WO2023095312A1 - 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 - Google Patents
光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 Download PDFInfo
- Publication number
- WO2023095312A1 WO2023095312A1 PCT/JP2021/043482 JP2021043482W WO2023095312A1 WO 2023095312 A1 WO2023095312 A1 WO 2023095312A1 JP 2021043482 W JP2021043482 W JP 2021043482W WO 2023095312 A1 WO2023095312 A1 WO 2023095312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- wavelength
- light absorber
- transmittance
- absorber
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 222
- 239000000203 mixture Substances 0.000 title claims description 142
- 238000003384 imaging method Methods 0.000 title claims description 23
- 238000000411 transmission spectrum Methods 0.000 claims abstract description 86
- 238000002834 transmittance Methods 0.000 claims abstract description 80
- 150000001875 compounds Chemical class 0.000 claims description 52
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 239000006097 ultraviolet radiation absorber Substances 0.000 claims description 46
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 32
- 239000010949 copper Substances 0.000 claims description 30
- 229910052802 copper Inorganic materials 0.000 claims description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 28
- 150000004703 alkoxides Chemical class 0.000 claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 description 79
- -1 copper salt Chemical class 0.000 description 72
- 229910052782 aluminium Inorganic materials 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 33
- 229920005989 resin Polymers 0.000 description 28
- 239000011347 resin Substances 0.000 description 28
- 239000010410 layer Substances 0.000 description 25
- 229910019142 PO4 Inorganic materials 0.000 description 23
- 235000021317 phosphate Nutrition 0.000 description 23
- 239000010452 phosphate Substances 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 16
- 238000000576 coating method Methods 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 8
- 229940093858 ethyl acetoacetate Drugs 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052726 zirconium Inorganic materials 0.000 description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 229920002050 silicone resin Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 150000001879 copper Chemical class 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 150000003014 phosphoric acid esters Chemical class 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- OLFNXLXEGXRUOI-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-bis(2-phenylpropan-2-yl)phenol Chemical compound C=1C(N2N=C3C=CC=CC3=N2)=C(O)C(C(C)(C)C=2C=CC=CC=2)=CC=1C(C)(C)C1=CC=CC=C1 OLFNXLXEGXRUOI-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- FMRHJJZUHUTGKE-UHFFFAOYSA-N Ethylhexyl salicylate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1O FMRHJJZUHUTGKE-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 4
- 239000012964 benzotriazole Substances 0.000 description 4
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- YEOCHZFPBYUXMC-UHFFFAOYSA-L copper benzoate Chemical compound [Cu+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 YEOCHZFPBYUXMC-UHFFFAOYSA-L 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IYAZLDLPUNDVAG-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 IYAZLDLPUNDVAG-UHFFFAOYSA-N 0.000 description 3
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 3
- NWFNSTOSIVLCJA-UHFFFAOYSA-L copper;diacetate;hydrate Chemical compound O.[Cu+2].CC([O-])=O.CC([O-])=O NWFNSTOSIVLCJA-UHFFFAOYSA-L 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 229960005235 piperonyl butoxide Drugs 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 2
- HVGAPIUWXUVICC-UHFFFAOYSA-N 6-methylheptan-1-olate;titanium(4+) Chemical compound [Ti+4].CC(C)CCCCC[O-].CC(C)CCCCC[O-].CC(C)CCCCC[O-].CC(C)CCCCC[O-] HVGAPIUWXUVICC-UHFFFAOYSA-N 0.000 description 2
- JXSRRBVHLUJJFC-UHFFFAOYSA-N 7-amino-2-methylsulfanyl-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitrile Chemical compound N1=CC(C#N)=C(N)N2N=C(SC)N=C21 JXSRRBVHLUJJFC-UHFFFAOYSA-N 0.000 description 2
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- UOKRBSXOBUKDGE-UHFFFAOYSA-N butylphosphonic acid Chemical compound CCCCP(O)(O)=O UOKRBSXOBUKDGE-UHFFFAOYSA-N 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012025 fluorinating agent Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- TYKCBTYOMAUNLH-MTOQALJVSA-J (z)-4-oxopent-2-en-2-olate;titanium(4+) Chemical compound [Ti+4].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O TYKCBTYOMAUNLH-MTOQALJVSA-J 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- UUWJHAWPCRFDHZ-UHFFFAOYSA-N 1-dodecoxydodecane;phosphoric acid Chemical compound OP(O)(O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC UUWJHAWPCRFDHZ-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- UZUNCLSDTUBVCN-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-6-(2-phenylpropan-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol Chemical compound C=1C(C(C)(C)CC(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C(O)C=1C(C)(C)C1=CC=CC=C1 UZUNCLSDTUBVCN-UHFFFAOYSA-N 0.000 description 1
- UDOPITICNQWATG-UHFFFAOYSA-N 2-[1-(4-chlorophenyl)-2,5-dioxoimidazolidin-4-yl]acetic acid Chemical compound O=C1C(CC(=O)O)NC(=O)N1C1=CC=C(Cl)C=C1 UDOPITICNQWATG-UHFFFAOYSA-N 0.000 description 1
- KTXWGMUMDPYXNN-UHFFFAOYSA-N 2-ethylhexan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-].CCCCC(CC)C[O-] KTXWGMUMDPYXNN-UHFFFAOYSA-N 0.000 description 1
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 1
- HAEFDDOAYBQRGK-UHFFFAOYSA-N 2-methylpropylphosphonic acid Chemical compound CC(C)CP(O)(O)=O HAEFDDOAYBQRGK-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- JLRVHKOZCPNEOI-UHFFFAOYSA-N C[O-].CC[Zn+] Chemical compound C[O-].CC[Zn+] JLRVHKOZCPNEOI-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- RRJHFUHAKCSNRY-UHFFFAOYSA-L [Cu+2].[O-]P([O-])=O Chemical compound [Cu+2].[O-]P([O-])=O RRJHFUHAKCSNRY-UHFFFAOYSA-L 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- JPUHCPXFQIXLMW-UHFFFAOYSA-N aluminium triethoxide Chemical compound CCO[Al](OCC)OCC JPUHCPXFQIXLMW-UHFFFAOYSA-N 0.000 description 1
- MQPPCKJJFDNPHJ-UHFFFAOYSA-K aluminum;3-oxohexanoate Chemical compound [Al+3].CCCC(=O)CC([O-])=O.CCCC(=O)CC([O-])=O.CCCC(=O)CC([O-])=O MQPPCKJJFDNPHJ-UHFFFAOYSA-K 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- IMFRCQMFSCOANC-UHFFFAOYSA-K bis[(4,4-dimethoxy-3-oxohexanoyl)oxy]alumanyl 4,4-dimethoxy-3-oxohexanoate Chemical compound CCC(C(=O)CC(=O)O[Al](OC(=O)CC(=O)C(CC)(OC)OC)OC(=O)CC(=O)C(CC)(OC)OC)(OC)OC IMFRCQMFSCOANC-UHFFFAOYSA-K 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- OYWFWDQOWQBTHK-UHFFFAOYSA-N bromomethylphosphonic acid Chemical compound OP(O)(=O)CBr OYWFWDQOWQBTHK-UHFFFAOYSA-N 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- DLEPCXYNAPUMDZ-UHFFFAOYSA-N butan-2-ylphosphonic acid Chemical compound CCC(C)P(O)(O)=O DLEPCXYNAPUMDZ-UHFFFAOYSA-N 0.000 description 1
- LLJNVGRIQKGYCB-UHFFFAOYSA-N butyl 3-oxohexaneperoxoate;zirconium Chemical compound [Zr].CCCCOOC(=O)CC(=O)CCC.CCCCOOC(=O)CC(=O)CCC LLJNVGRIQKGYCB-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 150000004699 copper complex Chemical class 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- VAROLYSFQDGFMV-UHFFFAOYSA-K di(octanoyloxy)alumanyl octanoate Chemical compound [Al+3].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VAROLYSFQDGFMV-UHFFFAOYSA-K 0.000 description 1
- WCOATMADISNSBV-UHFFFAOYSA-K diacetyloxyalumanyl acetate Chemical compound [Al+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WCOATMADISNSBV-UHFFFAOYSA-K 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- FWBOFUGDKHMVPI-UHFFFAOYSA-K dicopper;2-oxidopropane-1,2,3-tricarboxylate Chemical compound [Cu+2].[Cu+2].[O-]C(=O)CC([O-])(C([O-])=O)CC([O-])=O FWBOFUGDKHMVPI-UHFFFAOYSA-K 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- WCNOPGVIIPWIRJ-UHFFFAOYSA-N diethoxyalumane Chemical compound C(C)O[AlH]OCC WCNOPGVIIPWIRJ-UHFFFAOYSA-N 0.000 description 1
- WBZUGMBTDHTVLI-UHFFFAOYSA-N diheptyl(oxo)tin Chemical compound CCCCCCC[Sn](=O)CCCCCCC WBZUGMBTDHTVLI-UHFFFAOYSA-N 0.000 description 1
- HRFMZHBXTDWTJD-UHFFFAOYSA-N dihexyltin Chemical compound CCCCCC[Sn]CCCCCC HRFMZHBXTDWTJD-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- DMHKHAWLXIYNLV-UHFFFAOYSA-N dimethoxyalumane Chemical compound CO[AlH]OC DMHKHAWLXIYNLV-UHFFFAOYSA-N 0.000 description 1
- WNVQCJNZEDLILP-UHFFFAOYSA-N dimethyl(oxo)tin Chemical compound C[Sn](C)=O WNVQCJNZEDLILP-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- LQRUPWUPINJLMU-UHFFFAOYSA-N dioctyl(oxo)tin Chemical compound CCCCCCCC[Sn](=O)CCCCCCCC LQRUPWUPINJLMU-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- LSHXECWFSXBAMI-UHFFFAOYSA-N disilanyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound C(C1CO1)OCCC[SiH2][SiH2][SiH3] LSHXECWFSXBAMI-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- WIEGKKSLPGLWRN-UHFFFAOYSA-N ethyl 3-oxobutanoate;titanium Chemical compound [Ti].CCOC(=O)CC(C)=O WIEGKKSLPGLWRN-UHFFFAOYSA-N 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000010102 injection blow moulding Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ITNVWQNWHXEMNS-UHFFFAOYSA-N methanolate;titanium(4+) Chemical compound [Ti+4].[O-]C.[O-]C.[O-]C.[O-]C ITNVWQNWHXEMNS-UHFFFAOYSA-N 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- RPITYOFBUIYBJD-UHFFFAOYSA-N oxo(dipentyl)tin Chemical compound CCCCC[Sn](=O)CCCCC RPITYOFBUIYBJD-UHFFFAOYSA-N 0.000 description 1
- JHRUIJPOAATFRO-UHFFFAOYSA-N oxo(dipropyl)tin Chemical compound CCC[Sn](=O)CCC JHRUIJPOAATFRO-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RCMHUQGSSVZPDG-UHFFFAOYSA-N phenoxybenzene;phosphoric acid Chemical class OP(O)(O)=O.C=1C=CC=CC=1OC1=CC=CC=C1 RCMHUQGSSVZPDG-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- ATLPLEZDTSBZQG-UHFFFAOYSA-N propan-2-ylphosphonic acid Chemical compound CC(C)P(O)(O)=O ATLPLEZDTSBZQG-UHFFFAOYSA-N 0.000 description 1
- XOTCNYPJDCKTCB-UHFFFAOYSA-N propylphosphonic acid Chemical compound OP(O)(=O)CC=[CH] XOTCNYPJDCKTCB-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- JKUYRAMKJLMYLO-UHFFFAOYSA-N tert-butyl 3-oxobutanoate Chemical compound CC(=O)CC(=O)OC(C)(C)C JKUYRAMKJLMYLO-UHFFFAOYSA-N 0.000 description 1
- OGDSVONAYZTTDA-UHFFFAOYSA-N tert-butylphosphonic acid Chemical compound CC(C)(C)P(O)(O)=O OGDSVONAYZTTDA-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- UAEJRRZPRZCUBE-UHFFFAOYSA-N trimethoxyalumane Chemical compound [Al+3].[O-]C.[O-]C.[O-]C UAEJRRZPRZCUBE-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- WXKZSTUKHWTJCF-UHFFFAOYSA-N zinc;ethanolate Chemical compound [Zn+2].CC[O-].CC[O-] WXKZSTUKHWTJCF-UHFFFAOYSA-N 0.000 description 1
- JXNCWJJAQLTWKR-UHFFFAOYSA-N zinc;methanolate Chemical compound [Zn+2].[O-]C.[O-]C JXNCWJJAQLTWKR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/10—Metal complexes of organic compounds not being dyes in uncomplexed form
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
- G02B5/223—Absorbing filters containing organic substances, e.g. dyes, inks or pigments
Definitions
- the present invention relates to a light absorber, an article with a light absorber, an imaging device, and a light absorbing composition.
