
Application number
PCT/JP2022/020277
Other languages
English (en)
French (fr)
Inventor
雄一郎 久保
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to CN202280033504.6A priority Critical patent/CN117321460A/zh
Priority to JP2023522638A priority patent/JPWO2022244703A1/ja
Priority to KR1020237040737A priority patent/KR20240009425A/ko
Publication of WO2022244703A1 publication Critical patent/WO2022244703A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a light absorber, an article with a light absorber, and a light absorbing composition.
  • Various optical filters are placed in front of the solid-state imaging device to obtain images with good color reproducibility in imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • a solid-state imaging device has spectral sensitivity in a wide wavelength range from the ultraviolet region to the infrared region.
  • human visibility exists only in the visible light region. Therefore, in order to make the spectral sensitivity of a solid-state image pickup device in an image pickup device closer to human visibility, there is a known technique in which an optical filter that shields part of the infrared or ultraviolet light is arranged in front of the solid-state image pickup device. .
  • optical filters having a film containing a light absorbing agent. Since the transmittance characteristics of an optical filter with a film containing a light absorbing agent are not easily affected by the angle of incidence, good images with little color change can be obtained even when light is incident obliquely on the optical filter in an imaging device. Obtainable.
  • a light-absorbing optical filter that does not use a light-reflecting film can suppress the occurrence of ghosts and flares caused by multiple reflections by the light-reflecting film, so it is easy to obtain good images in backlit conditions and night scenes.
  • an optical filter having a film containing a light absorbing agent is advantageous in terms of miniaturization and thickness reduction of imaging devices.
  • Patent Document 1 describes an optical filter having a light absorbing layer containing a light absorbing agent formed by a phosphonic acid having a phenyl group or a halogenated phenyl group (phenyl-based phosphonic acid) and copper ions. It is
  • Patent Document 2 describes an optical filter having a UV-IR absorption layer capable of absorbing infrared rays and ultraviolet rays.
  • the UV-IR absorbing layer contains UV-IR absorbers formed by phosphonic acid and copper ions.
  • the UV-IR absorbing composition contains, for example, a phenyl-based phosphonic acid and a phosphonic acid having an alkyl group or a halogenated alkyl group (alkyl-based phosphonic acid) so that the optical filter satisfies predetermined optical properties. ing.
  • Patent Document 3 describes an infrared cut filter that includes an organic dye-containing layer and a copper phosphonate-containing layer.
  • Patent Document 4 describes an optical filter that includes an absorption layer, a reflection layer, and a transparent substrate and satisfies predetermined requirements in a spectral transmittance curve at an incident angle of 0°.
  • the absorbing layer contains a near-infrared absorbing dye such as a squarylium dye.
  • the optical filters described in Patent Documents 1 to 4 sufficiently shield light in the near-ultraviolet region, particularly in the region near the wavelength of 400 nm. It is hard to say that this is advantageous from the viewpoint of color reproducibility in images.
  • a reflective layer is necessary, and the reflective layer must compensate for light shielding that is not sufficient with the absorption layer. Therefore, in the optical filter described in Patent Document 4, a complicated process is required to form the reflective layer.
  • the present invention provides a light absorber that can satisfactorily shield light in the near-infrared region and also satisfactorily shield light in the near-ultraviolet region.
  • the present invention Provided is a light absorber whose transmission spectrum at an incident angle of 0° satisfies the following conditions (I), (II), (III), and (IV).
  • the average transmittance in the wavelength range of 480 nm to 580 nm is 78% or more.
  • the maximum transmittance in the wavelength range of 350 nm to 380 nm is 1% or less.
  • the maximum transmittance in the wavelength range of 800 nm to 950 nm is 7% or less.
  • Transmittance at a wavelength of 400 nm is 10% or less.
  • the present invention goods; and the light absorber formed on at least part of the surface of the article, An article with a light absorber is provided.
  • the present invention A light-absorbing composition,
  • the light absorbing composition obtained by curing the light absorbing composition has a transmission spectrum at an incident angle of 0° that satisfies the following conditions (i), (ii), (iii), and (iv):
  • a composition is provided.
  • the average transmittance in the wavelength range of 480 nm to 580 nm is 78% or more.
  • the maximum transmittance in the wavelength range of 350 nm to 380 nm is 1% or less.
  • the maximum transmittance in the wavelength range of 800 nm to 950 nm is 7% or less.
  • Transmittance at a wavelength of 400 nm is 10% or less.
  • FIG. 1A is a cross-sectional view showing an example of a light absorber according to the present invention.
  • FIG. 1B is a cross-sectional view showing an example of an article with a light absorber according to the present invention.
  • FIG. 2 is a diagram showing an example of an imaging device according to the present invention.
  • 3A is a transmission spectrum of the optical filter according to Example 1.
  • FIG. 3B is a transmission spectrum of the optical filter according to Example 1.
  • FIG. 3C is a transmission spectrum of the optical filter according to Example 1.
  • FIG. 4A is a transmission spectrum of the optical filter according to Example 2.
  • FIG. 4B is a transmission spectrum of the optical filter according to Example 2.
  • FIG. 4C is a transmission spectrum of the optical filter according to Example 2.
  • FIG. 5A is a transmission spectrum of the optical filter according to Example 3.
  • FIG. 5B is a transmission spectrum of the optical filter according to Example 3.
  • FIG. 5C is a transmission spectrum of the optical filter according to Example 3.
  • FIG. 6A is a transmission spectrum of the optical filter according to Example 4.
  • FIG. 6B is a transmission spectrum of the optical filter according to Example 4.
  • FIG. 6C is a transmission spectrum of the optical filter according to Example 4.
  • FIG. 7 is a transmission spectrum of the optical filter according to Comparative Example 1.
  • FIG. 8 is a transmission spectrum of an optical filter according to Comparative Example 2.
  • FIG. 9 is a transmission spectrum of an optical filter according to Comparative Example 3.
  • FIG. 10 is a transmission spectrum of an optical filter according to Comparative Example 4.
  • FIG. 11 is a transmission spectrum of an optical filter according to Comparative Example 5.
  • FIG. FIG. 12 is a transmission spectrum of a glass substrate.
  • FIG. 1A is a cross-sectional view showing a light absorber 10.
  • FIG. The transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the following conditions (I), (II), (III), and (IV).
  • the average transmittance value T A 0(480-580) in the wavelength range of 480 nm to 580 nm is 78% or more.
  • the maximum transmittance T M 0(350-380) in the wavelength range of 350 nm to 380 nm is 1% or less.
  • the maximum transmittance T M 0(800-950) in the wavelength range of 800 nm to 950 nm is 7% or less.
  • Transmittance T 0(400) at a wavelength of 400 nm is 10% or less.
  • the average value T A 0(480-580) is desirably 80% or more, more desirably 82% or more, and even more desirably 84% or more.
  • the visible light region or visible light region can be, for example, a wavelength range of 380 nm to 780 nm.
  • the light absorber 10 can satisfactorily shield light in the ultraviolet region.
  • the transmission characteristics of the light absorber 10 can be adjusted to characteristics similar to those of a human's relative luminosity curve (luminosity spectrum), which has no sensitivity except in the visible light region.
  • the ultraviolet region or ultraviolet range may include a wavelength range from 280 nm to a wavelength that is the lower limit of the visible light range, eg, a wavelength that does not exceed 380 nm.
  • Blocking light in the ultraviolet region also includes blocking light in a part of the wavelength range belonging to the ultraviolet region.
  • the human spectral luminous efficiency curve is a curve representing the photopic standard spectral luminous efficiency defined by the International Commission on Illumination (CIE).
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° preferably satisfies the following condition (IIa), and more preferably satisfies the following condition (IIb).
  • the maximum transmittance T M 0(350-385) in the wavelength range of 350 nm to 385 nm is 1% or less.
  • the maximum transmittance T M 0(350-390) in the wavelength range of 350 nm to 390 nm is 1% or less.
  • the light absorber 10 can satisfactorily shield light in the near-infrared region.
  • the maximum value T M 0(800-950) is preferably 5% or less, more preferably 3% or less.
  • the near-infrared region or near-infrared region generally has a wavelength range of 780 nm to 2500 nm, but here, the wavelength that is the upper limit of the visible light region, for example, the wavelength range from 780 nm to 1200 nm. can be Blocking light in the near-infrared region also includes blocking light in a partial wavelength range belonging to the near-infrared region.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° desirably further satisfies the following condition (IIIa).
  • the maximum value T M 0(800-1100) is preferably 7% or less, more preferably 5% or less.
  • the maximum transmittance T M 0(800-1100) in the wavelength range of 800 nm to 1100 nm is 10% or less.
  • the sensitivity at a wavelength of 400 nm is significantly lower in the human spectral luminosity curve. Therefore, by satisfying the condition (IV), it is easy to adjust the transmission characteristics of the light absorber 10 to characteristics similar to the human relative luminosity curve. As a result, for example, when the light absorber 10 is used in an imaging device, the color reproducibility of an image obtained by the imaging device tends to be high.
  • the transmittance of the light absorber in the region near the wavelength of 400 nm A high ⁇ can cause problems with the color reproducibility of the image obtained from the imaging device.
  • the transmittance T 0(400) is preferably 5% or less, more preferably 3% or less.
  • purple fringing can be reduced.
  • Purple fringing is a phenomenon in which a purple portion is produced at the boundary between a high luminance portion and a low luminance portion, the outline of an object, and the vicinity thereof. Magnification chromatic aberration of an optical system such as a lens provided in an imaging device is considered to be one of the causes of this phenomenon.
  • the optical filter used in the imaging device satisfies the condition (IV) or the conditions (II) and (IV)
  • part of the purple light can be blocked, and the occurrence of purple fringing or its effect can be reduced.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (V).
  • the first wavelength ⁇ 500 (UV) below corresponds to the vicinity of the lower limit of the wavelength range through which light is transmitted through the light absorber 10 .
  • the light absorber 10 can shield the light belonging to the ultraviolet region among the light that cannot be recognized by the human eye.
  • the first wavelength ⁇ 500 (UV) desirably exists in the range of 405 nm to 470 nm.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (VI).
  • the light absorber 10 can shield the light belonging to the infrared region among the light that cannot be recognized by the human eye.
  • the second wavelength ⁇ 500 (IR) below has a relative luminosity value V( ⁇ ) of 0 in the human luminosity curve, where the relative luminosity value V(555) at a wavelength of 555 nm is 1. 0.5, and the transmission spectrum of the light absorber 10 is likely to be adjusted to characteristics similar to the relative luminosity curve.
  • the second wavelength ⁇ 500 is preferably in the range of 690 nm to 750 nm, more preferably in the range of 700 nm to 740 nm.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (VII).
  • VII the following condition
  • the maximum value T M 0(800-1200) is preferably 10% or less, more preferably 3% or less.
  • the maximum transmittance T M 0(800-1200) in the wavelength range of 800 nm to 1200 nm is 15% or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following conditions (VIII) and (IX).
  • the human spectral luminosity curve shows the highest sensitivity V( ⁇ ) at a wavelength of 550 nm. Therefore, it is advantageous for the light absorber 10 to have a high transmittance at a wavelength of 550 nm because it is highly similar to the human visibility curve.
  • the transmission characteristics of the light absorber 10 can be adjusted to characteristics similar to the qualitative characteristics of the human relative luminous efficiency curve.
  • VIII The ratio T 0(550) /T 0(400) of the transmittance T 0(550) at a wavelength of 550 nm to the transmittance T 0(400) at a wavelength of 400 nm is 8 or more.
  • IX The ratio T 0(550) /T 0(800) of the transmittance T 0(550) at a wavelength of 550 nm to the transmittance T 0(800) at a wavelength of 800 nm is 8 or more.
  • the ratio T 0(550) /T 0(400) is preferably 12 or more, more preferably 16 or more, even more preferably 24 or more, and particularly preferably 32 or more.
  • the ratio T 0(550) /T 0(800) is preferably 12 or more, more preferably 16 or more, even more preferably 24 or more, and most preferably 32 or more.
  • the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (X).
  • the transmittance of light having a wavelength of around 680 nm is easily adjusted to a desired level.
  • the ratio T 0(680) /T 0(800) of the transmittance T 0(680) at a wavelength of 680 nm to the transmittance T 0(800) at a wavelength of 800 nm is 8 or more.
  • the camera mainly acquires the external situation as information such as a captured image, and the acquired information supports the operation of the driver, the operator, or the control system for autopilot.
  • the camera from the viewpoint of improving the accuracy of recognizing the external environment, it is advantageous for the camera to have an optical filter that has high transmittance in the visible light range, especially the red range, and that can effectively shield infrared rays.
  • a high transmittance in the red band of an optical filter is important for accurately recognizing red lights, traffic signs, and surrounding moving objects.
  • the red band here refers to the wavelength range of 580 to 780 nm.
  • traffic signals, road signs, and the like the color of signs related to danger and safety may be represented in red.
  • traffic signs road signs
  • traffic signs that indicate regulatory signs such as prohibition of vehicle entry, stop, slow down, etc. correspond to them.
  • the red color displayed on regulatory signs has a lower wavelength limit of, for example, 580 to 620 nm and an upper wavelength limit of about 780 nm.
  • the transmittance in the wavelength range of 580 to 780 nm especially the transmittance in the wavelength range of 620 to 760 nm, especially the wavelength range of 620 to 750 nm It is advantageous that the transmittance at is above a certain level.
  • the ability of the optical filter to shield infrared rays well means that, for example, a camera cannot obtain a good photographed image due to the influence of sensing using infrared rays in a vehicle, mobile device, or transport device traveling in the surrounding area. important to curb the problem.
  • a sensing system such as a light detection and ranging (Lidar) system using a laser can be considered as a system equipped with such a camera. In this case, transmission of light corresponding to a wavelength of 800 nm may not be desired. It is advantageous from the viewpoint of application to a sensing system using a laser that the light absorber 10 satisfies the above condition (X).
  • T 0(680) /T 0(800) is preferably 12 or more, more preferably 16 or more, even more preferably 24 or more, and particularly preferably 32 or more.
  • the reflectance R 0 (800-1000) at wavelengths of 800 nm to 1000 nm is 20% or less.
  • the reflectance R 0(800-1000) is desirably 10% or less.
  • the reflectance R 0(800-1200) at wavelengths from 800 nm to 1200 nm is 20% or less.
  • the reflectance R 0 (800-1200) is more desirably 10% or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 35° has, for example, a third wavelength ⁇ 50 35 (UV) with a transmittance of 50% in the wavelength range of 350 nm to 480 nm.
  • is, for example, 5 nm or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 35° has, for example, a fourth wavelength ⁇ 50 35 (IR) with a transmittance of 50% in the wavelength range of 600 nm to 800 nm.
  • between the fourth wavelength ⁇ 5035(IR) and the second wavelength ⁇ 500 ( IR) is, for example, 10 nm or less .
  • is 5 nm or less
  • ⁇ 50 35 (IR) ⁇ 50 0 (IR) is 10 nm or less
  • the incident angle dependency of the transmission spectrum of the light absorber 10 tends to be small.
  • the incident angle dependence of the transmission spectrum of the optical filter is large depending on the incident angle of the light incident on the light reflecting film. .
  • the transmission spectrum of the optical filter as a whole shifts to the short wavelength side depending on the angle of incidence on the optical filter.
  • This transmission spectrum shift affects the color of light that passes through the optical filter.
  • a difference in color appears between the central portion of the image formed by the contribution of light rays with small incident angles and the peripheral portion of the image formed by the contribution of light rays with large incident angles.
  • Color unevenness can be recognized in For example, the peripheral portion of the image becomes slightly bluish.
  • the incident angle dependence of the transmission spectrum of the light absorber 10 is small, it is easy to suppress color unevenness that appears when a digital image obtained by an imaging device or the like is visualized.
  • is preferably 4 nm or less, more preferably 3 nm or less.
  • is preferably 8 nm or less, more preferably 6 nm or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 45° has, for example, a wavelength ⁇ 50 45 (UV) at which the transmittance is 50% in the wavelength range of 350 nm to 480 nm.
  • the transmission spectrum of the light absorber 10 at an incident angle of 45° has, for example, a wavelength ⁇ 50 45 (IR) at which the transmittance is 50% in the wavelength range of 600 nm to 800 nm.
  • is, for example, 15 nm or less, preferably 13 nm or less. and more desirably 11 nm or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 55° has, for example, a wavelength ⁇ 50 55 (UV) at which the transmittance is 50% in the wavelength range of 350 nm to 480 nm.