- Various optical filters are placed in front of the solid-state imaging device in order to obtain images with good color reproducibility in imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor).
- CCD Charge Coupled Device
- CMOS Complementary Metal Oxide Semiconductor
- a solid-state imaging device has spectral sensitivity in a wide wavelength range from the ultraviolet region to the infrared region.
- human visibility exists only in the visible light region. Therefore, in order to make the spectral sensitivity of a solid-state image pickup device in an image pickup device closer to human visibility, there is a known technique in which an optical filter that shields part of the infrared or ultraviolet light is arranged in front of the solid-state image pickup device. .
- an optical filter it was common to block infrared rays or ultraviolet rays using light reflection by a dielectric multilayer film.
- optical filters having a film containing a light absorbing agent Since the transmittance characteristics of an optical filter with a film containing a light absorbing agent are not easily affected by the angle of incidence, good images with little color change can be obtained even when light is incident obliquely on the optical filter in an imaging device. Obtainable.
- a light-absorbing optical filter that does not use a light-reflecting film can suppress the occurrence of ghosts and flares caused by multiple reflections by the light-reflecting film. Cheap.
- an optical filter having a film containing a light absorbing agent is advantageous in terms of miniaturization and thickness reduction of imaging devices.
- Patent Document 1 describes an optical filter having a light absorbing layer containing a light absorbing agent formed by a phosphonic acid having a phenyl group or a halogenated phenyl group (phenyl-based phosphonic acid) and copper ions. It is
- Patent Document 2 describes an optical filter having a UV-IR absorption layer capable of absorbing infrared rays and ultraviolet rays.
- the UV-IR absorbing layer contains UV-IR absorbers formed by phosphonic acid and copper ions.
- the UV-IR absorbing composition contains, for example, a phenyl-based phosphonic acid and a phosphonic acid having an alkyl group or a halogenated alkyl group (alkyl-based phosphonic acid) so that the optical filter satisfies predetermined optical properties. ing.
- Patent Document 3 describes an infrared cut filter that includes an organic dye-containing layer and a copper phosphonate-containing layer.
- Patent Document 4 describes an optical filter that includes an absorption layer, a reflection layer, and a transparent substrate and satisfies predetermined requirements in a spectral transmittance curve at an incident angle of 0°.
- the absorbing layer contains a near-infrared absorbing dye such as a squarylium dye.
- the cutoff wavelength near the infrared region is adjusted to the range of 600-680 nm. Although this is advantageous from the viewpoint of good shielding of infrared rays, it cannot be said to be advantageous from the viewpoint of increasing the transmittance in the red band.
- the wavelength at which the transmittance is 50% near the infrared region is 680 nm or more, a reflective layer is necessary, and the reflective layer is used to shield light that is not sufficient with the absorption layer. must be supplemented by Therefore, in the optical filter described in Patent Document 4, a complicated process is required to form the reflective layer.
- the present invention provides a light absorber that tends to have high transmittance in the visible light region, particularly in the red region, and that can effectively shield near-infrared rays.
- the present invention Provided is a light absorber whose transmission spectrum at an incident angle of 0° satisfies the following conditions (I), (II), (III), (IV), (V), and (VI).
- the average transmittance in the wavelength range of 450 nm to 600 nm is 75% or more.
- the first wavelength at which the transmittance is 50% in the wavelength range of 350 nm to 450 nm is 380 nm or more and 440 nm or less.
- the second wavelength at which the transmittance is 50% in the wavelength range of 650 nm to 750 nm is 680 nm or more and 740 nm or less.
- the maximum transmittance in the wavelength range of 350 nm to 370 nm is 1% or less.
- the maximum transmittance in the wavelength range of 800 nm to 900 nm is 5% or less.
- the maximum transmittance in the wavelength range of 1100 nm to 1200 nm is 5% or less.
- the present invention goods; and the light absorber formed on a part of the surface of the article, An article with a light absorber is provided.
- the transmission spectra at an incident angle of 0° of the light absorber obtained by curing the light-absorbing composition are the following (i), (ii), (iii), (iv), (v), and (vi)
- the average transmittance in the wavelength range of 450 nm to 600 nm is 75% or more.
- the first wavelength at which the transmittance is 50% in the wavelength range of 350 nm to 450 nm is 380 nm or more and 440 nm or less.
- the second wavelength at which the transmittance is 50% in the wavelength range of 650 nm to 750 nm is 680 nm or more and 740 nm or less.
- the maximum transmittance in the wavelength range of 350 nm to 370 nm is 1% or less.
- the maximum transmittance in the wavelength range of 800 nm to 900 nm is 5% or less.
- the maximum transmittance in the wavelength range of 1100 nm to 1200 nm is 5% or less.
- the above light absorber can well shield near-infrared rays.
- FIG. 1A is a cross-sectional view showing an example of a light absorber according to the present invention.
- FIG. 1B is a cross-sectional view showing an example of an article with a light absorber according to the present invention.
- FIG. 1C is a cross-sectional view showing another example of the article with a light absorber according to the present invention.
- FIG. 1D is a cross-sectional view showing an example of an optical member provided with a light absorber according to the present invention.
- FIG. 2 is a diagram showing an example of an imaging device according to the present invention.
- 3A is a transmission spectrum of the optical filter according to Example 1.
- FIG. 3B is a transmission spectrum of the optical filter according to Example 1.
- FIG. 3C is a transmission spectrum of the optical filter according to Example 1.
- FIG. 3A is a transmission spectrum of the optical filter according to Example 1.
- FIG. 3B is a transmission spectrum of the optical filter according to Example 1.
- FIG. 3C is a transmission spectrum of the optical
- FIG. 4A is a transmission spectrum of the optical filter according to Example 2.
- FIG. 4B is a transmission spectrum of the optical filter according to Example 2.
- FIG. 4C is a transmission spectrum of the optical filter according to Example 2.
- FIG. 5A is a transmission spectrum of the optical filter according to Example 3.
- FIG. 5B is a transmission spectrum of the optical filter according to Example 3.
- FIG. 5C is a transmission spectrum of the optical filter according to Example 3.
- FIG. 6 is a transmission spectrum of the optical filter according to Comparative Example 1.
- FIG. 7 is a transmission spectrum of an optical filter according to Comparative Example 2.
- FIG. 8 is a transmission spectrum of an optical filter according to Comparative Example 3.
- FIG. 9 is a transmission spectrum of an optical filter according to Comparative Example 4.
- FIG. 10 is an optical filter transmission spectrum according to Example 9.
- FIG. 10 is an optical filter transmission spectrum according to Example 9.
- the camera mainly acquires the external situation as information such as a captured image, and the acquired information can support the operation of the driver, the operator, or the control system for autopilot.
- the camera from the viewpoint of improving the accuracy of recognizing the external environment, it is advantageous for the camera to have an optical filter that has a high transmittance in the visible light range and can effectively shield infrared rays.
- the visible light range is the range of wavelengths of electromagnetic waves that can be recognized as light by humans.
- the lower limit of the wavelength range is 360 to 400 nm, and the upper limit of the wavelength range is 760 to 830 nm.
- the visible light range can range from 380 to 780 nm.
- Infrared rays, especially near-infrared rays (NIR) are defined as electromagnetic waves having wavelengths up to about 1400 nm beyond the wavelength range of visible light.
- red On traffic lights and road signs, indications related to danger or safety may be displayed in red.
- regulatory signs such as traffic signs (road signs) such as no vehicle entry, stop, and slow down correspond to such indications.
- high transmittance in the wavelength range corresponding to red is important for accurately recognizing surrounding objects including red traffic lights and regulatory signs as described above.
- the red color displayed on regulatory signs and the like exhibits high reflectance in a wavelength range whose lower limit is 580 to 620 nm and whose upper limit exceeds about 780 nm, although it depends on the specifications of members such as retroreflective sheets.
- the transmittance is high in the wavelength range of 580 to 780 nm, or the transmittance is high in the wavelength range of 620 to 760 nm, or the wavelength is 620 to 750 nm.
- the transmission is high in the range of .
- the ability of the optical filter to shield infrared rays well means that, for example, a camera cannot obtain a good photographed image due to the influence of sensing using infrared rays in a vehicle, mobile device, or transport device traveling in the surrounding area. important to curb the problem. It is understood that the characteristics of the optical filter described in Patent Document 4 are adjusted from this point of view. On the other hand, the optical filter described in Patent Document 4 has a reflective layer in addition to the absorbing layer. For this reason, the inventors have made extensive trials and errors to develop a technique that can increase the transmittance in the red band and effectively shield near-infrared rays without using a reflective layer. As a result, the present invention was completed at last.
- the visible light region or visible light region is defined as a wavelength range of 380 to 780 nm
- the red band is a wavelength range of 580 to 780 nm or one within the range. defined as the partial band.
- infrared rays are defined as light (electromagnetic waves) having a wavelength greater than 780 nm, which is the upper limit of the visible light range, and belonging to a wavelength range of up to 1400 nm, and correspond to near infrared rays (NIR).
- NIR near infrared rays
- Ultraviolet rays are defined as light (electromagnetic waves) within a wavelength range from 280 nm to 380 nm, which is the lower limit of the visible light range, and correspond to part of UV-A and UV-B.
- FIG. 1A is a cross-sectional view showing a light absorber 10.
- FIG. The transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the following conditions (I), (II), (III), (IV), (V), and (VI).
- the average transmittance value T A 0(450-600) in the wavelength range of 450 nm to 600 nm is 75% or more.
- the first wavelength ⁇ 500 (UV) at which the transmittance is 50% in the wavelength range of 350 nm to 450 nm is 380 nm or more and 440 nm or less.
- the second wavelength ⁇ 500 (IR) at which the transmittance is 50% in the wavelength range of 650 nm to 750 nm is 680 nm or more and 740 nm or less.
- the maximum transmittance T M 0(350-370) in the wavelength range of 350 nm to 370 nm is 1% or less.
- the maximum transmittance T M 0(800-900) in the wavelength range of 800 nm to 900 nm is 5% or less.
- the maximum transmittance T M 0(1100-1200) in the wavelength range of 1100 nm to 1200 nm is 5% or less.
- the transmittance in the visible light region tends to be high.
- the transmittance in the red band of the body 10 tends to be high.
- satisfying the conditions (V) and (VI) allows the light absorber 10 to effectively block infrared rays.
- the condition (IV) is satisfied, the light absorber 10 can satisfactorily shield ultraviolet rays.
- the average value T A 0(450-600) is desirably 80% or more, more desirably 85% or more.
- the transmission spectrum of the light absorber 10 at an incident angle of 0° preferably further satisfies the following condition (Ia).
- the average transmittance value T A 0(650-670) in the wavelength range of 650 nm to 670 nm is 70% or more.
- the average value T A 0(650-670) is desirably 72% or more, more desirably 74% or more.
- the first wavelength ⁇ 500 (UV) is preferably 385 nm or more and 420 nm or less, more preferably 390 nm or more and 410 nm or less.
- the second wavelength ⁇ 500 is preferably over 680 nm and 740 nm or less, more preferably 685 nm or more and 730 nm or less, and still more preferably 690 nm or more and 720 nm or less.
- the maximum value T M 0(350-370) is preferably 0.5% or less.
- the maximum value T M 0(800-900) is preferably 3% or less.
- the maximum value T M 0(1100-1200) is preferably 3% or less.
- the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (VII).
- the transmittance of the light absorber 10 in the red band tends to increase more reliably.
- the transmittance T 0(750) at a wavelength of 750 nm is 7% or more.
- the transmittance T 0(750) is preferably 10% or more, more preferably 15% or more.
- the transmission spectrum of the light absorber 10 at an incident angle of 0° further satisfies, for example, the following condition (VIII).
- VIII Transmittance T 0(780) at a wavelength of 780 nm is 3% or more.
- the transmittance T 0(780) is desirably 4% or more, more desirably 5% or more.
- the transmission spectrum of the light absorber 10 at an incident angle of 55° has, for example, a third wavelength ⁇ 50 55 (UV) with a transmittance of 50% in the wavelength range of 350 nm to 450 nm.
- the absolute value ⁇ 500/55 (UV) of the difference between the third wavelength ⁇ 5055 (UV) and the first wavelength ⁇ 500 ( UV) is, for example, 12 nm or less.
- the absolute value ⁇ 50 0/55 (UV) is preferably 10 nm or less, more preferably 8 nm or less, and even more preferably 6 nm or less.
- the transmission spectrum of the light absorber 10 at an incident angle of 55° has, for example, a fourth wavelength ⁇ 50 55 (IR) with a transmittance of 50% in the wavelength range of 650 nm to 750 nm.
- the absolute value ⁇ 500/55 (IR) of the difference between the fourth wavelength ⁇ 5055 (IR) and the second wavelength ⁇ 500 ( IR) is, for example, 24 nm or less.
- the absolute value ⁇ 50 0/55(IR) is preferably 20 nm or less, more preferably 18 nm or less, even more preferably 16 nm or less.
- the transmission spectrum of the light absorber 10 at an incident angle of 45° has, for example, a wavelength ⁇ 50 45 (UV) at which the transmittance is 50% in the wavelength range of 350 nm to 450 nm.
- the absolute value ⁇ 500/45 (UV) of the difference between the wavelength ⁇ 50 45 (UV) and the first wavelength ⁇ 500 (UV) is , for example, 10 nm or less, preferably 8 nm or less, more preferably 5 nm. It is below.
- the transmission spectrum of the light absorber 10 at an incident angle of 35° has, for example, a wavelength ⁇ 50 35 (UV) at which the transmittance is 50% in the wavelength range of 350 nm to 450 nm.
- the absolute value ⁇ 500/35 (UV) of the difference between the wavelength ⁇ 50 35 (UV) and the first wavelength ⁇ 500 (UV) is , for example , 8 nm or less, preferably 6 nm or less, more preferably 4 nm. It is below.
- the transmission spectrum of the light absorber 10 at an incident angle of 45° has, for example, a wavelength ⁇ 50 45 (IR) at which the transmittance is 50% in the wavelength range of 650 nm to 750 nm.
- the absolute value ⁇ 500/45 (IR) of the difference between the wavelength ⁇ 5045 (IR) and the second wavelength ⁇ 500 (IR) is, for example, 18 nm or less, preferably 16 nm or less, more preferably 12 nm. It is below.
- the transmission spectrum of the light absorber 10 at an incident angle of 35° has, for example, a wavelength ⁇ 50 35 (IR) at which the transmittance is 50% in the wavelength range of 650 nm to 750 nm.
- the absolute value ⁇ 500/35 (IR) of the difference between the wavelength ⁇ 5035 (IR) and the second wavelength ⁇ 500 (IR) is, for example, 12 nm or less, preferably 10 nm or less, more preferably 8 nm. It is below.
- the light absorber 10 typically contains a predetermined light absorber.
- the light absorber contained in the light absorber 10 is not limited to a specific substance as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I) to (VI).
- the light absorber 10 may contain, for example, a light-absorbing compound containing phosphonic acid and a copper component as a light-absorbing agent, and may contain an ultraviolet-absorbing agent that absorbs at least part of ultraviolet rays.
- the light absorber 10 is in a solid state such as a film or a film formed on a predetermined object, and the light absorber 10 is produced by curing a liquid light-absorbing composition that is a precursor thereof. can be When the light absorber 10 contains a compound capable of exhibiting a predetermined function, the light absorbing composition, which is a precursor thereof, can naturally contain the compound and its precursor.
- the phosphonic acid in the light absorber 10 or the light absorbing compound contained in the light absorbing composition is specified as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I) to (VI). is not limited to phosphonic acids of The phosphonic acid is represented, for example, by the following formula (a).
- R 1 is an alkyl group or a halogenated alkyl group in which at least one hydrogen atom in the alkyl group is substituted with a halogen atom.
- the transmission band of the light absorber 10 tends to extend to a wavelength of about 700 nm, and the light absorber 10 tends to have desired transmittance characteristics.
- Phosphonic acids are, for example, methylphosphonic acid, ethylphosphonic acid, normal (n-)propylphosphonic acid, isopropylphosphonic acid, normal (n-)butylphosphonic acid, isobutylphosphonic acid, sec-butylphosphonic acid, tert-butylphosphonic acid , or bromomethylphosphonic acid.
- the copper component in the light absorbing compound contained in the light absorber 10 or the light absorbing composition is a concept including copper ions, copper complexes, compounds containing copper, and the like.
- the copper component may have favorable absorption properties for a portion of light belonging to the near-infrared region and high transparency to light in the visible region over wavelengths of 450 nm to 680 nm.
- the transition of electrons in the d-orbital of divalent copper ions selectively absorbs light of a wavelength belonging to the near-infrared region corresponding to this energy, thereby exhibiting excellent near-infrared absorption characteristics.
- divalent copper ions may be mixed with phosphonic acid in the form of a copper salt so that the phosphonic acid coordinates to the copper ions to form a copper complex (copper salt).
- Sources of the copper component for coordination of the phosphonic acid include, but are not limited to, copper salt anhydrides or water of organic acids such as copper acetate, copper benzoate, copper pyrophosphate, and copper stearate. A solute or a mixture thereof may be used. Moreover, these copper salts may be used alone, or a plurality of copper salts or mixtures thereof may be used.
- the contents of the copper component and phosphonic acid in the light absorber 10 are not limited to specific values.
- the ratio of the content of phosphonic acid to the content of the copper component in the light absorber 10 is, for example, 0.3 to 1.5 based on the amount (mole) of the substance.
- the ratio of the phosphonic acid content to the copper component content in the light absorber 10 may be preferably 0.4 to 1.4, more preferably 0.6 to 1.2. , more preferably 0.8 to 1.1.
- the light absorber 10 or the light absorbing composition may further contain, for example, a phosphate ester compound.
- the function of the phosphate ester facilitates appropriate dispersion of the light absorbing compound in the light absorber 10 .
- the phosphate ester may function as a dispersing agent for the light-absorbing compound, and a portion thereof may react with the metal component to form a compound.
- the phosphate ester may be coordinated to or reacted with the light-absorbing compound, and may form a partial complex with the copper component.
- Compounds containing phosphate esters and copper components may also absorb light of some wavelengths, as long as the light absorber 10 satisfies the requirements for a given transmission spectrum.
- Phosphate ester is substantially not included in the light absorbing composition, which is the precursor of the light absorber 10, as long as the light absorbing material containing at least phosphonic acid and a copper component is suitably dispersed. may Moreover, in order to impart a dispersing function, for example, when an alkoxysilane monomer described later is contained in the light-absorbing composition, the addition amount of the phosphate ester can be reduced.
- the phosphate ester is not limited to a specific phosphate ester or its compound.
- Phosphate esters for example, have polyoxyalkyl groups. Examples of such phosphate esters include Plysurf A208N: polyoxyethylene alkyl (C12, C13) ether phosphate, Plysurf A208F: polyoxyethylene alkyl (C8) ether phosphate, and Plysurf A208B: polyoxyethylene.
- NIKKOL DDP-2 polyoxyethylene alkyl ether phosphate
- NIKKOL DDP-4 polyoxyethylene alkyl ether phosphate
- NIKKOL DDP-6 polyoxyethylene alkyl ether phosphate is mentioned. All of these are products manufactured by Nikko Chemicals. These phosphate ester compounds may be used alone or in combination.
- the contents of phosphonic acid and phosphoric acid ester in the light absorber 10 are not limited to specific values.
- the ratio of the phosphonic acid content to the phosphoric acid ester content in the light absorber 10 is, for example, 0.6 to 1.6 on a mass basis. As a result, even when the light absorber 10 comes into contact with water vapor, hydrolysis of the phosphate ester is suppressed, and the light absorber 10 tends to have good weather resistance.
- the ratio of the phosphonic acid content to the phosphoric acid ester content in the light absorber 10 may preferably be 0.7 to 1.5, more preferably 0.8 to 1.4. good.
- the ratio of the content of the copper component to the content of the phosphorus component in the light absorber 10 is not limited to a specific value.
- the ratio of the content of the copper component to the content of the phosphorus component in the light absorber 10 is, on a mass basis, for example 1.0 to 3.0, preferably 1.5 to 2.0.
- the phosphorus component may be derived from phosphonic acid contained in the light absorber 10 or its precursor, the light absorbing composition, and may be added to the light absorber 10 or its precursor, the light absorbing composition. It may be derived from the contained phosphonic acid and phosphate ester, and may also be contained in other additives.
- the light absorber 10 or the light absorbing composition may further contain, for example, alkoxysilane.
- Alkoxysilanes include alkoxysilane monomers and partially hydrolyzed products thereof. The presence of alkoxysilane can prevent the particles of the light-absorbing agent from aggregating with each other. Absorbents are well dispersed. Further, desirably, when the light absorbing composition is used to produce a light absorber or a light absorbing filter, the alkoxysilane is treated so that hydrolysis reaction and polycondensation reaction of the alkoxysilane occur sufficiently, thereby forming a siloxane bond.
- the light absorber has good moisture resistance.
- the light absorber has good heat resistance. This is because the siloxane bond has higher bond energy and is chemically more stable than bonds such as —C—C— and —CO— bonds, and is excellent in heat resistance and moisture resistance.
- the light-absorbing composition contains alkoxysilane
- a so-called humidification treatment is performed, in which the light-absorbing composition is exposed to a relatively high-humidity atmosphere for a certain period of time. good too. It is believed that the humidification treatment promotes the hydrolysis of the alkoxysilane contained in the light-absorbing composition or the light-absorbing material by the water component in the atmosphere, thereby promoting the formation of siloxane bonds.
- the humidification treatment can form a hard and dense light absorber 10 in a state in which the fine particles containing the light absorbing agent do not aggregate.
- the alkoxysilane is not limited to a specific alkoxysilane as long as it can form a hydrolysis-condensation compound having a siloxane bond in the light absorber 10 by hydrolysis reaction and condensation polymerization reaction.
- Alkoxysilanes are, for example, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-glycidoxypropyltrisilane.
- It may be a monomer such as methoxysilane, 3-glycidoxypropyltriethoxysilane, or 3-glycidoxypropylmethyldiethoxysilane, or may be a dimer or oligomer in which a part thereof is bonded. .