  • is, for example, 15 nm or less, preferably 12 nm or less. and more preferably 9 nm or less.
  • the transmission spectrum of the light absorber 10 at an incident angle of 55° has, for example, a wavelength ⁇ 50 55 (IR) at which the transmittance is 50% in the wavelength range of 600 nm to 800 nm.
  • is, for example, 20 nm or less, preferably 18 nm or less. and more preferably 16 nm or less.
  • the components contained in the light absorber 10 are not limited to specific components as long as the above conditions (I), (II), (III), and (IV) are satisfied.
  • the light absorber 10 contains, for example, a copper component, at least one metal component other than copper, and phosphorus.
  • the light absorber 10 is obtained, for example, by curing a given light absorbing composition.
  • Components contained in the light absorbing composition are not limited to specific components as long as the light absorber 10 satisfies the above conditions (I), (II), (III) and (IV).
  • the light-absorbing composition contains, for example, a light-absorbing compound, an ultraviolet absorber, and at least one of an alkoxide containing a metal component other than copper and a hydrolyzate of an alkoxide containing a metal component other than copper.
  • a light-absorbing compound is formed by phosphonic acid and a copper component.
  • a UV absorber absorbs at least a portion of UV light.
  • the phosphonic acid in the light-absorbing compound is suitable for a specific phosphonic acid as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies (I), (II), (III), and (IV). Not limited.
  • the phosphonic acid is represented, for example, by the following formula (a).
  • R 1 is an alkyl group or a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
  • the transmission band of the light absorber 10 tends to extend to a wavelength of about 700 nm, and the light absorber 10 tends to have desired transmittance characteristics.
  • Phosphonic acids are, for example, methylphosphonic acid, ethylphosphonic acid, normal (n-)propylphosphonic acid, isopropylphosphonic acid, normal (n-)butylphosphonic acid, isobutylphosphonic acid, sec-butylphosphonic acid, tert-butylphosphonic acid , or bromomethylphosphonic acid.
  • the source of the copper component in the light-absorbing compound is not limited to any particular substance.
  • Sources of copper components are, for example, copper salts.
  • Copper salts may be anhydrous or hydrates of copper chloride, copper formate, copper stearate, copper benzoate, copper pyrophosphate, copper naphthenate, and copper citrate.
  • copper acetate monohydrate is represented as Cu( CH3COO ) 2.H2O , where 1 mole of copper acetate monohydrate provides 1 mole of copper ions.
  • the ultraviolet absorber is not limited to a specific compound as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I), (II), (III), and (IV).
  • a UV absorber is, for example, a compound having a hydroxy group and a carbonyl group in the molecule.
  • UV absorber Advantageous conditions for the UV absorber are that the absorption range and transmission range of light are appropriate, that it is photochemically stable, that the photosensitizing action is low enough to have no effect within the range of use, and that it is thermochemically stable. conditions such as being stable to From this point of view, it is conceivable to utilize a hydrogen transfer reaction (intramolecular hydrogen abstraction reaction) of a hydroxy group in a molecule due to photoexcitation as a mechanism of light absorption by an ultraviolet absorber. UV absorbers that exhibit such mechanisms include, for example, compounds such as hydroxybenzophenones, salicylic acid, hydroxyphenylbenzotriazoles, hydroxyphenyltriazines, and substituted acrylonitriles.
  • a light absorber obtained by curing a light absorbing composition containing an ultraviolet absorber having a hydroxy group and a carbonyl group in the molecule and a metal component other than copper light at a wavelength of 300 to 500 nm It was found that a phenomenon occurs in which the absorption band shifts to the longer wavelength side. Therefore, such a light absorber is advantageous in effectively and appropriately absorbing light having a wavelength of around 400 nm.
  • the light absorption band shifts to the long wavelength side for example, the phenomenon that the maximum absorption wavelength shifts to the long wavelength side within the wavelength range of 300 nm to 500 nm of the transmission spectrum, or the wavelength at which the transmittance is 50% (UV A phenomenon in which the cut-off wavelength) shifts to the longer wavelength side may occur.
  • the light absorber which is a cured product of the light-absorbing composition
  • the absorption characteristics inherent in the ultraviolet absorber can be adjusted so as to effectively absorb light in the short wavelength region. .
  • such a light absorber 10 tends to have desired transmittance characteristics.
  • the arrangement of the hydroxy group and the carbonyl group in the ultraviolet absorber is not limited to a specific arrangement.
  • the hydroxy group and the carbonyl group are desirably separated by 1 to 3 atoms. It is believed that this makes it easier for hydrogen to move between the hydroxy group and the carbonyl group in the ultraviolet absorber. For this reason, a phenomenon in which the light absorption band at wavelengths of 300 to 500 nm shifts to the long wavelength side is likely to occur effectively. As a result, the light absorber 10 more reliably tends to effectively and appropriately absorb light having a wavelength of around 400 nm.
  • the UV absorber is desirably a compound that does not easily aggregate when mixed with the metal component.
  • the ultraviolet absorber desirably contains a benzophenone compound represented by the following formula (A1).
  • the transmittance T 0(400) at a wavelength of 400 nm tends to be effectively lowered.
  • R 11 , R 12 , R 21 and R 22 are a hydroxy group.
  • R 11 , R 12 , R 21 , or R 22 is a functional group other than a hydroxy group, multiple R 11 , multiple R 12 , multiple R 21 , or multiple R 22 are It may be present and at least one of R 11 , R 12 , R 21 and R 22 may be absent.
  • R 11 , R 12 , R 21 or R 22 is a functional group other than a hydroxy group
  • the functional group is, for example, a carboxyl group, an aldehyde group, a halogen atom, an alkyl group having 1 to 12 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are replaced by halogen atoms, an alkoxy group having 1 to 12 carbon atoms, or one or more hydrogen atoms replaced by halogen atoms is an alkoxy group having 1 to 12 carbon atoms.
  • the ultraviolet absorber more desirably contains a benzophenone compound represented by the following formula (A2).
  • the light absorber 10 more reliably tends to effectively absorb light in the short wavelength range around 400 nm.
  • R 31 is a hydrogen atom, a hydroxy group, a carboxyl group, an aldehyde group, a halogen atom, a halogen atom-containing group, an alkyl group having 1 to 12 carbon atoms, or 1 to 12 carbon atoms. is an alkoxy group with atoms.
  • R 41 and R 42 are a hydroxy group, a carboxyl group, an aldehyde group, a group having a halogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. or an alkoxy group having 1 to 12 carbon atoms, and R 41 and R 42 may be absent.
  • a plurality of R 41 may exist, and a plurality of R 42 may exist.
  • the group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
  • the benzophenone-based compound represented by formula (A1) or formula (A2) is not limited to a specific compound.
  • the benzophenone compounds include, for example, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy- 4-methoxy-4'-chlorobenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxy-2'- the group consisting of carboxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-n-octoxybenzophenone, 2-hydroxy-5-chlorobenzophenone, and 2,4-dibenzoylresorcin; is at least one selected from
  • the ultraviolet absorber may contain a salicylic acid-based compound represented by the following formula (B).
  • the light absorber 10 tends to more reliably and effectively absorb light in the short wavelength range around 400 nm.
  • R 51 is a hydroxy group, a carboxy group, a group containing a halogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 1 to 12 It can also be an alkoxy group having 1 carbon atom. In formula (B), multiple R 51 may be present, or R 51 may be absent.
  • R 52 is a hydrogen atom, an aryl group, or a halogenated aryl group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the group having a halogen atom may be a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated aryl group in which at least one hydrogen atom in the aryl group is substituted with a halogen atom.
  • the group having a halogen atom may be a halogenated alkoxy group in which at least one hydrogen atom in the alkoxy group is substituted with a halogen atom.
  • the salicylic acid compound represented by formula (B) is not limited to a specific compound.
  • the salicylic acid-based compound represented by formula (B) includes, for example, at least one selected from the group consisting of phenyl salicylate, 4-butylphenyl salicylate, and octylphenyl salicylate.
  • the light-absorbing composition contains, for example, an alkoxide compound that is at least one of an alkoxide having a metal component other than copper and a hydrolyzate of an alkoxide having a metal component other than copper.
  • Metal components other than copper in the alkoxide compound are not limited to specific metal components.
  • the metal component typically does not aggregate in the light absorbing composition and light absorber 10 and is a thermally and chemically stable component. Additionally, the metal component is typically a component capable of interacting with the UV absorbers described above.
  • Metal components include, for example, Li, Na, Mg, Ca, Sr, Ba, Ge, Sn, Pb, Al, Ga, In, Tl, Zn, Cd, Cu, Ag, Au, Ni, Pd, Pt, Co, At least one selected from the group consisting of Rh, Ir, Fe, Mn, Cr, Mo, W, V, Nb, Ta, Ti, and Zr. In this case, the metal component tends to interact with the UV absorber.
  • the metal component desirably includes at least one selected from the group consisting of Al, Ti, Zr, Zn, Sn, and Fe.
  • the first wavelength ⁇ 500 (UV) in the light absorber 10 is desirably the fifth wavelength ⁇ 50 greater than 0 ( UV)R, the absolute value of the difference between the fifth wavelength ⁇ 500 (UV)R and the first wavelength ⁇ 500 (UV)
  • the fifth wavelength ⁇ 500 (UV)R is the wavelength at which the transmittance is 50% in the wavelength range of 350 nm to 480 nm of the transmission spectrum of the reference light absorber at an incident angle of 0°.
  • the reference light absorber is obtained by curing a composition containing the ultraviolet absorber contained in the light absorbing compound and not containing the alkoxide compound.
  • the light absorber 10 and the light absorbing composition further contain, for example, a phosphate ester.
  • the function of the phosphate ester facilitates appropriate dispersion of the light absorbing compound in the light absorber 10 .
  • the phosphate ester may function as a dispersing agent for the light-absorbing compound, and a portion thereof may react with the metal component to form a compound.
  • the phosphate ester may be coordinated to or reacted with the light absorbing compound.
  • the phosphate ester is not limited to a specific phosphate ester.
  • Phosphate esters for example, have polyoxyalkyl groups. Examples of such phosphates include Plysurf A208N: polyoxyethylene alkyl (C12, C13) ether phosphate, Plysurf A208F: polyoxyethylene alkyl (C8) ether phosphate, and Plysurf A208B: polyoxyethylene.
  • NIKKOL DDP-2 polyoxyethylene alkyl ether phosphate
  • NIKKOL DDP-4 polyoxyethylene alkyl ether phosphate
  • NIKKOL DDP-6 polyoxyethylene alkyl ether phosphate is mentioned. All of these are products manufactured by Nikko Chemicals.
  • the light absorber 10 and the light absorbing composition further contain resin, for example.
  • the resin is not limited to a specific resin as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I), (II), (III), and (IV).
  • resins are cyclic polyolefin-based resins, epoxy-based resins, polyimide-based resins, modified acrylic resins, silicone resins, and polyvinyl-based resins such as PVB.
  • the resin can be a cured product of a curable resin that can be cured by energy irradiation such as heat or light.
  • the content of each component in the light absorber 10 and the light absorbing composition is such that the transmission spectrum of the light absorber 10 at an incident angle of 0° is (I), (II), (III), and (IV). is not limited to a specific value as long as it satisfies
  • the ratio of the content of the ultraviolet absorber to the content of the copper component is, on a mass basis, for example 0.01 to 1, preferably 0.01 to 0.5. and more preferably 0.01 to 0.1.
  • the ratio of the content of the ultraviolet absorber to the content of the phosphorus component is, for example, 0.02 to 2, preferably 0.02 to 1, on a mass basis. , more preferably 0.02 to 0.2.
  • the ratio of the content of the copper component to the content of the phosphorus component is, for example, 1 to 3, preferably 1.5 to 2, on a mass basis.
  • the ratio of the content of the copper component to the content of the metal components other than the copper component is, on a mass basis, for example, 1 ⁇ 10 2 to 8 ⁇ 10 2 , preferably 2 ⁇ 10 2 to 6 ⁇ 10 2 .
  • the ratio of the content of the phosphorus component to the content of the metal components other than the copper component is, on a mass basis, for example, 1 ⁇ 10 2 to 4 ⁇ 10 2 , preferably 1.5 ⁇ 10 2 to 3 ⁇ 10 2 .
  • the ratio of the content of phosphonic acid to the content of the phosphoric acid ester compound is, for example, 0.5 to 2, preferably 0.8 to 1.0 by mass. 3.
  • the ratio of the content of phosphonic acid to the content of the phosphoric acid ester compound is, for example, 1 to 10, preferably 3 to 6, based on the amount of substance.
  • the ratio of the phosphonic acid content to the copper component content is, for example, 0.2 to 3, preferably 0.5 to 1.5, based on the amount of material. is.
  • the ratio of the content of phosphonic acid to the content of the ultraviolet absorber is, on a mass basis, for example 1 to 300, preferably 10 to 100, more preferably 20-70.
  • the light absorber 10 is, for example, film-like. As used herein, "film” is synonymous with coating or layer. On the other hand, the light absorber 10 is not limited to a film shape.
  • the light absorber 10 can function, for example, as an optical filter 1a.
  • the optical filter 1a is composed of, for example, a light absorber 10 alone.
  • a method for producing the light absorber 10 is not limited to a specific method.
  • the light absorber 10 can be produced, for example, by coating a light-absorbing composition on a predetermined base material to form a coating film, and curing the coating film.
  • the produced light absorber 10 is peeled off from the substrate.
  • the material of the substrate may be glass, resin, or metal.
  • the surface of the substrate may be subjected to surface treatment such as coating using a fluorine-containing compound.
  • the light absorber 10 may be produced by methods such as casting, compression molding, vacuum molding, press molding, injection molding, blow molding, and extrusion molding.
  • An article with a light absorber can also be provided using the light absorber 10 .
  • An article with a light absorber includes an article and a light absorber 10, and the light absorber 10 is formed on at least part of the surface of the article.
  • an optical filter 1b shown in FIG. 1B is given as an example of an article with a light absorber.
  • the optical filter 1b includes a light absorber 10 and a transparent substrate 20. As shown in FIG.
  • the light absorber 10 is formed on the transparent substrate 20 and formed on at least part of the surface of the transparent substrate 20 .
  • the optical filter 1b can be produced, for example, by coating a light-absorbing composition on the transparent substrate 20 to form a coating film and curing the coating film.
  • the transparent base material 20 is not limited to a specific base material.
  • the transparent substrate 20 may contain glass, resin, or plastic.
  • the glass may be a light absorbing glass such as a copper containing glass.
  • the transparent substrate 20 may be light absorbing films and sheets containing light absorbing compounds.
  • the transparent substrate 20 may be a plate-like substrate having planes parallel to each other as main surfaces, or may be a substrate having a curved surface such as a lens, and may have an uneven microstructure on its surface or inside. It may be a substrate having An example of such a substrate is a diffraction grating.
  • the type of transparent base material 20 is not limited to a specific type.
  • the transparent substrate 20 may have absorption in the infrared region.
  • the transparent substrate 20 may have an average spectral transmittance of 90% or more at wavelengths of 350 nm to 900 nm, for example.
  • the transparent substrate 20 may be, for example, transparent glass made of silicate glass such as soda lime glass and borosilicate glass, or colored components such as Cu and Co. It can be phosphate glass and fluorophosphate glass containing. Phosphate glass and fluorophosphate glass containing coloring components are, for example, infrared-absorbing glasses, and themselves have light-absorbing properties.
  • the light absorber 10 is used with a transparent substrate 20 of infrared absorbing glass, the light absorption and transmission spectra of both can be adjusted to produce an optical filter with desired optical properties, and the design of the optical filter high degree of freedom.
  • the resin is, for example, a cycloolefin resin such as a norbornene resin, a polyarylate resin, an acrylic resin, a modified acrylic resin, a polyimide resin, a polyetherimide resin, or a polysulfone resin. , polyether sulfone resin, polycarbonate resin, or silicone resin.
  • the thickness of the light absorber 10 is not limited to a specific value. It is advantageous for the thickness of the light absorber 10 to be small in order to meet the demand for a low-profile device, such as an imaging device, provided with the light absorber. Therefore, the thickness of the light absorber 10 is, for example, 200 ⁇ m or less, preferably 180 ⁇ m or less, and more preferably 150 ⁇ m or less. For example, in order to reduce the thickness of the light absorber while the light absorber exhibits the desired light absorbency, it is possible to increase the concentration of the light absorbing compound and the ultraviolet absorber contained in the light absorbing composition. Conceivable. In this case, the desired dispersibility of each compound may not be maintained. Therefore, the thickness of the light absorber 10 is, for example, 50 ⁇ m or more, preferably 60 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • the transparent base material 20 When the minimum transmittance of the transparent base material 20 in the wavelength range of 450 to 700 nm is less than 80%, the transparent base material 20 has a function of shielding light, and cooperates with the light absorber 10 to transmit light. It is understood that it contributes to shielding.
  • the thickness of the light absorber 10 is, for example, 200 ⁇ m or less, preferably 180 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the thickness of the light absorber 10 is, for example, 50 ⁇ m or more, preferably 60 ⁇ m or more, and more preferably 70 ⁇ m or more.
  • An example of a transparent substrate 20 having a minimum transmittance of less than 80% in the wavelength range of 450-700 nm is a substrate comprising infrared absorbing glass.
  • the light absorber 10 may be formed in contact with the imaging element and optical parts.
  • the light absorber 10 may be configured by applying the above light absorbing composition to an imaging device or an optical component and curing the light absorbing composition.
  • an imaging device with a light absorber or an optical component with a light absorber can be produced.
  • Optical components are, for example, lenses or cover glasses.
  • Each of the optical filters 1a and 1b may be modified to further include other functional films such as an infrared reflective film and an antireflection film.
  • Such functional films can be formed on the light absorber 10 or the transparent substrate 20 .
  • the antireflection coating may be constructed as a layer of a low refractive index material such as MgF2 and SiO2 , or a stack of layers of such a low refractive index material and a layer of a high refractive index material such as TiO2 . , or may be configured as a dielectric multilayer film.
  • Such an antireflection film can be formed by a method involving physical reaction such as vacuum deposition and sputtering, or a method involving chemical reaction such as CVD method and sol-gel method.
  • the optical filter may be configured, for example, in a state in which the light absorber 10 is arranged between two sheets of plate-shaped glass. This improves the rigidity and mechanical strength of the optical filter. In addition, the main surface of the optical filter becomes hard, which is advantageous from the viewpoint of scratch prevention and the like. Such an advantage is particularly important when a relatively flexible resin is used as the binder or matrix in the light absorber 10 .
  • a device equipped with the light absorber 10 can be provided.
  • the use of such devices is not limited to any particular application.
  • Such devices are, for example, on-board cameras and on-board sensors.
  • the light absorber 10 has a predetermined ultraviolet absorption property, it is possible to protect the imaging element and the sensor element from ultraviolet rays.
  • the light absorber 10 has a high transmittance in the vicinity of a wavelength of 680 nm, and the light absorber 10 can be used in sensing systems such as Lidar systems using infrared or red lasers.
  • the light absorber 10 has a high transmittance of light belonging to red, and the ability to recognize objects such as red lights and road signs tends to be enhanced in a device provided with the light absorber 10 .
  • the light absorber 10 blocks light in a specific wavelength region by absorption, ghosts and flares can be suppressed in an apparatus provided with the light absorber 10 .
  • an imaging device 100 having a light absorber 10 can be provided.
  • the imaging device 100 further includes, for example, a lens system 40 and an imaging device 50 .
  • the light absorber 10 is arranged, for example, between the lens system 40 and the imaging device 50 .
  • An application target of the imaging device 100 is not limited to a specific product.
  • the imaging device 100 is, for example, a camera module mounted on a mobile information terminal such as a smartphone, a device incorporated in a vehicle-mounted sensing module, and a sensing module in an unmanned aircraft such as a drone or an unmanned watercraft (USV). It is applicable as a device.
  • the light absorber 10 may be applied to ambient light sensors.
  • the transmittance at an incident angle of i° and a wavelength ⁇ nm is expressed as "T i ( ⁇ ) "
  • the maximum value of the spectral transmittance at an incident angle of i° and a wavelength of ⁇ 1 nm to ⁇ 2 nm is expressed as “T M i( ⁇ 1 ⁇ 2) ”
  • the average spectral transmittance at an incident angle of i° and wavelengths ⁇ 1 nm to ⁇ 2 nm is represented as “T A i( ⁇ 1 ⁇ 2) ”.
  • the wavelength at which the transmittance is 50% in the wavelength range of 350 nm to 480 nm is expressed as " ⁇ 50 i (UV) "
  • the transmittance in the wavelength range of 600 nm to 800 nm is expressed as " ⁇ 50 i(IR) ".
  • Example 1 4.500 g of copper acetate monohydrate and 240 g of tetrahydrofuran (THF) were mixed and stirred for 3 hours to obtain a copper acetate solution.
  • Plysurf A208N which is a phosphate ester compound manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • A1 solution 2.572 g of Plysurf A208N, which is a phosphate ester compound manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • 2.886 g of n-butylphosphonic acid and 40 g of THF were mixed and stirred for 30 minutes to obtain liquid B1.
  • B1 solution was added to A1 solution while stirring A1 solution, and the mixture was stirred at room temperature for 1 minute.
  • liquid C1 a liquid composition D1 containing a copper component, phosphonic acid, and a phosphoric acid ester compound was obtained.
  • liquid composition D1 fine particles of a light-absorbing compound containing a copper component and phosphonic acid were dispersed without agglomeration.
  • Uvinul 3049 2 g of the BASF UV absorber Uvinul 3049 was mixed with 98 g of toluene, and the mixture was stirred for 30 minutes to obtain a liquid composition E49 containing the UV absorber.
  • Uvinul 3049 contained 2,2'-dihydroxy-4,4'-dimethoxybenzophenone represented by the following formula (b-1).
  • Light absorbing composition F1 contained 0.06 g of UV absorber. Tables 1 and 2 show each component contained in the light-absorbing composition F1, the amount of each component, the mass ratio between the components, and the substance amount ratio between the components.
  • the average molecular weight of PLYSURF A208N used as the phosphate was determined to be 632 g/mol.
  • the glass substrate was allowed to stand at room temperature for 24 hours to dry the coating film of the fluorinating agent, and then the glass surface was lightly wiped with a dust-free cloth containing Novec 7100 to remove excess fluorinating agent.
  • a fluorine-treated substrate was produced.
  • a coating film was formed by applying the light-absorbing composition F1 according to Example 1 to an area of 80 mm ⁇ 80 mm in the center of one main surface of the fluorine-treated substrate using a dispenser. After the resulting coating film was sufficiently dried at room temperature, it was placed in an oven to evaporate the solvent while gently raising the temperature in the range of room temperature to 45°C, followed by drying at 85°C for 6 hours. Heat treatment was performed to completely volatilize the solvent and cure the film. After that, the coating film was peeled off from the fluorine-treated substrate to obtain an optical filter according to Example 1 comprising a light absorbing film.
  • the transmission spectra of the optical filter according to Example 1 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 3A, 3B, and 3C, respectively.
  • Concerning the components contained in the light-absorbing composition F1 and also contained in the light-absorbing film without disappearing, the light-absorbing film includes each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material mass ratios between components.
  • Example 2 The copper component, phosphonic acid , and a phosphate ester compound to obtain a liquid composition D2.
  • the fine particles of the light-absorbing compound containing the copper component and the phosphonic acid were dispersed without aggregation.
  • Light absorbing composition F2 contained 0.12 g of UV absorber. Tables 1 and 2 show the components contained in the light-absorbing composition F2, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • An optical filter according to Example 2 comprising a light-absorbing film was produced in the same manner as in Example 1, except that the light-absorbing composition F2 was used instead of the light-absorbing composition F1.
  • the transmission spectra of the optical filter according to Example 2 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 4A, 4B, and 4C, respectively.
  • the light-absorbing film is each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material mass ratios between components.
  • Example 3 The copper component, phosphonic acid , and a phosphate ester compound to obtain a liquid composition D3.
  • the fine particles of the light-absorbing compound containing the copper component and the phosphonic acid were dispersed without aggregation.
  • a UV absorber Uvinul 3050 manufactured by BASF was mixed in a quantity of 5 g with 95 g of ethanol, and the mixture was stirred for 30 minutes to obtain a liquid composition E50 containing a UV absorber.
  • Uvinul 3050 contained 2,2',4,4'-tetrahydroxybenzophenone represented by the following formula (b-2).
  • Liquid composition D3, 0.9 g of liquid composition E50, 8.8 g of Shin-Etsu Chemical Co., Ltd. silicone resin KR-300, and 0.09 g of Shin-Etsu Chemical Co., Ltd.'s aluminum alkoxide compound CAT-AC. were mixed and stirred for 30 minutes to obtain a light-absorbing composition F3 according to Example 3.
  • Light absorbing composition F3 contained 0.045 g of UV absorber. Tables 1 and 2 show the components contained in the light-absorbing composition F3, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • An optical filter according to Example 3 comprising a light-absorbing film was produced in the same manner as in Example 1, except that the light-absorbing composition F3 was used instead of the light-absorbing composition F1.
  • the transmission spectra of the optical filter according to Example 3 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 5A, 5B, and 5C, respectively.
  • the light-absorbing film is each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material mass ratios between components.
  • Example 4 The copper component, phosphonic acid , and a phosphate ester compound to obtain a liquid composition D4.
  • the fine particles of the light-absorbing compound containing the copper component and the phosphonic acid were dispersed without aggregation.
  • Liquid composition D4 Liquid composition D4, 1.8 g of liquid composition E50, 8.8 g of Shin-Etsu Chemical Co., Ltd. silicone resin KR-300, and 0.09 g of Shin-Etsu Chemical Co., Ltd.'s aluminum alkoxide compound CAT-AC. were mixed and stirred for 30 minutes to obtain a light-absorbing composition F4 according to Example 4.
  • Light absorbing composition F4 contained 0.09 g of UV absorber.
  • Tables 1 and 2 show the components contained in the light-absorbing composition F4, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • An optical filter according to Example 4 comprising a light-absorbing film was produced in the same manner as in Example 1, except that the light-absorbing composition F4 was used instead of the light-absorbing composition F1.
  • the transmission spectra of the optical filter according to Example 4 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 6A, 6B, and 6C, respectively.
  • the light-absorbing film is, according to Tables 1 and 2, each component, the amount of each component, and the mass of each component ratios, and material mass ratios between components.
  • a light-absorbing composition F5 according to Comparative Example 1 was prepared in the same manner as in Example 1, except that the liquid composition E49 was not used.
  • Tables 1 and 2 show the components contained in the light-absorbing composition F5, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • FIG. 7 shows the transmission spectrum of the optical filter according to Comparative Example 1 at an incident angle of 0°.
  • the light-absorbing film is based on each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material amount ratios between components.
  • Tinuvin 326 was mixed with 95 g of toluene, and the mixture was stirred for 30 minutes to obtain a liquid composition E326 containing a UV absorber.
  • Tinuvin326 contained 2-[5-Chloro-(2H)-Benzotriazol-2-yl]-4-methyl-6-(tert-butyl)phenol represented by the following formula (b-3).
  • Liquid composition D1 2.0 g of liquid composition E326, 8.8 g of Shin-Etsu Chemical Co., Ltd. silicone resin KR-300, and 0.09 g of Shin-Etsu Chemical Co., Ltd.'s aluminum alkoxide compound CAT-AC. were mixed and stirred for 30 minutes to obtain a light-absorbing composition F6 according to Comparative Example 2.
  • Light absorbing composition F6 contained 0.1 g of UV absorber. Tables 1 and 2 show the components contained in the light-absorbing composition F6, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • FIG. 8 shows the transmission spectra of the optical filter according to Comparative Example 2 at incident angles of 0° and 55°.
  • the light-absorbing film is based on each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material amount ratios between components.
  • Tinuvin 234 was mixed with 95 g of toluene, and the mixture was stirred for 30 minutes to obtain a liquid composition E234 containing a UV absorber.
  • Tinuvin234 contained Phenol,2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl) represented by the following formula (b-4).
  • Liquid composition D1, 3.6 g of liquid composition E234, 8.8 g of Shin-Etsu Chemical Co., Ltd. silicone resin KR-300, and 0.09 g of Shin-Etsu Chemical Co., Ltd.'s aluminum alkoxide compound CAT-AC. were mixed and stirred for 30 minutes to obtain a light-absorbing composition F7 according to Comparative Example 3.
  • Light absorbing composition F7 contained 0.18 g of UV absorber. Tables 1 and 2 show the components contained in the light-absorbing composition F7, the amounts of the components, the mass ratios of the components, and the substance quantity ratios of the components.
  • An optical filter according to Comparative Example 3 comprising a light-absorbing film was produced in the same manner as in Example 1, except that the light-absorbing composition F7 was used instead of the light-absorbing composition F1.
  • FIG. 9 shows the transmission spectra of the optical filter according to Comparative Example 3 at incident angles of 0° and 55°.
  • the light-absorbing film is based on each component, the amount of each component, and the mass of each component according to Tables 1 and 2. ratios, and material amount ratios between components.
  • a dispenser was used in a 40 mm x 40 mm area at the center of one main surface of a transparent glass substrate made of borosilicate glass (manufactured by SCHOTT, product name: D263 Teco) having dimensions of 76 mm x 76 mm x 0.21 mm. Then, a liquid composition F8 containing an ultraviolet absorber was applied to form a coating film. After the coating film is sufficiently dried at room temperature, it is placed in an oven (heating furnace) and the solvent is evaporated while slowly raising the temperature in the range of room temperature to 45 ° C., followed by drying at 85 ° C. Heating was performed for a period of time to completely volatilize the contained solvent and cure the coating film.
  • SCHOTT borosilicate glass
  • FIG. 10 shows the transmission spectrum of the optical filter according to Comparative Example 4 at an incident angle of 0°.
  • a light absorbing film containing an ultraviolet absorber was formed on a transparent glass substrate in the same manner as in Comparative Example 4, except that Liquid Composition F9 was used instead of Liquid Composition F8, and an optical filter according to Comparative Example 5 was produced. Obtained.
  • This optical filter was a filter in which a transparent glass substrate and a light absorption film were integrated.
  • FIG. 11 shows the transmission spectrum of the optical filter according to Comparative Example 5 at an incident angle of 0°.
  • the optical filters according to each example had desired transmittance characteristics.
  • the optical filters according to Comparative Examples 1 to 3 do not satisfy the above conditions (II) and (IV), and have the desired transmittance characteristics. It was hard to say.
  • FIG. 12 shows the transmission spectrum at an incident angle of 0° of the transparent glass substrate used for producing the optical filter according to Comparative Example 4.
  • the transmittance is as high as 90% or more in the wavelength range of 350 nm or more, and the loss from 100% is due to Fresnel reflection on the surface of the transparent glass substrate. It is understood that there is virtually no light absorption in this wavelength range. Therefore, the light absorption in the transparent glass substrate can be ignored in the examination of the transmission spectrum shown in FIG.
  • the transmittance T 0(400) at a wavelength of 400 nm was 40.78%. It is presumed that this reflects the original absorption characteristics of Uvinul 3049 used as an ultraviolet absorber in the light absorbing film.
  • the light absorbing film of the optical filter according to Comparative Example 4 does not contain a compound containing a metal component other than a copper component, unlike the light absorbing film according to Examples.
  • the transition between the shielding range, which is the wavelength range corresponding to the region where the transmittance is close to 0%, and the transmission region, which is the wavelength range corresponding to the region where the transmittance is 70% or more No shift of the region toward longer wavelengths is observed, and ⁇ 500 (UV) is not shifted toward longer wavelengths either. Therefore, it is presumed that the transmittance at a wavelength of 400 nm in the transmission spectrum of the light absorption film according to Comparative Example 4 is relatively high.
  • the transmittance T 0(400) at a wavelength of 400 nm was 57.15%. It is presumed that this reflects the original absorption characteristics of Uvinul 3050 used as an ultraviolet absorber in the light absorbing film.
  • the light absorbing film of the optical filter according to Comparative Example 5 does not contain a compound containing a metal component other than a copper component, unlike the light absorbing film according to Examples.
  • the transition between the shielding range, which is the wavelength range corresponding to the region where the transmittance is close to 0%, and the transmission region, which is the wavelength range corresponding to the region where the transmittance is 70% or more No shift of the region toward longer wavelengths is observed, and ⁇ 500 (UV) is not shifted toward longer wavelengths either. Therefore, it is presumed that the transmittance at a wavelength of 400 nm in the transmission spectrum of the light absorption film according to Comparative Example 5 is relatively high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