- the light absorber 10 or light absorbing composition further contains, for example, a curable resin.
- the resin is required to be capable of dispersing or dissolving and retaining the light-absorbing compound containing the phosphonic acid and copper component described above.
- the resin is liquid in an uncured or unreacted state and capable of dispersing or dissolving the light-absorbing compound containing the phosphonic acid and the copper component described above.
- an uncured liquid resin containing a light-absorbing compound can be applied onto any object by a coating method such as spin coating, spraying, dipping, and dispensing to form a coating film. Desirable as a resin.
- the object on which the coating film is formed is a substrate having any surface, whether flat or curved.
- the uncured liquid resin is desirably curable by heating, humidification, energy irradiation such as light, or a combination thereof.
- the resin is a plate-shaped body having a smooth surface and a thickness of 1 mm formed by curing the resin under conditions where the transmission spectrum of the light absorber 10 at an incident angle of 0° is (I) to (VI). is not limited to a specific resin as long as it satisfies any one of the conditions that the transmission spectrum of is 90% or more at a wavelength of 450 nm to 800 nm.
- resins are cyclic polyolefin-based resins, epoxy-based resins, polyimide-based resins, modified acrylic resins, silicone resins, and polyvinyl-based resins such as PVB.
- the light absorber 10 or a light absorbing composition that is a precursor thereof may contain a curing catalyst related to the curing of the resin described above.
- the curing resin may be a catalyst capable of controlling conditions such as the curing speed of the resin, the reactivity of the curing of the resin, and the hardness of the cured resin.
- an organic compound containing a metal component is preferable.
- Organometallic compounds are not limited to specific compounds.
- an organic metal compound an organic aluminum compound, an organic titanium compound, an organic zirconium compound, an organic zinc compound, an organic tin compound, or the like may be used.
- organoaluminum compounds include, but are not limited to, aluminum salt compounds such as aluminum triacetate and aluminum octylate, aluminum trimethoxide, aluminum triethoxide, aluminum dimethoxide, aluminum diethoxide, aluminum triallyloxide, aluminum aluminum alkoxide compounds such as diallyl oxide and aluminum isopropoxide, as well as aluminum methoxybis(ethylacetoacetate), aluminum methoxybis(acetylacetonate), aluminum ethoxybis(ethylacetoacetate), aluminum ethoxybis(acetylacetonate) , aluminum isopropoxybis(ethylacetoacetate), aluminum isopropoxybis(methylacetoacetate), aluminum isopropoxybis(t-butylacetoacetate), aluminum butoxybis(ethylacetoacetate), aluminum dimethoxy(ethylacetoacetate), aluminum dimethoxy (acetylacetonate), aluminum diethoxy (ethylacetoacetate), aluminum diethoxy (
- organotitanium compounds include, but are not limited to, titanium chelates such as titanium tetraacetylacetonate, dibutyloxytitanium diacetylacetonate, titanium ethylacetoacetate, titanium octylene glycolate, and titanium lactate, and tetraisopropyl.
- titanium chelates such as titanium tetraacetylacetonate, dibutyloxytitanium diacetylacetonate, titanium ethylacetoacetate, titanium octylene glycolate, and titanium lactate, and tetraisopropyl.
- Titanate, tetrabutyl titanate, tetramethyl titanate, tetra(2-ethylhexyl titanate), titanium tetra-2-ethylhexoxide, titanium butoxy dimer, titanium tetra-normal butoxide, titanium tetraisopropoxide, and titanium diisopropoxy Titanium alkoxides such as bis(ethylacetoacetate) can be exemplified. These may be used singly or in combination.
- Organic zirconium compounds include, but are not limited to, zirconium tetraacetylacetonate, zirconium dibutoxy bis(ethylacetoacetate), zirconium monobutoxyacetylacetonate bis(ethylacetoacetate), zirconium tributoxy monoacetylacetonate, and zirconium chelates such as zirconium tetraacetylacetonate, and zirconium alkoxides such as zirconium tetra-normal butoxide and zirconium tetra-normal propoxide. These may be used singly or in combination.
- organic zinc compounds examples include zinc alkoxides such as dimethoxyzinc, diethoxyzinc, and ethylmethoxyzinc. These may be used singly or in combination.
- organic tin compounds include tin alkoxides such as dimethyltin oxide, diethyltin oxide, dipropyltin oxide, dibutyltin oxide, dipentyltin oxide, dihexyltin oxide, diheptyltin oxide, and dioctyltin oxide. These may be used singly or in combination.
- At least one of the alkoxide having a metal component and the hydrolyzate of the alkoxide having a metal component as described above may be further contained.
- Alkoxides having a metal component and hydrolysates of alkoxides having a metal component are collectively referred to as "metal alkoxide compounds".
- the metal alkoxide is represented by the general formula M(OR) n (M is a metal element, n is an integer of 1 or more), and is a compound in which the hydrogen atom of the hydroxy group of alcohol is replaced with a metal element M.
- Metal alkoxides form M--OH by hydrolysis, and further form M--O--M bonds by reacting other molecules with metal alkoxides.
- the metal alkoxide compound is added to the light-absorbing composition. It may also function as a catalyst that promotes curing.
- the light-absorbing composition is cured by heat treatment, the higher the temperature of the heat treatment, the easier it is to improve the environmental resistance such as heat resistance.
- the temperature of the heat treatment is high, there is a possibility that the properties of some light absorbing compounds or ultraviolet absorbers to be described later may deteriorate. If the properties of the ultraviolet absorber deteriorate, the wavelength of light absorbed by the ultraviolet absorber may deviate from the intended absorption wavelength.
- a reduction or disappearance of the absorption capacity of the UV absorber can also occur.
- the light absorber 10 contains a metal alkoxide compound, curing of the light absorbing composition can be promoted even if the heat treatment temperature is not high. As a result, the light absorber 10 tends to have high environmental resistance.
- the metal component contained in the metal alkoxide compound is not limited to a specific component.
- the metal components are eg Al, Ti, Zr, Zn, Sn and Fe.
- metal alkoxides include CAT-AC and DX-9740, which are aluminum alkoxides manufactured by Shin-Etsu Chemical Co., Ltd., ORGATICS AL-3001, which is an aluminum alkoxide manufactured by Matsumoto Fine Chemical Co., Ltd., and aluminum iso which is an aluminum alkoxide manufactured by Tokyo Chemical Industry Co., Ltd. Propoxide, D-20, D-25, and DX-175 titanium alkoxides manufactured by Shin-Etsu Chemical Co., Ltd.
- the ratio of the content of the copper component to the content of the metal component contained in the metal alkoxide compound in the light absorber 10 is not limited to a specific value.
- the ratio of the content of the copper component to the content of the metal component contained in the metal alkoxide compound in the light absorber 10 may be 1 ⁇ 10 2 to 7 ⁇ 10 2 , preferably 2 ⁇ , on a mass basis. It may be 10 2 to 6 ⁇ 10 2 , more preferably 3 ⁇ 10 2 to 5 ⁇ 10 2 .
- the ratio of the content of the phosphorus component to the content of the metal component contained in the metal alkoxide compound in the light absorber 10 is not limited to a specific value.
- the ratio of the content of the phosphorus component to the content of the metal component contained in the metal alkoxide compound in the light absorber 10 may be 0.5 ⁇ 10 2 to 5 ⁇ 10 2 on a mass basis, preferably 1 It may be from ⁇ 10 2 to 4 ⁇ 10 2 , more preferably from 1.5 ⁇ 10 2 to 3 ⁇ 10 2 .
- the light absorber 10 or a light absorbing composition that is a precursor thereof may contain an ultraviolet absorber that absorbs a part of light belonging to ultraviolet rays.
- the ultraviolet absorber is not limited to a specific compound as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I) to (VI).
- the ultraviolet absorber is, for example, a compound that does not have both a hydroxy group and a carbonyl group in the molecule, and is a compound that does not have both a hydroxy group and a carbonyl group in one molecule when represented by a structural formula. be.
- Curing of the light-absorbing composition can be facilitated, such as by the coordination of reactants or precursors to specific positions within the molecule, such as alkoxides having a metal component.
- reactants or precursors to specific positions within the molecule, such as alkoxides having a metal component.
- the presence of a group that is more likely to coordinate with a substance other than the substance subjected to the reaction for curing the light-absorbing composition may weaken the action of the catalyst.
- both the hydroxy group and the carbonyl group have high electron-donating properties, and the alkoxide compound reacts or coordinates with an ultraviolet absorber having these groups, and some of them form a complex.
- the intrinsic UV absorption properties of UV absorbers can be altered.
- the UV absorber is a compound that does not have both a hydroxyl group and a carbonyl group in the molecule, the alkoxide compound is less likely to form a complex with the UV absorber, and the original UV absorption properties of the UV absorber are exhibited.
- the ultraviolet absorber may contain only one of a hydroxyl group and a carbonyl group in the molecule.
- the ultraviolet absorber desirably absorbs light in a desired wavelength range, has compatibility with a specific solvent, disperses well in a light-absorbing composition, especially a curable resin, and is resistant to It is selected from the viewpoint of being excellent in environmental friendliness.
- UV absorbers are benzophenone-based compounds, benzotriazole-based compounds, salicylic acid-based compounds, and triazine-based compounds.
- TinuvinPS, Tinuvin99-2, Tinuvin234, Tinuvin326, Tinuvin329, Tinuvin900, Tinuvin928, Tinuvin405, and Tinuvin460 can be used. These are UV absorbers manufactured by BASF and Tinuvin is a registered trademark.
- the content of the ultraviolet absorbent in the light absorber 10 is not limited to a specific value as long as the transmission spectrum of the light absorber 10 at an incident angle of 0° satisfies the conditions (I) to (VI).
- a high absorption capacity can be exhibited by containing a small amount of the ultraviolet absorber.
- the ratio of the content of the ultraviolet absorber to the content of the copper component in the light absorber 10 is, on a mass basis, for example 0.01 to 1, preferably 0.02 to 0.5, more preferably 0. 0.07 to 0.14.
- the ratio of the content of the ultraviolet absorber to the content of the phosphorus component in the light absorber 10 is, for example, 0.02 to 2, preferably 0.04 to 1, more preferably 0.12 on a mass basis. ⁇ 0.26.
- the light absorber 10 is, for example, a film.
- film is synonymous with coating or layer.
- the light absorber 10 is not limited to a film shape.
- the thickness of the light absorber 10 is not limited to a specific value.
- the thickness of the light absorber 10 is, for example, 120 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
- a small thickness of the light absorber 10 is advantageous from the viewpoint of lowering the profile of an imaging device including the light absorber 10 .
- silicone resin is included as a curable resin.
- a curing catalyst may also be added for the purpose of improving the curability of resins such as silicone resins.
- the curing catalyst for the silicone resin is preferably a compound containing a metal component such as a chelate containing a metal component and an alkoxide containing a metal component.
- the layer containing the ultraviolet absorber and the layer of the resin containing the light absorber containing phosphonic acid and copper had to be provided as separate layers, respectively, which tended to increase the thickness of the light absorber. rice field.
- the same layer or film can be obtained by using a specific ultraviolet absorber. can include an ultraviolet absorber in. As a result, it is possible to exhibit the original ultraviolet absorption performance of the ultraviolet absorber, the light absorber 10 can be obtained with a smaller number of layers, and the thickness of the light absorber 10 can be reduced.
- the light absorber 10 can be produced, for example, by curing a given light absorbing composition.
- the light absorbing composition is not limited to a specific composition.
- the light-absorbing composition may contain, for example, a light-absorbing compound containing phosphonic acid and a copper component, and an ultraviolet absorber that absorbs at least part of ultraviolet rays.