0°の入射角度における光吸収体10の透過スペクトルは、下記の条件を満たす。(I)波長480nm~580nmの範囲における透過率の平均値が78%以上である。(II)波長350nm~380nmの範囲における透過率の最大値が1%以下である。(III)波長800nm~950nmの範囲における透過率の最大値が7%以下である。(IV)波長400nmにおける透過率が10%以下である。

Description

光吸収体、光吸収体付物品、及び光吸収性組成物
 本発明は、光吸収体、光吸収体付物品、及び光吸収性組成物に関する。
 CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を用いた撮像装置において、良好な色再現性を有する画像を得るために様々な光学フィルタが固体撮像素子の前面に配置されている。一般的に、固体撮像素子は、紫外線領域から赤外線領域に至る広い波長範囲で分光感度を有する。一方、人間の視感度は可視光の領域にのみ存在する。このため、撮像装置における固体撮像素子の分光感度を人間の視感度に近づけるために、固体撮像素子の前面に赤外線又は紫外線の一部の光を遮蔽する光学フィルタを配置する技術が知られている。
 従来、そのような光学フィルタとしては、誘電体多層膜による光反射を利用して赤外線又は紫外線を遮蔽するものが一般的であった。一方、近年、光吸収剤を含有する膜を備えた光学フィルタが注目されている。光吸収剤を含有する膜を備えた光学フィルタの透過率特性は入射角の影響を受けにくいので、撮像装置において光学フィルタに斜めに光が入射する場合でも色味の変化が少ない良好な画像を得ることができる。また、光反射膜を用いない光吸収型光学フィルタは、光反射膜による多重反射を原因とするゴーストやフレアの発生を抑制できるので、逆光状態や夜景の撮影において良好な画像を得やすい。加えて、光吸収剤を含有する膜を備えた光学フィルタは、撮像装置の小型化及び薄型化の点でも有利である。
 そのような光吸収剤として、ホスホン酸と銅イオンとによって形成された光吸収剤が知られている。例えば、特許文献1には、フェニル基又はハロゲン化フェニル基を有するホスホン酸(フェニル系ホスホン酸)と銅イオンとによって形成された光吸収剤を含有する光吸収層を備えた、光学フィルタが記載されている。
 また、特許文献2には、赤外線及び紫外線を吸収可能なUV‐IR吸収層を備えた光学フィルタが記載されている。UV‐IR吸収層は、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含んでいる。光学フィルタが所定の光学特性を満たすように、UV‐IR吸収性組成物は、例えば、フェニル系ホスホン酸と、アルキル基又はハロゲン化アルキル基を有するホスホン酸(アルキル系ホスホン酸)とを含有している。
 また、特許文献3には、有機色素含有層と、ホスホン酸銅含有層とを備えた赤外線カットフィルタが記載されている。
 一方、特許文献4には、吸収層と、反射層と、透明基板とを備え、入射角0°の分光透過率曲線において所定の要件を満たす光学フィルタが記載されている。吸収層は、スクアリリウム色素等の近赤外線吸収色素を含んでいる。
特許第6339755号公報 特許第6232161号公報 特許第6281023号公報 国際公開第2020/004641号
 特許文献1~4に記載の光学フィルタにおいて、近紫外線領域、特に波長400nm付近の領域において光の遮蔽が十分になされているとは言い難い。このことは、画像における色再現性の観点から有利であるとは言い難い。加えて、特許文献4に記載の光学フィルタにおいて、反射層が必要であり、吸収層で十分でない光の遮蔽を反射層によって補わなければならない。このため、特許文献4に記載の光学フィルタにおいて、反射層の形成のために煩雑な工程が必要である。
 そこで、本発明は、近赤外線領域において光を良好に遮蔽できるとともに、近紫外線領域において光を良好に遮蔽できる光吸収体を提供する。
 本発明は、
 0°の入射角度における透過スペクトルが下記(I)、(II)、(III)、及び(IV)の条件を満たす、光吸収体を提供する。
(I)波長480nm~580nmの範囲における透過率の平均値が78%以上である。
(II)波長350nm~380nmの範囲における透過率の最大値が1%以下である。
(III)波長800nm~950nmの範囲における透過率の最大値が7%以下である。
(IV)波長400nmにおける透過率が10%以下である。
 また、本発明は、
 物品と、
 前記物品の表面の少なくとも一部に形成された、上記の光吸収体と、を備えた、
 光吸収体付物品を提供する。
 また、本発明は、
 光吸収性組成物であって、
 当該光吸収性組成物を硬化して得られる光吸収体の0°の入射角度における透過スペクトルが下記(i)、(ii)、(iii)、及び(iv)の条件を満たす、光吸収性組成物を提供する。
(i)波長480nm~580nmの範囲における透過率の平均値が78%以上である。
(ii)波長350nm~380nmの範囲における透過率の最大値が1%以下である。
(iii)波長800nm~950nmの範囲における透過率の最大値が7%以下である。
(iv)波長400nmにおける透過率が10%以下である。
 上記の光吸収体によれば、近赤外線領域において光を良好に遮蔽できるとともに、近紫外線領域において光を良好に遮蔽できる。
図1Aは、本発明に係る光吸収体の一例を示す断面図である。 図1Bは、本発明に係る光吸収体付物品の一例を示す断面図である。 図2は、本発明に係る撮像装置の一例を示す図である。 図3Aは、実施例1に係る光学フィルタの透過スペクトルである。 図3Bは、実施例1に係る光学フィルタの透過スペクトルである。 図3Cは、実施例1に係る光学フィルタの透過スペクトルである。 図4Aは、実施例2に係る光学フィルタの透過スペクトルである。 図4Bは、実施例2に係る光学フィルタの透過スペクトルである。 図4Cは、実施例2に係る光学フィルタの透過スペクトルである。 図5Aは、実施例3に係る光学フィルタの透過スペクトルである。 図5Bは、実施例3に係る光学フィルタの透過スペクトルである。 図5Cは、実施例3に係る光学フィルタの透過スペクトルである。 図6Aは、実施例4に係る光学フィルタの透過スペクトルである。 図6Bは、実施例4に係る光学フィルタの透過スペクトルである。 図6Cは、実施例4に係る光学フィルタの透過スペクトルである。 図7は、比較例1に係る光学フィルタの透過スペクトルである。 図8は、比較例2に係る光学フィルタの透過スペクトルである。 図9は、比較例3に係る光学フィルタの透過スペクトルである。 図10は、比較例4に係る光学フィルタの透過スペクトルである。 図11は、比較例5に係る光学フィルタの透過スペクトルである。 図12は、ガラス基板の透過スペクトルである。
 以下、本発明の実施形態について説明する。なお、以下の説明は、本発明の例示に関するものであり、本発明は以下の実施形態に限定されるものではない。
 図1Aは、光吸収体10を示す断面図である。0°の入射角度における光吸収体10の透過スペクトルは、下記(I)、(II)、(III)、及び(IV)の条件を満たす。
(I)波長480nm~580nmの範囲における透過率の平均値TA 0(480-580)が78%以上である。
(II)波長350nm~380nmの範囲における透過率の最大値TM 0(350-380)が1%以下である。
(III)波長800nm~950nmの範囲における透過率の最大値TM 0(800-950)が7%以下である。
(IV)波長400nmにおける透過率T0(400)が10%以下である。
 (I)の条件が満たされていることにより、光吸収体10を透過する可視光域の光量が大きい。このため、例えば、光吸収体10を撮像装置に用いたときに、撮像素子に到達する可視光域の光量が大きくなりやすい。平均値TA 0(480-580)は、望ましくは80%以上であり、より望ましくは82%以上であり、さらに望ましくは84%以上である。可視光領域又は可視光域とは、例えば波長380nm~780nmの範囲でありうる。
 (II)の条件が満たされていることにより、光吸収体10は、紫外線領域における光を良好に遮蔽できる。これにより、例えば、可視光領域以外に感度を有しない人間の比視感度曲線(視感度スペクトル)と同様の特性に光吸収体10の透過特性を調整できる。紫外線領域又は紫外線域は、波長280nmから可視光域の下限である波長、例えば380nmを超えない波長の範囲を含むものでありうる。紫外線領域における光を遮蔽するとは、紫外線領域に属する一部の波長範囲の光を遮蔽することも含む。人間の比視感度曲線とは、国際照明委員会(CIE)によって規定された明所視標準比視感度を表す曲線である。
 (II)の条件に関し、0°の入射角度における光吸収体10の透過スペクトルは、望ましくは下記(IIa)の条件を満たし、より望ましくは下記(IIb)の条件を満たす。
(IIa)波長350nm~385nmの範囲における透過率の最大値TM 0(350-385)が1%以下である。
(IIb)波長350nm~390nmの範囲における透過率の最大値TM 0(350-390)が1%以下である。
 (III)の条件が満たされていることにより、光吸収体10は、近赤外線領域における光を良好に遮蔽できる。例えば、可視光領域以外に感度を有しない人間の比視感度曲線と同様の特性に光吸収体10の透過特性を調整しやすい。最大値TM 0(800-950)は、望ましくは5%以下であり、より望ましくは3%以下である。近赤外線領域又は近赤外線域は、一般的には波長780nm~2500nmの範囲であるが、ここでは、可視光域の上限である波長、例えば波長780nmを超えて1200nmまでの波長の範囲を含むものでありうる。近赤外線領域における光を遮蔽するとは、近赤外線領域に属する一部の波長範囲の光を遮蔽することも含む。
 (III)の条件に関し、0°の入射角度における光吸収体10の透過スペクトルは、望ましくは下記(IIIa)の条件をさらに満たす。これにより、より確実に、可視光領域以外に感度を有しない人間の比視感度曲線と同様の特性に光吸収体10の透過特性を調整しやすい。最大値TM 0(800-1100)は、望ましくは7%以下であり、より望ましくは5%以下である。
(IIIa)波長800nm~1100nmの範囲における透過率の最大値TM 0(800-1100)が10%以下である。
 国際照明委員会(CIE)によって規定された明所視標準比視感度によれば、人間の比視感度曲線において波長400nmにおける感度は著しく低い。このため、(IV)の条件が満たされていることにより、人間の比視感度曲線と同様の特性に光吸収体10の透過特性を調整しやすい。これにより、例えば、光吸収体10を撮像装置に用いたときに、撮像装置によって得られる画像における色再現性が高くなりやすい。例えば、CMY(シアン マゼンタ イエロー)カラーフィルタ及び他の紫外光に高い感度を有するカラーフィルタ等のRGBカラーフィルタ以外のカラーフィルタを撮像装置が備える場合、波長400nm付近の領域において光吸収体の透過率が高いことは、撮像装置から得られる画像の色再現性に問題を生じさせうる。しかし、光吸収体10を用いることにより、このような色再現性の問題が生じにくい。透過率T0(400)は、望ましくは5%以下であり、より望ましくは3%以下である。
 さらには、(IV)の条件を満たす光学フィルタを用いた撮像装置、又は、(II)及び(IV)の条件を満たす光学フィルタを用いた撮像装置によって撮影された画像において、パープルフリンジの低減を図ることができる。パープルフリンジとは高輝度部分と低輝度部分との境目や被写体の輪郭、それらの近傍において、紫色の部分が生じる現象のことである。撮像装置に備わっているレンズなどの光学系の倍率色収差がこの現象の原因の一つであると考えられている。撮像装置に用いられる光学フィルタが(IV)の条件、又は、(II)及び(IV)の条件を満たすことにより、紫色の光の一部を遮蔽することができ、パープルフリンジの発生又はその影響の低減を図ることが可能である。
 0°の入射角度における光吸収体10の透過スペクトルは、例えば、下記(V)の条件をさらに満たす。下記の第一波長λ50 0(UV)は、光吸収体10において光が透過する波長範囲の下限の近傍に相当すると理解される。下記(V)の条件が満たされることにより、光吸収体10は、人間の目が認識できない光のうち紫外線領域に属する光を遮蔽できる。
(V)波長350nm~480nmの範囲において透過率が50%となる第一波長λ50 0(UV)が405nm~480nmの範囲に存在する。
 (V)の条件に関し、第一波長λ50 0(UV)は、望ましくは405nm~470nmの範囲に存在する。
 0°の入射角度における光吸収体10の透過スペクトルは、例えば、下記(VI)の条件をさらに満たす。この条件が満たされることにより、光吸収体10は、人間の目が認識できない光のうち赤外線領域に属する光を遮蔽できる。加えて、下記の第二波長λ50 0(IR)は、波長555nmのときの比視感度値V(555)を1とした人間の視感度曲線において、比視感度値V(λ)が0.5である波長に近くなり、光吸収体10の透過スペクトルが比視感度曲線と同様の特性に調整されやすい。
(VI)波長600nm~800nmの範囲において透過率が50%となる第二波長λ50 0(IR)が680nm~760nmの範囲に存在する。
 (VI)の条件に関し、第二波長λ50 0(IR)は、望ましくは690nm~750nmの範囲に存在し、より望ましくは700nm~740nmの範囲に存在する。
 0°の入射角度における光吸収体10の透過スペクトルは、例えば、下記(VII)の条件をさらに満たす。これにより、赤外線領域に属するより長い波長を有する光をも良好に遮蔽できる。このことは、可視光領域以外に感度を有しない人間の比視感度曲線と同様の特性に光吸収体10の透過特性を調整しやすい。加えて、このことは、光吸収体10とともに用いられうる撮像素子及びフォトダイオード等のセンサが1200nm付近の波長の光に対して感度を有している場合でも、そのような波長の光の適切な遮蔽の観点から有利である。最大値TM 0(800-1200)は、望ましくは10%以下であり、より望ましくは3%以下である。
(VII)波長800nm~1200nmの範囲における透過率の最大値TM 0(800-1200)が15%以下である。
 0°の入射角度における光吸収体10の透過スペクトルは、例えば、下記(VIII)及び(IX)の条件をさらに満たす。人間の比視感度曲線において、波長550nmにおいて最も高い感度V(λ)が示される。このため、光吸収体10において、波長550nmにおける透過率が高いことは、人間の視感度曲線との相似性が高くなり有利である。特に、光吸収体10が下記(VIII)及び(IX)の条件を満たすことにより、光吸収体10において、透過が望ましくない光に対応する波長である400nm及び800nmにおける透過率に対する波長550nmにおける透過率の比が高い。これにより、人間の比視感度曲線の定性的特性と同様の特性に光吸収体10の透過特性を調整できる。
(VIII)波長400nmにおける透過率T0(400)に対する波長550nmにおける透過率T0(550)の比T0(550)/T0(400)が8以上である。
(IX)波長800nmにおける透過率T0(800)に対する波長550nmにおける透過率T0(550)の比T0(550)/T0(800)が8以上である。
 比T0(550)/T0(400)は、望ましくは12以上であり、より望ましくは16以上であり、さらに望ましくは24以上であり、特に望ましくは32以上である。比T0(550)/T0(800)は、望ましくは12以上であり、より望ましくは16以上であり、さらに望ましくは24以上であり、特に望ましくは32以上である。
 0°の入射角度における光吸収体10の透過スペクトルは、例えば、下記(X)の条件をさらに満たす。これにより、光吸収体10において、波長680nm付近の光の透過率が所望の高さに調整されやすい。
(X)波長800nmにおける透過率T0(800)に対する波長680nmにおける透過率T0(680)の比T0(680)/T0(800)が8以上である。