- the description of the light-absorbing compound in the light absorber 10 can be referred to.
- the light-absorbing composition further contains, for example, at least one of an alkoxide having a metal component and a hydrolyzate of an alkoxide having a metal component.
- an alkoxide having a metal component and a hydrolyzate of an alkoxide having a metal component the description of the alkoxide compound in the light absorber 10 can be referred to.
- the ultraviolet absorber in the light absorbing composition is not limited to a specific compound.
- the description of the ultraviolet absorber in the light absorber 10 can be referred to.
- a UV absorber is, for example, a compound that does not contain both a hydroxy group and a carbonyl group in its molecule. That is, the ultraviolet absorber may be a compound containing only one of a hydroxyl group and a carbonyl group.
- the light-absorbing composition further contains, for example, a phosphate ester. This facilitates appropriate dispersion of the light-absorbing compound in the light-absorbing composition.
- a phosphate ester the description of the phosphate ester in the light absorber 10 can be referred to.
- the light-absorbing composition further contains, for example, a curable resin.
- a curable resin the description of the resin in the light absorber 10 can be referred to.
- the source of the copper component in the light-absorbing compound is not limited to any particular substance.
- Sources of copper components are, for example, copper salts.
- Copper salts may be anhydrous or hydrates of copper chloride, copper formate, copper stearate, copper benzoate, copper pyrophosphate, copper naphthenate, and copper citrate.
- copper acetate monohydrate is represented as Cu( CH3COO ) 2.H2O , where 1 mole of copper acetate monohydrate provides 1 mole of copper ions.
- a member in which the light absorber 10 is formed on the surface of an article can be used as an optical filter.
- the light absorber 10 itself can be used independently as an optical filter by forming the light absorber 10 on the surface of an article and then peeling it off.
- a method for producing the light absorber 10 is not limited to a specific method.
- the light absorber 10 may be produced by methods such as casting, compression molding, vacuum molding, press molding, injection molding, blow molding, and extrusion molding.
- the light absorber 10 may be used alone as shown in FIG. 1A.
- an article 1a with a light absorber can be provided.
- the article 1 a with a light absorber includes an article 20 and a light absorber 10 .
- the light absorber 10 covers at least part of the surface of the article 20 .
- the shape of the article 20 in the article 1a with a light absorber is not limited to a specific shape.
- Article 20 may be a flat member or substrate.
- Article 20 is not limited to a particular article.
- the article 20 is an optical element (including an acoustooptic element) such as a lens, mirror, prism, diffuser, flat plate microlens array, polarizer, diffraction grating, hologram, light modulation element, light deflection element, and filter.
- the article 20 may be a solid-state imaging device, a light-transmitting shield such as a building or automobile window or windshield, a helmet, and goggles, or a display device such as a display and screen, which absorbs light.
- the body attachment 1a may be a so-called optical filter.
- the surface of the article 20 covered with the light absorber 10 may be flat, curved, or uneven.
- the light absorber 10 may be obtained by molding an optical element such as a lens using the light absorbing composition. In this case, the light absorber 10 may be used alone.
- the article 1a with a light absorber or the light absorber 10 may have another functional film 30.
- FIG. The other functional film is not limited to a specific film, and is a hard coating film (hard coat) for improving scratch resistance, when light is incident on the article 1a with the light absorber or the light absorber 10 (ii) anti-reflection coatings or anti-reflection coatings (hereinafter collectively referred to as “anti-reflection coatings”) for reducing or preventing the occurrence of reflected light belonging to a specific wavelength range from those surfaces;
- a film hereinafter referred to as a “reflective film” for reflecting more light belonging to a specific wavelength range from the surfaces of the article 1a with the light absorber or the light absorber 10 when light is incident thereon.
- a polarizing film that reduces the transmittance of light having a polarization direction other than a specific direction when light is incident on the light absorber attached article 1a or the light absorber 10, or other configuration or predetermined action, etc. It may be a selective-wavelength light-absorbing film that absorbs light in a part of the wavelength range.
- the functional film 30 may be configured as a single film of any of these functional films, or may be configured from a plurality of functional films.
- the article 1a with a light absorber or the light absorber 10 has an antireflection film as the functional film 30, the article 1a with a light absorber or the light absorber 10 may may be provided with an antireflection film.
- the main surface is the surface having the largest area of the substrate such as the article 1a with the light absorber or the light absorber 10 or the like.
- Antireflection coatings have one or more layers, for example, of one or more materials.
- a material constituting the antireflection film is not limited to a specific material.
- the antireflection film may be, for example, a film formed by a sol-gel method or the like containing SiO 2 , SiO 1.5 , TiO 2 or TiO 1.5 as a main component, and the main component contains hollow fine particles or a low refractive index material. It may be a film in which fine particles are dispersed.
- the antireflection film contains TiO 2 , Ta 2 O 3 , SiO 2 , Nb 2 O 5 , ZnS, MgF, or a mixture thereof, and is formed by a method such as vapor deposition, sputtering, or ion plating. It may be a membrane.
- the vapor deposition method may be an ion beam assisted vapor deposition method.
- the antireflection film may be a single-layer film containing the above materials, or may be a multilayer film (dielectric multilayer film) in which films of different materials are alternately laminated. Also, the antireflection film may be formed in contact with the light absorber 10 or may be formed in contact with another functional layer film formed in contact with the light absorber 10 .
- the light shielding function is exhibited by the cooperation of the light absorber 10 and the light reflecting film.
- the cooperation of these can reduce or block the transmission of light belonging to a specific wavelength range, so that the burden required of the light absorber 10 in terms of light absorption characteristics can be reduced. Therefore, for example, the thickness of the light absorber 10 can be reduced. Also, the content of the light absorbing compound such as the light absorbing agent or the content of the ultraviolet absorber in the light absorber 10 can be reduced.
- the selective wavelength light absorption film is not limited to a specific film, and may be a metal film such as Ag (silver), Al (aluminum), Au (gold), and Pt (platinum). Alternatively, it may be a film containing a compound containing one or more metals other than these.
- a metal film can be used as a simple film exhibiting a light reflecting or light absorbing function because it has a wide wavelength range and a simple structure.
- Such selective wavelength light absorbing films can be used as neutral density (ND) or half mirrors.
- the metal ions contained in the functional films such as the reflective film and the antireflection film react with the UV absorber to form a complex. Structural changes associated with formation may occur. In that case, the absorption band is shifted to the long wavelength side, and the required optical characteristics cannot be obtained because of the change in the ultraviolet absorption ability. Since the ultraviolet absorber contained in the light absorber 10 is made of a compound having neither a hydroxyl group nor a carbonyl group in the molecule, a functional film containing metal components other than Si such as Ti, Mg, and Ta is used.
- a device equipped with the light absorber 10 can be provided.
- the use of such devices is not limited to any particular application.
- Such devices are, for example, on-board cameras and on-board sensors.
- the light absorber 10 has a predetermined ultraviolet absorption property, it is possible to protect the imaging element and the sensor element from ultraviolet rays.
- the light absorber 10 since the light absorber 10 has a high transmittance around a wavelength of 700 nm, the light absorber 10 can be used in sensing systems such as light detection and ranging (Lidar) systems using infrared or red lasers. Since the light absorber 10 has a particularly high transmittance for light belonging to red, a device provided with the light absorber 10 tends to have a high ability to recognize objects such as red traffic lights and road signs.
- Lidar light detection and ranging
- the Lidar system can be installed not only in in-vehicle equipment, but also in portable information terminals such as smartphones.
- an imaging device 100 having a light absorber 10 can be provided.
- the imaging device 100 further includes, for example, a lens system 40 and an imaging device 50 .
- the light absorber 10 is arranged, for example, between the lens system 40 and the imaging device 50 .
- An application target of the imaging device 100 is not limited to a specific product.
- the imaging device 100 is, for example, a camera module mounted on a mobile information terminal such as a smartphone, a device incorporated in a vehicle-mounted sensing module, and a sensing module in an unmanned aircraft such as a drone or an unmanned watercraft (USV). It is applicable as a device.
- the light absorber 10 may be applied to an ambient light sensor for detecting the ambient brightness of a device in which the light absorber 10 is mounted.
- the thickness of the optical filter was measured using a laser displacement meter LK-H008 manufactured by Keyence Corporation. Table 3 shows the results.
- Example 1 4.500 g of copper acetate monohydrate and 240 g of tetrahydrofuran (THF) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 2.572 g of phosphate ester compound PLYSURF A208N manufactured by Daiichi Kogyo Seiyaku Co., Ltd. was added to the obtained copper acetate solution, and the mixture was stirred for 30 minutes to obtain liquid A. Further, 40 g of THF was added to 2.886 g of n-butylphosphonic acid, and the mixture was stirred for 30 minutes to obtain liquid B. Liquid B was added to liquid A while stirring liquid A, and the mixture was stirred at room temperature for 1 minute.
- PLYSURF A208N phosphate ester compound manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
- Tinuvin326 manufactured by BASF was added in an amount of 5 g to 95 g of toluene and stirred for 30 minutes to obtain a composition ⁇ -1 containing an ultraviolet absorber.
- Tinuvin326 contains 2-[5-Chloro-(2H)-Benzotriazol-2-yl]-4-methyl-6-(tert-butyl)phenol represented by the following formula (b-1). board.
- composition ⁇ 2.0 g of composition ⁇ -1, and 0.09 g of CAT-AC (manufactured by Shin-Etsu Chemical Co., Ltd.) containing an aluminum alkoxide compound were combined with 8.80 g of silicone resin KR-300 (manufactured by Shin-Etsu Chemical Co., Ltd.). and stirred for 30 minutes to obtain a light-absorbing composition according to Example 1.
- Table 1 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 4 shows the content ratio of the components.
- the glass substrate was allowed to stand at room temperature for 24 hours to dry the coating film of the fluorinating agent, and then the glass surface was lightly wiped with a dust-free cloth containing Novec 7100 to remove excess fluorinating agent.
- a fluorine-treated substrate was produced.
- a coating film was formed by applying the light-absorbing composition according to Example 1 to an area of 80 mm ⁇ 80 mm in the center of one main surface of the fluorine-treated substrate using a dispenser. After sufficiently drying the obtained coating film at room temperature, it is placed in an oven and slowly raised to room temperature to 45°C to volatilize the solvent and proceed with drying, finally at 85°C for 6 hours. A heat treatment was performed to completely volatilize the solvent and cure. After that, the coating film was peeled off from the fluorine-treated substrate to obtain an optical filter according to Example 1 made of a film-like light absorber.
- the transmission spectra of the optical filter according to Example 1 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 3A, 3B, and 3C, respectively.
- Table 7 shows each parameter observed from the transmission spectrum.
- Example 2 As an ultraviolet absorber, 5.0 g of a benzotriazole-based ultraviolet absorber Tinuvin234 manufactured by BASF was added to 95.0 g of toluene and stirred for 30 minutes to prepare composition ⁇ -2 containing an ultraviolet absorber. Tinuvin234 contained Phenol,2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl) represented by the following formula (b-2). In the preparation of the light-absorbing composition, in the same manner as in Example 1, except that 3.6 g of composition ⁇ -2 was added instead of 2.0 g of composition ⁇ -1. An absorbent composition was prepared. Table 1 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition. In addition, Table 4 shows the content ratio of the components.
- Example 2 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 2 was used, in the same manner as in Example 1, the optical material according to Example 2 comprising a film-shaped light absorber A filter was made.
- the transmission spectra of the optical filter according to Example 1 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 4A, 4B, and 4C, respectively. .
- Table 7 shows each parameter observed from the transmission spectrum.
- Example 3 As an ultraviolet absorber, 5.0 g of a benzotriazole-based ultraviolet absorber Tinuvin329 manufactured by BASF was added to 95.0 g of toluene and stirred for 30 minutes to prepare composition ⁇ -3 containing an ultraviolet absorber. Tinuvin329 contained 2Phenol,2-(2H-Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl) represented by the following formula (b-3). In the preparation of the light-absorbing composition, in the same manner as in Example 1, except that 4.0 g of composition ⁇ -3 was added instead of 2.0 g of composition ⁇ -1. An absorbent composition was prepared. Table 1 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition. In addition, Table 4 shows the content ratio of the components.
- Example 3 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 3 was used, in the same manner as in Example 1, an optical fiber according to Example 3 comprising a film-shaped light absorber A filter was made.
- the transmission spectra of the optical filter according to Example 3 at incident angles of 0° and 35°, incident angles of 0° and 45°, and incident angles of 0° and 55° are shown in FIGS. 5A, 5B, and 5C, respectively. .
- Table 7 shows each parameter observed from the transmission spectrum.
- Example 4 Example 1 in the same manner as in Example 1 except that 0.025 g of aluminum isopropoxide manufactured by Tokyo Kasei Co., Ltd. (Al content: 13.21% by mass) was added instead of CAT-AC containing aluminum alkoxide.
- a light-absorbing composition according to No. 4 was prepared.
- Table 2 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 5 shows the content ratio of the components.
- Example 4 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 4 was used, in the same manner as in Example 1, an optical fiber according to Example 4 comprising a film-shaped light absorber A filter was made.
- transmission spectra were measured at incident angles of 0°, 35°, 45° and 55°.
- Table 8 shows the transmission spectra at incident angles of 0° and 55° and parameters that can be seen from the comparison thereof.
- Example 5> Instead of CAT-AC containing aluminum alkoxide, except that 0.038 g of Orgatics AL-3001 manufactured by Matsumoto Fine Chemical Co., Ltd. containing aluminum tri-secondary butoxide (content of Al component: 10.7% by mass) was added.
- a light-absorbing composition according to Example 5 was prepared in the same manner as in Example 1.
- Table 2 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 5 shows the content ratio of the components.
- Example 5 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 5 was used, in the same manner as in Example 1, an optical fiber according to Example 5 comprising a film-shaped light absorber A filter was made.
- transmission spectra were measured at incident angles of 0°, 35°, 45° and 55°.
- Table 8 shows the transmission spectra at incident angles of 0° and 55° and parameters that can be seen from the comparison thereof.
- Example 6> Instead of CAT-AC containing aluminum alkoxide, 0.05 g of Orgatics TA-8 (Ti component content 16.9% by mass) containing titanium tetraisopropoxide manufactured by Matsumoto Fine Chemical Co., Ltd. was added.
- a light-absorbing composition according to Example 6 was prepared in the same manner as in Example 1.
- Table 2 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 5 shows the content ratio of the components.
- Example 6 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 6 was used, in the same manner as in Example 1, an optical fiber according to Example 6 comprising a film-shaped light absorber A filter was made.
- transmission spectra were measured at incident angles of 0°, 35°, 45°, and 55°.
- Table 8 shows the transmission spectra at incident angles of 0° and 55° and parameters that can be seen from the comparison thereof.
- Example 7 Instead of CAT-AC containing aluminum alkoxide, 0.07 g of Orgatics TA-30 (Ti component content 8.5% by mass) manufactured by Matsumoto Fine Chemical Co., Ltd. containing titanium tetra-2-ethylhexoxide was added. Except for this, the light-absorbing composition according to Example 7 was prepared in the same manner as in Example 2. Table 2 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition. In addition, Table 5 shows the content ratio of the components.
- Example 7 instead of the light-absorbing composition according to Example 2, except that the light-absorbing composition according to Example 7 was used, in the same manner as in Example 2, an optical fiber according to Example 7 comprising a film-shaped light absorber A filter was made.
- transmission spectra were measured at incident angles of 0°, 35°, 45°, and 55°.
- Table 8 shows the transmission spectra at incident angles of 0° and 55° and parameters that can be seen from the comparison thereof.
- Example 8> Instead of CAT-AC containing aluminum alkoxide, 0.06 g of Orgatics ZA-45 (Zr component content 21.0% by mass) containing zirconium tetra-normal propoxide manufactured by Matsumoto Fine Chemical Co., Ltd. was added.
- a light-absorbing composition according to Example 8 was prepared in the same manner as in Example 1.
- Table 2 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 5 shows the content ratio of the components.
- Example 8 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Example 8 was used, in the same manner as in Example 1, an optical fiber according to Example 8 comprising a film-shaped light absorber A filter was made.
- transmission spectra were measured at incident angles of 0°, 35°, 45°, and 55°. Table 8 shows the transmission spectra at incident angles of 0° and 55° and parameters that can be seen from the comparison thereof.
- ⁇ Comparative Example 1> A light-absorbing composition according to Comparative Example 1 was prepared in the same manner as in Example 1, except that composition ⁇ -1 was not added.
- Table 3 shows the amount of material added in the preparation of the light-absorbing composition or the content of the predetermined component in the light-absorbing composition.
- Table 6 shows the content ratio of the components.
- Example 1 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Comparative Example 1 was used, in the same manner as in Example 1, an optical fiber according to Comparative Example 1 comprising a film-shaped light absorber A filter was made.
- FIG. 6 shows the transmission spectrum of the optical filter according to Comparative Example 1 at an incident angle of 0°.
- Table 9 shows each parameter that can be seen from the transmission spectrum.
- Example 2 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Comparative Example 2 was used, in the same manner as in Example 1, an optical fiber according to Comparative Example 2 comprising a film-shaped light absorber A filter was made.
- FIG. 7 shows the transmission spectrum of the optical filter according to Comparative Example 2 at an incident angle of 0°.
- Table 9 shows each parameter that can be seen from the transmission spectrum.
- Example 3 instead of the light-absorbing composition according to Example 1, except that the light-absorbing composition according to Comparative Example 3 was used, in the same manner as in Example 1, an optical fiber according to Comparative Example 3 comprising a film-shaped light absorber A filter was made.
- FIG. 8 shows the transmission spectrum of the optical filter according to Comparative Example 3 at an incident angle of 0°.
- Table 9 shows each parameter that can be seen from the transmission spectrum.
- FIG. 9 shows the transmission spectrum of the optical filter according to Comparative Example 4 at an incident angle of 0°. Table 9 shows each parameter that can be seen from the transmission spectrum.
- the UV absorber Uvinul 3049 used in the preparation of the optical filter according to Comparative Example 2 contains both hydroxyl groups and carbonyl groups in the molecule, and contains an alkoxide compound containing a metal component as a catalyst and an ultraviolet ray. It is presumed that the original absorption wavelength of the ultraviolet absorber was shifted to the longer wavelength side due to a partial reaction with the absorber.