 例えば、CMOSセンサ等を備えたカメラを車載システムの一部として車両に搭載することが考えられる。加えて、このようなカメラを、ドローン及び自律ロボット等の運転装置、移動装置、及び搬送装置に使用することも考えられる。この場合、カメラによって主に外部の状況が撮影画像等の情報として取得され、その取得された情報によって、運転者、操縦者、又は自動操縦ための制御システムの動作がサポートされる。この場合、外部環境の認識の精度を向上させる観点から、可視光域、とりわけ赤色帯域における透過率が高く、かつ、赤外線を良好に遮蔽できる光学フィルタをカメラが備えることが有利である。光学フィルタの赤色帯域における透過率が高いことは、赤信号、交通標識、及び周辺の移動物を的確に認識するために重要である。赤色帯域とは、ここでは、波長580~780nmの範囲をいう。信号や道路標識等において、危険や安全に関わる標識の色は赤色で表されている場合がある。例えば、それらは赤信号のほか交通標識(道路標識)では車両進入禁止、停止、徐行等の規制標識を示すものが該当する。
 光学フィルタの透過スペクトルにおいて、赤色に対応する波長範囲の透過率が高いことは、上記のような赤信号や規制標識などをはじめとして、周辺の移動物を的確に認識するために重要である。規制標識などに表されている赤色は、再帰反射シートなどの仕様にもよるが、例えば波長下限が580~620nmであり、波長上限が約780nm程度までの波長範囲において反射率が高い。可視光域の波長上限を780nmと仮定するならば、光学フィルタの透過スペクトルにおいて、例えば波長580~780nmの範囲における透過率、特に波長620~760nmの範囲における透過率、とりわけ波長620~750nmの範囲における透過率がある一定の水準以上であることが有利である。
 加えて、光学フィルタが赤外線を良好に遮蔽できることは、例えば、周辺を走行する車両、移動装置、又は搬送装置における赤外線を用いたセンシングの影響を受けてカメラが良好な撮影画像を得られないといった問題を抑制するために重要である。このようなカメラを備えたシステムとして、レーザーを用いたlight detection and ranging(Lidar)システム等のセンシングシステムが考えられる。この場合、波長800nmに対応する光の透過が望ましくない場合もある。光吸収体10が上記(X)の条件を満たすことは、レーザーを用いたセンシングシステムへの適用の観点から有利である。T0(680)/T0(800)は、望ましくは12以上であり、より望ましくは16以上であり、さらに望ましくは24以上であり、特に望ましくは32以上である。
 0°の入射角度における光吸収体10の反射スペクトルにおいて、例えば、波長800nm~1000nmにおける反射率R0(800-1000)が20%以下である。反射率R0(800-1000)は、望ましくは10%以下である。望ましくは、0°の入射角度における光吸収体10の反射スペクトルにおいて、波長800nm~1200nmにおける反射率R0(800-1200)が20%以下である。反射率R0(800-1200)は、より望ましくは10%以下である。
 35°の入射角度における光吸収体10の透過スペクトルは、例えば、波長350nm~480nmの範囲において透過率が50%となる第三波長λ50 35(UV)を有する。第三波長λ50 35(UV)と第一波長λ50 0(UV)との差の絶対値|λ50 35(UV)50 0(UV)|は、例えば5nm以下である。加えて、35°の入射角度における光吸収体10の透過スペクトルは、例えば、波長600nm~800nmの範囲において透過率が50%となる第四波長λ50 35(IR)を有する。第四波長λ50 35(IR)と第二波長λ50 0(IR)との差の絶対値|λ50 35(IR)50 0(IR)|は、例えば10nm以下である。
 光吸収体10の透過スペクトルにおいて、絶対値|λ50 35(UV)50 0(UV)|が5nm以下であり、かつ、絶対値|λ50 35(IR)50 0(IR)|が10nm以下であることにより、光吸収体10の透過スペクトルの入射角依存性が小さくなりやすい。特定の波長域に属する光を誘電体多層膜からなる光反射膜を備えた光学フィルタによって遮蔽する場合、光反射膜に入射する光の入射角度によって光学フィルタの透過スペクトルの入射角依存性が大きい。例えば、光学フィルタに入射する角度によって光学フィルタの透過スペクトルが全体的に短波長側にシフトする。この透過スペクトルのシフトが光学フィルタを透過する光の色味に影響を与える。この場合、得られる画像において、入射角度が小さい光線の寄与により形成される画像の中央部と、入射角度が大きい光線の寄与により形成される画像の周辺部とでは色味の違いが現れ、画像において色むらが認識されうる。例えば、画像の周辺部がやや青っぽくなる。しかし、光吸収体10の透過スペクトルの入射角依存性は小さいので、撮像素子等によって得られたデジタル画像を可視化した場合に現れる色むらを抑制しやすい。
 絶対値|λ50 35(UV)50 0(UV)|は、望ましくは4nm以下であり、より望ましくは3nm以下である。絶対値|λ50 35(IR)50 0(IR)|は、望ましくは8nm以下であり、より望ましくは6nm以下である。
 45°の入射角度における光吸収体10の透過スペクトルは、例えば、波長350nm~480nmの範囲において透過率が50%となる波長λ50 45(UV)を有する。波長λ50 45(UV)と第一波長λ50 0(UV)との差の絶対値|λ50 45(UV)50 0(UV)|は、例えば10nm以下であり、望ましくは8nm以下であり、より望ましくは6nm以下である。45°の入射角度における光吸収体10の透過スペクトルは、例えば、波長600nm~800nmの範囲において透過率が50%となる波長λ50 45(IR)を有する。波長λ50 45(IR)と第二波長λ50 0(IR)との差の絶対値|λ50 45(IR)50 0(IR)|は、例えば15nm以下であり、望ましくは13nm以下であり、より望ましくは11nm以下である。
 55°の入射角度における光吸収体10の透過スペクトルは、例えば、波長350nm~480nmの範囲において透過率が50%となる波長λ50 55(UV)を有する。波長λ50 55(UV)と第一波長λ50 0(UV)との差の絶対値|λ50 55(UV)50 0(UV)|は、例えば15nm以下であり、望ましくは12nm以下であり、より望ましくは9nm以下である。55°の入射角度における光吸収体10の透過スペクトルは、例えば、波長600nm~800nmの範囲において透過率が50%となる波長λ50 55(IR)を有する。波長λ50 55(IR)と第二波長λ50 0(IR)との差の絶対値|λ50 55(IR)50 0(IR)|は、例えば20nm以下であり、望ましくは18nm以下であり、より望ましくは16nm以下である。
 光吸収体10に含まれる成分は、上記の(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定の成分に限定されない。光吸収体10は、例えば、銅成分と、銅以外の少なくとも1つの金属成分と、リンとを含有している。
 光吸収体10は、例えば、所定の光吸収性組成物を硬化して得られる。光吸収性組成物に含まれる成分は、光吸収体10が上記の(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定の成分に限定されない。光吸収性組成物は、例えば、光吸収性化合物と、紫外線吸収剤と、銅以外の金属成分を有するアルコキシド及び銅以外の金属成分を有するアルコキシドの加水分解物の少なくとも1つとを含有している。光吸収性化合物は、ホスホン酸と銅成分とによって形成されている。紫外線吸収剤は、紫外線の少なくとも一部を吸収する。
 光吸収性化合物におけるホスホン酸は、0°の入射角度における光吸収体10の透過スペクトルが(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定のホスホン酸に限定されない。そのホスホン酸は、例えば、下記式(a)で表される。式(a)において、R1は、アルキル基又はアルキル基における少なくとも一つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基である。この場合、光吸収体10の透過帯域が波長700nm付近まで及びやすく、光吸収体10が所望の透過率特性を有しやすい。
Figure JPOXMLDOC01-appb-C000001
 ホスホン酸は、例えば、メチルホスホン酸、エチルホスホン酸、ノルマル(n-)プロピルホスホン酸、イソプロピルホスホン酸、ノルマル(n-)ブチルホスホン酸、イソブチルホスホン酸、sec-ブチルホスホン酸、tert-ブチルホスホン酸、又はブロモメチルホスホン酸である。
 光吸収性組成物の調製において、光吸収性化合物における銅成分の供給源は、特定の物質に限定されない。銅成分の供給源は、例えば銅塩である。銅塩は、塩化銅、蟻酸銅、ステアリン酸銅、安息香酸銅、ピロリン酸銅、ナフテン酸銅、及びクエン酸銅の無水物又は水和物であってもよい。例えば、酢酸銅一水和物は、Cu(CH3COO)2・H2Oと表され、1モルの酢酸銅一水和物によって1モルの銅イオンが供給される。
 紫外線吸収剤は、0°の入射角度における光吸収体10の透過スペクトルが(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定の化合物に限定されない。紫外線吸収剤は、例えば、分子内にヒドロキシ基及びカルボニル基を有する化合物である。
 紫外線吸収剤にとって有利な条件として、光の吸収範囲及び透過範囲が適切なこと、光化学的に安定であること、光増感作用が使用の範囲内で影響のない程度に低いこと、熱化学的に安定であること等の条件が挙げられる。このような観点から、紫外線吸収剤の光吸収の機序として、光励起による分子内でのヒドロキシ基の水素の移動反応(分子内の水素引き抜き反応)を利用することが考えられる。このような機序を発揮する紫外線吸収剤として、例えば、ヒドロキシベンゾフェノン、サリチル酸、ヒドロキシフェニルベンゾトリアゾール、ヒドロキシフェニルトリアジン、及び置換アクリロニトリル等の化合物が挙げられる。ヒドロキシベンゾフェノン及びサリチル酸においては、分子内に含まれるヒドロキシ基とカルボニル基との間で水素の移動に関する反応が紫外線等の光吸収に関わる。一方、ヒドロキシフェニルベンゾトリアゾール、ヒドロキシフェニルトリアジン、及び置換アクリロニトリルにおいては、分子内に含まれるヒドロキシ基と窒素原子との間で水素の移動に関する反応が、紫外線等の光吸収に関わる。これらの紫外線吸収剤は、その分子内に非共有電子対を有するヒドロキシ基を有しているので、併存する金属成分又は水素供与体と、一部錯体化等の相互作用を生じるものと推測される。紫外線吸収剤を含む光吸収性組成物及びその硬化物等の系において、ヒドロキシ基を有する紫外線吸収剤が単独で存在する場合と、金属成分又は水素供与体とヒドロキシ基を有する紫外線吸収剤とが併存する場合とを比較する。この比較によれば、上記の推測を裏付けるように、それらの光吸収スペクトル及びそれらの光透過スペクトル等の光学的特性に差異が生じる。特に、ヒドロキシ基及びカルボニル基を分子内に有する紫外線吸収剤と、銅以外の金属成分とを含有している光吸収性組成物を硬化して得られる光吸収体において、波長300~500nmにおける光吸収帯が長波長側にシフトする現象が生じることが分かった。このため、このような光吸収体は、波長400nm付近の光を効果的にかつ適切に吸収するのに有利である。なお、光吸収帯が長波長側にシフトすると、例えば、透過スペクトルの波長300nm~500nmの範囲内において吸収極大波長が長波長側にシフトする現象、又は、透過率が50%となる波長(UVカットオフ波長)が長波長側にシフトする現象が顕在化し得る。このように、光吸収性組成物の硬化物である光吸収体によれば、紫外線吸収剤が本来的に備えている吸収特性が短波長領域の光を効果的に吸収できるように調整されうる。その結果、このような光吸収体10が所望の透過率特性を有しやすい。
 紫外線吸収剤におけるヒドロキシ基とカルボニル基との配置は特定の配置に限定されない。紫外線吸収剤において、望ましくは、ヒドロキシ基とカルボニル基とは、1~3個の原子を隔てて配置されている。これにより、紫外線吸収剤において、ヒドロキシ基とカルボニル基との間で水素の移動が生じやすいと考えられる。このため、波長300~500nmにおける光吸収帯が長波長側にシフトする現象が効果的に生じやすい。その結果、光吸収体10は、より確実に、波長400nm付近の光を効果的にかつ適切に吸収しやすい。
 紫外線吸収剤は、望ましくは、金属成分と混合されても凝集しにくい化合物である。紫外線吸収剤は、望ましくは、下記式(A1)で表されるベンゾフェノン系化合物を含む。この場合、光吸収体10において、波長400nmにおける透過率T0(400)が効果的に低くなりやすい。
Figure JPOXMLDOC01-appb-C000002
 式(A1)において、R11、R12、R21、及びR22の少なくとも1つはヒドロキシ基である。式(A1)において、R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、複数のR11、複数のR12、複数のR21、又は複数のR22が存在していてもよく、R11、R12、R21、及びR22の少なくとも1つは存在しなくてもよい。
 R11、R12、R21、又はR22がヒドロキシ基以外の官能基である場合、その官能基は、例えば、カルボキシル基、アルデヒド基、ハロゲン原子、1~12個の炭素原子を有するアルキル基、1つ以上の水素原子がハロゲン原子に置換された1~12個の炭素原子を有するアルキル基、1~12個の炭素原子を有するアルコキシ基、又は1つ以上の水素原子がハロゲン原子に置換された1~12個の炭素原子を有するアルコキシ基である。
 紫外線吸収剤は、より望ましくは、下記式(A2)で表されるベンゾフェノン系化合物を含む。この場合、光吸収体10は、さらに確実に、波長400nm付近の短波長領域の光を効果的に吸収しやすい。
Figure JPOXMLDOC01-appb-C000003
 式(A2)において、R31は、水素原子、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、又は1~12個の炭素原子を有するアルコキシ基である。式(A2)において、R41及びR42は、ヒドロキシ基、カルボキシル基、アルデヒド基、ハロゲン原子を有する基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよく、R41及びR42は、存在していなくてもよい。式(A2)において、複数のR41が存在していてもよく、複数のR42が存在していてもよい。ハロゲン原子を有する基は、アルキル基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基であってもよい。ハロゲン原子を有する基は、アリール基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アリール基であってもよい。ハロゲン原子を有する基は、アルコキシ基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルコキシ基であってもよい。
 式(A1)又は式(A2)で表されるベンゾフェノン系化合物は、特定の化合物に限定されない。そのベンゾフェノン系化合物は、例えば、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-クロロベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、及び2,4-ジベンゾイルレゾルシンからなる群より選ばれる少なくとも1つである。
 紫外線吸収剤は、下記式(B)で表されるサリチル酸系化合物を含んでいてもよい。この場合、光吸収体10は、より確実に、波長400nm付近の短波長領域の光を効果的に吸収しやすい。
Figure JPOXMLDOC01-appb-C000004
 式(B)において、R51は、ヒドロキシ基、カルボキシ基、ハロゲン原子を含む基、1~12個の炭素原子を有するアルキル基、6~12個の炭素原子を有するアリール基、又は1~12個の炭素原子を有するアルコキシ基であってもよい。式(B)において、複数のR51が存在していてもよく、R51が存在していなくてもよい。式(B)において、R52は、水素原子、アリール基、又は1つ以上の水素原子がハロゲン原子に置換されたハロゲン化アリール基である。ハロゲン原子を有する基は、アルキル基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基であってもよい。ハロゲン原子を有する基は、アリール基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アリール基であってもよい。ハロゲン原子を有する基は、アルコキシ基における少なくとも1つの水素原子がハロゲン原子に置換されたハロゲン化アルコキシ基であってもよい。
 式(B)で表されるサリチル酸系化合物は、特定の化合物に限定されない。式(B)で表されるサリチル酸系化合物は、例えば、サリチル酸フェニル、サリチル酸-4-ブチルフェニル、及びサリチル酸-オクチルフェニルからなる群より選択される少なくとも1つを含む。
 上記の通り、光吸収性組成物は、例えば、銅以外の金属成分を有するアルコキシド及び銅以外の金属成分を有するアルコキシドの加水分解物の少なくとも1つである、アルコキシド化合物を含有している。アルコキシド化合物における銅以外の金属成分は、特定の金属成分に限定されない。その金属成分は、典型的には、光吸収性組成物及び光吸収体10において凝集せず、熱的及び化学的に安定な成分である。加えて、金属成分は、典型的には、上記の紫外線吸収剤と相互作用可能な成分である。金属成分は、例えば、Li、Na、Mg、Ca、Sr、Ba、Ge、Sn、Pb、Al、Ga、In、Tl、Zn、Cd、Cu、Ag、Au、Ni、Pd、Pt、Co、Rh、Ir、Fe、Mn、Cr、Mo、W、V、Nb、Ta、Ti、及びZrからなる群より選択される少なくとも一つを含む。この場合、金属成分は、上記の紫外線吸収剤と相互作用しやすい。金属成分は、望ましくは、Al、Ti、Zr、Zn、Sn、及びFeからなる群より選択される少なくとも1つを含む。
 光吸収性化合物と、紫外線吸収剤と、アルコキシド化合物とを光吸収性組成物が含有している場合、望ましくは、光吸収体10において第一波長λ50 0(UV)は第五波長λ50 0(UV)Rより大きく、第五波長λ50 0(UV)Rと第一波長λ50 0(UV)との差の絶対値|λ50 0(UV)R50 0(UV)|は20nm以上である。ここで、第五波長λ50 0(UV)Rは、0°の入射角度における参照光吸収体の透過スペクトルの波長350nm~480nmの範囲において透過率が50%となる波長である。参照光吸収体は、光吸収性化合物に含有されている紫外線吸収剤を含有し、かつ、上記のアルコキシド化合物を含有しない組成物を硬化して得られる。
 光吸収体10及び光吸収性組成物は、例えば、リン酸エステルをさらに含有している。リン酸エステルの働きにより、光吸収体10において光吸収性化合物が適切に分散しやすい。リン酸エステルは、光吸収性化合物の分散剤として機能していてもよく、その一部が金属成分と反応して化合物を形成していてもよい。例えば、リン酸エステルは、光吸収性化合物に配位し、又は、その化合物と反応していてもよい。
 リン酸エステルは、特定のリン酸エステルに限定されない。リン酸エステルは、例えば、ポリオキシアルキル基を有する。このようなリン酸エステルとしては、プライサーフA208N:ポリオキシエチレンアルキル(C12、C13)エーテルリン酸エステル、プライサーフA208F:ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、プライサーフA208B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフA219B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフAL:ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、プライサーフA212C:ポリオキシエチレントリデシルエーテルリン酸エステル、又はプライサーフA215C:ポリオキシエチレントリデシルエーテルリン酸エステルが挙げられる。これらはいずれも第一工業製薬社製の製品である。加えて、リン酸エステルとして、NIKKOL DDP-2:ポリオキシエチレンアルキルエーテルリン酸エステル、NIKKOL DDP-4:ポリオキシエチレンアルキルエーテルリン酸エステル、又はNIKKOL DDP-6:ポリオキシエチレンアルキルエーテルリン酸エステルが挙げられる。これらは、いずれも日光ケミカルズ社製の製品である。
 光吸収体10及び光吸収性組成物は、例えば、樹脂をさらに含有している。樹脂は、0°の入射角度における光吸収体10の透過スペクトルが(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定の樹脂に限定されない。樹脂の例は、環状ポリオレフィン系樹脂、エポキシ系樹脂、ポリイミド系樹脂、変性アクリル樹脂、シリコーン樹脂、及びPVB等のポリビニル系樹脂である。樹脂は、熱又は光等のエネルギー照射によって硬化しうる硬化性樹脂の硬化物でありうる。
 光吸収体10及び光吸収性組成物における各成分の含有量は、0°の入射角度における光吸収体10の透過スペクトルが(I)、(II)、(III)、及び(IV)の条件を満たす限り、特定の値に限定されない。光吸収体10及び光吸収性組成物において、銅成分の含有量に対する紫外線吸収剤の含有量の比は、質量基準で、例えば0.01~1であり、望ましくは0.01~0.5であり、より望ましくは0.01~0.1である。
 光吸収体10及び光吸収性組成物において、リン成分の含有量に対する紫外線吸収剤の含有量の比は、質量基準で、例えば0.02~2であり、望ましくは0.02~1であり、より望ましくは0.02~0.2である。
 光吸収体10及び光吸収性組成物において、リン成分の含有量に対する銅成分の含有量の比は、質量基準で、例えば1~3であり、望ましくは1.5~2である。
 光吸収体10及び光吸収性組成物において、銅成分以外の金属成分の含有量に対する銅成分の含有量の比は、質量基準で、例えば1×102~8×102であり、望ましくは2×102~6×102である。
 光吸収体10及び光吸収性組成物において、銅成分以外の金属成分の含有量に対するリン成分の含有量の比は、質量基準で、例えば1×102~4×102であり、望ましくは1.5×102~3×102である。
 光吸収体10及び光吸収性組成物において、リン酸エステル化合物の含有量に対するホスホン酸の含有量の比は、質量基準で、例えば0.5~2であり、望ましくは0.8~1.3である。
 光吸収体10及び光吸収性組成物において、リン酸エステル化合物の含有量に対するホスホン酸の含有量の比は、物質量基準で、例えば1~10であり、望ましくは3~6である。
 光吸収体10及び光吸収性組成物において、銅成分の含有量に対するホスホン酸の含有量の比は、物質量基準で、例えば0.2~3であり、望ましくは0.5~1.5である。
 光吸収体10及び光吸収性組成物において、紫外線吸収剤の含有量に対するホスホン酸の含有量の比は、質量基準で、例えば1~300であり、望ましくは10~100であり、より望ましくは20~70である。
 図1A及び図1Bに示す通り、光吸収体10は、例えば膜状である。本明細書において、「膜」は、コーティング又は層と同義である。一方、光吸収体10は、膜状に限定されない。
 光吸収体10は、例えば光学フィルタ1aとして機能しうる。光学フィルタ1aは、例えば光吸収体10単体で構成されている。光吸収体10の作製方法は特定の方法に限定されない。光吸収体10は、例えば、所定の基材上に光吸収性組成物を塗布して塗膜を形成し、この塗膜を硬化させて作製できる。作製された光吸収体10は基材上から剥離される。基材の材料は、ガラスであってもよく、樹脂であってもよく、金属であってもよい。基材の表面には、フッ素含有化合物を用いたコーティング等の表面処理が施されていてもよい。光吸収体10は、キャスティング(注型)、圧縮成形、真空成形、プレス成形、射出成形、ブロー成形、及び押出成形法等の方法によって作製されてもよい。
 光吸収体10を用いて、光吸収体付物品を提供することもできる。光吸収体付物品は、物品と、光吸収体10とを備えており、光吸収体10は、物品の表面の少なくとも一部に形成されている。例えば、光吸収体付物品の一例として、図1Bに示す光学フィルタ1bが挙げられる。光学フィルタ1bは、光吸収体10と、透明基材20とを備えている。光吸収体10は、透明基材20上に形成されており、透明基材20の表面の少なくとも一部に形成されている。光学フィルタ1bは、例えば、透明基材20の上に光吸収性組成物を塗布して塗膜を形成し、この塗膜を硬化させることによって作製できる。
 透明基材20は特定の基材に限定されない。透明基材20は、ガラスを含んでいてもよく、樹脂を含んでいてもよく、プラスチックを含んでいてもよい。ガラスは、銅含有ガラス等の光吸収性ガラスであってもよい。透明基材20は、光吸収性化合物を含有している光吸収性のフィルム及びシートであってもよい。透明基材20は、互いに平行な平面を主面として有する板状の基材であってもよく、レンズ等の曲面を有する基材であってもよく、その表面又は内部に平坦でない微細構造を有する基材であってもよい。そのような基材の例は、回折格子である。
 透明基材20の種類は、特定の種類に限定されない。透明基材20は、赤外線領域に吸収能を有していてもよい。透明基材20は、例えば波長350nm~900nmにおいて90%以上の平均分光透過率を有していてもよい。透明基材20の材料がガラスである場合、透明基材20は、例えば、ソーダ石灰ガラス及びホウケイ酸ガラスなどのケイ酸塩ガラスでできた透明なガラス又はCu及びCo等の着色性の成分を含有するリン酸塩ガラス及び弗リン酸塩ガラスでありうる。着色性の成分を含有するリン酸塩ガラス及び弗リン酸塩ガラスは、例えば赤外線吸収性ガラスであり、それ自体が光吸収性を有する。光吸収体10を、赤外線吸収性ガラスの透明基材20とともに用いる場合には、双方の光吸収性及び透過スペクトルを調整して、所望の光学特性を有する光学フィルタを作製でき、光学フィルタの設計の自由度が高い。
 透明基材20の材料が樹脂である場合、その樹脂は、例えば、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリアリレート系樹脂、アクリル樹脂、変性アクリル樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリカーボネート樹脂、又はシリコーン樹脂である。
 光吸収体10の厚みは特定の値に限定されない。撮像装置等の光吸収体を備える機器の低背位化の要請に応えるためには、光吸収体10の厚みが小さいことが有利である。このため、光吸収体10の厚みは、例えば200μm以下であり、望ましくは180μm以下であり、より望ましくは150μm以下である。例えば、光吸収体が所望の光吸収性を発揮しつつ、光吸収体の厚みを薄くするために、光吸収性組成物に含有される光吸収性化合物及び紫外線吸収剤の濃度を高めることが考えられる。この場合、各化合物の分散性を所望の状態に保てない可能性がある。このため、光吸収体10の厚みは、例えば、50μm以上であり、望ましくは60μm以上であり、より望ましくは70μm以上である。
 透明基材20の波長450~700nmの範囲の透過率の最小値が80%未満である場合、透明基材20は光を遮蔽する機能を有し、光吸収体10と協働して光の遮蔽に貢献すると理解される。この場合、光吸収体10の厚みは、例えば200μm以下であり、望ましくは180μm以下であり、より望ましくは150μm以下である。加えて、光吸収体10の厚みは、例えば50μm以上であり、望ましくは60μm以上であり、より望ましくは70μm以上である。波長450~700nmの範囲の透過率の最小値が80%未満である透明基材20の例は、赤外線吸収性ガラスを含む基板である。
 光吸収体10は、撮像素子及び光学部品に対して接して形成されていてもよい。一方、上記の光吸収性組成物を撮像素子又は光学部品に塗布して、光吸収性組成物を硬化させることによって、光吸収体10が構成されていてもよい。これにより、光吸収体付撮像素子又は光吸収体付光学部品を作製できる。光学部品は、例えば、レンズ又はカバーガラスなどである。例えば、光吸収体付撮像素子又は光吸収体付光学部品を備えた撮像装置を提供できる。
 光学フィルタ1a及び1bのそれぞれは、赤外線反射膜及び反射防止膜等の他の機能膜をさらに備えるように変更されてもよい。このような機能膜は、光吸収体10又は透明基材20の上に形成されうる。例えば、光学フィルタが反射防止膜を備えることにより、所定の波長の範囲(例えば可視光域)の透過率を高めることができる。反射防止膜は、MgF2及びSiO2等の低屈折率材料の層として構成されていてもよく、このような低屈折率材料の層とTiO2等の高屈折率材料の層との積層体として構成されていてもよく、誘電体多層膜として構成されていてもよい。このような反射防止膜は、真空蒸着及びスパッタ法等の物理的な反応を伴う方法、又は、CVD法及びゾルゲル法等の化学的な反応を伴う方法によって形成されうる。
 光学フィルタは、例えば、二枚の板状のガラスの間に光吸収体10が配置された状態で構成されていてもよい。これにより、光学フィルタの剛性及び機械的強度が向上する。加えて、光学フィルタの主面が硬質となり、キズ防止等の観点から有利である。特に、光吸収体10におけるバインダー又はマトリクスとして比較的柔軟性の高い樹脂を用いた場合に、このような利点が重要である。
 光吸収体10を備えた装置を提供できる。このような装置の用途は、特定の用途に限定されない。このような装置は、例えば、車載用カメラ及び車載用センサである。この場合、光吸収体10が所定の紫外線吸収性を有するので、撮像素子及びセンサ素子を紫外線から保護できる。また、光吸収体10が波長680nm付近において高い透過率を有する場合もあり、赤外線又は赤色レーザーを用いたLidarシステム等のセンシングシステムにおいて光吸収体10を使用できる。光吸収体10において、特に赤色に属する光の透過性が高い場合があり、光吸収体10を備えた装置において、赤信号及び道路標識等の対象物を認識する能力が高くなりやすい。加えて、光吸収体10は、特定の波長領域の光を吸収によって遮蔽するので、光吸収体10を備えた装置において、ゴースト及びフレアを抑制できる。
 図2に示す通り、例えば、光吸収体10を備えた撮像装置100を提供できる。撮像装置100は、例えば、レンズ系40と、撮像素子50とをさらに備えている。光吸収体10は、例えば、レンズ系40と、撮像素子50との間に配置されている。撮像装置100の適用対象は、特定の製品に限定されない。撮像装置100は、例えば、スマートフォン等の携帯型情報端末に搭載されたカメラモジュール、車載用のセンシングモジュールに組み込まれる装置、及びドローンなどの無人飛行機又は無人水上艇(USV)におけるセンシングモジュールに組み込まれる装置として適用可能である。光吸収体10は環境光センサに適用されてもよい。
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。まず、各実施例及び各比較例に係る光学フィルタの評価方法を説明する。
 (透過スペクトル測定)
 日本分光社製の紫外可視近赤外分光光度計V-670を用いて、各実施例及び比較例2及び3に係る光学フィルタの0°、35°、45°、及び55°の入射角における透過スペクトルを測定した。各実施例に関する結果を図3A~図6Cに示し、比較例2及び3に関する結果の一部をそれぞれ図8及び9に示す。一方、同様にして、比較例1、4、及び5に係る光学フィルタの0°の入射角における透過スペクトルを測定した。結果を図7、10、及び11に示す。これらの透過スペクトルから看取した各光学フィルタにおける特性値を表3~6に示す。これらの表の項目において、i°の入射角度及び波長λnmにおける透過率は「Ti(λ)」と表され、i°の入射角度及び波長λ1nm~λ2nmにおける分光透過率の最大値は「TM i(λ1-λ2)」と表され、i°の入射角度及び波長λ1nm~λ2nmにおける分光透過率の平均値は「TA i(λ1-λ2)」と表される。加えて、i°の入射角度の透過スペクトルにおいて、波長350nm~480nmの範囲で透過率が50%となる波長は「λ50 i(UV)」と表され、波長600nm~800nmの範囲で透過率が50%となる波長は「λ50 i(IR)」と表される。
 (厚み測定)
 キーエンス社製のレーザー変位計LK-H008を用いて、各実施例及び比較例1~3に係る光学フィルタの厚みを測定した。結果を表3及び4に示す。キーエンス社製のレーザー変位計LK-H008を用いて、比較例4及び5に係る光学フィルタの表面との距離を測定し、透明ガラス基板の厚みを差し引くことによって、光吸収膜の厚みを測定した。その結果を表4に示す。
 <実施例1>
 4.500gの酢酸銅一水和物と、240gのテトラヒドロフラン(THF)と、を混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、第一工業製薬社製のリン酸エステル化合物であるプライサーフA208Nを2.572g加えて30分間撹拌し、A1液を得た。また、2.886gのn‐ブチルホスホン酸と、40gのTHFと、を混合して30分間撹拌し、B1液を得た。A1液を撹拌しながらA1液にB1液を加え、室温で1分間撹拌した。次に、この溶液に100gのトルエンを加えた後、室温で1分間撹拌し、C1液を得た。このC1液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の液を取り出した。このようにして銅成分、ホスホン酸、及びリン酸エステル化合物を含む液状組成物D1を得た。液状組成物D1において、銅成分とホスホン酸とを含む光吸収性化合物の微粒子が凝集せずに分散していた。
 BASF社製の紫外線吸収剤Uvinul3049を2gの分量で98gのトルエンと混合し、混合物を30分間撹拌して、紫外線吸収剤を含む液状組成物E49を得た。Uvinul3049は、下記式(b-1)で表される2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノンを含んでいた。
Figure JPOXMLDOC01-appb-C000005
 液状組成物D1と、3gの液状組成物E49と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、実施例1に係る光吸収性組成物F1を調製した。光吸収性組成物F1は、0.06gの紫外線吸収剤を含んでいた。光吸収性組成物F1に含まれる各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。なお、リン酸エステルとして用いたプライサーフA208Nの平均的な分子量は、632g/molであると定めた。
 ダイキン工業社製の表面防汚コーティング剤オプツールDSX(有効成分の濃度:20質量%)0.1gと、3M社製のハイドロフルオロエーテル含有液ノベック7100 19.9gとを混合し、5分間撹拌して、フッ素処理剤(有効成分の濃度:0.1質量%)を調製した。このフッ素処理剤を、130mm×100mm×0.70mmの寸法を有するホウケイ酸ガラス(SCHOTT社製、製品名:D263 T eco)にかけ流して塗布した。その後、そのガラス基板を室温で24時間放置してフッ素処理剤の塗膜を乾燥させ、その後、ノベック7100を含んだ無塵布で軽くガラス表面を拭きあげて余分なフッ素処理剤を取り除いた。このようにしてフッ素処理基板を作製した。
 フッ素処理基板の一方の主面の中心部の80mm×80mmの範囲にディスペンサを用いて実施例1に係る光吸収性組成物F1を塗布して塗膜を形成した。得られた塗膜を室温で十分に乾燥させた後、オーブンに入れて室温~45℃の範囲で緩やかに温度を上げながら溶媒を蒸発させて乾燥を進め、次に、85℃で6時間の加熱処理行い、溶媒を完全に揮発させて硬化させた。その後フッ素処理基板から塗膜を引き剥がし、光吸収膜からなる実施例1に係る光学フィルタを得た。0°及び35°の入射角度、0°及び45°の入射角度、0°及び55°の入射角度における実施例1に係る光学フィルタの透過スペクトルをそれぞれ図3A、図3B、及び図3Cに示す。光吸収性組成物F1に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有していた。
 <実施例2>
 n-ブチルホスホン酸及びリン酸エステル化合物であるプライサーフA208Nの添加量を表1に示すように調整した以外は、実施例1における液状組成物D1の調製と同様にして、銅成分、ホスホン酸、及びリン酸エステル化合物を含む液状組成物D2を得た。液状組成物D2において、銅成分とホスホン酸とを含む光吸収性化合物の微粒子が凝集せずに分散していた。
 液状組成物D2と、6gの液状組成物E49と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、実施例2に係る光吸収性組成物F2を得た。光吸収性組成物F2は、0.12gの紫外線吸収剤を含んでいた。光吸収性組成物F2に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F2を用いた以外は実施例1と同様にして光吸収膜からなる実施例2に係る光学フィルタを作製した。0°及び35°の入射角度、0°及び45°の入射角度、0°及び55°の入射角度における実施例2に係る光学フィルタの透過スペクトルをそれぞれ図4A、図4B、及び図4Cに示す。光吸収性組成物F2に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有していた。
 <実施例3>
 n-ブチルホスホン酸及びリン酸エステル化合物であるプライサーフA208Nの添加量を表1に示すように調整した以外は、実施例1における液状組成物D1の調製と同様にして、銅成分、ホスホン酸、及びリン酸エステル化合物を含む液状組成物D3を得た。液状組成物D3において、銅成分とホスホン酸とを含む光吸収性化合物の微粒子が凝集せずに分散していた。
 BASF社製の紫外線吸収剤Uvinul3050を5gの分量で95gのエタノールと混合し、混合物を30分間撹拌して、紫外線吸収剤を含む液状組成物E50を得た。Uvinul3050は、下記式(b-2)で表される2,2’,4,4’-テトラヒドロキシベンゾフェノンを含んでいた。
Figure JPOXMLDOC01-appb-C000006
 液状組成物D3と、0.9gの液状組成物E50と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、実施例3に係る光吸収性組成物F3を得た。光吸収性組成物F3は、0.045gの紫外線吸収剤を含んでいた。光吸収性組成物F3に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F3を用いた以外は実施例1と同様にして光吸収膜からなる実施例3に係る光学フィルタを作製した。0°及び35°の入射角度、0°及び45°の入射角度、0°及び55°の入射角度における実施例3に係る光学フィルタの透過スペクトルをそれぞれ図5A、図5B、及び図5Cに示す。光吸収性組成物F3に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有していた。
 <実施例4>
 n-ブチルホスホン酸及びリン酸エステル化合物であるプライサーフA208Nの添加量を表1に示すように調整した以外は、実施例1における液状組成物D1の調製と同様にして、銅成分、ホスホン酸、及びリン酸エステル化合物を含む液状組成物D4を得た。液状組成物D4において、銅成分とホスホン酸とを含む光吸収性化合物の微粒子が凝集せずに分散していた。
 液状組成物D4と、1.8gの液状組成物E50と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、実施例4に係る光吸収性組成物F4を得た。光吸収性組成物F4は、0.09gの紫外線吸収剤を含んでいた。光吸収性組成物F4に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F4を用いた以外は実施例1と同様にして光吸収膜からなる実施例4に係る光学フィルタを作製した。0°及び35°の入射角度、0°及び45°の入射角度、0°及び55°の入射角度における実施例4に係る光学フィルタの透過スペクトルをそれぞれ図6A、図6B、及び図6Cに示す。光吸収性組成物F4に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有していた。
 <比較例1>
 液状組成物E49を用いなかったこと以外は、実施例1と同様にして、比較例1に係る光吸収性組成物F5を調製した。光吸収性組成物F5に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F5を用いた以外は実施例1と同様にして光吸収膜からなる比較例1に係る光学フィルタを作製した。0°の入射角度における比較例1に係る光学フィルタの透過スペクトルを図7に示す。光吸収性組成物F5に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有する。
 <比較例2>
 BASF社製の紫外線吸収剤Tinuvin326を5gの分量で95gのトルエンと混合し、混合物を30分間撹拌して、紫外線吸収剤を含む液状組成物E326を得た。Tinuvin326は、下記式(b-3)で表される2-[5-Chloro-(2H)-Benzotriazol-2-yl]-4-methyl-6-(tert-butyl)phenolを含んでいた。
Figure JPOXMLDOC01-appb-C000007
 液状組成物D1と、2.0gの液状組成物E326と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、比較例2に係る光吸収性組成物F6を得た。光吸収性組成物F6は、0.1gの紫外線吸収剤を含んでいた。光吸収性組成物F6に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F6を用いた以外は実施例1と同様にして光吸収膜からなる比較例2に係る光学フィルタを作製した。0°及び55°の入射角度における比較例2に係る光学フィルタの透過スペクトルを図8に示す。光吸収性組成物F6に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有する。
 <比較例3>
 BASF社製の紫外線吸収剤Tinuvin234を5gの分量で95gのトルエンと混合し、混合物を30分間撹拌して、紫外線吸収剤を含む液状組成物E234を得た。Tinuvin234は、下記式(b-4)で表されるPhenol,2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-Phenylethyl)を含んでいた。
Figure JPOXMLDOC01-appb-C000008
 液状組成物D1と、3.6gの液状組成物E234と、8.8gの信越化学工業社製のシリコーン樹脂KR-300と、0.09gの信越化学工業社製のアルミニウムアルコキシド化合物CAT-ACとを混合して30分間撹拌し、比較例3に係る光吸収性組成物F7を得た。光吸収性組成物F7は、0.18gの紫外線吸収剤を含んでいた。光吸収性組成物F7に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 光吸収性組成物F1の代わりに、光吸収性組成物F7を用いた以外は実施例1と同様にして光吸収膜からなる比較例3に係る光学フィルタを作製した。0°及び55°の入射角度における比較例3に係る光学フィルタの透過スペクトルを図9に示す。光吸収性組成物F7に含まれ、なくならずに光吸収膜にも含まれる成分に関し、光吸収膜は、表1及び表2に準じた、各成分、各成分の量、成分同士の質量比、及び成分同士の物質量比を有する。
 <比較例4>
 BASF社製の紫外線吸収剤Uvinul3049を0.25gの分量で12.25gのトルエンと混合して30分間撹拌し、その混合物に25gの信越化学工業社製のシリコーン樹脂KR-300を加えて30分間さらに攪拌した。このようにして、紫外線吸収剤を含む液状組成物F8を得た。光吸収性組成物F8に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263 T eco)の一方の主面の中心部の40mm×40mmの範囲にディスペンサを用いて、紫外線吸収剤を含む液状組成物F8を塗布して塗膜を形成した。塗膜を室温で十分に乾燥させた後、オーブン(加熱炉)内に入れて室温~45℃の範囲で緩やかに温度を上げながら溶媒を蒸発させて乾燥作業を行い、次いで、85℃で1時間の加熱を行い、含まれる溶媒を完全に揮発させて塗膜を硬化させた。このようにして、透明ガラス基板上に、紫外線吸収剤を含む光吸収膜を形成し、比較例4に係る光学フィルタを得た。この光学フィルタは、透明ガラス基板と光吸収膜とが一体となったフィルタであった。0°の入射角度における比較例4に係る光学フィルタの透過スペクトルを図10に示す。
 <比較例5>
 BASF社製の紫外線吸収剤Uvinul3050を0.25gの分量で4.75gのエタノールと混合して30分間撹拌し、その混合物に25gの信越化学工業社製のシリコーン樹脂KR-300を加えて30分間さらに攪拌した。このようにして、紫外線吸収剤を含む液状組成物F9を得た。光吸収性組成物F9に含まれる成分、その成分の量、成分同士の質量比、及び成分同士の物質量比を表1及び2に示す。
 液状組成物F8に代えて、液状組成物F9を用いた以外は比較例4と同様にして、透明ガラス基板上に紫外線吸収剤を含む光吸収膜を形成し、比較例5に係る光学フィルタを得た。この光学フィルタは、透明ガラス基板と光吸収膜とが一体となったフィルタであった。0°の入射角度における比較例5に係る光学フィルタの透過スペクトルを図11に示す。
 表3及び5に示す通り、各実施例に係る光学フィルタは所望の透過率特性を有していた。一方、表4及び5に示す通り、比較例1~3に係る光学フィルタは、上記(II)及び(IV)等の条件を満たしておらず、所望の透過率特性を有しているとは言い難かった。
 比較例4に係る光学フィルタの作製に用いた透明ガラス基板の0°の入射角度における透過スペクトルを図12に示す。図12に示す透過スペクトルにおいて、波長が350nm以上の波長範囲においては透過率が90%以上と高く、100%からのロスも透明ガラス基板の表面のフレネル反射によるものであり、透明ガラス基板において実質的にほとんどこの波長範囲おいて光吸収がなされないことが理解される。このため、図10に示す透過スペクトルの検討において透明ガラス基板における光吸収は無視できる。
 比較例4に係る光学フィルタにおいて、波長400nmの透過率T0(400)が40.78%であった。これは、光吸収膜における紫外線吸収剤として用いたUvinul3049の本来の吸収特性を反映したものであると推察される。比較例4に係る光学フィルタの光吸収膜は、実施例に係る光吸収膜のように銅成分以外の金属成分を含む化合物を含んでいない。このため、透過スペクトルにおいて、特に透過率が0%に近い領域に対応した波長範囲である遮蔽範囲と、透過率が70%以上となる領域に対応した波長範囲である透過領域との間の遷移領域の長波長側へのシフトが見られず、λ50 0(UV)も長波長側にシフトされない。そのため、比較例4に係る光吸収膜の透過スペクトルにおいて波長400nmの透過率が比較的高くなるものと推測される。
 比較例5に係る光学フィルタにおいて、波長400nmの透過率T0(400)が57.15%であった。これは、光吸収膜における紫外線吸収剤として用いたUvinul3050の本来の吸収特性を反映したものであると推察される。比較例5に係る光学フィルタの光吸収膜は、実施例に係る光吸収膜のように銅成分以外の金属成分を含む化合物を含んでいない。このため、透過スペクトルにおいて、特に透過率が0%に近い領域に対応した波長範囲である遮蔽範囲と、透過率が70%以上となる領域に対応した波長範囲である透過領域との間の遷移領域の長波長側へのシフトが見られず、λ50 0(UV)も長波長側にシフトされない。そのため、比較例5に係る光吸収膜の透過スペクトルにおいて波長400nmの透過率が比較的高くなるものと推測される。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014

Claims (20)

  1.  0°の入射角度における透過スペクトルが下記(I)、(II)、(III)、及び(IV)の条件を満たす、光吸収体。
    (I)波長480nm~580nmの範囲における透過率の平均値が78%以上である。
    (II)波長350nm~380nmの範囲における透過率の最大値が1%以下である。
    (III)波長800nm~950nmの範囲における透過率の最大値が7%以下である。
    (IV)波長400nmにおける透過率が10%以下である。
  2.  前記透過スペクトルは、下記(V)の条件をさらに満たす、請求項1に記載の光吸収体。
    (V)波長350nm~480nmの範囲において透過率が50%となる第一波長が405nm~480nmの範囲に存在する。
  3.  前記透過スペクトルは、下記(VI)の条件をさらに満たす、請求項1又は2に記載の光吸収体。
    (VI)波長600nm~800nmの範囲において透過率が50%となる第二波長が680nm~760nmの範囲に存在する。
  4.  前記透過スペクトルは、下記(VII)の条件をさらに満たす、請求項1~3のいずれか1項に記載の光吸収体。
    (VII)波長800nm~1200nmの範囲における透過率の最大値が15%以下である。
  5.  前記透過スペクトルは、下記(VIII)、(IX)、及び(X)の条件をさらに満たす、請求項1~4のいずれか1項に記載の光吸収体。
    (VIII)波長400nmにおける透過率に対する波長550nmにおける透過率の比が8以上である。
    (IX)波長800nmにおける透過率に対する波長550nmにおける透過率の比が8以上である。
    (X)波長800nmにおける透過率に対する波長680nmにおける透過率の比が8以上である。
  6.  波長800nm~1000nmにおける反射率が20%以下である、請求項1~5のいずれか1項に記載の光吸収体。
  7.  前記透過スペクトルは、波長405nm~480nmの範囲において透過率が50%となる第一波長と、波長680nm~760nmの範囲において透過率が50%となる第二波長とを有し、
     35°の入射角度における当該光吸収体の透過スペクトルは、波長350nm~480nmの範囲において透過率が50%となる第三波長を有し、
     前記第三波長と前記第一波長との差の絶対値が5nm以下であり、
     35°の入射角度における当該光吸収体の透過スペクトルは、波長600nm~800nmの範囲において透過率が50%となる第四波長を有し、
     前記第四波長と前記第二波長との差の絶対値が10nm以下である、
     請求項1~6のいずれか1項に記載の光吸収体。
  8.  銅成分と、銅以外の少なくとも1つの金属成分と、リンとを含有している、請求項1~7のいずれか1項に記載の光吸収体。
  9.  前記銅以外の金属成分は、Al、Ti、Zr、Zn、Sn及びFeからなる群より選択される少なくとも一つであり、
     一分子内にヒドロキシ基とカルボニル基を有する化合物からなる紫外線吸収剤を含有している、
     請求項8に記載の光吸収体。
  10.  物品と、
     前記物品の表面の少なくとも一部に形成された、請求項1~9のいずれか1項に記載の光吸収体と、を備えた、
     光吸収体付物品。
  11.  光吸収性組成物であって、
     当該光吸収性組成物を硬化して得られる光吸収体の0°の入射角度における透過スペクトルが下記(i)、(ii)、(iii)、及び(iv)の条件を満たす、光吸収性組成物。
    (i)波長480nm~580nmの範囲における透過率の平均値が78%以上である。
    (ii)波長350nm~380nmの範囲における透過率の最大値が1%以下である。
    (iii)波長800nm~950nmの範囲における透過率の最大値が7%以下である。
    (iv)波長400nmにおける透過率が10%以下である。
  12.  前記透過スペクトルは、下記(v)の条件をさらに満たす、請求項11に記載の光吸収性組成物。
    (v)波長350nm~480nmの範囲において透過率が50%となる第一波長が405nm~480nmの範囲に存在する。
  13.  前記透過スペクトルは、下記(vi)の条件をさらに満たす、請求項11又は12に記載の光吸収性組成物。
    (vi)波長600nm~800nmの範囲において透過率が50%となる第二波長が680nm~760nmの範囲に存在する。
  14.  前記透過スペクトルは、下記(vii)の条件をさらに満たす、請求項11~13のいずれか1項に記載の光吸収性組成物。
    (vii)波長800nm~1200nmの範囲における透過率の最大値が15%以下である。
  15.  前記透過スペクトルは、下記(viii)、(ix)、及び(x)の条件をさらに満たす、請求項11~14のいずれか1項に記載の光吸収性組成物。
    (viii)波長400nmにおける透過率に対する波長550nmにおける透過率の比が8以上である。
    (ix)波長800nmにおける透過率に対する波長550nmにおける透過率の比が8以上である。
    (x)波長800nmにおける透過率に対する波長680nmにおける透過率の比が8以上である。
  16.  波長800nm~1000nmにおける反射率が20%以下である、請求項11~15のいずれか1項に記載の光吸収性組成物。
  17.  前記透過スペクトルは、波長405nm~480nmの範囲において透過率が50%となる第一波長と、波長680nm~760nmの範囲において透過率が50%となる第二波長とを有し、
     35°の入射角度における前記光吸収体の透過スペクトルは、波長350nm~480nmの範囲において透過率が50%となる第三波長を有し、
     前記第三波長と前記第一波長との差の絶対値が5nm以下であり、
     35°の入射角度における前記光吸収体の透過スペクトルは、波長600nm~800nmの範囲において透過率が50%となる第四波長を有し、
     前記第四波長と前記第二波長との差の絶対値が10nm以下である、
     請求項11~16のいずれか1項に記載の光吸収性組成物。
  18.  ホスホン酸と銅成分とによって形成されている光吸収性化合物と、
     紫外線の少なくとも一部を吸収する紫外線吸収剤と、
     銅以外の金属成分を有するアルコキシド及び前記アルコキシドの加水分解物の少なくとも1つと、を含有している、
     請求項11~17のいずれか1項に記載の光吸収性組成物。
  19.  前記紫外線吸収剤は、分子内にヒドロキシ基及びカルボニル基を有する化合物である、請求項18に記載の光吸収性組成物。
  20.  前記透過スペクトルは、波長405nm~480nmの範囲において透過率が50%となる第一波長を有し、
     前記第一波長は、0°の入射角度における参照光吸収体の透過スペクトルの波長350nm~480nmの範囲において透過率が50%となる第五波長よりも大きく、
     前記第五波長と前記第一波長との差の絶対値は20nm以上であり、
     前記参照光吸収体は、前記紫外線吸収剤を含有し、かつ、前記アルコキシド及び前記アルコキシドの前記加水分解物の少なくとも1つを含有しない組成物を硬化して得られる、
     請求項18又は19に記載の光吸収性組成物。
     
PCT/JP2022/020277 2021-05-17 2022-05-13 光吸収体、光吸収体付物品、及び光吸収性組成物 WO2022244703A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280033504.6A CN117321460A (zh) 2021-05-17 2022-05-13 光吸收体、带有光吸收体的物品以及光吸收性组合物
JP2023522638A JPWO2022244703A1 (ja) 2021-05-17 2022-05-13
KR1020237040737A KR20240009425A (ko) 2021-05-17 2022-05-13 광흡수체, 광흡수체를 갖는 물품, 및 광흡수성 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083428 2021-05-17
JP2021-083428 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022244703A1 true WO2022244703A1 (ja) 2022-11-24

Family

ID=84140470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020277 WO2022244703A1 (ja) 2021-05-17 2022-05-13 光吸収体、光吸収体付物品、及び光吸収性組成物

Country Status (5)

Country Link
JP (1) JPWO2022244703A1 (ja)
KR (1) KR20240009425A (ja)
CN (1) CN117321460A (ja)
TW (1) TW202307481A (ja)
WO (1) WO2022244703A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212936U (ja) * 2017-04-27 2017-10-12 白金科技股▲分▼有限公司 薄型光学フィルターおよびイメージセンサー
JP2019012121A (ja) * 2017-06-29 2019-01-24 Agc株式会社 光学フィルタおよび撮像装置
WO2019069689A1 (ja) * 2017-10-03 2019-04-11 日本板硝子株式会社 光学フィルタ及び撮像装置
JP2020112802A (ja) * 2015-09-24 2020-07-27 日本板硝子株式会社 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置
JP2021015244A (ja) * 2019-07-16 2021-02-12 日本板硝子株式会社 光吸収性組成物、光吸収膜、及び光学フィルタ
JP2021189251A (ja) * 2020-05-27 2021-12-13 日本板硝子株式会社 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339576Y2 (ja) 1985-08-13 1991-08-20
JPS6281023U (ja) 1985-11-11 1987-05-23
JPS6339755U (ja) 1986-08-26 1988-03-15
JP7279718B2 (ja) 2018-06-28 2023-05-23 Agc株式会社 光学フィルタおよび情報取得装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112802A (ja) * 2015-09-24 2020-07-27 日本板硝子株式会社 赤外線吸収層用組成物、赤外線カットフィルタ、及び撮像装置
JP3212936U (ja) * 2017-04-27 2017-10-12 白金科技股▲分▼有限公司 薄型光学フィルターおよびイメージセンサー
JP2019012121A (ja) * 2017-06-29 2019-01-24 Agc株式会社 光学フィルタおよび撮像装置
WO2019069689A1 (ja) * 2017-10-03 2019-04-11 日本板硝子株式会社 光学フィルタ及び撮像装置
JP2021015244A (ja) * 2019-07-16 2021-02-12 日本板硝子株式会社 光吸収性組成物、光吸収膜、及び光学フィルタ
JP2021189251A (ja) * 2020-05-27 2021-12-13 日本板硝子株式会社 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物

Also Published As

Publication number Publication date
KR20240009425A (ko) 2024-01-22
CN117321460A (zh) 2023-12-29
TW202307481A (zh) 2023-02-16
JPWO2022244703A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP6864637B2 (ja) 赤外線カットフィルタ
JP6332403B2 (ja) 光学フィルタおよび固体撮像素子
TWI771532B (zh) 濾光器及攝像裝置
US9304236B2 (en) Optical member, near infrared cut filter, solid-state imaging element, lens for imaging device, and imaging/display device using the same
CN103675970A (zh) 红外截止滤光片及摄像装置
US11531149B2 (en) Optical filter and imaging apparatus
JP2021189251A (ja) 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物
JP2014203044A (ja) 赤外線カットフィルタおよび撮像装置
CN207148424U (zh) 一种抬头显示装置
CN107015369A (zh) 一种消重影抬头显示装置
US11630252B2 (en) Optical filter and imaging apparatus
CN107924060A (zh) 平视显示装置以及反射光学系统
WO2020004641A1 (ja) 光学フィルタおよび情報取得装置
US20210356638A1 (en) Optical filter and light-absorbing composition
WO2022244703A1 (ja) 光吸収体、光吸収体付物品、及び光吸収性組成物
JP7431078B2 (ja) 光吸収性組成物、光吸収膜、及び光学フィルタ
KR20240008309A (ko) 광흡수성 조성물, 광흡수막, 광흡수막의 제조 방법, 및 광학 필터
WO2023095312A1 (ja) 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物
WO2023162864A1 (ja) 光学フィルタ、光吸収性組成物、光学フィルタを製造する方法、センシング装置、及びセンシング方法
JP7474056B2 (ja) 光学フィルタ
WO2024048254A1 (ja) 光吸収性組成物、光吸収体、光学フィルタ、環境光センサ、撮像装置、光吸収性組成物の製造方法、及び光吸収体の製造方法
JP7364486B2 (ja) 光吸収性組成物、光吸収膜、及び光学フィルタ
WO2022080105A1 (ja) 光学フィルタ、光学装置、及び光吸収性組成物
CN219302709U (zh) 显示装置、抬头显示器和交通设备
KR20200139238A (ko) 근적외선 흡수성 조성물, 근적외선 흡수성 막 및 고체 촬상 소자용 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280033504.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023522638

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18561665

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237040737

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804615

Country of ref document: EP

Kind code of ref document: A1