- Comparative Examples 3 and 4 are examples for examining what kind of difference occurs in the transmission spectrum of the optical filter depending on the presence or absence of aluminum alkoxide in the light-absorbing composition.
- the difference in the light absorption characteristics of the optical filters according to Comparative Examples 3 and 4 appeared particularly at the wavelength ⁇ 500 (UV) at which the transmittance was 50% in the wavelength range of 350 nm to 450 nm.
- the optical filter according to Comparative Example 4 containing both the ultraviolet absorber and the aluminum alkoxide had a wavelength ⁇ 500 (UV) of 444 nm.
- the optical filter according to Comparative Example 3 containing no aluminum alkoxide had a wavelength ⁇ 500 (UV) of 400 nm.
- Example 9 An antireflection film was formed on both main surfaces of the optical filter according to Example 1 by a vacuum vapor deposition method, and an optical filter according to Example 9 was produced.
- the antireflection film was a dielectric multilayer film in which a layer made of SiO 2 and a layer made of TiO 2 were alternately laminated, and had 9 layers and a thickness of about 0.4 ⁇ m.
- An optical filter according to Example 9 includes the light absorber according to Example 1 and antireflection films formed on both main surfaces of the light absorber.
- FIG. 10 shows the transmission spectrum of the optical filter according to Example 9 at an incident angle of 0°. Table 8 shows each parameter that can be seen from the transmission spectrum.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optical Filters (AREA)
Abstract
Description
0°の入射角度における透過スペクトルが下記(I)、(II)、(III)、(IV)、(V)、及び(VI)の条件を満たす、光吸収体を提供する。
(I)波長450nm~600nmの範囲における透過率の平均値が75%以上である。
(II)波長350nm~450nmの範囲において透過率が50%となる第一波長は、380nm以上440nm以下である。
(III)波長650nm~750nmの範囲において透過率が50%となる第二波長は、680nm以上740nm以下である。
(IV)波長350nm~370nmの範囲における透過率の最大値が1%以下である。
(V)波長800nm~900nmの範囲における透過率の最大値が5%以下である。
(VI)波長1100nm~1200nmの範囲における透過率の最大値が5%以下である。
物品と、
前記物品の表面の一部に形成された、上記の光吸収体と、を備えた、
光吸収体付物品を提供する。
光吸収性組成物であって、
当該光吸収性組成物を硬化して得られる光吸収体の0°の入射角度における透過スペクトルが下記(i)、(ii)、(iii)、(iv)、(v)、及び(vi)の条件を満たす、光吸収性組成物を提供する。
(i)波長450nm~600nmの範囲における透過率の平均値が75%以上である。
(ii)波長350nm~450nmの範囲において透過率が50%となる第一波長は、380nm以上440nm以下である。
(iii)波長650nm~750nmの範囲において透過率が50%となる第二波長は、680nm以上740nm以下である。
(iv)波長350nm~370nmの範囲における透過率の最大値が1%以下である。
(v)波長800nm~900nmの範囲における透過率の最大値が5%以下である。
(vi)波長1100nm~1200nmの範囲における透過率の最大値が5%以下である。
図1Aは、光吸収体10を示す断面図である。0°の入射角度における光吸収体10の透過スペクトルは、下記(I)、(II)、(III)、(IV)、(V)、及び(VI)の条件を満たす。
(I)波長450nm~600nmの範囲における透過率の平均値TA 0(450-600)が75%以上である。
(II)波長350nm~450nmの範囲において透過率が50%となる第一波長λ50 0(UV)は、380nm以上440nm以下である。
(III)波長650nm~750nmの範囲において透過率が50%となる第二波長λ50 0(IR)は、680nm以上740nm以下である。
(IV)波長350nm~370nmの範囲における透過率の最大値TM 0(350-370)が1%以下である。
(V)波長800nm~900nmの範囲における透過率の最大値TM 0(800-900)が5%以下である。
(VI)波長1100nm~1200nmの範囲における透過率の最大値TM 0(1100-1200)が5%以下である。
(Ia)波長650nm~670nmの範囲における透過率の平均値TA 0(650-670)が70%以上である。
(VII)波長750nmにおける透過率T0(750)が7%以上である。
(VIII)波長780nmにおける透過率T0(780)が3%以上である。
光吸収体10又は光吸収性組成物に含まれる光吸収性化合物におけるホスホン酸は、0°の入射角度における光吸収体10の透過スペクトルが(I)~(VI)の条件を満たす限り、特定のホスホン酸に限定されない。そのホスホン酸は、例えば、下記式(a)で表される。式(a)において、R1は、アルキル基又はアルキル基における少なくとも一つの水素原子がハロゲン原子に置換されたハロゲン化アルキル基である。この場合、光吸収体10の透過帯域が波長700nm付近まで及びやすく、光吸収体10が所望の透過率特性を有しやすい。
光吸収体10又は光吸収性組成物に含まれる光吸収化合物における銅成分とは、銅イオン、銅錯体、及び銅を含有する化合物などを含む概念である。銅成分は近赤外線領域に属する光の一部に対する好ましい吸収特性と、波長450nm~680nmにわたる可視光域における光の高い透過性を有しうる。具体的には、二価の銅イオンのd軌道における電子の遷移によって、このエネルギーに対応する近赤外線領域に属する波長の光を選択的に吸収することにより、優れた近赤外線吸収特性が発揮される。特に、二価の銅イオンは、銅塩の形態でホスホン酸と混合されて、銅イオンにホスホン酸が配位して銅錯体(銅塩)を形成してもよい。
光吸収体10又は光吸収性組成物は、例えば、リン酸エステル化合物をさらに含有していてもよい。リン酸エステルの働きにより、光吸収体10において光吸収性化合物が適切に分散しやすい。リン酸エステルは、光吸収性化合物の分散剤として機能していてもよく、その一部が金属成分と反応して化合物を形成していてもよい。例えば、リン酸エステルは、光吸収性化合物に配位し、又は、その化合物と反応していてもよく、銅成分と一部錯体を形成していてもよい。光吸収体10が所定の透過スペクトルに関する条件を満足する限り、リン酸エステルと銅成分を含む化合物も一部の波長の光を吸収してもよい。リン酸エステルは、光吸収体10の前駆体である光吸収性組成物の中で、少なくともホスホン酸と銅成分を含む光吸収性物質が好適に分散される限りにおいて、実質的に含まれなくてもよい。また、分散機能を付与するために、例えば、後述のアルコキシシランモノマーが光吸収性組成物に含まれる場合は、リン酸エステルの添加量の低減が可能である。
光吸収体10又は光吸収性組成物は、例えば、アルコキシシランをさらに含有していてもよい。アルコキシシランは、アルコキシシランのモノマーやそれらの一部が加水分解したものを含む。アルコキシシランの存在によって、光吸収剤の粒子同士が凝集することを防止できるので、前掲のリン酸エステルの含有量を低減しても、光吸収性組成物又はそれが硬化した光吸収体において光吸収剤が良好に分散する。また、望ましくは、光吸収性組成物を用いて光吸収体や光吸収性フィルタを製造する場合に、アルコキシシランの加水分解反応及び縮重合反応が十分に起こるように処理することにより、シロキサン結合(-Si-O-Si-)が形成され、光吸収体が良好な耐湿性を有する。加えて、光吸収体が良好な耐熱性を有する。なぜなら、シロキサン結合は、-C-C-結合及び-C-O-結合等の結合よりも結合エネルギーが高く化学的に安定しており、耐熱性及び耐湿性に優れているからである。
光吸収体10又は光吸収性組成物は、例えば、硬化性の樹脂をさらに含有している。樹脂は、上述したホスホン酸と銅成分とを含む光吸収性化合物を分散又は溶解させて保持することが可能であることが求められる。また、樹脂は、未硬化又は未反応の状態では液状であり、上述したホスホン酸と銅成分とを含む光吸収性化合物を分散又は溶解させることが可能であるものが望ましい。さらに、光吸収性化合物を含み、未硬化の液状の樹脂が、スピンコート、スプレー、ディップ、及びディスペンシング等のコーティング方法によって、任意の対象物上に塗布されて、塗膜を形成できるものが樹脂として望ましい。塗膜が形成される対象物は、平面及び曲面を問わず任意の表面を有する基材である。未硬化の液状の樹脂は、加熱、加湿、光等のエネルギー照射、又はこれらの組み合わせによる方法によって硬化しうるものが望ましい。樹脂は、0°の入射角度における光吸収体10の透過スペクトルが(I)~(VI)の条件、又は、樹脂を硬化させて形成された、表面が平滑で1mmの厚みを有する板状体の透過スペクトルが、波長450nm~800nmにおいて90%以上であるという条件のいずれかを満たす限り、特定の樹脂に限定されない。樹脂の例は、環状ポリオレフィン系樹脂、エポキシ系樹脂、ポリイミド系樹脂、変性アクリル樹脂、シリコーン樹脂、及びPVB等のポリビニル系樹脂である。
光吸収体10又はその前駆体である光吸収性組成物は、上述の樹脂の硬化に関係する硬化触媒を含んでいてもよい。硬化樹脂は、樹脂の硬化スピード、樹脂の硬化の反応性、及び硬化した樹脂の硬度等の条件をコントロールしうる触媒であってもよい。
光吸収体10又はその前駆体である光吸収性組成物は、紫外線に属する一部の光を吸収する紫外線吸収剤を含んでいてもよい。紫外線吸収剤は、0°の入射角度における光吸収体10の透過スペクトルが(I)~(VI)の条件を満たす限り、特定の化合物に限定されない。紫外線吸収剤は、例えば、分子内にヒドロキシ基及びカルボニル基の両方を有しない化合物であり、構造式で表したときに、一分子内にヒドロキシ基及びカルボニル基の両方の基を有しない化合物である。金属成分を有するアルコキシド等の分子内の特定の位置に反応物質又は前駆体が配位すること等によって光吸収性組成物の硬化が促されうる。例えば、光吸収性組成物の硬化のための反応に供される物質以外の物質により配位しやすい基が存在すると、触媒の作用が弱められる可能性がある。特に、ヒドロキシ基及びカルボニル基のいずれも高い電子供与性を有しており、アルコキシド化合物がこれらの基を有する紫外線吸収剤と反応又は配位して、それらの一部が錯体を形成することによって、紫外線吸収剤に本来的に備わっている紫外線吸収特性が変化する可能性がある。しかし、紫外線吸収剤が分子内にヒドロキシ基及びカルボニル基の両方の基を有しない化合物である場合、アルコキシド化合物が紫外線吸収剤と錯体を形成しにくく、紫外線吸収剤の本来の紫外線吸収特性が発揮されやすい。なお、紫外線吸収剤は、分子内にヒドロキシ基及びカルボニル基のいずれか一方のみの基を含んでいてもよい。
図1C及び図1Dに示すように、光吸収体付物品1a又は光吸収体10は、他の機能性膜30を備えていてもよい。他の機能性膜は、特定の膜に限定されず、耐擦傷性の向上を図るためのハードコーティング膜(ハードコート)、光吸収体付物品1a又は光吸収体10に光を入射させたときに、それらの表面からの特定の波長範囲に属する反射光を低減又は反射光の発生を防止するための反射低減膜又は反射防止膜(以降、これらを「反射防止膜」と総称する。)、光吸収体付物品1a又は光吸収体10に光を入射させたときに、それらの表面からの特定の波長範囲に属する光をより大きく反射させるための膜(以降、「反射膜」と称する。)、光吸収体付物品1a又は光吸収体10に光を入射させたときに、特定の方向以外の偏光方向を有する光の透過率を低減する偏光膜、又は他の構成若しくは所定の作用等によって一部の波長範囲の光を吸収する選択波長光吸収膜であってもよい。機能性膜30は、これらの機能性膜のいずれかの単独の膜として構成されるものでもよく、複数の機能性膜から構成されるものであってもよい。
日本分光社製の紫外可視近赤外分光光度計V-670を用いて、各実施例に係る光学フィルタの0°、35°、45°、及び55°の入射角における透過スペクトルを測定した。実施例1~3に係る光学フィルタの透過スペクトルを図3A~図5Cに示す。一方、同様にして、各比較例に係る光学フィルタの0°の入射角における透過スペクトルを測定した。結果を図6~図9に示す。これらの透過スペクトルから看取した各光学フィルタにおける特性値を表7~9に示す。表7~9における各項目における添え字「IA」は入射角度[°]を示す。
キーエンス社製のレーザー変位計LK-H008を用いて、光学フィルタの厚みを測定した。結果を表3に示す。
酢酸銅一水和物4.500gと、テトラヒドロフラン(THF)240gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、第一工業製薬社製のリン酸エステル化合物プライサーフA208Nを2.572g加えて30分間撹拌し、A液を得た。また、n‐ブチルホスホン酸2.886gにTHF40gを加えて30分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン100gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後のD液を取り出した。このようにしてホスホン酸と銅成分とによって形成された化合物を含む組成物αを得た。ホスホン酸と銅成分とによって形成された化合物は、組成物中に微粒子として分散していることが推察された。
紫外線吸収剤として、BASF社製のベンゾトリアゾール系紫外線吸収剤Tinuvin234 5.0gをトルエン95.0gに添加して30分間攪拌し、紫外線吸収剤を含む組成物β-2を調製した。Tinuvin234は、下記式(b-2)で表される、Phenol,2-(2H-Benzotriazol-2-yl)-4,6-bis(1-methyl-1-Phenylethyl)を含んでいた。光吸収性組成物の調製において、2.0gの組成物β-1の代わりに、3.6gの組成物β-2を加えた以外は、実施例1と同様にして実施例2に係る光吸収性組成物を調製した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表1に示す。また、成分の含有量の比を表4に示す。
紫外線吸収剤として、BASF社製のベンゾトリアゾール系紫外線吸収剤Tinuvin329 5.0gをトルエン95.0gに添加して30分間攪拌し、紫外線吸収剤を含む組成物β-3を調製した。Tinuvin329は、下記式(b-3)で表される、2Phenol,2-(2H-Benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)を含んでいた。光吸収性組成物の調製において、2.0gの組成物β-1の代わりに、4.0gの組成物β-3を加えた以外は、実施例1と同様にして実施例3に係る光吸収性組成物を調製した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表1に示す。また、成分の含有量の比を表4に示す。
アルミニウムアルコキシドを含むCAT-ACの代わりに、東京化成社製のアルミニウムイソプロポキシド(Al成分の含有量13.21質量%)を0.025g添加した以外は、実施例1と同様にして実施例4に係る光吸収性組成物を調整した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表2に示す。また、成分の含有量の比を表5に示す。
アルミニウムアルコキシドを含むCAT-ACの代わりに、アルミニウムトリセカンダリーブトキシドを含むマツモトファインケミカル社製のオルガチックスAL-3001(Al成分の含有量10.7質量%)を0.038g添加した以外は、実施例1と同様にして実施例5に係る光吸収性組成物を調整した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表2に示す。また、成分の含有量の比を表5に示す。
アルミニウムアルコキシドを含むCAT-ACの代わりに、チタンテトライソプロポキシドを含むマツモトファインケミカル社製のオルガチックスTA-8(Ti成分の含有量16.9質量%)を0.05g添加した以外は、実施例1と同様にして実施例6に係る光吸収性組成物を調整した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表2に示す。また、成分の含有量の比を表5に示す。
アルミニウムアルコキシドを含むCAT-ACの代わりに、チタンテトラ-2-エチルヘキソキシドを含むマツモトファインケミカル社製のオルガチックスTA-30(Ti成分の含有量8.5質量%)を0.07g添加した以外は、実施例2と同様にして実施例7に係る光吸収性組成物を調整した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表2に示す。また、成分の含有量の比を表5に示す。
アルミニウムアルコキシドを含むCAT-ACの代わりに、ジルコニウムテトラノルマルプロポキシドを含むマツモトファインケミカル社製のオルガチックスZA-45(Zr成分の含有量21.0質量%)を0.06g添加した以外は、実施例1と同様にして実施例8に係る光吸収性組成物を調整した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表2に示す。また、成分の含有量の比を表5に示す。
組成物β-1を添加しなかったこと以外は、実施例1と同様にして比較例1に係る光吸収性組成物を調製した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表3に示す。また、成分の含有量の比を表6に示す。
紫外線吸収剤として、BASF社製のヒドロキシベンゾフェノン系紫外線吸収剤Uvinul3049 2.0gをトルエン98.0gに添加して30分間攪拌し、紫外線吸収剤を含む組成物β-4を調製した。Uvinul3049は、下記式(b-4)で表される化合物を含んでいた。光吸収性組成物の調製において、2.0gの組成物β-1の代わりに、5.0gの組成物β-4を加えた以外は、実施例1と同様にして比較例2に係る光吸収性組成物を調製した。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表3に示す。また、成分の含有量の比を表6に示す。
2.0gの紫外線吸収剤Uvinul3049を、トルエン98.0gに添加して30分間攪拌し、紫外線吸収剤を含む組成物を作製した。この組成物5.0gを、信越化学工業社製のシリコーン樹脂KR-300 10.0gに添加し、30分間撹拌して、比較例3に係る光吸収性組成物を得た。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表3に示す。また、成分の含有量の比を表6に示す。
2.0gの紫外線吸収剤Uvinul3049を、トルエン98.0gに添加して30分間攪拌して紫外線吸収剤を含む組成物を作製した。この組成物5.0gと、信越化学工業社製のアルミニウムアルコキシドCAT-AC 0.10gとを、信越化学工業社製のシリコーン樹脂KR-300 10.0gに添加して30分間撹拌して、比較例4に係る光吸収性組成物を得た。光吸収性組成物の調製における材料の添加量又は光吸収性組成物における所定の成分の含有量を表3に示す。また、成分の含有量の比を表6に示す。
真空蒸着方法によって反射防止膜を、実施例1に係る光学フィルタの両主面上に形成して、実施例9に係る光学フィルタを作製した。反射防止膜は、SiO2からなる層とTiO2からなる層を交互に積層した誘電体多層膜であり、層数が9であり、膜厚が約0.4μmであった。実施例9に係る光学フィルタは、実施例1に係る光吸収体と、光吸収体の両主面上に形成された反射防止膜を備えるものである。実施例9に係る光学フィルタの、0°の入射角度における透過スペクトルを図10に示す。また、透過スペクトルから看取できる各パラメータを表8に示す。
Claims (18)
- 0°の入射角度における透過スペクトルが下記(I)、(II)、(III)、(IV)、(V)、及び(VI)の条件を満たす、光吸収体。
(I)波長450nm~600nmの範囲における透過率の平均値が75%以上である。
(II)波長350nm~450nmの範囲において透過率が50%となる第一波長は、380nm以上440nm以下である。
(III)波長650nm~750nmの範囲において透過率が50%となる第二波長は、680nm以上740nm以下である。
(IV)波長350nm~370nmの範囲における透過率の最大値が1%以下である。
(V)波長800nm~900nmの範囲における透過率の最大値が5%以下である。
(VI)波長1100nm~1200nmの範囲における透過率の最大値が5%以下である。 - 前記透過スペクトルは、下記(VII)の条件をさらに満たす、請求項1に記載の光吸収体。
(VII)波長750nmにおける透過率が7%以上である。 - 前記透過スペクトルは、下記(VIII)の条件をさらに満たす、請求項1又は2に記載の光吸収体。
(VIII)波長780nmにおける透過率が3%以上である。 - 55°の入射角度における当該光吸収体の透過スペクトルは、波長350nm~450nmの範囲において透過率が50%となる第三波長を有し、
前記第三波長と前記第一波長との差の絶対値が12nm以下である、
請求項1~3のいずれか1項に記載の光吸収体。 - 55°の入射角度における当該光吸収体の透過スペクトルは、波長650nm~750nmの範囲において透過率が50%となる第四波長を有し、
前記第四波長と前記第二波長との差の絶対値が24nm以下である、
請求項1~4のいずれか1項に記載の光吸収体。 - ホスホン酸と銅成分とを含む光吸収性化合物と、
紫外線の少なくとも一部を吸収する紫外線吸収剤と、を含有している、
請求項1~5のいずれか1項に記載の光吸収体。 - 金属成分を有するアルコキシド及び金属成分を有するアルコキシドの加水分解物の少なくとも1つをさらに含有している、請求項6に記載の光吸収体。
- 前記紫外線吸収剤は、分子内にヒドロキシ基及びカルボニル基の両方の基を有しない化合物である、請求項7に記載の光吸収体。
- 物品と、
前記物品の表面の一部に形成された、請求項1~8のいずれか1項に記載の光吸収体と、を備えた、
光吸収体付物品。 - 請求項1~8のいずれか1項に記載の光吸収体を備えた、撮像装置。
- 光吸収性組成物であって、
当該光吸収性組成物を硬化して得られる光吸収体の0°の入射角度における透過スペクトルが下記(i)、(ii)、(iii)、(iv)、(v)、及び(vi)の条件を満たす、光吸収性組成物。
(i)波長450nm~600nmの範囲における透過率の平均値が75%以上である。
(ii)波長350nm~450nmの範囲において透過率が50%となる第一波長は、380nm以上440nm以下である。
(iii)波長650nm~750nmの範囲において透過率が50%となる第二波長は、680nm以上740nm以下である。
(iv)波長350nm~370nmの範囲における透過率の最大値が1%以下である。
(v)波長800nm~900nmの範囲における透過率の最大値が5%以下である。
(vi)波長1100nm~1200nmの範囲における透過率の最大値が5%以下である。 - 前記透過スペクトルは、下記(vii)の条件をさらに満たす、請求項11に記載の光吸収性組成物。
(vii)波長750nmにおける透過率が7%以上である。 - 前記透過スペクトルは、下記(viii)の条件をさらに満たす、請求項11又は12に記載の光吸収性組成物。
(viii)波長780nmにおける透過率が3%以上である。 - 55°の入射角度における前記光吸収体の透過スペクトルは、波長350nm~450nmの範囲において透過率が50%となる第三波長を有し、
前記第三波長と前記第一波長との差の絶対値が12nm以下である、
請求項11~13のいずれか1項に記載の光吸収性組成物。 - 55°の入射角度における前記光吸収体の透過スペクトルは、波長650nm~750nmの範囲において透過率が50%となる第四波長を有し、
前記第四波長と前記第二波長との差の絶対値が24nm以下である、
請求項11~14のいずれか1項に記載の光吸収性組成物。 - ホスホン酸と銅成分とを含む光吸収性化合物と、
紫外線の少なくとも一部を吸収する紫外線吸収剤と、を含有している、
請求項11~15のいずれか1項に記載の光吸収性組成物。 - 金属成分を有するアルコキシド及び金属成分を有するアルコキシドの加水分解物の少なくとも1つをさらに含有している、請求項16に記載の光吸収性組成物。
- 前記紫外線吸収剤は、分子内にヒドロキシ基及びカルボニル基の両方の基を有しない化合物である、請求項17に記載の光吸収性組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/043482 WO2023095312A1 (ja) | 2021-11-26 | 2021-11-26 | 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 |
CN202180102343.7A CN117940811A (zh) | 2021-11-26 | 2021-11-26 | 光吸收体、带有光吸收体的物品、摄像装置以及光吸收性组合物 |
KR1020247019619A KR20240105441A (ko) | 2021-11-26 | 2021-11-26 | 광흡수체, 광흡수체를 갖는 물품, 촬상 장치, 및 광흡수성 조성물 |
JP2023563462A JPWO2023095312A1 (ja) | 2021-11-26 | 2021-11-26 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/043482 WO2023095312A1 (ja) | 2021-11-26 | 2021-11-26 | 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023095312A1 true WO2023095312A1 (ja) | 2023-06-01 |
Family
ID=86539200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/043482 WO2023095312A1 (ja) | 2021-11-26 | 2021-11-26 | 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023095312A1 (ja) |
KR (1) | KR20240105441A (ja) |
CN (1) | CN117940811A (ja) |
WO (1) | WO2023095312A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020235610A1 (ja) * | 2019-05-23 | 2020-11-26 | 日本板硝子株式会社 | 光吸収性組成物、光吸収膜、及び光学フィルタ |
JP2021110842A (ja) * | 2020-01-10 | 2021-08-02 | 日本板硝子株式会社 | 光学フィルタ |
JP2021152612A (ja) * | 2020-03-24 | 2021-09-30 | 日本板硝子株式会社 | 光吸収性組成物、光吸収膜、及び光学フィルタ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0339576Y2 (ja) | 1985-08-13 | 1991-08-20 | ||
JPS6281023U (ja) | 1985-11-11 | 1987-05-23 | ||
JPS6339755U (ja) | 1986-08-26 | 1988-03-15 | ||
WO2020004641A1 (ja) | 2018-06-28 | 2020-01-02 | Agc株式会社 | 光学フィルタおよび情報取得装置 |
-
2021
- 2021-11-26 CN CN202180102343.7A patent/CN117940811A/zh active Pending
- 2021-11-26 JP JP2023563462A patent/JPWO2023095312A1/ja active Pending
- 2021-11-26 WO PCT/JP2021/043482 patent/WO2023095312A1/ja active Application Filing
- 2021-11-26 KR KR1020247019619A patent/KR20240105441A/ko unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020235610A1 (ja) * | 2019-05-23 | 2020-11-26 | 日本板硝子株式会社 | 光吸収性組成物、光吸収膜、及び光学フィルタ |
JP2021110842A (ja) * | 2020-01-10 | 2021-08-02 | 日本板硝子株式会社 | 光学フィルタ |
JP2021152612A (ja) * | 2020-03-24 | 2021-09-30 | 日本板硝子株式会社 | 光吸収性組成物、光吸収膜、及び光学フィルタ |
Also Published As
Publication number | Publication date |
---|---|
CN117940811A (zh) | 2024-04-26 |
KR20240105441A (ko) | 2024-07-05 |
JPWO2023095312A1 (ja) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102091954B1 (ko) | 적외선 흡수성 조성물, 적외선 컷 필터, 및 촬상 광학계 | |
JP7510278B2 (ja) | 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 | |
KR102242641B1 (ko) | 자외선 및 적외선 흡수성 조성물, 및 자외선 및 적외선 흡수 필터 | |
US5976680A (en) | Non-fogging antireflection film and optical member, and production process thereof | |
US8980401B2 (en) | Optical member and method of producing the same | |
KR102237333B1 (ko) | 저굴절률막 형성용 액 조성물 | |
KR20240008967A (ko) | 광학 필터 및 촬상 장치 | |
WO2023095312A1 (ja) | 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物 | |
CN114730023A (zh) | 带防眩层的基材和图像显示装置以及带防眩层的基材的制造方法 | |
TW202321373A (zh) | 光吸收體、附光吸收體之物品、攝像裝置、及光吸收性組成物 | |
WO2023162864A1 (ja) | 光学フィルタ、光吸収性組成物、光学フィルタを製造する方法、センシング装置、及びセンシング方法 | |
WO2023248738A1 (ja) | 光吸収体、光吸収性化合物、光吸収性化合物の分散液、光吸収性組成物、光学フィルタ、光電変換素子、環境光センサ、及び撮像装置 | |
WO2024048254A1 (ja) | 光吸収性組成物、光吸収体、光学フィルタ、環境光センサ、撮像装置、光吸収性組成物の製造方法、及び光吸収体の製造方法 | |
WO2022244703A1 (ja) | 光吸収体、光吸収体付物品、及び光吸収性組成物 | |
WO2022080105A1 (ja) | 光学フィルタ、光学装置、及び光吸収性組成物 | |
WO2023074746A1 (ja) | 光学素子および撮像装置 | |
JP7344091B2 (ja) | 光吸収性組成物、光吸収膜、及び光学フィルタ | |
JP7364486B2 (ja) | 光吸収性組成物、光吸収膜、及び光学フィルタ | |
WO2020110523A1 (ja) | 光触媒複合材、並びに、センサー用保護部材、建材用保護部材、車両用保護部材、冷却容器用保護部材、監視カメラ用保護部材、センサー、建材、車両、冷却容器及び監視カメラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21965682 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180102343.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2023563462 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18713057 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247019619 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |