WO2022244686A1 - 遠赤外線透過部材の製造方法及び遠赤外線透過部材 - Google Patents

遠赤外線透過部材の製造方法及び遠赤外線透過部材 Download PDF

Info

Publication number
WO2022244686A1
WO2022244686A1 PCT/JP2022/020170 JP2022020170W WO2022244686A1 WO 2022244686 A1 WO2022244686 A1 WO 2022244686A1 JP 2022020170 W JP2022020170 W JP 2022020170W WO 2022244686 A1 WO2022244686 A1 WO 2022244686A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
infrared
less
infrared transmitting
transmitting member
Prior art date
Application number
PCT/JP2022/020170
Other languages
English (en)
French (fr)
Inventor
容二 安井
康幸 滝本
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP22804599.3A priority Critical patent/EP4343392A1/en
Priority to JP2023522628A priority patent/JPWO2022244686A5/ja
Publication of WO2022244686A1 publication Critical patent/WO2022244686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/217FeOx, CoOx, NiOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/155Deposition methods from the vapour phase by sputtering by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Definitions

  • the present invention relates to a far-infrared transmitting member manufacturing method and a far-infrared transmitting member.
  • a far-infrared transmitting film may be provided to suppress the reflection of far-infrared rays and increase the amount of transmitted light so that the far-infrared rays are properly incident on the far-infrared sensor.
  • Non-Patent Documents 1 and 2 describe forming a nickel oxide film as a far-infrared transmitting film on a Si substrate.
  • the far-infrared transmissive film for increasing the amount of transmitted far-infrared light to increase the far-infrared transmittance by reducing the far-infrared absorption loss. If so, a nickel oxide film having a high far-infrared transmittance can be obtained by annealing a nickel oxide film formed on a Si substrate by RF magnetron sputtering at a temperature of 300° C. or higher.
  • Hyun Bin Shim et al. Controlling the infrastructured optical properties of rf-sputtered NiO films for application of infrastructured windows, Infrared Physics and Technology, 72 (2015) 13-3 Hyun Bin Shim et al., Nickel oxide film as an AR coating of Si window for IR sensor packaging, Infrared Technology and Applications XXXIX, Proc. of SPIE Vol, 8704 870420-1
  • Non-Patent Documents 1 and 2 if the high temperature annealing treatment of 300 ° C. or higher described in Non-Patent Documents 1 and 2 is performed, the usable infrared transmitting substrate is limited, and the difference in thermal expansion coefficient between the infrared transmitting substrate and the far infrared transmitting film There is a problem that film peeling occurs due to the high temperature, and the process cost increases. Therefore, it is desired to manufacture a far-infrared transmitting member having a high far-infrared transmittance by a method that does not require high-temperature annealing.
  • An object of the present invention is to provide a method for manufacturing a far-infrared transmitting member having a high far-infrared transmittance and a far-infrared transmitting member without high-temperature annealing.
  • a method for manufacturing a far-infrared transmitting member uses a mixed target of NiO and Ni on a substrate that transmits far-infrared rays, and uses Ar gas and In the method for producing a far-infrared transmitting member, in which a far-infrared transmitting film containing one or more nickel oxide layers is formed by sputtering in a mixed atmosphere of oxygen gas, the content of NiO in the mixed target is the same as that of the mixed target.
  • an infrared transmitting member includes a substrate that transmits far infrared rays, and a functional film formed on the substrate, wherein the functional film has an X-ray absorption fine structure of the K absorption edge of nickel. It is characterized by including one or more nickel oxide layers having a (XANES) spectrum peak top energy of 8347.1 eV or less.
  • the infrared transmitting member includes a substrate that transmits far infrared rays, and a functional film formed on the substrate, and the functional film has an extinction coefficient for light with a wavelength of 10 ⁇ m of It is characterized by including one or more nickel oxide layers having a thickness of 0.025 or less.
  • a far-infrared transmitting member with high far-infrared transmittance can be obtained without high-temperature annealing.
  • FIG. 1 is a schematic diagram showing a state in which a vehicle glass according to this embodiment is mounted on a vehicle.
  • FIG. 2 is a schematic plan view of the vehicle glass 1 according to the first embodiment.
  • 3 is a cross-sectional view taken along line AA of FIG. 2.
  • FIG. 4 is a sectional view along the BB section of FIG.
  • FIG. 5 is a schematic cross-sectional view of the far-infrared transmitting member according to this embodiment.
  • FIG. 6 is a schematic cross-sectional view of a far-infrared transmitting member according to another example of this embodiment.
  • FIG. 7 is a schematic cross-sectional view of a far-infrared transmitting member according to another example of this embodiment.
  • FIG. 1 is a schematic diagram showing a state in which a vehicle glass according to this embodiment is mounted on a vehicle.
  • FIG. 2 is a schematic plan view of the vehicle glass 1 according to the first embodiment.
  • 3 is a cross-sectional view taken along
  • FIG. 8 is a diagram showing the far-infrared transmission performance of the samples of the example.
  • FIG. 9 is a diagram showing the relationship between the average transmittance of the sample of the example for light with a wavelength of 8 ⁇ m to 12 ⁇ m and the extinction coefficient of the nickel oxide layer for light with a wavelength of 10 ⁇ m.
  • FIG. 10 is a diagram showing the relationship between E(S) and the average transmittance of the sample of the example for light with a wavelength of 8 ⁇ m to 12 ⁇ m.
  • FIG. 1 is a schematic diagram showing a state in which a vehicle glass according to this embodiment is mounted on a vehicle.
  • a vehicle glass 1 according to this embodiment is mounted on a vehicle V.
  • a vehicle glass 1 is a window film applied to a windshield of a vehicle V.
  • the vehicle glass 1 is used as a front window of the vehicle V, in other words, as a windshield.
  • a far-infrared camera CA1 and a visible light camera CA2 are mounted inside the vehicle V (inside the vehicle).
  • the inside of the vehicle V (vehicle interior) refers to, for example, a vehicle interior in which a driver's seat is provided.
  • the vehicle glass 1, the far-infrared camera CA1, and the visible light camera CA2 constitute a camera unit 100 according to this embodiment.
  • the far-infrared camera CA1 is a camera that detects far-infrared rays, and captures a thermal image of the outside of the vehicle V by detecting far-infrared rays from the outside of the vehicle V.
  • FIG. The visible light camera CA2 is a camera that detects visible light, and captures an image of the outside of the vehicle V by detecting visible light from the outside of the vehicle V.
  • the camera unit 100 may further include, for example, LiDAR and millimeter wave radar.
  • the far-infrared rays are, for example, electromagnetic waves with a wavelength of 8 ⁇ m to 13 ⁇ m, and the visible light is, for example, electromagnetic waves with a wavelength of 360 nm to 830 nm.
  • 8 ⁇ m to 13 ⁇ m and 360 nm to 830 nm here refer to 8 ⁇ m to 13 ⁇ m and 360 nm to 830 nm, and the same applies hereinafter.
  • Far-infrared rays may be electromagnetic waves in a wavelength band of 8 ⁇ m to 12 ⁇ m.
  • FIG. 2 is a schematic plan view of the vehicle glass 1 according to the first embodiment.
  • 3 is a cross-sectional view taken along line AA of FIG. 2.
  • FIG. FIG. 4 is a sectional view along the BB section of FIG.
  • the upper edge of the vehicle glass 1 is referred to as upper edge portion 1a, the lower edge as lower edge portion 1b, one side edge as side edge portion 1c, and the other side edge. is the side edge 1d.
  • the upper edge portion 1a is an edge portion located on the upper side in the vertical direction when the vehicle glass 1 is mounted on the vehicle V. As shown in FIG.
  • the lower edge portion 1b is an edge portion positioned on the lower side in the vertical direction when the vehicle glass 1 is mounted on the vehicle V.
  • the side edge portion 1c is an edge portion located on one lateral side when the vehicle glass 1 is mounted on the vehicle V.
  • the side edge portion 1d is an edge portion located on the other side when the vehicle glass 1 is mounted on the vehicle V.
  • the direction from the upper edge portion 1a to the lower edge portion 1b is defined as the Y direction
  • the direction from the side edge portion 1c to the side edge portion 1d is defined as the X direction. do.
  • the X direction and the Y direction are orthogonal.
  • the direction perpendicular to the surface of the vehicle glass 1, that is, the thickness direction of the vehicle glass 1 is defined as the Z direction.
  • the Z direction is, for example, the direction from the outside to the inside of the vehicle V when the vehicle glass 1 is mounted on the vehicle V. As shown in FIG.
  • the X direction and the Y direction are along the surface of the vehicle glass 1, but when the surface of the vehicle glass 1 is curved, for example, the direction in which the center point O of the vehicle glass 1 contacts the surface of the vehicle glass 1 It may be.
  • the center point O is the center position of the vehicle glass 1 when the vehicle glass 1 is viewed from the Z direction.
  • a light-transmitting region A1 and a light-shielding region A2 are formed in the vehicle glass 1 .
  • the translucent area A1 is an area that occupies the central portion of the vehicle glass 1 when viewed from the Z direction.
  • the translucent area A1 is an area for securing the driver's field of view.
  • the translucent area A1 is an area that transmits visible light.
  • the light shielding area A2 is an area formed around the light transmitting area A1 when viewed from the Z direction.
  • the light shielding area A2 is an area that shields visible light.
  • a far-infrared transmission region B and a visible light transmission region C are formed in a light-shielding region A2a, which is a portion on the upper edge 1a side of the light-shielding region A2.
  • the far-infrared transmission area B is an area that transmits far-infrared rays, and is an area in which the far-infrared camera CA1 is provided. That is, the far-infrared camera CA1 is provided at a position overlapping the far-infrared transmission region B when viewed from the optical axis direction of the far-infrared camera CA1.
  • the visible light transmission area C is an area that transmits visible light, and is an area in which the visible light camera CA2 is provided. That is, the visible light camera CA2 is provided at a position overlapping the visible light transmission region C when viewed from the optical axis direction of the visible light camera CA2.
  • the light-shielding region A2 does not transmit far-infrared rays except for the region where the far-infrared transmission region B is formed. It shields the visible light except for the area where the visible light transmission area C is formed.
  • the far-infrared transmission area B and the visible light transmission area C are formed with a light shielding area A2a around them.
  • the vehicle glass 1 includes a glass substrate 12 (first glass substrate), a glass substrate 14 (second glass substrate), an intermediate layer 16, and a light shielding layer .
  • a glass base 12 In the vehicle glass 1, a glass base 12, an intermediate layer 16, a glass base 14 and a light shielding layer 18 are laminated in this order in the Z direction.
  • the glass substrate 12 and the glass substrate 14 are fixed (adhered) to each other with an intermediate layer 16 interposed therebetween.
  • the intermediate layer 16 is an adhesive layer that bonds the glass substrate 12 and the glass substrate 14 together.
  • modified polyvinyl butyral (hereinafter also referred to as PVB) material, ethylene-vinyl acetate copolymer (EVA) material, urethane resin material, vinyl chloride resin material, or the like can be used.
  • the glass substrate 12 includes one surface 12A and the other surface 12B, and the other surface 12B is in contact with one surface 16A of the intermediate layer 16 and fixed (bonded) to the intermediate layer 16. ).
  • the glass substrate 14 includes one surface 14A and the other surface 14B, and the one surface 14A is in contact with the other surface 16B of the intermediate layer 16 and fixed (bonded) to the intermediate layer 16. .
  • the vehicle glass 1 is laminated glass in which the glass substrate 12 and the glass substrate 14 are laminated.
  • the vehicle glass 1 is not limited to laminated glass, and may have a structure including only one of the glass substrate 12 and the glass substrate 14, for example.
  • the intermediate layer 16 may also not be provided.
  • the glass substrates 12 and 14 are referred to as a glass substrate 10 when not distinguished from each other.
  • the light shielding layer 18 includes one surface 18A and the other surface 18B, and the one surface 18A is fixed in contact with the other surface 14B of the glass substrate 14.
  • the light shielding layer 18 is a layer that shields visible light.
  • a ceramic light shielding layer or a light shielding film can be used as the light shielding layer 18.
  • a ceramic layer made of a conventionally known material such as a black ceramic layer can be used.
  • the light-shielding film for example, a light-shielding polyethylene terephthalate (PET) film, a light-shielding polyethylene naphthalate (PEN) film, a light-shielding polymethyl methacrylate (PMMA) film, or the like can be used.
  • PET polyethylene terephthalate
  • PEN light-shielding polyethylene naphthalate
  • PMMA light-shielding polymethyl methacrylate
  • the side of the vehicle glass 1 on which the light shielding layer 18 is provided is the inside of the vehicle V (inside the vehicle), and the side on which the glass substrate 12 is provided is the outside of the vehicle V (outside the vehicle).
  • the light shielding layer 18 may be on the exterior side of the vehicle V without being limited thereto.
  • a light shielding layer 18 may be formed between the glass substrates 12 and 14 .
  • the light shielding region A2 is formed by providing the light shielding layer 18 on the glass substrate 10. As shown in FIG. That is, the light shielding area A2 is an area where the glass substrate 10 is provided with the light shielding layer 18 . That is, the light-shielding region A2 is a region in which the glass base 12, the intermediate layer 16, the glass base 14, and the light-shielding layer 18 are laminated.
  • the translucent area A1 is an area where the glass substrate 10 does not have the light shielding layer 18 . That is, the translucent area A1 is an area where the glass substrate 12, the intermediate layer 16, and the glass substrate 14 are laminated and the light shielding layer 18 is not laminated.
  • the vehicle glass 1 is formed with an opening 19 penetrating from one surface (here, surface 12A) to the other surface (here, surface 14B) in the Z direction.
  • a far-infrared transmitting member 20 is provided in the opening 19 .
  • a far-infrared transmitting region B is a region in which the opening 19 is formed and the far-infrared transmitting member 20 is provided. That is, the far-infrared transmission region B is a region in which the opening 19 and the far-infrared transmission member 20 arranged in the opening 19 are provided.
  • the far-infrared transmitting region B is not provided with the light-shielding layer 18 . That is, in the far-infrared transmitting region B, the glass substrate 12, the intermediate layer 16, the glass substrate 14, and the light shielding layer 18 are not provided, and the far-infrared transmitting member 20 is provided in the formed opening 19. .
  • the far-infrared transmitting member 20 will be described later.
  • the visible light transmission region C is a region in which the glass substrate 10 does not have the light shielding layer 18 in the Z direction, like the light transmission region A1. That is, the visible light transmission region C is a region where the glass substrate 12, the intermediate layer 16 and the glass substrate 14 are laminated and the light shielding layer 18 is not laminated.
  • the visible light transmission region C is preferably provided in the vicinity of the far infrared transmission region B.
  • the center of the far-infrared transmission region B viewed from the Z direction is the center point OB
  • the center of the visible light transmission region C viewed from the Z direction is the center point OC.
  • the distance L is preferably greater than 0 mm and 100 mm or less. , 10 mm or more and 80 mm or less.
  • the visible light transmission region C By setting the visible light transmission region C to a position within this range with respect to the far infrared transmission region B, it is possible to capture an image at a close position with the far infrared camera CA1 and the visible light camera CA2, while An image can be appropriately captured by the visible light camera CA2 by suppressing the amount of perspective distortion in the light transmission region C.
  • the load when processing the data obtained from each camera can be reduced, and the power supply and signal cables can be easily routed. Become.
  • the visible light transmission region C and the far infrared transmission region B are preferably positioned side by side in the X direction. That is, it is preferable that the visible light transmission region C is not located on the Y-direction side of the far-infrared transmission region B, but is aligned with the far-infrared transmission region B in the X direction.
  • the visible light transmission region C can be arranged in the vicinity of the upper edge 1a. Therefore, it is possible to appropriately ensure the driver's field of view in the translucent area A1.
  • FIG. 5 is a schematic cross-sectional view of the far-infrared transmitting member according to this embodiment.
  • the far-infrared transmitting member 20 has a substrate 30 and a far-infrared transmitting film 31 formed on the substrate 30 .
  • the far-infrared permeable member 20 has a far-infrared permeable film 31 formed on both one surface 30a and the other surface 30b of the substrate 30 .
  • the surface 30a is a surface that will be the inside of the vehicle when mounted on the vehicle glass 1
  • the surface 30b is the surface that will be the outside of the vehicle when mounted on the vehicle glass 1.
  • the far-infrared transmitting member 20 is not limited to forming the far-infrared transmitting film 31 on both the surfaces 30a and 30b of the substrate 30, and the far-infrared transmitting film 31 is formed on at least one of the surfaces 30a and 30b. It can be.
  • the far-infrared transmitting member 20 is provided in the light shielding region A2 of the vehicle glass 1, which is the window film of the vehicle V, but is not limited thereto. It may be provided on any exterior membrane of the vehicle V, such as a membrane. Further, the far-infrared transmitting member 20 is not limited to being provided in the vehicle V, and may be used for any purpose.
  • the base material 30 is a member that can transmit far infrared rays.
  • the substrate 30 preferably has an internal transmittance of 50% or more, more preferably 60% or more, and even more preferably 70% or more for light with a wavelength of 10 ⁇ m (far infrared rays).
  • the average internal transmittance of the substrate 30 for light (far infrared rays) having a wavelength of 8 ⁇ m to 12 ⁇ m is preferably 50% or more, more preferably 60% or more, and preferably 70% or more. More preferred.
  • the average internal transmittance is the average value of the internal transmittance for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m).
  • the internal transmittance of the base material 30 is the transmittance excluding the surface reflection loss on the incident side and the exit side, and is well known in the technical field, and its measurement may also be performed by a usual method. Measurement is performed, for example, as follows.
  • T1 is the external transmittance including the surface reflection loss of the first sample
  • T2 is the external transmittance including the surface reflection loss of the second sample
  • Td1 (mm) is the thickness of the first sample
  • Td1 (mm) is the thickness of the second sample.
  • Td2 (mm) is the internal transmittance ⁇ at the thickness Tdx (mm) can be calculated by the following equation (1).
  • the infrared external transmittance can be measured by, for example, a Fourier transform infrared spectrometer (manufactured by ThermoScientific, trade name: Nicolet iS10).
  • the base material 30 preferably has a refractive index of 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less, and 2.2 or more and 3.5 for light with a wavelength of 10 ⁇ m. More preferably:
  • the average refractive index of the substrate 30 with respect to light with a wavelength of 8 ⁇ m to 12 ⁇ m is preferably 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less. More preferably, it is 2 or more and 3.5 or less.
  • the average refractive index here is the average value of the refractive index for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m).
  • the refractive index is determined, for example, using polarization information obtained by an infrared spectroscopic ellipsometer (JA Woollam IR-VASE-UT) and a spectral transmission spectrum obtained by a Fourier transform infrared spectrometer. It can be determined by fitting the model.
  • the thickness d0 of the base material 30 is preferably 0.5 mm or more and 5 mm or less, more preferably 1 mm or more and 4 mm or less, and even more preferably 1.5 mm or more and 3 mm or less. By setting the thickness d0 within this range, it is possible to properly transmit far-infrared rays while ensuring strength. Note that the thickness d0 can also be said to be the length in the Z direction from the surface 30a to the surface 30b of the base material 30 .
  • the material of the base material 30 is not particularly limited, but examples thereof include Si, Ge, ZnS, and chalcogenite glass. It can be said that the substrate 30 preferably contains at least one material selected from the group consisting of Si, Ge, ZnS, and chalcogenite glass. By using such a material for the base material 30, far-infrared rays can be transmitted appropriately.
  • a preferred composition of the chalcogenite glass is: In atomic percent, Ge+Ga; 7% to 25%, Sb; 0% to 35%, Bi; 0% to 20%, Zn; 0% to 20%, Sn; 0% to 20%, Si; 0% to 20%, La; 0% to 20%, S + Se + Te; 55% to 80%, Ti; 0.005% to 0.3%, Li + Na + K + Cs; 0% to 20%, F+Cl+Br+I; composition containing 0% to 20%.
  • This glass preferably has a glass transition point (Tg) of 140°C to 550°C.
  • Si, ZnS, and chalcogenide glass are more preferable to use Si, ZnS, and chalcogenide glass as the material of the base material 30 .
  • the far-infrared transmission film 31 is formed on the substrate 30 and is a film for suppressing reflection of far-infrared rays.
  • the far-infrared transmitting film 31 includes a nickel oxide layer 32, a high refractive index layer 36, and a low refractive index layer 38.
  • high refractive index layers 36 and low refractive index layers 38 are alternately laminated between the substrate 30 and the nickel oxide layer 32 . That is, the nickel oxide layer 32 is formed on the outermost side (the side farthest from the substrate 30) in the far-infrared transmitting film 31.
  • the nickel oxide layer 32 is not limited to being formed on the outermost side in the far-infrared transmitting film 31, and the high refractive index layer 36 and the low refractive index layer 38 are formed outside the nickel oxide layer 32.
  • the far-infrared transmitting film 31 is laminated on the substrate 30 in the order of a high refractive index layer 36, a low refractive index layer 38, and a nickel oxide layer 32 in the direction away from the substrate 30. ing. That is, in the example of FIG. 5, the surface 36b of the high refractive index layer 36 is the surface 31b of the far-infrared permeable film 31 on the substrate 30 side, and the surface 32a of the nickel oxide layer 32 is the substrate 30 of the far-infrared permeable film 31. It becomes the surface 31a.
  • the layer formed on the substrate 30 side is not limited to the high refractive index layer 36.
  • the low refractive index layer 38 may be used.
  • the low refractive index layer 38 , the high refractive index layer 36 , and the nickel oxide layer 32 may be laminated in this order in the direction away from the substrate 30 .
  • the far-infrared transmitting film 31 has a structure in which the high refractive index layer 36, the low refractive index layer 38, and the nickel oxide layer 32 are laminated one by one. At least one of the refractive index layer 36 and the low refractive index layer 38 may be laminated in multiple layers.
  • the far-infrared transmitting member 20 is formed by alternately laminating a plurality of high refractive index layers 36 and low refractive index layers 38 from above the substrate 30 toward the direction away from the substrate 30, and the outermost layer (from the substrate 30) The most distant side) may be laminated so as to be the nickel oxide layer 32 .
  • the far-infrared transmitting member 20 has a high refractive index layer 36 and a low refractive index layer 38 alternately laminated from above the substrate 30 toward the direction away from the substrate 30, and the outermost nickel oxide layer 32 and the nickel oxide layer 32. You may laminate
  • the far-infrared transmission film 31 may have a layer structure that includes the nickel oxide layer 32 and the high refractive index layer 36 but does not include the low refractive index layer 38 .
  • the nickel oxide layer 32 functions as an intermediate refractive index layer (low refractive index layer) having a lower refractive index than the high refractive index layer 36 .
  • the far-infrared transmission film 31 may be laminated one by one on the substrate 30 in the direction away from the substrate 30 in the order of the high refractive index layer 36 and the nickel oxide layer 32 .
  • the high refractive index layer 36 may be laminated one by one.
  • the far-infrared transmitting film 31 may be formed by laminating at least one of the nickel oxide layer 32 and the high refractive index layer 36 in multiple layers.
  • the far-infrared permeable film 31 is formed by alternately laminating nickel oxide layers 32 and high refractive index layers 36 on the substrate 30 in a direction away from the substrate 30 .
  • nickel oxide layer 32, high refractive index layer 36, . may be laminated with
  • the far-infrared transmission film 31 may have a layer structure that includes the nickel oxide layer 32 and the low refractive index layer 38 but does not include the high refractive index layer 36 .
  • the nickel oxide layer 32 functions as an intermediate refractive index layer (high refractive index layer) having a higher refractive index than the low refractive index layer 38 .
  • the far-infrared transmission film 31 may be laminated one by one in the order of the nickel oxide layer 32 and the low refractive index layer 38 on the substrate 30 in the direction away from the substrate 30, or the low refractive index layer may be laminated. 38 and the nickel oxide layer 32 may be stacked one by one in this order.
  • the far-infrared transmitting film 31 may be formed by laminating at least one of the nickel oxide layer 32 and the low refractive index layer 38 in multiple layers.
  • the far-infrared permeable film 31 is formed by alternately stacking nickel oxide layers 32 and low refractive index layers 38 on the base material 30 in such a manner that the nickel oxide layers 32, The low refractive index layer 38, the nickel oxide layer 32, . They may be stacked in order.
  • any of the three layers of the high refractive index layer 36, the low refractive index layer 38, and the nickel oxide layer 32 of the far-infrared transmitting film 31 may be arranged on the substrate 30 side.
  • the substrate 30 is chalcogenide glass and/or ZnS
  • the layer arranged on the substrate 30 side is the low refractive index layer 38 or the high refractive index layer 36, and the substrate 30 and the far-infrared transmitting film 31 It is preferable because it can reduce the reflection at the interface with.
  • the layer arranged on the substrate 30 side is the nickel oxide layer 32 or the low refractive index layer 38, and the reflection at the interface between the substrate and the far-infrared transmitting film can be reduced.
  • the layer arranged on the side of the base material 30 is a Si layer because it has excellent adhesion to the base material.
  • the far-infrared transmitting film 31 does not have to include both the high refractive index layer 36 and the low refractive index layer 38, and can be said to be characterized by having at least one or more nickel oxide layers 32. That is, the far-infrared transmitting film 31 may be a single layer film of the nickel oxide layer 32, or may be a multilayer film laminated with at least one of the high refractive index layer 36 and the low refractive index layer 38.
  • the far-infrared transmission film 31 as a multi-layered anti-reflection film, it becomes easy to realize a low reflectance in a wide wavelength range by utilizing the interference effect of light caused by interface reflected light generated at each interface.
  • the far-infrared permeable film 31 formed on the inner side of the vehicle of the substrate 30 and the far-infrared permeable film 31 formed on the outer side of the vehicle may have different layer configurations.
  • the nickel oxide layer 32 is a layer containing nickel oxide (NiO x ) as a main component, and is capable of transmitting far infrared rays.
  • Nickel oxide is known to have a plurality of compositions depending on the valence of nickel, and x can take any value from 0.5 to 2. Also, the valence may not be single, and two or more valences may be mixed. In this embodiment, NiO is preferably used as NiO x .
  • the main component here may refer to a content rate of 50% by mass or more with respect to the entire nickel oxide layer 32 .
  • the nickel oxide layer 32 preferably has an extinction coefficient of 0.05 or less, more preferably 0.03 or less, even more preferably 0.025 or less, with respect to light with a wavelength of 10 ⁇ m. It is more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • the average extinction coefficient of the nickel oxide layer 32 for light with a wavelength of 8 ⁇ m to 12 ⁇ m is preferably 0.05 or less, more preferably 0.03 or less, and even more preferably 0.02 or less. , 0.01 or less. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the extinction coefficient for light with a wavelength of 8 ⁇ m to 12 ⁇ m is obtained by, for example, polarization information obtained by an infrared spectroscopic ellipsometer (IR-VASE-UT manufactured by JA Woollam), Fourier transform infrared spectrometer (ThermoScientific) It can be determined by fitting an optical model using a spectral transmission spectrum obtained by Nicolet iS10 (manufactured by Nicolet iS10).
  • the nickel oxide layer 32 preferably has a refractive index of 1.5 or more and 4.0 or less, more preferably 1.7 or more and 3.0 or less, with respect to light (far infrared rays) having a wavelength of 10 ⁇ m. It is more preferably 0 or more and 2.5 or less.
  • the nickel oxide layer 32 preferably has an average refractive index of 1.5 or more and 4.0 or less, more preferably 1.7 or more and 3.0 or less, with respect to light with a wavelength of 8 ⁇ m to 12 ⁇ m. It is more preferable to be 0 or more and 2.5 or less.
  • the refractive index for light with a wavelength of 8 ⁇ m to 12 ⁇ m is obtained by fitting an optical model using, for example, polarization information obtained by an infrared spectroscopic ellipsometer and spectral transmission spectrum obtained by a Fourier transform infrared spectrometer. can decide.
  • the nickel oxide layer 32 preferably has an extinction coefficient for light with a wavelength of 550 nm of 0.04 or more, more preferably 0.05 or more, even more preferably 0.06 or more, and 0.04 or more. 07 or more, more preferably 0.08 or more, and even more preferably 0.10 or more.
  • the average extinction coefficient of the nickel oxide layer 32 for light with a wavelength of 380 nm to 780 nm is preferably 0.04 or more, more preferably 0.05 or more, and more preferably 0.06 or more. It is more preferably 0.07 or more, still more preferably 0.08 or more, and even more preferably 0.10 or more.
  • the average extinction coefficient is the average value of the extinction coefficients of light of each wavelength in the wavelength band (here, 380 nm to 780 nm).
  • the extinction coefficient of light with a wavelength of 550 nm can be determined, for example, by fitting an optical model using polarization information obtained by a spectroscopic ellipsometer and spectral transmittance measured based on JIS R3106.
  • the nickel oxide layer 32 preferably has a nickel/oxygen element ratio (O/Ni) of 1.0 or more and less than 1.3, more preferably 1.0 or more and less than 1.25. It is most preferably 0 or more and less than 1.2.
  • O/Ni nickel/oxygen element ratio
  • the elemental ratio (O/Ni) can be determined, for example, by Rutherford backscattering analysis or elastic recoil detection analysis.
  • the nickel oxide layer 32 preferably has a film density of 5.0 g/cm 3 or more and 6.0 g/cm 3 or less, more preferably 5.0 g/cm 3 or more and 5.8 g/cm 3 or less. , 5.0 g/cm 3 or more and 5.4 g/cm 3 or less.
  • Film density can be determined, for example, by Rutherford backscattering analysis.
  • the nickel oxide layer 32 preferably has an X-ray absorption edge energy value E(S) of the K absorption edge of nickel of 8347.1 eV or less, more preferably 8347.0 eV or less, and 8346.9 eV or less. Most preferably there is.
  • E(S) of the K absorption edge of nickel of the nickel oxide layer 32 falls within this numerical range, far-infrared rays can be transmitted appropriately.
  • the X-ray absorption edge energy value E(S) of the K absorption edge of nickel of the nickel oxide layer 32 is obtained by, for example, the X-ray absorption fine structure (X-ray Absorption Fine Structure (XAFS) measurement is performed, and X-ray Absorption Near Edge Structure (XANES) is evaluated.
  • XAFS analysis is performed by the XAFS measurement beamline at the synchrotron radiation facility. Examples of synchrotron radiation facilities include Aichi Synchrotron Light Center, SPring-8, Photon Factory of High Energy Research Institute, and Saga Synchrotron.
  • the spectrometer used for XAFS analysis is assumed to be Si(111). Detection is performed simultaneously by fluorescence yield and electron yield.
  • the measurement range is set to a wide range so that the pre-edge and post-edge lines can be accurately drawn, and specifically, the measurement is performed over a range of 8100 to 8800 [eV].
  • the measurement interval is made finer so that differences can be discerned. Specifically, it is measured at intervals smaller than 0.18 [eV] in at least the range of 8320 to 8360 [eV].
  • the white line peak energy value is read and this value is defined as Em(S) [eV].
  • the transmission XAFS of the Ni foil is measured in the same measurement range and measurement interval as above.
  • Em (M) [eV]. do the energy value at which the edge jump (difference in absorbance before and after the absorption edge) becomes 0.5 is read, and this value is referred to as Em (M) [eV]. do.
  • Em (M) [eV] of the nickel oxide layer 32 that is, the peak top energy value of the XANES spectrum can be obtained by calculation based on the formula (2).
  • the thickness d1 of the nickel oxide layer 32 is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less, and 0.3 ⁇ m or more and 1.4 ⁇ m or less. More preferred. By setting the thickness d1 within this range, it is possible to appropriately suppress reflection of far-infrared rays.
  • the thickness d1 can also be said to be the length in the Z direction from the surface 32a of the nickel oxide layer 32 to the opposite surface 32b.
  • the nickel oxide layer 32 may contain subcomponents other than the main component oxide (here, nickel oxide).
  • the auxiliary component is preferably an oxide that transmits infrared rays, and examples thereof include MgO, CuO x , ZnO, ZrO 2 , Bi 2 O 3 and Y 2 O 3 .
  • the content of subcomponents is preferably 50% by mass or less, more preferably 30% by mass or less, and most preferably 10% by mass or less. By setting the content of the accessory component within this range, it is possible to improve water resistance and the like while appropriately transmitting far infrared rays.
  • the nickel oxide layer 32 preferably has a surface arithmetic mean roughness Ra of 4.0 nm or less, more preferably 3.0 nm or less, and most preferably 2.0 nm or less. When the surface roughness falls within this range, the wear resistance and scratch resistance of the nickel oxide layer 32 can be improved. Ra can be determined, for example, by atomic force microscopy.
  • the high refractive index layer 36 is a film laminated with the nickel oxide layer 32 and the low refractive index layer 38 to suppress reflection of far infrared rays.
  • the high refractive index layer 36 is laminated closer to the substrate 30 than the nickel oxide layer 32, and in the example of FIG. there is If the low refractive index layer 38 is not formed, the high refractive index layer 36 will be provided between the substrate 30 and the nickel oxide layer 32 .
  • the high refractive index layer 36 is a film having a high refractive index with respect to far infrared rays, and has a higher refractive index with respect to light with a wavelength of 10 ⁇ m than the nickel oxide layer 32, preferably 2.5 or more and 4.5 or less. , is more preferably 3.0 or more and 4.5 or less, and more preferably 3.3 or more and 4.3 or less.
  • the high refractive index layer 36 has a higher average refractive index for light with a wavelength of 8 ⁇ m to 12 ⁇ m than the nickel oxide layer 32, preferably 2.5 or more and 4.5 or less, more preferably 3.0 or more and 4.5. It is more preferably 3.3 or more and 4.3 or less.
  • the high refractive index layer 36 can transmit far infrared rays.
  • the high refractive index layer 36 preferably has an extinction coefficient of 0.05 or less, more preferably 0.02 or less, and even more preferably 0.01 or less for light with a wavelength of 10 ⁇ m.
  • the high refractive index layer 36 preferably has an average extinction coefficient of 0.05 or less, more preferably 0.02 or less, and further preferably 0.01 or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. preferable. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the thickness d2 of the high refractive index layer 36 is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less, and 0.3 ⁇ m or more and 1.2 ⁇ m or less. It is even more preferable to have By setting the thickness d2 within this range, the reflection of far-infrared rays can be appropriately suppressed.
  • the thickness d2 can also be said to be the length in the Z direction from the surface 36a of the high refractive index layer 36 to the opposite surface 36b.
  • the main component is at least one material selected from the group of Si and Ge.
  • the low refractive index layer 38 is a film laminated with the nickel oxide layer 32 and the high refractive index layer 36 to suppress reflection of far infrared rays.
  • the low refractive index layer 38 is laminated closer to the substrate 30 than the nickel oxide layer 32, and in the example of FIG. ing. If the high refractive index layer 36 is not formed, the low refractive index layer 38 will be provided between the substrate 30 and the nickel oxide layer 32 .
  • the low refractive index layer 38 is a film having a low refractive index for far infrared rays, and preferably has a refractive index lower than that of the nickel oxide layer 32 for light with a wavelength of 10 ⁇ m, and is 0.8 or more and 2.0 or less. , is more preferably 1.0 or more and 1.7 or less, and more preferably 1.0 or more and 1.5 or less.
  • the low refractive index layer 38 has an average refractive index lower than that of the nickel oxide layer 32 for light with a wavelength of 8 ⁇ m to 12 ⁇ m, preferably 0.8 to 2.0, more preferably 1.0 to 1.7. It is more preferably 1.0 or more and 1.5 or less.
  • the low refractive index layer 38 can transmit far infrared rays.
  • the low refractive index layer 38 preferably has an extinction coefficient of 0.05 or less, more preferably 0.02 or less, and even more preferably 0.01 or less for light with a wavelength of 10 ⁇ m.
  • the low refractive index layer 38 preferably has an average extinction coefficient of 0.05 or less, more preferably 0.02 or less, and further preferably 0.01 or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. preferable. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the thickness d3 of the low refractive index layer 38 is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 1.7 ⁇ m or less, and 0.3 ⁇ m or more and 1.5 ⁇ m or less. It is even more preferable to have By setting the thickness d3 within this range, the reflection of far-infrared rays can be appropriately suppressed.
  • the thickness d3 can also be said to be the length in the Z direction from the surface 38a of the low refractive index layer 38 to the opposite surface 38b.
  • the low refractive index layer 38 is preferably a film containing oxide as its main component. More specifically, the low refractive index layer 38 preferably contains MgO as its main component as an oxide.
  • the low refractive index layer 38 preferably has a MgO content of 50% by mass or more and 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less. More preferably, it is 85% by mass or more and 100% by mass or less. When the content of MgO is within this range, the low refractive index layer 38 appropriately transmits far-infrared rays, has a low refractive index with respect to far-infrared rays, and can appropriately suppress reflection of far-infrared rays. .
  • the low refractive index layer 38 may contain subcomponents other than the oxide (here, MgO) as the main component.
  • the auxiliary component is preferably an oxide that transmits infrared rays, and examples thereof include CuO x , ZnO, ZrO 2 , Bi 2 O 3 and Y 2 O 3 .
  • an adhesion layer (not shown) may be formed between the far-infrared transmitting film 31 and the substrate 30 .
  • the adhesion film is a film that brings the substrate 30 and the far-infrared permeable film 31 into close contact with each other, in other words, it is a film that improves the adhesion between the substrate 30 and the far-infrared permeable film 31 .
  • the adhesion layer is preferably permeable to far infrared rays.
  • the adhesion layer preferably has an extinction coefficient of 0.10 or less, more preferably 0.05 or less, and even more preferably 0.04 or less for light with a wavelength of 10 ⁇ m.
  • the adhesion layer preferably has a refractive index of 1.4 or more, more preferably 1.4 or more and 3.6 or less, and more preferably 1.6 or more and 2.2 or less for light with a wavelength of 10 ⁇ m. More preferred. When the refractive index of the adhesive layer falls within this numerical range, far-infrared rays can be appropriately transmitted.
  • single-wavelength light (light from a laser light source emitting light with a wavelength in the range of 0.8 ⁇ m to 1.8 ⁇ m) can be transmitted appropriately.
  • the single-wavelength light can be said to be light of a predetermined wavelength (single wavelength) within a wavelength range of 0.8 ⁇ m to 1.8 ⁇ m.
  • Wavelengths of single-wavelength light include 0.905 ⁇ m (905 nm), 1.35 ⁇ m (1350 nm), and 1.55 ⁇ m (1550 nm).
  • the adhesion layer is preferably capable of transmitting single-wavelength light.
  • the adhesion layer preferably has an extinction coefficient for single-wavelength light of 0.10 or less, more preferably 0.05 or less, and even more preferably 0.04 or less.
  • the adhesion layer preferably has a refractive index of 1.4 or more, more preferably 1.4 or more and 3.6 or less, and further preferably 2.0 or more and 2.4 or less for single-wavelength light. preferable.
  • the thickness of the adhesion film is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.3 ⁇ m or less, and further preferably 0.05 ⁇ m or more and 0.1 ⁇ m or less. preferable.
  • the thickness of the adhesion film is within this range, the base material 30 and the far-infrared transmission film 31 can be properly adhered to each other while appropriately suppressing reflection of single-wavelength light and far-infrared rays.
  • the thickness of the adhesion film can also be said to be the length in the Z direction from the surface of the adhesion film on the Z direction side to the surface on the opposite side to the Z direction.
  • the thickness of the adhesion film is preferably thinner than the thickness of the far-infrared transmission film 31 . Since the thickness of the adhesion film is thinner than the thickness of the far-infrared transmission film 31, the influence on the optical performance can be reduced.
  • the material of the adhesion film is arbitrary, for example, it is selected from the group of Si, Ge, MgO, NiOx , CuOx , ZnS , Al2O3 , ZrO2, SiO2 , TiO2 , ZnO, and Bi2O3 . It preferably contains at least one selected material, and more preferably contains ZrO2. By using such a material, the adhesion film can properly adhere the substrate 30 and the far-infrared transmission film 31 .
  • the far-infrared transmitting member 20 has the far-infrared transmitting film 31 having at least one nickel oxide layer 32 formed on the surface of the substrate 30 .
  • the far-infrared transmitting member 20 has a far-infrared transmitting film 31 having a nickel oxide layer 32 formed on the surface of the substrate 30, thereby reducing the far-infrared reflectance and increasing the far-infrared transmittance. .
  • the far-infrared transmitting member 20 preferably has a transmittance of 50% or more, more preferably 65% or more, and even more preferably 70% or more for light of 10 ⁇ m. Further, the far-infrared transmitting member 20 preferably has an average transmittance of 50% or more, more preferably 65% or more, and even more preferably 70% or more for light with a wavelength of 8 ⁇ m to 12 ⁇ m. When the transmittance and the average transmittance are in this range, the function as an infrared transmitting film can be properly exhibited.
  • the average transmittance is the average value of the transmittance for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m).
  • the transmittance can be measured, for example, with a Fourier transform infrared spectrometer (Nicolet iS10 manufactured by ThermoScientific).
  • the far-infrared transmitting member 20 preferably has a reflectance of 15% or less, more preferably 10% or less, and even more preferably 5% or less for 10 ⁇ m light. Further, the far-infrared transmitting member 20 preferably has an average reflectance of 15% or less, more preferably 10% or less, and even more preferably 5% or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. When the reflectance and the average reflectance are in this range, the function as an infrared transmitting film can be properly exhibited.
  • the average reflectance is the average value of the reflectance for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m). The reflectance can be measured, for example, with a Fourier transform infrared spectrometer (Nicolet iS10 manufactured by ThermoScientific).
  • the far-infrared transmitting member 20 is preferably formed such that the vehicle-exterior surface is flush (continuously) with the vehicle-exterior surface of the light shielding area A2.
  • the vehicle-exterior surface 20A of the far-infrared transmitting member 20 is attached so as to be continuous with the surface 12A of the glass substrate 12 .
  • the far-infrared transmitting member 20 is molded in accordance with the curved shape of the vehicle glass 1 to which it is applied.
  • the method of forming the far-infrared transmitting member 20 is not particularly limited, but polishing or molding is selected according to the curved surface shape and the film.
  • the shape of the far-infrared transmitting member 20 is not particularly limited, it preferably has a plate-like shape that matches the shape of the opening 19 . That is, for example, when the opening 19 is circular, the far-infrared transmitting member 20 is preferably disc-shaped (cylindrical). Further, from the viewpoint of design, the surface shape of the vehicle-exterior far-infrared transmitting member 20 may be processed so as to match the curvature of the outer surface shape of the glass substrate 12 . Further, the far-infrared transmitting member 20 may be lens-shaped for reasons such as widening the viewing angle of the far-infrared camera CA1 and improving mechanical properties.
  • the number of lens-shaped far-infrared transmitting members 20 is preferably one to three, typically two. Furthermore, it is particularly preferable that the lens-shaped far-infrared transmitting member 20 is pre-aligned and modularized, and integrated with a housing or a bracket that adheres the far-infrared camera CA1 to the vehicle glass 1 .
  • the area of the opening 19 on the vehicle-interior surface is smaller than the area of the opening 19 on the vehicle-exterior surface, and the shape of the far-infrared transmitting member 20 is also adjusted accordingly. It is preferable that the area of the vehicle-interior surface is smaller than the area of the vehicle-exterior surface. With such a configuration, the strength against impacts from the outside of the vehicle is improved. Furthermore, when the vehicle glass 1 of the present embodiment is a laminated glass including the glass substrate 12 (outside of the vehicle) and the glass substrate 14 (inside of the vehicle), the opening 19 is the opening 12a of the glass substrate 12. and the opening 14a of the glass substrate 14 overlap each other.
  • the area of the opening 12a of the glass substrate 12 is made larger than the area of the opening 14a of the glass substrate 14, and the far-infrared transmitting member 20 matching the size of the opening 12a of the glass substrate 12 is attached to the glass substrate 12. It may be placed in the opening 12a.
  • the far-infrared transmitting member 20 preferably has a length D1 of 80 mm or less for the longest straight line among the straight lines connecting any two points on the surface of the vehicle exterior side.
  • the length D1 is more preferably 70 mm or less, still more preferably 65 mm or less.
  • the length D1 is preferably 60 mm or more.
  • the opening 19 of the far-infrared transmission region B has a length D2 of 80 mm or less, which is the longest straight line connecting any two points on the surface of the vehicle exterior.
  • the length D2 is more preferably 70 mm or less, still more preferably 65 mm or less.
  • the length D2 is preferably 60 mm or more.
  • the length D2 can also be said to be the length of the longest straight line among the straight lines connecting any two points on the outer periphery of the opening 19 on the vehicle-exterior surface (surface 12A) of the vehicle glass 1 .
  • the length D1 of the far-infrared transmitting member 20 and the length D2 of the opening 19 within this range, the strength reduction of the vehicle glass 1 can be suppressed, and the see-through distortion amount around the opening 19 can also be suppressed.
  • the lengths D1 and D2 correspond to the diameters of the vehicle-exterior surface of the far-infrared transmitting member 20 when the shape of the vehicle-exterior surface is circular.
  • the lengths D1 and D2 here refer to the lengths of the vehicle glass 1 when it is mounted on the vehicle V.
  • the lengths D1 and D2 are the lengths in the state after bending. The same applies to descriptions of dimensions and positions other than the lengths D1 and D2, unless otherwise specified.
  • the substrate 30 is prepared, a raw material target is placed opposite the substrate 30, and the far-infrared transmitting film 31 is formed on the surface of the substrate 30 by sputtering. Thereby, the far-infrared transmitting member 20 is manufactured.
  • the far-infrared permeable film 31 By forming the far-infrared permeable film 31 by sputtering, it is possible to form a uniform far-infrared permeable film 31 on the substrate 30 having a large area as compared with vapor deposition.
  • the adhesion between the far-infrared transmitting film 31 and the substrate 30 can be improved.
  • the nickel oxide layer 32 of the far-infrared transmitting film 31 is formed by sputtering using a mixed target of NiO and Ni.
  • the mixed target By using the mixed target as a raw material, the element ratio (O/Ni) of nickel and oxygen can be easily controlled, and the nickel oxide layer 32 with high far-infrared transmittance can be formed.
  • the content of NiO in the mixed target is 30% or more and less than 100% by mass with respect to the entire mixed target.
  • the process window for NiO deposition is widened, and the element ratio (O/Ni) of nickel and oxygen in the nickel oxide layer 32 can be easily controlled.
  • the target has conductivity, and film formation by the DC pulse sputtering method, the Bi-polar pulse sputtering method, or the AC sputtering method, which will be described later, can be performed. make it possible.
  • the content of NiO in the mixed target is more preferably 50% or more and 95% or less, most preferably 70% or more and 90% or less, relative to the entire mixed target.
  • Sputtering of the nickel oxide layer 32 is performed in a mixed atmosphere of Ar and oxygen.
  • a mixed atmosphere of Ar and oxygen By performing sputtering in a mixed atmosphere of Ar and oxygen, it is possible to form the nickel oxide layer 32 with a controlled element ratio of nickel and oxygen and high far-infrared transmittance.
  • the ratio of the volumetric flow rate (SCCM: standard cc/min, 1 atm (25° C.)) of oxygen gas in the mixed atmosphere is set to 1% or more and less than 50%.
  • SCCM volumetric flow rate
  • the volume flow ratio of oxygen gas in the mixed atmosphere is more preferably 1% or more and 40% or less, and most preferably 1% or more and 30% or less.
  • DC pulse sputtering, bi-polar pulse sputtering, or AC sputtering is preferable for sputtering in terms of film thickness uniformity, production stability, and degree of oxidation controllability.
  • the sputtering may be a post-oxidation sputtering method in which film formation and oxidation are performed in separate rooms.
  • the volume flow ratio of oxygen gas in the mixed atmosphere in the film forming apparatus is set to 1% or more and less than 50%.
  • the volume flow ratio of oxygen gas in the mixed atmosphere in the film forming apparatus is more preferably 1% or more and 40% or less, and most preferably 1% or more and 30% or less.
  • the substrate 30 or the far-infrared transmissive film 31 may be heated during the production of the far-infrared transmissive film 31 .
  • the heating relaxes the film stress of the far-infrared transmissive film 31 and improves the adhesion between the substrate 30 and the far-infrared transmissive film 31 .
  • the surface of the far-infrared permeable film 31 opposite to the substrate 30 is heated at 100° C. or more and less than 300° C. for 0.5 hours or more and 2 hours or less. may be annealed.
  • the film stress of the far-infrared permeable film 31 is relaxed, and the adhesion between the substrate 30 and the far-infrared permeable film 31 can be improved without performing high-temperature annealing.
  • the base material 30 when sputtering the far-infrared transmitting film 31 on the base material 30, the base material 30 may be heated at 100°C or more and less than 300°C. As a result, the film stress of the far-infrared permeable film 31 is relaxed, and the adhesion between the substrate 30 and the far-infrared permeable film 31 can be improved without performing high-temperature annealing.
  • the far-infrared transmitting member 20 has a configuration in which only the far-infrared transmitting film 31 is formed on the substrate 30, but is not limited thereto. Other examples of the far-infrared transmitting member 20 will be described below.
  • FIG. 6 is a schematic cross-sectional view of a far-infrared transmitting film according to another example of this embodiment.
  • the far-infrared transmitting member 20 may have a protective film 34 formed on the surface 31 a of the far-infrared transmitting film 31 opposite to the substrate 30 .
  • the protective film 34 is a film formed on the outer surface of the far-infrared transmitting member 20, that is, on the outermost surface exposed to the outside. Protect from corrosion, etc.
  • the protective film 34 is provided on the vehicle-exterior far-infrared transmission film 31, that is, on the vehicle-exterior outer surface of the far-infrared transmission member 20, and is not provided on the vehicle interior.
  • the protective film 34 may also be provided on the far-infrared permeable film 31 on the vehicle interior side, that is, on the outer surface of the far-infrared permeable member 20 on the vehicle interior side.
  • the far-infrared permeable film 31 is illustrated as a single layer, but the far-infrared permeable film 31 is not limited to being a single layer, and may have any of the layer configurations described above. can also be taken.
  • the protective film 34 is preferably a film harder than the far-infrared transmitting film 31 .
  • the protective film 34 preferably has a hardness HIT higher than that of the far-infrared transmitting film 31, preferably higher than 9.0 GPa, more preferably higher than 10.0 GPa. , above 11 GPa.
  • the value of the ratio H IT /E between H IT and Young's modulus E is preferably larger than that of the far-infrared transmitting film 31, more preferably larger than 0.080, and even more preferably larger than 0.090. Preferably, it is most preferably greater than 0.095.
  • HIT and HIT /E of the protective film 34 fall within this numerical range, the far-infrared transmitting film 31 can be appropriately protected from being wiped off with a wiper or being scratched by dust.
  • Hardness H IT and Young's modulus E are measured according to ISO14577.
  • the protective film 34 preferably has a refractive index of 2.5 or less, more preferably 1.5 or more and 2.5 or less, and more preferably 1.7 or more and 2.4 for light (visible light) having a wavelength of 550 nm. More preferably: In addition, the protective film 34 preferably has an average refractive index of 2.5 or less, more preferably 1.5 or more and 2.5 or less, and more preferably 1.7 or more and 2.5 or less for light with a wavelength of 380 nm to 780 nm. It is more preferably 4 or less.
  • the refractive index and average refractive index for visible light of the protective film 34 are in this numerical range, the reflection of visible light can be suppressed by combining with the nickel oxide layer 32, and the far-infrared transmitting member 20 can be made inconspicuous. It becomes possible.
  • the protective film 34 preferably has a refractive index of 0.5 or more and 3.5 or less, more preferably 0.7 or more and 2.5 or less, with respect to light (far infrared rays) having a wavelength of 10 ⁇ m, and 1.0. It is more preferable that it is more than or equal to 2.5 or less.
  • the protective film 34 preferably has an average refractive index of 0.5 or more and 3.5 or less, more preferably 0.7 or more and 2.5 or less, with respect to light with a wavelength of 8 ⁇ m to 12 ⁇ m. It is more preferably 0 or more and 2.5 or less.
  • the protective film 34 can transmit far infrared rays.
  • the protective film 34 preferably has an extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 10 ⁇ m.
  • the protective film 34 preferably has an average extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the thickness d4 of the protective film 34 is preferably 0.01 ⁇ m or more and 1 ⁇ m or less, more preferably 0.02 ⁇ m or more and 0.5 ⁇ m or less, and further preferably 0.05 ⁇ m or more and 0.3 ⁇ m or less. preferable. By setting the thickness d2 within this range, it is possible to appropriately suppress reflection of far infrared rays and visible light.
  • the thickness d2 can also be said to be the length in the Z direction from the surface 34a of the protective film 34 to the surface 34b on the opposite side.
  • the material of the protective film 34 is arbitrary, for example, it may contain at least one material selected from the group consisting of ZrO 2 , Al 2 O 3 , TiO 2 , Si 3 N 4 , AlN, and diamond-like carbon. preferable.
  • the protection film 34 can appropriately protect the far-infrared transmission film 31 by using such a material.
  • the protective film 34 preferably has water barrier properties in order to protect the far-infrared permeable film 31 from water. That is, the protective film 34 preferably protects the far-infrared permeable film 31 from water in order to maintain the appearance of the far-infrared permeable film 31 in the visible light range.
  • the water barrier performance of the protective film 34 varies depending on the material, crystal structure, and film thickness.
  • the protective film 34 preferably has an amorphous structure from the viewpoint of water barrier properties.
  • the protective film 34 may also be formed by sputtering in the same manner as the far-infrared transmitting film 31, but is not limited to this, and may be formed by vapor deposition, for example.
  • FIG. 7 is a schematic cross-sectional view of a far-infrared transmitting film according to another example of this embodiment.
  • the far-infrared transmitting member 20 may have an adhesive film 40 formed between the far-infrared transmitting film 31 and the substrate 30 .
  • a protective film 34 like the example of FIG. 6 may be formed on the outer surface.
  • the far-infrared permeable film 31 is illustrated as a single layer in the example of FIG. 7 as well, the far-infrared permeable film 31 is not limited to being a single layer, and can have any of the layer configurations described above. .
  • the adhesion film 40 is a film that brings the substrate 30 and the far-infrared transmission film 31 into close contact with each other.
  • the adhesion film 40 is provided between the substrate 30 and the far-infrared transmission film 31 .
  • the adhesion film 40 preferably has a refractive index of 1.0 or more and 4.3 or less, more preferably 1.5 or more and 4.3 or less, with respect to light (far infrared rays) having a wavelength of 10 ⁇ m. It is more preferable that it is more than or equal to 3.8 or less.
  • the adhesion film 40 preferably has an average refractive index of 1.0 to 4.3, more preferably 1.5 to 4.3, with respect to light with a wavelength of 8 ⁇ m to 12 ⁇ m. More preferably, it is 5 or more and 3.8 or less.
  • the refractive index and average refractive index of the adhesion film 40 By setting the refractive index and average refractive index of the adhesion film 40 to far-infrared rays within this numerical range, the reflection of far-infrared rays can be suppressed and the far-infrared rays can be properly transmitted.
  • the adhesion film 40 can transmit far infrared rays.
  • the adhesion film 40 preferably has an extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 10 ⁇ m.
  • the adhesion film 40 preferably has an average extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the thickness d5 of the adhesion film 40 is preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.3 ⁇ m or less, and 0.05 ⁇ m or more and 0.1 ⁇ m or less. is more preferred. By setting the thickness d5 within this range, it is possible to appropriately suppress reflection of far infrared rays and visible light.
  • the thickness d5 can also be said to be the length in the Z direction from the surface 40a of the adhesion film 40 to the opposite surface 40b.
  • the thickness d5 of the adhesion film 40 is preferably thinner than the thickness d1 of the nickel oxide layer 32, the thickness d2 of the high refractive index layer 36, and the thickness d3 of the low refractive index layer 38. Since the thickness d5 of the adhesion film 40 is thinner than the thicknesses of these layers, the influence on the optical performance can be reduced.
  • the material of the adhesion film 40 is arbitrary, it is selected from the group of Si, Ge, MgO, CuOx , ZnS , Al2O3 , ZrO2, SiO2 , TiO2 , ZnO, and Bi2O3 , for example. It preferably contains at least one material. By using such a material, the adhesion film 40 can appropriately adhere the substrate 30 and the far-infrared transmission film 31 .
  • the adhesion film 40 may also be formed by sputtering in the same manner as the far-infrared transmission film 31, but is not limited to this, and may be formed by vapor deposition, for example.
  • a far-infrared layer including one or more nickel oxide layers is formed on a base material transmitting far-infrared rays by sputtering using a mixed target of NiO and Ni. Forms an infrared transmission film.
  • the content of NiO in the mixed target is 30% by mass or more and less than 100% by mass with respect to the entire mixed target.
  • the far-infrared transmissive film is required to have a high far-infrared transmittance.
  • the element ratio of nickel and oxygen in the nickel oxide layer can be appropriately controlled, a high-temperature process of 300 ° C. or higher is not required, and the far-infrared transmittance is high.
  • a far-infrared transmission film can be formed.
  • the far-infrared transmitting film 31 is formed by sputtering in a mixed atmosphere of Ar gas and oxygen gas, and under the condition that the volume flow ratio of oxygen in the mixed atmosphere is 1% or more and less than 50%.
  • the volume flow ratio of oxygen in the mixed atmosphere is 1% or more and less than 50%.
  • the far-infrared transmitting film 31 is preferably formed while heating the substrate 30 to 100°C or higher and lower than 300°C.
  • the nickel oxide layer 32 By forming the nickel oxide layer 32 while heating the substrate 30 to a temperature of 100° C. or more and less than 300° C., the film stress of the far-infrared transmission film 31 can be relaxed and film peeling can be suppressed.
  • the far-infrared transmitting film 31 is preferably annealed at a temperature of 100°C or more and less than 300°C.
  • annealing the far-infrared transmitting film 31 at a temperature of 100° C. or more and less than 300° C. the film stress of the far-infrared transmitting film 31 is relaxed, the bonding strength between the base material 30 and the far-infrared transmitting film 31 is increased, and the film Peeling can be suppressed.
  • the annealing treatment should be performed for 0.5 hours or more and 2 hours or less to relax the film stress of the far-infrared transmission film 31, increase the bonding force between the substrate 30 and the far-infrared transmission film 31, and suppress film peeling. It is preferable because it becomes easier.
  • the base material 30 preferably contains at least one material selected from the group consisting of Si, Ge, ZnS, and chalcogenite glass. By making the material of the base material 30 in this manner, far infrared rays can be transmitted appropriately.
  • the far-infrared transmitting member 20 is preferably mounted on a vehicle. Since the far-infrared transmitting member 20 can transmit far-infrared rays appropriately, it can be appropriately mounted on a vehicle.
  • the far-infrared transmitting member 20 may be arranged on the window member of the vehicle. Since the far-infrared transmitting member 20 can transmit far-infrared rays appropriately, it can be appropriately mounted on a vehicle.
  • the far-infrared transmitting member 20 may be arranged on the pillar exterior member of the vehicle. Since the far-infrared transmitting member 20 can transmit far-infrared rays appropriately, it can be appropriately mounted on a vehicle.
  • the far-infrared transmitting member 20 may be arranged within the light shielding area A2 of the vehicle exterior member. Since the far-infrared transmitting member 20 can transmit far-infrared rays appropriately, it can be appropriately mounted on a vehicle.
  • Example 1 In Example 1, the substrate itself was used as the far-infrared transmitting member, and no far-infrared transmitting film was formed.
  • Si 100 orientation, CZ grade, P type, manufactured by Matsuzaki Seisakusho
  • the thickness of the substrate was 0.525 mm ⁇ 0.025 mm.
  • Example 2 nickel oxide layers were formed on both sides of the substrate by magnetron sputtering to form far-infrared transmitting films.
  • Example 2 the same Si as in Example 1 was used as the substrate, the thickness of the substrate was the same as in Example 1, and the thickness of the nickel oxide layer was 1.2 ⁇ m.
  • the thickness of the substrate and the nickel oxide layer were evaluated by a stylus profiling system (Dektak XT-S, manufactured by BRUKER).
  • a mixed target of NiO and Ni (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was used as a film-forming raw material.
  • the mass ratio of NiO in the mixed target was 70%, and the mass ratio of Ni was 30%.
  • the mixed target and the base material were placed opposite to each other in the film forming apparatus. At this time, the distance between the target and the substrate was 150 mm. Next, the entire apparatus was evacuated. Then, when the pressure in the apparatus reached 5 ⁇ 10 ⁇ 4 Pa, a mixed atmosphere of Ar gas and oxygen gas was flowed at a total of 150 SCCM (standard cc/min, 1 atm (25° C.)).
  • the volumetric flow ratio of oxygen gas in the mixed atmosphere was set to 20%, and the exhaust speed was adjusted so that the pressure in the apparatus was 0.3 Pa. After that, a DC pulse current (20 kHz) of 3000 W was applied to the target surface, and while rotating the substrate in front of the target, a nickel oxide layer was formed on the surface of the substrate to produce a far-infrared transmitting member.
  • Example 3 A far-infrared transmitting member was produced in the same manner as in Example 2, except that the surface of the obtained nickel oxide layer was annealed at 150° C. for 1 hour in an air atmosphere.
  • Example 4 A far-infrared transmitting member was produced in the same manner as in Example 2, except that the nickel oxide layer was formed while heating the Si substrate at 250°C.
  • Example 5 A film forming apparatus different from that of Example 2 was used, and a substrate similar to that of Example 2 and a pure nickel target (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were arranged opposite to each other. At this time, the distance between the target and the substrate was 90 mm. After evacuating the entire apparatus in the same manner as in Example 2, a mixed atmosphere of Ar gas and oxygen gas was flowed at a total of 15 SCCM. At this time, the volumetric flow ratio of oxygen gas in the mixed atmosphere was set to 27%, and the exhaust speed was adjusted so that the pressure in the apparatus was 0.3 Pa. Thereafter, a DC pulse current (20 kHz) of 400 W was applied to the target surface, and while rotating the substrate in front of the target, a nickel oxide layer was formed on the surface of the substrate to produce a far-infrared transmitting member.
  • a DC pulse current (20 kHz) of 400 W was applied to the target surface, and while rotating the substrate in front of the target, a nickel oxide layer
  • Example 6 A far-infrared transmitting member was produced in the same manner as in Example 2, except that the volume flow rate of oxygen gas in the mixed atmosphere was 33%.
  • Example 7 A far-infrared transmitting member was produced in the same manner as in Example 2, except that the volumetric flow rate of oxygen gas in the mixed atmosphere was 50%.
  • Example 8 A far-infrared transmitting member was produced in the same manner as in Example 2, except that the volumetric flow ratio of oxygen gas in the mixed atmosphere was 100%.
  • Example 9 A far-infrared transmitting member was produced by applying the data in Table 3 of Non-Patent Document 2 mutatis mutandis.
  • a nickel oxide layer was formed by RF magnetron sputtering on both sides of a substrate made of Si (100 orientation, P-type) mirror-polished on both sides to form a far-infrared transmitting member.
  • the thickness of the substrate was 0.525 mm, and the thickness of the nickel oxide layer was 1.2 ⁇ m.
  • a pure Ni target similar to that of Example 5 was used as a film forming material.
  • the entire deposition apparatus was evacuated, and when the pressure inside the apparatus reached 3 ⁇ 10 ⁇ 6 Torr, a mixed atmosphere of Ar gas and oxygen gas was supplied. At this time, the exhaust speed was adjusted so that the pressure in the apparatus was 3.5 mTorr. Thereafter, an RF current was applied to the surface of the target to form a nickel oxide layer on the surface of the base material, thereby producing a far-infrared transmitting member.
  • Example 10 Using the data of Non-Patent Document 2, the surface of the obtained nickel oxide layer was subjected to annealing treatment at 600 ° C. for 1 hour in an air atmosphere. made.
  • the samples of Examples 1 to 8 were evaluated for far-infrared transmission performance.
  • the far-infrared transmission performance was evaluated by the average transmittance of the samples.
  • the average transmittance here is the average value of the transmittance of light with wavelengths of 8 ⁇ m to 12 ⁇ m.
  • the transmittance of light with a wavelength of 8 ⁇ m to 12 ⁇ m was measured using a Fourier transform infrared spectrometer (manufactured by ThermoScientific, trade name: Nicolet iS10), and the measured transmittance , the arithmetic average transmittance was calculated.
  • the measurement range was 400 cm ⁇ 1 to 4000 cm ⁇ 1 and the measurement interval was 2 cm ⁇ 1 .
  • the average transmittance is 78% or more as a double circle, 75% or more and lower than 78% as a circle, and lower than 75% as a cross, circle, double A circle was accepted.
  • Table 1 shows the far-infrared transmission performance of the samples of Examples 1-10.
  • 8 shows the infrared transmission performance of the samples of Examples 2, 6, 7 and 8.
  • Table 1 shows the far-infrared transmission performance of the samples of Examples 1-10.
  • 8 shows the infrared transmission performance of the samples of Examples 2, 6, 7 and 8.
  • FIG. From Table 1, good permeation performance was confirmed in Examples 2, 3, 4, 6, and 10, but the permeation performance was insufficient in Examples 1, 5, 7, 8, and 9. there were. Further, from FIG. 8, good permeation performance was confirmed in Examples 2 and 6, but the permeation performance in Examples 7 and 8 was insufficient.
  • Examples 2, 3, 4, and 6 are samples prepared using a mixed target of NiO and Ni under conditions in which the volume flow rate ratio of oxygen gas during film formation is less than 50%.
  • Examples 7 and 8 are samples prepared using a mixed target of nickel oxide and nickel under the condition that the volume flow ratio of oxygen gas during film formation is 50% or more. and oxygen element ratio (O/Ni) was inappropriate, and the far-infrared transmittance was attenuated.
  • Example 10 uses a pure Ni target that does not contain NiO and is annealed at a high temperature of 600° C. for 1 hour. guessed.
  • Examples 5 and 9 are samples produced using a pure Ni target containing no NiO mass ratio, and under the above conditions, the oxygen element ratio in the nickel oxide layer is inappropriate, and the far-infrared transmittance is attenuated. it is conceivable that.
  • Example 2 a nickel oxide layer having an element ratio (O/Ni) of 1.3 or less and a film density of 6.0 g/cm 3 or less was obtained.
  • FIG. 9 shows the relationship between the average transmittance of the samples of Examples 2, 6, 7, and 8 for light with a wavelength of 8 ⁇ m to 12 ⁇ m and the extinction coefficient of the nickel oxide layer for light with a wavelength of 10 ⁇ m. . From FIG. 9, it is confirmed that the smaller the extinction coefficient for light with a wavelength of 10 ⁇ m, the better the nickel oxide layer with excellent far-infrared performance can be obtained. is 0.025 or less, a nickel oxide layer having excellent far-infrared transmission performance was obtained.
  • XANES evaluation of nickel oxide layer Furthermore, the samples of Examples 2, 6, 7, and 8 were subjected to XAFS measurement of the K absorption edge of nickel to evaluate XANES.
  • XAFS analysis with hard X-rays was performed using the beamline BL5S1 at the Aichi Synchrotron Light Center.
  • the spectroscope was Si(111). Detection was performed simultaneously by fluorescence yield and electron yield.
  • the measurement range was set to a wide range so that the pre-edge and post-edge lines could be accurately drawn, and specifically, the measurement was performed over a range of 8100 to 8800 [eV]. In the edge regions where the spectrum changes abruptly, the measurement interval was made smaller so that differences could be discerned.
  • FIG. 10 shows the relationship between the average transmittance of the samples of Examples 2, 6, 7, and 8 for light with a wavelength of 8 ⁇ m to 12 ⁇ m and E(S).
  • FIG. 10 confirms that the smaller the E(S), the better the nickel oxide layer with excellent far-infrared transmission performance. A nickel oxide layer with excellent performance was obtained.
  • the embodiment of the present invention has been described above, the embodiment is not limited by the content of this embodiment.
  • the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range.
  • the components described above can be combined as appropriate.
  • various omissions, replacements, or modifications of components can be made without departing from the gist of the above-described embodiments.
  • Reference Signs List 1 vehicle glass 10, 12, 14 glass substrate 16 intermediate layer 18 light shielding layer 20 far-infrared transmitting member 30 substrate 31 far-infrared transmitting film 32 nickel oxide layer 34 protective film 36 high refractive index layer 38 low refractive index layer 40 adhesion film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

遠赤外線透過率の高い遠赤外線透過部材の製造方法。遠赤外線を透過する基材上に、NiOとNiとの混合ターゲットを用い、Arガスと酸素ガスの混合雰囲気下でスパッタリングして、酸化ニッケル層を1層以上含む遠赤外線透過膜を形成する、遠赤外線透過部材の製造方法において、混合ターゲット中のNiOの含有率が、混合ターゲットの全体に対して、30質量%以上100質量%未満であり、混合雰囲気中の酸素ガスの体積流量比率が、Arガスと酸素ガスの合計体積流量に対して1%以上50%未満である、遠赤外線透過部材の製造方法。

Description

遠赤外線透過部材の製造方法及び遠赤外線透過部材
 本発明は、遠赤外線透過部材の製造方法及び遠赤外線透過部材に関する。
 例えば車両などに遠赤外線センサを取り付ける際に、遠赤外線センサに遠赤外線が適切に入射するように、遠赤外線の反射を抑制して透過光量を増大させるための遠赤外線透過膜を設ける場合がある。例えば非特許文献1、2には、Si基板上に、遠赤外線透過膜として酸化ニッケル膜を形成する旨が記載されている。
 遠赤外線の透過光量を増大させるための遠赤外線透過膜は、遠赤外線の吸収損失を低減することにより、遠赤外線透過率を増大させることが重要であるが、例えば非特許文献1、2に依れば、Si基板上にRFマグネトロンスパッタ法により形成した酸化ニッケル膜を300℃以上の温度でアニール処理することで、遠赤外線透過率の高い酸化ニッケル膜を得ることができる。
Hyun Bin Shim 他、Controlling the infrared optical properties of rf-sputtered NiO films for application of infrared window、 Infrared Physics and Technology 72(2015)、135-139 Hyun Bin Shim 他、Nickel oxide film as an AR coating of Si window for IRsensor packaging、 Infrared Technology and Applications XXXIX、 Proc.of SPIE Vol,8704 870420-1
 しかしながら、非特許文献1、2に記載の300℃以上の高温アニール処理を行うと、使用可能な赤外線透過性基材が制限される、赤外線透過性基材と遠赤外線透過膜の熱膨張率差により膜剥がれが生じる、さらにはプロセスコストが増大する、といった課題がある。従って、高温アニール処理が不要な方法で、遠赤外線透過率の高い遠赤外線透過部材を製造することが求められている。
 本発明は、高温アニール処理を行うことなく、遠赤外線透過率の高い遠赤外線透過部材を製造する方法及び遠赤外線透過部材を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る遠赤外線透過部材の製造方法は、遠赤外線を透過する基材上に、NiOとNiとの混合ターゲットを用い、Arガスと酸素ガスの混合雰囲気下でスパッタリングして酸化ニッケル層を1層以上含む遠赤外線透過膜を形成する、遠赤外線透過部材の製造方法において、前記混合ターゲット中のNiOの含有率が、前記混合ターゲットの全体に対して30質量%以上100質量%未満であり、前記混合雰囲気中の酸素ガスの体積流量比率が、Arガスと酸素ガスの合計体積流量に対して1%以上50%未満とする。
 また、本開示に係る赤外線透過部材は、遠赤外線を透過する基材と、前記基材上に形成された機能膜とを含み、前記機能膜が、ニッケルのK吸収端のX線吸収微細構造(XANES)スペクトルのピークトップエネルギーが8347.1eV以下である酸化ニッケル層を1層以上含むことを特徴とする。
 さらに、本開示に係る赤外線透過部材は、遠赤外線を透過する基材と、前記基材上に形成された機能膜とを含み、前記機能膜が、10μmの波長の光に対する消衰係数が、0.025以下である酸化ニッケル層を1層以上含むことを特徴とする。
 本発明によれば、高温アニール処理をせずとも、遠赤外線透過率の高い遠赤外線透過部材を得ることができる。
図1は、本実施形態に係る車両用ガラスが車両に搭載された状態を示す模式図である。 図2は、第1実施形態に係る車両用ガラス1の概略平面図である。 図3は、図2のA-A線に沿った断面図である。 図4は、図2のB-B断面に沿った断面図である。 図5は、本実施形態に係る遠赤外線透過部材の模式的な断面図である。 図6は、本実施形態の他の例に係る遠赤外線透過部材の模式的な断面図である。 図7は、本実施形態の他の例に係る遠赤外線透過部材の模式的な断面図である。 図8は、実施例のサンプルの遠赤外線透過性能を示す図である。 図9は、実施例のサンプルの波長8μm~12μmの光に対する平均透過率と、酸化ニッケル層の10μmの波長の光に対する消衰係数との関係を示す図である。 図10は、実施例のサンプルの波長8μm~12μmの光に対する平均透過率と、E(S)との関係を示す図である。
 以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、数値については四捨五入の範囲が含まれる。
 (車両)
 図1は、本実施形態に係る車両用ガラスが車両に搭載された状態を示す模式図である。図1に示すように、本実施形態に係る車両用ガラス1は、車両Vに搭載される。車両用ガラス1は、車両Vのフロントガラスに適用される窓膜である。すなわち、車両用ガラス1は、車両Vのフロントウィンドウ、言い換えれば風防ガラスとして用いられている。車両Vの内部(車内)には、遠赤外カメラCA1及び可視光カメラCA2が搭載されている。なお、車両Vの内部(車内)とは、例えばドライバーの運転席が設けられる車室内を指す。
 車両用ガラス1、遠赤外カメラCA1及び可視光カメラCA2は、本実施形態に係るカメラユニット100を構成している。遠赤外カメラCA1は、遠赤外線を検出するカメラであり、車両Vの外部からの遠赤外線を検出することで、車両Vの外部の熱画像を撮像する。可視光カメラCA2は、可視光を検出するカメラであり、車両Vの外部からの可視光を検出することで、車両Vの外部の画像を撮像する。なお、カメラユニット100は、遠赤外カメラCA1及び可視光カメラCA2以外にも、例えばLiDARやミリ波レーダーをさらに備えてもよい。ここでの遠赤外線とは、例えば、波長が8μm~13μmの波長帯の電磁波であり、可視光とは、例えば、波長が360nm~830nmの波長帯の電磁波である。また、ここでの8μm~13μm、360nm~830nmとは、8μm以上13μm以下、360nm以上830nm以下を指し、以降でも同様である。なお、遠赤外線を、波長が8μm~12μmの波長帯の電磁波としてもよい。
 (車両用ガラス)
 図2は、第1実施形態に係る車両用ガラス1の概略平面図である。図3は、図2のA-A線に沿った断面図である。図4は、図2のB-B断面に沿った断面図である。図2に示すように、以下、車両用ガラス1の上縁を、上縁部1aとし、下縁を、下縁部1bとし、一方の側縁を、側縁部1cとし、他方の側縁を、側縁部1dとする。上縁部1aは、車両用ガラス1を車両Vに搭載した際に、鉛直方向上側に位置する縁部分である。下縁部1bは、車両用ガラス1を車両Vに搭載した際に、鉛直方向下側に位置する縁部分である。側縁部1cは、車両用ガラス1を車両Vに搭載した際に、一方の側方側に位置する縁部分である。側縁部1dは、車両用ガラス1を車両Vに搭載した際に、他方の側方側に位置する縁部分である。
 以下、車両用ガラス1の表面に平行な方向のうち、上縁部1aから下縁部1bに向かう方向を、Y方向とし、側縁部1cから側縁部1dに向かう方向を、X方向とする。本実施形態において、X方向とY方向とは直交している。車両用ガラス1の表面に直交する方向、すなわち車両用ガラス1の厚み方向を、Z方向とする。Z方向は、例えば、車両用ガラス1を車両Vに搭載した際に、車両Vの車外側から車内側に向かう方向である。X方向及びY方向は、車両用ガラス1の表面に沿っているが、例えば車両用ガラス1の表面が曲面の場合、車両用ガラス1の中心点Oにおいて車両用ガラス1の表面に接する方向となっていてもよい。中心点Oとは、Z方向から車両用ガラス1を見た場合の、車両用ガラス1の中心位置である。
 車両用ガラス1には、透光領域A1及び遮光領域A2が形成されている。透光領域A1は、Z方向から見て車両用ガラス1の中央部分を占める領域である。透光領域A1は、ドライバーの視野を確保するための領域である。透光領域A1は、可視光を透過する領域である。遮光領域A2は、Z方向から見て透光領域A1の周囲に形成される領域である。遮光領域A2は、可視光を遮蔽する領域である。遮光領域A2のうち、上縁部1a側の部分である遮光領域A2a内には、遠赤外線透過領域Bと可視光透過領域Cとが形成されている。
 遠赤外線透過領域Bは、遠赤外線を透過する領域であり、遠赤外カメラCA1が設けられる領域である。すなわち、遠赤外カメラCA1は、遠赤外カメラCA1の光軸方向から見た場合に、遠赤外線透過領域Bと重なる位置に設けられる。可視光透過領域Cは、可視光を透過する領域であり、可視光カメラCA2が設けられる領域である。すなわち、可視光カメラCA2は、可視光カメラCA2の光軸方向から見た場合に、可視光透過領域Cと重なる位置に設けられる。
 このように、遮光領域A2には、遠赤外線透過領域Bと可視光透過領域Cとが形成されているため、遮光領域A2は、遠赤外線透過領域Bが形成されている領域以外では遠赤外線を遮蔽し、可視光透過領域Cが形成されている領域以外では可視光を遮蔽する。遠赤外線透過領域B及び可視光透過領域Cは、周囲に遮光領域A2aが形成されている。このように周囲に遮光領域A2aが設けられることにより各種センサが太陽光から保護されるため好ましい。各種センサの配線が車外から見えなくなるので、意匠性の観点からも好ましい。
 図3に示すように、車両用ガラス1は、ガラス基体12(第1ガラス基体)と、ガラス基体14(第2ガラス基体)と、中間層16と、遮光層18とを備える。車両用ガラス1は、ガラス基体12、中間層16、ガラス基体14及び遮光層18が、Z方向に向けてこの順で積層されている。ガラス基体12とガラス基体14とは、中間層16を介して互いに固定(接着)されている。
 ガラス基体12、14としては、例えばソーダライムガラス、ボロシリケートガラス、アルミノシリケートガラス等を用いることができる。中間層16は、ガラス基体12とガラス基体14とを接着する接着層である。中間層16としては、例えばポリビニルブチラール(以下PVBともいう)改質材料、エチレン-酢酸ビニル共重合体(EVA)系材料、ウレタン樹脂材料、塩化ビニル樹脂材料等を用いることができる。より詳しくは、ガラス基体12は、一方の表面12Aと他方の表面12Bとを含み、他方の表面12Bが、中間層16の一方の表面16Aに接触して、中間層16に対して固定(接着)されている。ガラス基体14は、一方の表面14Aと他方の表面14Bとを含み、一方の表面14Aが、中間層16の他方の表面16Bに接触して、中間層16に対して固定(接着)されている。このように、車両用ガラス1は、ガラス基体12とガラス基体14とが積層された合わせガラスである。ただし、車両用ガラス1は、合わせガラスに限られず、例えばガラス基体12とガラス基体14とのうち一方のみを含む構成であってよい。この場合、中間層16も設けられていなくてよい。以下、ガラス基体12、14を区別しない場合は、ガラス基体10と記載する。
 遮光層18は、一方の表面18Aと他方の表面18Bとを含み、一方の表面18Aが、ガラス基体14の他方の表面14Bに接触して固定されている。遮光層18は、可視光を遮蔽する層である。遮光層18としては、例えばセラミックス遮光層や遮光フィルムを用いることができる。セラミックス遮光層としては、例えば黒色セラミックス層等の従来公知の材料からなるセラミックス層を用いることができる。遮光フィルムとしては、例えば遮光ポリエチレンテレフタレート(PET)フィルム、遮光ポリエチレンナフタレート(PEN)フィルム、遮光ポリメチルメタクリレート(PMMA)フィルム等を用いることができる。
 本実施形態においては、車両用ガラス1は、遮光層18が設けられる側が、車両Vの内部側(車内側)となり、ガラス基体12が設けられる側が車両Vの外部側(車外側)となるが、それに限られず、遮光層18が車両Vの外部側であってもよい。ガラス基体12、14の合わせガラスで構成されている場合は、遮光層18が、ガラス基体12とガラス基体14との間に形成されてもよい。
 (遮光領域)
 遮光領域A2は、ガラス基体10に遮光層18を設けることにより形成される。すなわち、遮光領域A2は、ガラス基体10が遮光層18を備える領域である。すなわち、遮光領域A2は、ガラス基体12と中間層16とガラス基体14と遮光層18が積層された領域である。一方、透光領域A1は、ガラス基体10が遮光層18を備えない領域である。すなわち、透光領域A1は、ガラス基体12と中間層16とガラス基体14とが積層されて、遮光層18が積層されない領域である。
 (遠赤外線透過領域)
 図3に示すように、車両用ガラス1は、Z方向における一方の表面(ここでは表面12A)から他方の表面(ここでは表面14B)までにわたって貫通する開口部19が形成されている。開口部19内には、遠赤外線透過部材20が設けられている。開口部19が形成されて遠赤外線透過部材20が設けられている領域が、遠赤外線透過領域Bである。すなわち、遠赤外線透過領域Bは、開口部19と、開口部19内に配置された遠赤外線透過部材20とが設けられる領域である。遮光層18は遠赤外線を透過しないため、遠赤外線透過領域Bには、遮光層18が設けられていない。すなわち、遠赤外線透過領域Bにおいては、ガラス基体12、中間層16、ガラス基体14、及び遮光層18が設けられておらず、形成された開口部19に遠赤外線透過部材20が設けられている。遠赤外線透過部材20については後述する。
 (可視光領域)
 図4に示すように、可視光透過領域Cは、透光領域A1と同様に、Z方向において、ガラス基体10が遮光層18を備えない領域である。すなわち、可視光透過領域Cは、ガラス基体12と中間層16とガラス基体14とが積層されて、遮光層18が積層されない領域である。
 図2に示すように、可視光透過領域Cは、遠赤外線透過領域Bの近傍に設けられることが好ましい。具体的には、Z方向から見た遠赤外線透過領域Bの中心を中心点OBとし、Z方向から見た可視光透過領域Cの中心を中心点OCとする。Z方向から見た場合の、遠赤外線透過領域B(開口部19)と可視光透過領域Cとの間の最短距離を距離Lとすると、距離Lは、0mmより大きく100mm以下であることが好ましく、10mm以上80mm以下であることがさらに好ましい。可視光透過領域Cを、遠赤外線透過領域Bに対してこの範囲の位置とすることによって、遠赤外カメラCA1と可視光カメラCA2とで近い位置の画像を撮像することを可能としつつ、可視光透過領域Cでの透視歪み量を抑えて、可視光カメラCA2で適切に画像を撮像できる。遠赤外カメラCA1と可視光カメラCA2とで近い位置の画像を撮像することによって、それぞれのカメラから得られるデータを演算処理する際の負荷が軽減され、電源や信号ケーブルの取り廻しも好適となる。
 図2に示すように、可視光透過領域Cと遠赤外線透過領域Bとは、X方向に並んで位置していることが好ましい。すなわち、可視光透過領域Cは、遠赤外線透過領域BのY方向側に位置しておらず、遠赤外線透過領域BとX方向で並んでいることが好ましい。可視光透過領域Cを遠赤外線透過領域BにX方向に並べて配置することによって、可視光透過領域Cを上縁部1aの近傍に配置することができる。従って、透光領域A1におけるドライバーの視野を適切に確保することができる。
 (遠赤外線透過部材)
 以下、遠赤外線透過領域Bに設けられる遠赤外線透過部材20について、具体的に説明する。図5は、本実施形態に係る遠赤外線透過部材の模式的な断面図である。図5に示すように、遠赤外線透過部材20は、基材30と、基材30上に形成される遠赤外線透過膜31とを有している。本実施形態において、遠赤外線透過部材20は、基材30の一方の表面30aと他方の表面30bとの両方に、遠赤外線透過膜31が形成されている。表面30aは、車両用ガラス1に搭載された場合に車内側となる面であり、表面30bは、車両用ガラス1に搭載された場合に車外側となる面である。ただし、遠赤外線透過部材20は、基材30の表面30a、30bとの両方に遠赤外線透過膜31が形成されることに限られず、表面30a、30bの少なくとも一方に遠赤外線透過膜31が形成されていてよい。
 このように、本実施形態においては、遠赤外線透過部材20は、車両Vの窓膜である車両用ガラス1の、遮光領域A2に設けられているが、それに限られず、車両Vのピラー用外装膜など、車両Vの任意の外装膜に設けられてよい。また、遠赤外線透過部材20は、車両Vに設けられることに限られず、任意の用途に用いてもよい。
 (基材)
 基材30は、遠赤外線を透過可能な部材である。基材30は、波長10μmの光(遠赤外線)に対する内部透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。また、基材30は、波長8μm~12μmの光(遠赤外線)に対する平均内部透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。基材30の10μmでの内部透過率や8μm~12μmでの平均内部透過率がこの数値範囲となることで、遠赤外線を適切に透過して、例えば遠赤外カメラCA1の性能を十分に発揮できる。なお、ここでの平均内部透過率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する内部透過率の平均値である。
 基材30の内部透過率は、入射側および出射側における表面反射損失を除いた透過率であり、当該技術分野において周知のものであり、その測定も通常行われる方法でよい。測定は、例えば、以下のように行う。
 同一組成の基材からなり、厚さの異なる一対の平板状試料(第1の試料および第2の試料)を用意する。平板状試料の両面は互いに平行かつ光学研磨された平面とする。第1の試料の表面反射損失を含む外部透過率をT1、第2の試料の表面反射損失を含む外部透過率をT2、第1の試料の厚みをTd1(mm)、第2の試料の厚みをTd2(mm)、ただしTd1<Td2とすると、厚さTdx(mm)での内部透過率τは次式(1)により算出することができる。
 τ = exp[-Tdx×(lnT1-lnT2)/ΔTd] ・・・(1)
 なお、赤外線の外部透過率は、例えばフーリエ変換型赤外分光装置(ThermoScientific社製、商品名:Nicolet iS10)により測定できる。
 基材30は、波長10μmの光に対する屈折率が、1.5以上4.0以下であることが好ましく、2.0以上4.0以下であることがより好ましく、2.2以上3.5以下であることがさらに好ましい。また、基材30は、波長8μm~12μmの光に対する平均屈折率が、1.5以上4.0以下であることが好ましく、2.0以上4.0以下であることがより好ましく、2.2以上3.5以下であることがさらに好ましい。基材30の屈折率や平均屈折率がこの数値範囲となることで、遠赤外線を適切に透過して、例えば遠赤外カメラCA1の性能を十分に発揮できる。なお、ここでの平均屈折率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する屈折率の平均値である。屈折率は、例えば赤外分光エリプソメーター(J.A.ウーラム社製・IR-VASE-UT)により得られる偏光情報、およびフーリエ変換型赤外分光装置により得られる分光透過スペクトルを用いて、光学モデルのフィッティングを行うことで、決定できる。
 基材30の厚みd0は、0.5mm以上5mm以下であることが好ましく、1mm以上4mm以下であることがより好ましく、1.5mm以上3mm以下であることがさらに好ましい。厚みd0がこの範囲にあることで、強度を確保しつつ、遠赤外線を適切に透過できる。なお、厚みd0は、基材30の表面30aから表面30bまでのZ方向における長さともいえる。
 基材30の材料は、特に限定はされないが、例えばSi、Ge、ZnS、及びカルコゲナイトガラス等が挙げられる。基材30は、Si、Ge、ZnS、及びカルコゲナイトガラスの群より選ばれる少なくとも1種の材料を含むことが好ましいといえる。基材30にこのような材料を用いることで、遠赤外線を適切に透過できる。
 カルコゲナイトガラスの好ましい組成としては、
 原子%表示で、
 Ge+Ga;7%~25%、
 Sb;0%~35%、
 Bi;0%~20%、
 Zn;0%~20%、
 Sn;0%~20%、
 Si;0%~20%、
 La;0%~20%、
 S+Se+Te;55%~80%、
 Ti;0.005%~0.3%、
 Li+Na+K+Cs;0%~20%、
 F+Cl+Br+I;0%~20%含有する組成である。そして、このガラスは、140℃~550℃のガラス転移点(Tg)を有することが好ましい。
 なお、基材30の材料としては、Si、ZnS及びカルコゲナイドガラスを用いることがより好ましい。
 (遠赤外線透過膜)
 遠赤外線透過膜31は、基材30上に形成されており、遠赤外線の反射を抑制するための膜である。
 図5に示すように、本実施形態に係る遠赤外線透過膜31は、酸化ニッケル層32と、高屈折率層36と、低屈折率層38とを含む。図5の例では、基材30と酸化ニッケル層32との間に、高屈折率層36と低屈折率層38とが交互に積層されている。すなわち、遠赤外線透過膜31内においては、酸化ニッケル層32は、最も外側(基材30から最も離れる側)に形成されている。ただし、酸化ニッケル層32は、遠赤外線透過膜31内において最も外側に形成されていることに限られず、酸化ニッケル層32より外側に、高屈折率層36や低屈折率層38が形成されていてもよい。
 図5の例では、遠赤外線透過膜31は、基材30上に、基材30から離れる方向に向けて、高屈折率層36、低屈折率層38、酸化ニッケル層32の順で積層されている。すなわち、図5の例では、高屈折率層36の表面36bが遠赤外線透過膜31の基材30側の表面31bとなり、酸化ニッケル層32の表面32aが遠赤外線透過膜31の基材30の表面31aとなる。ただし、酸化ニッケル層32と高屈折率層36と低屈折率層38とを含む構成において、もっとも基材30側に形成される層は、高屈折率層36に限られず、例えば低屈折率層38であってもよい。例えば、基材30から離れる方向に、低屈折率層38、高屈折率層36、酸化ニッケル層32の順で積層されてもよい。
 また、図5の例では、遠赤外線透過膜31は、高屈折率層36と低屈折率層38と酸化ニッケル層32とが、1層ずつ積層される構成であるが、それに限られず、高屈折率層36と低屈折率層38との少なくとも1つが複数層積層されていてもよい。例えば、遠赤外線透過部材20は、基材30上から、基材30から離れる方向に向けて、高屈折率層36と低屈折率層38が交互に複数積層され、最も外側(基材30から最も離れる側)が酸化ニッケル層32となるように積層されてもよい。すなわち、基材30、高屈折率層36、低屈折率層38、高屈折率層36、・・・低屈折率層38、酸化ニッケル層32の順で積層されてよい。また、遠赤外線透過部材20は、基材30上から、基材30から離れる方向に向けて、高屈折率層36と低屈折率層38が交互に積層され、最も外側が酸化ニッケル層32となるように積層されてもよい。すなわち、基材30、低屈折率層38、高屈折率層36、・・・低屈折率層38、酸化ニッケル層32の順で積層されてもよい。
 また、遠赤外線透過膜31は、酸化ニッケル層32と高屈折率層36とを含むが低屈折率層38を含まない層構成であってもよい。この場合、酸化ニッケル層32は、高屈折率層36より屈折率が低い中間屈折率層(低屈折率層)として機能する。遠赤外線透過膜31は、基材30上に、基材30から離れる方向に向けて、高屈折率層36、酸化ニッケル層32の順で1層ずつ積層されてもよいし、酸化ニッケル層32、高屈折率層36の順で1層ずつ積層されてもよい。また、遠赤外線透過膜31は、酸化ニッケル層32と高屈折率層36との少なくとも1つが複数層積層されていてもよい。この場合例えば、遠赤外線透過膜31は、酸化ニッケル層32と高屈折率層36とが交互に積層されて、基材30上に、基材30から離れる方向に向けて、高屈折率層36、酸化ニッケル層32、高屈折率層36、・・・、酸化ニッケル層32の順で積層されてもよいし、酸化ニッケル層32、高屈折率層36、・・・酸化ニッケル層32の順で積層されてもよい。
 また、遠赤外線透過膜31は、酸化ニッケル層32と低屈折率層38とを含むが高屈折率層36を含まない層構成であってもよい。この場合、酸化ニッケル層32は、低屈折率層38より屈折率が高い中間屈折率層(高屈折率層)として機能する。遠赤外線透過膜31は、基材30上に、基材30から離れる方向に向けて、酸化ニッケル層32、低屈折率層38の順で1層ずつ積層されてもよいし、低屈折率層38、酸化ニッケル層32の順で1層ずつ積層されてもよい。また、遠赤外線透過膜31は、酸化ニッケル層32と低屈折率層38との少なくとも1つが複数層積層されていてもよい。この場合例えば、遠赤外線透過膜31は、酸化ニッケル層32と低屈折率層38とが交互に積層されて、基材30上に、基材30から離れる方向に向けて、酸化ニッケル層32、低屈折率層38、酸化ニッケル層32、・・・、低屈折率層38の順で積層されてもよいし、低屈折率層38、酸化ニッケル層32、・・・低屈折率層38の順で積層されてもよい。
 以上のように複数層積層される場合、遠赤外線透過膜31の高屈折率層36と低屈折率層38と酸化ニッケル層32の3層のうちどの層が基材30側に配置されてもよいが、基材30がカルコゲナイドガラスおよび/またはZnSの場合は基材30側に配置される層が低屈折率層38又は高屈折率層36であると、基材30と遠赤外線透過膜31との界面における反射を低減できるため好ましい。一方、基材30がSiおよび/またはGeの場合は基材30側に配置される層が酸化ニッケル層32又は低屈折率層38であると、基材と遠赤外線透過膜との界面における反射を低減できるため好ましい。基材30の材質によらず、基材30側に配置される層がSi層であると、基材との密着性に優れるため好ましい。このように酸化ニッケル層32と高屈折率層36と低屈折率層38とを複数枚積層することで、より広い波長帯の光の反射率を抑制可能となる。
 また、遠赤外線透過膜31は、高屈折率層36及び低屈折率層38を両方とも含まなくてよく、少なくとも1層以上の酸化ニッケル層32を有することを特徴とするといえる。すなわち、遠赤外線透過膜31は、酸化ニッケル層32の単層膜であってもよいが、高屈折率層36及び低屈折率層38の少なくとも1つと積層した多層膜としてもよい。遠赤外線透過膜31を多層構造の反射防止膜とすることにより、各界面で生じる界面反射光により、光の干渉作用を利用して広い波長域において低い反射率を実現することが容易になる。
 また、基材30の車内側に形成される遠赤外線透過膜31と車外側に形成される遠赤外線透過膜31とで、異なる層構成であってもよい。
 (酸化ニッケル層)
 酸化ニッケル層32は、酸化ニッケル(NiO)を主成分とする層であり、遠赤外線を透過可能である。なお、酸化ニッケルは、ニッケルの価数に応じて複数の組成をとることが知られており、xは0.5から2の任意の値をとることができる。また価数は単一でなくてもよく、2種以上の価数が混合していても良い。本実施形態では、NiOとして、NiOを用いることが好ましい。また、ここでの主成分とは、酸化ニッケル層32の全体に対する含有率が、50質量%以上であることを指してよい。
 酸化ニッケル層32は、10μmの波長の光に対する消衰係数が、0.05以下であることが好ましく、0.03以下であることがより好ましく、0.025以下であることが更に好ましく、0.02以下であることが更に好ましく、0.01以下であることが特に好ましい。酸化ニッケル層32は、波長8μm~12μmの光に対する平均消衰係数が、0.05以下であることが好ましく、0.03以下であることがより好ましく、0.02以下であることが更に好ましく、0.01以下であることが特に好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。8μm~12μmの波長の光に対する消衰係数は、例えば赤外分光エリプソメーター(J.A.ウーラム社製、IR-VASE-UT)により得られる偏光情報、フーリエ変換型赤外分光装置(ThermoScientific社製、Nicolet iS10)により得られる分光透過スペクトルを用いて、光学モデルのフィッティングを行うことで、決定できる。
 酸化ニッケル層32は、波長10μmの光(遠赤外線)に対する屈折率が、1.5以上4.0以下であることが好ましく、1.7以上3.0以下であることがより好ましく、2.0以上2.5以下であることが更に好ましい。また、酸化ニッケル層32は、波長8μm~12μmの光に対する平均屈折率が、1.5以上4.0以下であることが好ましく、1.7以上3.0以下であることがより好ましく、2.0以上2.5以下であることがさらに好ましい。酸化ニッケル層32の遠赤外線に対する屈折率や平均屈折率がこの数値範囲となることで、遠赤外線の反射を抑制して、遠赤外線を適切に透過できる。8μm~12μmの波長の光に対する屈折率は、例えば赤外分光エリプソメーターにより得られる偏光情報、フーリエ変換型赤外分光装置により得られる分光透過スペクトルを用いて、光学モデルのフィッティングを行うことで、決定できる。
 酸化ニッケル層32は、波長550nmの光の消衰係数が、0.04以上であることが好ましく、0.05以上であることがより好ましく、0.06以上であることが更に好ましく、0.07以上であることが更に好ましく、0.08以上であることが更に好ましく、0.10以上であることが更に好ましい。また、酸化ニッケル層32は、波長380nm~780nmの光に対する平均消衰係数が、0.04以上であることが好ましく、0.05以上であることがより好ましく、0.06以上であることが更に好ましく、0.07以上であることが更に好ましく、0.08以上であることが更に好ましく、0.10以上であることが更に好ましい。消衰係数や平均消衰係数がこの範囲となることで、可視光の反射率分散を適切に抑制し、意匠性を担保した外観とすることができる。なお、平均消衰係数とは、その波長帯域(ここでは380nmから780nm)の、それぞれの波長の光の消衰係数の平均値である。波長550nmの光の消衰係数は、例えば分光エリプソメーターにより得られる偏光情報、JIS R3106に基づき測定される分光透過率を用いて、光学モデルのフィッティングを行うことで、決定できる。
 酸化ニッケル層32は、ニッケルと酸素の元素比率(O/Ni)が、1.0以上1.3未満であることが好ましく、1.0以上1.25未満であることがより好ましく、1.0以上1.2未満であることが最も好ましい。酸化ニッケル層32のO/Niがこの数値範囲であることで、遠赤外線を適切に透過できる。元素比率(O/Ni)は、例えばラザフォード後方散乱分析法や弾性反跳検出分析により決定できる。
 酸化ニッケル層32は、膜密度が、5.0g/cm以上6.0g/cm以下であることが好ましく、5.0g/cm以上5.8g/cm以下であることがより好ましく、5.0g/cm以上5.4g/cm以下であることが最も好ましい。酸化ニッケル層32の膜密度がこの数値範囲となることで、遠赤外線を適切に透過できる。膜密度は、例えばラザフォード後方散乱分析法により決定できる。
 酸化ニッケル層32は、ニッケルのK吸収端のX線吸収端エネルギー値E(S)が、8347.1eV以下であることが好ましく、8347.0eV以下であることがより好ましく、8346.9eV以下であることが最も好ましい。酸化ニッケル層32のニッケルのK吸収端のX線吸収端エネルギー値E(S)がこの数値範囲となることで、遠赤外線を適切に透過できる。
 酸化ニッケル層32のニッケルのK吸収端のX線吸収端エネルギー値E(S)は、例えば酸化ニッケル層32に対し、以下の手順でニッケルのK吸収端のX線吸収微細構造(X-ray Absorption Fine Structure;XAFS)測定を実施し、X線吸収端近傍構造(X-ray Absorption Near Edge Structure;XANES)の評価を行って得られる。
 放射光施設のXAFS測定ビームラインにより、XAFS分析を行う。放射光施設としては、あいちシンクロトロン光センター、SPring-8、高エネ研フォトンファクトリー、佐賀シンクロトロンなどが挙げられる。XAFS分析に用いる分光器はSi(111)とする。検出は蛍光収量と電子収量を同時に実施する。測定範囲はプレエッジおよびポストエッジのラインが精度よく引けるよう広範囲とし、具体的には8100~8800[eV]より広範囲で測定する。スペクトルが急激に変化するエッジ領域においては、違いが識別できるように測定間隔を細かくする。具体的には、少なくとも8320~8360[eV]の範囲において、0.18[eV]よりも小さい間隔で測定する。
 得られたデータを解析ソフトAthenaを用いて規格化した後、ホワイトラインピークエネルギー値を読み取り、この値をEm(S)[eV]とする。また、横軸エネルギー値の校正の目的で、Ni箔の透過XAFSを、上記と同様の測定範囲および測定間隔で測定する。得られたデータを解析ソフトAthenaを用いて規格化した後、エッジジャンプ(吸収端前後での吸光度の差)が0.5となるエネルギー値を読み取り、この値をEm(M)[eV]とする。式(2)に基づき計算することで、酸化ニッケル層32の吸収端エネルギー値E(S)[eV]すなわちXANESスペクトルのピークトップエネルギー値を得られる。
 E(S)= Em(S)- Em(M)+ 8337.9 ・・・(2)
 酸化ニッケル層32の厚みd1は、0.1μm以上2.0μm以下であることが好ましく、0.2μm以上1.5μm以下であることがより好ましく、0.3μm以上1.4μm以下であることがさらに好ましい。厚みd1がこの範囲にあることで、遠赤外線の反射を適切に抑制することができる。なお、厚みd1は、酸化ニッケル層32の表面32aから、反対側の表面32bまでのZ方向における長さともいえる。
 酸化ニッケル層32は、主成分とする酸化物(ここでは酸化ニッケル)以外の成分である副成分を含有していてもよい。副成分としては赤外線を透過する酸化物が好ましく、MgO、CuO、ZnO、ZrO、Bi、Yが挙げられる。副成分の含有率は、50質量%以下が好ましく、30質量%以下がより好ましく、10質量%以下が最も好ましい。副成分の含有率がこの範囲となることで、遠赤外線を適切に透過しつつ、耐水性等を向上できる。
 酸化ニッケル層32は、表面算術平均粗さRaが4.0nm以下であることが好ましく、3.0nm以下であることがより好ましく、2.0nm以下であることが最も好ましい。表面粗さがこの範囲内となることで、酸化ニッケル層32の耐摩耗性、耐擦傷性を向上させることが出来る。Raは、例えば原子間力顕微鏡法により決定できる。
 (高屈折率層)
 高屈折率層36は、酸化ニッケル層32及び低屈折率層38と積層されて、遠赤外線の反射を抑制する膜である。本実施形態では、高屈折率層36は、酸化ニッケル層32よりも基材30側に積層されており、図5の例では、基材30と低屈折率層38との間に設けられている。低屈折率層38が形成されていない場合には、高屈折率層36は、基材30と酸化ニッケル層32との間に設けられることになる。
 高屈折率層36は、遠赤外線に対して高屈折率の膜であり、波長10μmの光に対する屈折率が、酸化ニッケル層32よりも高く、2.5以上4.5以下であることが好ましく、3.0以上4.5以下であることがより好ましく、3.3以上4.3以下であることが更に好ましい。また、高屈折率層36は、波長8μm~12μmの光に対する平均屈折率が、酸化ニッケル層32よりも高く、2.5以上4.5以下であることが好ましく、3.0以上4.5以下であることがより好ましく、3.3以上4.3以下であることが更に好ましい。高屈折率層36の屈折率や平均屈折率がこの数値範囲となることで、高屈折率膜として適切に機能して、遠赤外線の反射を適切に抑制することができる。
 高屈折率層36は、遠赤外線を透過可能である。高屈折率層36は、10μmの波長の光に対する消衰係数が、0.05以下であることが好ましく、0.02以下であることがより好ましく、0.01以下であることが更に好ましい。高屈折率層36は、波長8μm~12μmの光に対する平均消衰係数が、0.05以下であることが好ましく、0.02以下であることがより好ましく、0.01以下であることが更に好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。
 また、高屈折率層36の厚みd2は、0.1μm以上2.0μm以下であることが好ましく、0.2μm以上1.5μm以下であることがより好ましく、0.3μm以上1.2μm以下であることが更に好ましい。厚みd2がこの範囲にあることで、遠赤外線の反射を適切に抑制できる。なお、厚みd2は、高屈折率層36の表面36aから、反対側の表面36bまでのZ方向における長さともいえる。
 高屈折率層36の材料は任意であってよいが、Si、及びGeの群より選ばれる少なくとも1種の材料を主成分とすることが好ましい。
 (低屈折率層)
 低屈折率層38は、酸化ニッケル層32及び高屈折率層36と積層されて、遠赤外線の反射を抑制する膜である。本実施形態では、低屈折率層38は、酸化ニッケル層32よりも基材30側に積層されており、図5の例では、高屈折率層36と酸化ニッケル層32との間に設けられている。高屈折率層36が形成されていない場合には、低屈折率層38は、基材30と酸化ニッケル層32との間に設けられることになる。
 低屈折率層38は、遠赤外線に対して低屈折率の膜であり、波長10μmの光に対する屈折率が、酸化ニッケル層32よりも低く、0.8以上2.0以下であることが好ましく、1.0以上1.7以下であることがより好ましく、1.0以上1.5以下であることが更に好ましい。また、低屈折率層38は、波長8μm~12μmの光に対する平均屈折率が、酸化ニッケル層32よりも低く、0.8以上2.0以下であることが好ましく、1.0以上1.7以下であることがより好ましく、1.0以上1.5以下であることが更に好ましい。低屈折率層38の屈折率や平均屈折率がこの数値範囲となることで、低屈折率膜として適切に機能して、遠赤外線の反射を適切に抑制することができる。
 低屈折率層38は、遠赤外線を透過可能である。低屈折率層38は、10μmの波長の光に対する消衰係数が、0.05以下であることが好ましく、0.02以下であることがより好ましく、0.01以下であることが更に好ましい。低屈折率層38は、波長8μm~12μmの光に対する平均消衰係数が、0.05以下であることが好ましく、0.02以下であることがより好ましく、0.01以下であることが更に好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。
 また、低屈折率層38の厚みd3は、0.1μm以上2.0μm以下であることが好ましく、0.2μm以上1.7μm以下であることがより好ましく、0.3μm以上1.5μm以下であることが更に好ましい。厚みd3がこの範囲にあることで、遠赤外線の反射を適切に抑制できる。なお、厚みd3は、低屈折率層38の表面38aから、反対側の表面38bまでのZ方向における長さともいえる。
 低屈折率層38は、酸化物を主成分とする膜であることが好ましい。より具体的には、低屈折率層38は、酸化物としてMgOを主成分とすることが好ましい。低屈折率層38は、MgOの含有率が、低屈折率層38の全体に対して、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、85質量%以上100質量%以下であることが更に好ましい。低屈折率層38は、MgOの含有率がこの範囲となることで、遠赤外線を適切に透過し、かつ遠赤外線に対して低屈折率となり、遠赤外線の反射を適切に抑制することができる。
 低屈折率層38は、主成分とする酸化物(ここではMgO)以外の成分である副成分を含有していてもよい。副成分としては赤外線を透過する酸化物が好ましく、CuO、ZnO、ZrO、Bi、Yが挙げられる。
 (密着層)
 また、遠赤外線透過膜31と基材30との間には、図示しない密着層が形成されていてよい。密着膜は、基材30と遠赤外線透過膜31とを密着させる膜であり、言い換えれば、基材30と遠赤外線透過膜31との接着力を向上させる膜である。
 密着層は、遠赤外線を透過可能であることが好ましい。密着層は、10μmの波長の光に対する消衰係数が、0.10以下であることが好ましく、0.05以下であることがより好ましく、0.04以下であることが更に好ましい。
 密着層は、波長10μmの光に対する屈折率が、1.4以上であることが好ましく、1.4以上3.6以下であることがより好ましく、1.6以上2.2以下であることが更に好ましい。密着層の屈折率がこの数値範囲となることで、遠赤外線を適切に透過することができる。また、単波長光(波長0.8μm~1.8μmの範囲の光を発するレーザ光源からの光)を適切に透過することもできる。単波長光は、波長0.8μm~1.8μmの範囲内の所定の波長(単波長)の光といえる。単波長光の波長としては、0.905μm(905nm)、1.35μm(1350nm)、1.55μm(1550nm)が挙げられる。
 密着層は、単波長光を透過可能であることが好ましい。密着層は、単波長光に対する消衰係数が、0.10以下であることが好ましく、0.05以下であることがより好ましく、0.04以下であることが更に好ましい。
 密着層は、単波長光に対する屈折率が、1.4以上であることが好ましく、1.4以上3.6以下であることがより好ましく、2.0以上2.4以下であることが更に好ましい。
 また、密着膜の厚みは、0.05μm以上0.5μm以下であることが好ましく、0.05μm以上0.3μm以下であることがより好ましく、0.05μm以上0.1μm以下であることがさらに好ましい。密着膜の厚みがこの範囲にあることで、単波長光及び遠赤外線の反射を適切に抑制しつつ、基材30と遠赤外線透過膜31とを適切に密着できる。なお、密着膜の厚みは、密着膜のZ方向側の表面から、Z方向と反対側の表面までのZ方向における長さともいえる。また、密着膜の厚みは、遠赤外線透過膜31の厚みよりも薄いことが好ましい。密着膜の厚みが遠赤外線透過膜31の厚みより薄いことで、光学性能への影響を少なくできる。
 密着膜の材料は任意であるが、例えば、Si、Ge、MgO、NiO、CuO、ZnS、Al、ZrO、SiO、TiO、ZnO、及びBiの群より選ばれる少なくとも1種の材料を含むものであることが好ましく、ZrOを含むものがより好ましい。密着膜は、このような材料が用いられることで、基材30と遠赤外線透過膜31とを適切に密着できる。
 (遠赤外線透過部材の特性)
 遠赤外線透過部材20は、以上のように、基材30の表面に、少なくとも1層以上の酸化ニッケル層32を有する遠赤外線透過膜31が形成されたものとなっている。遠赤外線透過部材20は、基材30の表面に酸化ニッケル層32を有する遠赤外線透過膜31が形成されることで、遠赤外線の反射率を低減し、遠赤外線の透過率を高めることができる。
 遠赤外線透過部材20は、10μmの光の透過率が、50%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが更に好ましい。また、遠赤外線透過部材20は、波長8μm~12μmの光に対する平均透過率が、50%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが更に好ましい。透過率や平均透過率がこの範囲となることで、赤外線透過膜としての機能を適切に発揮できる。なお、平均透過率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する透過率の平均値である。透過率は、例えばフーリエ変換型赤外分光装置(ThermoScientific社製、Nicolet iS10)で測定可能である。
 遠赤外線透過部材20は、10μmの光の反射率が、15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。また、遠赤外線透過部材20は、波長8μm~12μmの光に対する平均反射率が、15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。反射率や平均反射率がこの範囲となることで、赤外線透過膜としての機能を適切に発揮できる。なお、平均反射率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する反射率の平均値である。反射率は、例えばフーリエ変換型赤外分光装置(ThermoScientific社製、Nicolet iS10)で測定可能である。
 また、図3に示すように、遠赤外線透過部材20は、車外側の面が、遮光領域A2の車外側の面と、面一に(連続して)形成されていることが好ましい。言い換えれば、遠赤外線透過部材20の車外側の表面20Aは、ガラス基体12の表面12Aと連続するように取り付けられている。このように遠赤外線透過部材20の表面20Aがガラス基体12の表面12Aと連続することで、ワイパの拭き取り効果が損なわれることを抑制できる。また、段差があることで車両Vとしてのデザイン性が損なわれることや、段差に砂埃等が堆積することなどのおそれを抑制できる。さらに、遠赤外線透過部材20は、適用される車両用ガラス1の曲面形状に合わせて成形されていることが好ましい。遠赤外線透過部材20の成形方法は特に限定されないが、曲面形状や膜に応じて、研磨もしくはモールド成形が選択される。
 遠赤外線透過部材20の形状は特に限定されないが、開口部19の形状にあわせた板状の形状であることが好ましい。すなわち、例えば開口部19が円形である場合は、遠赤外線透過部材20は円板状(円柱状)であることが好ましい。また、意匠性の観点から、車外側の遠赤外線透過部材20の表面形状は、ガラス基体12の外表面形状の曲率に合うように加工してもよい。さらに、遠赤外カメラCA1の視野角の広角化と、機械的特性の向上との両立を図る等の理由から、遠赤外線透過部材20を、レンズ形状にしてもよい。このような構成とすると、遠赤外線透過部材20の面積が小さくても効率的に遠赤外光を集光することができるため好ましい。この場合、レンズ形状の遠赤外線透過部材20の個数は、1個~3個が好ましく、典型的には2個が好ましい。さらにレンズ形状の遠赤外線透過部材20は、予め調芯されモジュール化され、遠赤外カメラCA1を車両用ガラス1に接着させる筐体、もしくはブラケットと一体化されていることが特に好ましい。
 本実施形態の車両用ガラス1においては、車内側の面における開口部19の面積が、車外側の面における開口部19の面積より小さい構成とし、遠赤外線透過部材20の形状もこれにあわせて車内側の面における面積が車外側の面における面積より小さくすることが好ましい。このような構成とすることにより、車外側からの衝撃に対する強度が向上する。さらに言えば、本実施形態の車両用ガラス1がガラス基体12(車外側)とガラス基体14(車内側)とを備える合わせガラスである場合は、開口部19は、ガラス基体12の開口部12aとガラス基体14の開口部14aとが重なって形成される。この場合、ガラス基体12の開口部12aの面積を、ガラス基体14の開口部14aの面積より大きくし、ガラス基体12の開口部12aのサイズに合わせた遠赤外線透過部材20を、ガラス基体12の開口部12a内に配置すればよい。
 また、図3に示すように、遠赤外線透過部材20は、車外側の面内の任意の2点を結ぶ直線のうち最長の直線の長さD1が、80mm以下となることが好ましい。長さD1は、70mm以下であることがより好ましく、更に好ましくは65mm以下である。また、長さD1は、60mm以上であることが好ましい。また、図3に示すように、遠赤外線透過領域Bの開口部19は、車外側の面内の任意の2点を結ぶ直線のうち最長の直線の長さD2が、80mm以下であることが好ましい。長さD2は、70mm以下であることがより好ましく、更に好ましくは65mm以下である。また、長さD2は、60mm以上であることが好ましい。長さD2は、車両用ガラス1の車外側の面(表面12A)での開口部19の外周における、任意の2点を結ぶ直線のうち最長の直線の長さともいえる。遠赤外線透過部材20の長さD1や開口部19の長さD2をこの範囲とすることで、車両用ガラス1の強度低下を抑制し、開口部19の周囲の透視歪み量も抑制できる。なお、長さD1、D2は、遠赤外線透過部材20の車外側の面の形状が円形である場合は、車外側の表面の直径にあたる長さである。また、ここでの長さD1、D2は、車両用ガラス1を車両Vに搭載する状態における長さを指しており、例えばガラスを曲げ加工して車両Vに搭載する形状とする場合は、長さD1、D2は、曲げ加工した後の状態における長さとなる。長さD1、D2以外の寸法や位置の説明についても、特に説明していない場合は、同様である。
 (遠赤外線透過部材の製造方法)
 次に、遠赤外線透過部材20の製造方法について説明する。遠赤外線透過部材20を製造する際には、基材30を準備し、基材30の対向に原料ターゲットを配置し、基材30の表面上にスパッタリングにより遠赤外線透過膜31を形成する。これにより、遠赤外線透過部材20が製造される。スパッタリングで遠赤外線透過膜31を形成することで、蒸着に比べて大面積の基材30にも均一な遠赤外線透過膜31を形成できる。また、遠赤外線透過膜31と基材30との密着性を向上させることができる。
 本製造方法では、遠赤外線透過膜31の酸化ニッケル層32は、NiOとNiとの混合ターゲットを用いたスパッタリングにより形成する。混合ターゲットを原料として用いることで、ニッケルと酸素の元素比率(O/Ni)の制御が容易となり、遠赤外線透過率の高い酸化ニッケル層32を形成できる。
 混合ターゲット中のNiOの含有率は、混合ターゲットの全体に対して、質量比率で30%以上100%未満とする。混合ターゲット中のNiOの含有率を下限値以上とすることで、NiO成膜時のプロセスウィンドウが広がり、酸化ニッケル層32のニッケルと酸素の元素比率(O/Ni)の制御が容易となる。一方、混合ターゲット中のNiOの含有率を上限値以下とすることで、ターゲットが導電性を有し、後述するDCパルススパッタ法、Bi-polarパルススパッタ法や、ACスパッタ法での成膜を可能とする。
 混合ターゲット中のNiOの含有率は、混合ターゲットの全体に対して、質量比率で、50%以上95%以下がより好ましく、70%以上90%以下が最も好ましい。
 また、酸化ニッケル層32のスパッタリングはArと酸素の混合雰囲気下で行う。Arと酸素の混合雰囲気下でスパッタリングを行うことで、ニッケルと酸素の元素比率が制御された、遠赤外線透過率の高い酸化ニッケル層32を形成できる。
 このとき、混合雰囲気中の酸素ガスの体積流量(SCCM:standard cc/min、1atm(25℃))の比率は1%以上50%未満とする。混合雰囲気中の酸素ガスの体積流量比率を1%以上50%未満とすることで、ニッケルと酸素の元素比率の制御が容易となり、遠赤外線透過率の高い酸化ニッケル層32を形成できる。混合雰囲気中の酸素ガスの体積流量比率は1%以上40%以下がより好ましく、1%以上30%以下が最も好ましい。
 スパッタリングはDCパルススパッタ法、Bi-polarパルススパッタ法、又はACスパッタ法であると、膜厚均一性、生産安定性、酸化度制御性の点で好ましい。
 スパッタリングは成膜と酸化を別室で行う後酸化スパッタ法であっても良い。後酸化スパッタ法においては、成膜機内の混合雰囲気中の酸素ガスの体積流量の比率は1%以上50%未満とする。成膜機内の混合雰囲気中の酸素ガスの体積流量比率を1%以上50%未満とすることで、ニッケルと酸素の元素比率の制御が容易となり、遠赤外線透過率の高い酸化ニッケル層32を形成できる。成膜機内の混合雰囲気中の酸素ガスの体積流量比率は1%以上40%以下がより好ましく、1%以上30%以下が最も好ましい。
 遠赤外線透過膜31の製造時に、基材30又は遠赤外線透過膜31を加熱してもよい。加熱により遠赤外線透過膜31の膜応力が緩和され、基材30と遠赤外線透過膜31との密着性を向上できる。
 例えば、基材30の表面上に遠赤外線透過膜31をスパッタリングした後、遠赤外線透過膜31の基材30と反対側の表面を100℃以上300℃未満で、0.5時間以上2時間以内のアニール処理を行ってもよい。これにより、遠赤外線透過膜31の膜応力が緩和され、高温アニール処理を行うことなく基材30と遠赤外線透過膜31との密着性を向上できる。
 また、基材30に遠赤外線透過膜31をスパッタリングする際に、基材30を100℃以上300℃未満で加熱してもよい。これにより、遠赤外線透過膜31の膜応力が緩和され、高温アニール処理を行うことなく基材30と遠赤外線透過膜31との密着性を向上できる。
 (本実施形態の他の例)
 本実施形態では、遠赤外線透過部材20は、基材30上に遠赤外線透過膜31のみが形成された構成であるが、それに限られない。以下、遠赤外線透過部材20の他の例について説明する。
 図6は、本実施形態の他の例に係る遠赤外線透過膜の模式的な断面図である。図6に示すように、遠赤外線透過部材20は、遠赤外線透過膜31の基材30と反対側の表面31a上に、保護膜34が形成されていてもよい。保護膜34は、遠赤外線透過部材20の外表面に、すなわち外部に露出する最も外側の表面に形成される膜であり、遠赤外線透過膜31をワイパ払拭や砂埃による傷付き、オイルや薬液による腐食などから保護する。本実施形態では、保護膜34は、車外側の遠赤外線透過膜31上に、すなわち遠赤外線透過部材20の車外側の外表面に設けられており、車内側には設けられていない。ただし、保護膜34は、車内側の遠赤外線透過膜31上にも、すなわち遠赤外線透過部材20の車内側の外表面にも、設けられてよい。なお、図6の例では、説明の便宜上、遠赤外線透過膜31が単層として図示されているが、遠赤外線透過膜31は、単層であることに限られず、上述したいずれの層構成をとることもできる。
 (保護膜)
 保護膜34は、遠赤外線透過膜31よりも硬い膜であることが好ましい。具体的には、保護膜34は、遠赤外線透過膜31よりも硬度HITが高いことが好ましく、硬度HITが9.0GPaよりも高いことが好ましく、10.0GPaよりも高いことがより好ましく、11GPaよりも高いことが最も好ましい。また、HITとヤング率Eの比率HIT/Eの値が、遠赤外線透過膜31よりも大きいことが好ましく、0.080よりも大きいことがより好ましく、0.090よりも大きいことが更に好ましく、0.095よりも大きいことが最も好ましい。保護膜34のHITやHIT/Eの値がこの数値範囲となることで、遠赤外線透過膜31をワイパ払拭や砂埃による傷付きなどから適切に保護できる。硬度HIT及びヤング率Eは、ISO14577に基づき測定される。
 保護膜34は、波長550nmの光(可視光)に対する屈折率が、2.5以下であることが好ましく、1.5以上2.5以下であることがより好ましく、1.7以上2.4以下であることが更に好ましい。また、保護膜34は、波長380nm~780nmの光に対する平均屈折率が、2.5以下であることが好ましく、1.5以上2.5以下であることがより好ましく、1.7以上2.4以下であることがさらに好ましい。保護膜34の可視光に対する屈折率や平均屈折率がこの数値範囲となることで、酸化ニッケル層32との組み合わせによって可視光の反射を抑制して、遠赤外線透過部材20を目立たなくすることが可能となる。
 保護膜34は、波長10μmの光(遠赤外線)に対する屈折率が、0.5以上3.5以下であることが好ましく、0.7以上2.5以下であることがより好ましく、1.0以上2.5以下であることが更に好ましい。また、保護膜34は、波長8μm~12μmの光に対する平均屈折率が、0.5以上3.5以下であることが好ましく、0.7以上2.5以下であることがより好ましく、1.0以上2.5以下であることがさらに好ましい。保護膜34の遠赤外線に対する屈折率や平均屈折率がこの数値範囲となることで、遠赤外線の反射を抑制して、遠赤外線を適切に透過できる。
 保護膜34は、遠赤外線を透過可能である。保護膜34は、10μmの波長の光に対する消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが更に好ましい。保護膜34は、波長8μm~12μmの光に対する平均消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが更に好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。
 また、保護膜34の厚みd4は、0.01μm以上1μm以下であることが好ましく、0.02μm以上0.5μm以下であることがより好ましく、0.05μm以上0.3μm以下であることがさらに好ましい。厚みd2がこの範囲にあることで、遠赤外線や可視光の反射を適切に抑制することができる。なお、厚みd2は、保護膜34の表面34aから、反対側の表面34bまでのZ方向における長さともいえる。
 保護膜34の材料は任意であるが、例えば、ZrO、Al、TiO、Si4、AlN、及びダイヤモンドライクカーボンの群より選ばれる少なくとも1種の材料を含むものであることが好ましい。保護膜34は、このような材料が用いられることで、遠赤外線透過膜31を適切に保護できる。
 保護膜34は、遠赤外線透過膜31を水から保護するために、水バリア性を有していることが好ましい。すなわち、保護膜34は、遠赤外線透過膜31の可視光域における外観を保つために、遠赤外線透過膜31を水から保護することが好ましい。保護膜34の水バリア性能は、材料、結晶構造、膜厚によって変わる。また、保護膜34は、水バリア性の観点から、アモルファス構造であることが好ましい。
 なお、保護膜34も、遠赤外線透過膜31と同様に、スパッタリングで形成されてもよいが、それに限られず、例えば蒸着で形成されてもよい。
 図7は、本実施形態の他の例に係る遠赤外線透過膜の模式的な断面図である。図7に示すように、遠赤外線透過部材20は、遠赤外線透過膜31と基材30との間に、密着膜40が形成されていてもよい。また、図7の例においても、図6の例のような保護膜34を外表面に形成してよい。なお、図7の例でも、遠赤外線透過膜31が単層として図示されているが、遠赤外線透過膜31は、単層であることに限られず、上述したいずれの層構成をとることもできる。
 (密着膜)
 密着膜40は、基材30と遠赤外線透過膜31とを密着させる膜であり、言い換えれば、基材30と遠赤外線透過膜31との接着力を向上させる膜である。密着膜40は、基材30と遠赤外線透過膜31との間に設けられる。
 密着膜40は、波長10μmの光(遠赤外線)に対する屈折率が、1.0以上4.3以下であることが好ましく、1.5以上4.3以下であることがより好ましく、1.5以上3.8以下であることが更に好ましい。また、密着膜40は、波長8μm~12μmの光に対する平均屈折率が、1.0以上4.3以下であることが好ましく、1.5以上4.3以下であることがより好ましく、1.5以上3.8以下であることがさらに好ましい。密着膜40の遠赤外線に対する屈折率や平均屈折率がこの数値範囲となることで、遠赤外線の反射を抑制して、遠赤外線を適切に透過できる。
 密着膜40は、遠赤外線を透過可能である。密着膜40は、10μmの波長の光に対する消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが更に好ましい。密着膜40は、波長8μm~12μmの光に対する平均消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることが更に好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。
 また、密着膜40の厚みd5は、0.05μm以上0.5μm以下であることが好ましく、0.05μm以上0.3μm以下であることがより好ましく、0.05μm以上0.1μm以下であることがさらに好ましい。厚みd5がこの範囲にあることで、遠赤外線や可視光の反射を適切に抑制することができる。なお、厚みd5は、密着膜40の表面40aから、反対側の表面40bまでのZ方向における長さともいえる。また、密着膜40の厚みd5は、酸化ニッケル層32の厚みd1、高屈折率層36の厚みd2、及び低屈折率層38の厚みd3よりも、薄いことが好ましい。密着膜40の厚みd5がこれらの層の厚みより薄いことで、光学性能への影響を少なくできる。
 密着膜40の材料は任意であるが、例えば、Si、Ge、MgO、CuO、ZnS、Al、ZrO、SiO、TiO、ZnO、及びBiの群より選ばれる少なくとも1種の材料を含むものであることが好ましい。密着膜40は、このような材料が用いられることで、基材30と遠赤外線透過膜31とを適切に密着できる。
 なお、密着膜40も、遠赤外線透過膜31と同様に、スパッタリングで形成されてもよいが、それに限られず、例えば蒸着で形成されてもよい。
 (効果)
 以上説明したように、本発明の遠赤外線透過部材の製造方法は、遠赤外線を透過する基材上に、NiOとNiとの混合ターゲットを用いたスパッタリングにより1層以上の酸化ニッケル層を含む遠赤外線透過膜を形成する。このとき、混合ターゲット中のNiOの含有率が、混合ターゲットの全体に対して30質量%以上100質量%未満である。ここで、遠赤外線透過膜は、遠赤外線の透過率が高いことが求められる。また、基材の選択肢を広げること、熱膨張差による膜剥がれを抑制すること、プロセスコストを低減させること、のために、300℃未満の低温プロセスが求められる場合がある。それに対し、本発明の遠赤外線透過膜の製造方法によれば、酸化ニッケル層のニッケルと酸素の元素比率を適切に制御でき、300℃以上の高温プロセスを必要とせず、遠赤外線透過率の高い遠赤外線透過膜を形成できる。
 遠赤外線透過膜31は、スパッタリングをArガスと酸素ガスの混合雰囲気下で行い、混合雰囲気中の酸素の体積流量比率が1%以上50%未満の条件において形成する。酸化ニッケル層を酸素の体積流量の比率が50%未満の条件において形成することで、酸化ニッケル層のニッケルと酸素の元素比率を適切に制御でき、300℃以上の高温アニール処理を行うことなく、遠赤外透過率の高い遠赤外線透過膜を形成できる。
 遠赤外線透過膜31は、基材30を100℃以上300℃未満に加熱しながら形成することが好ましい。基材30を100℃以上300℃未満の温度に加熱しながら酸化ニッケル層32が形成することで、遠赤外線透過膜31の膜応力を緩和し、膜剥がれを抑制できる。
 遠赤外線透過膜31は、100℃以上300℃未満の温度でアニール処理することが好ましい。遠赤外線透過膜31を100℃以上300℃未満の温度でアニール処理することで、遠赤外線透過膜31の膜応力を緩和し、基材30と遠赤外線透過膜31との結合力を高め、膜剥がれを抑制できる。
 このとき、アニール処理は0.5h以上2h以内で行うことが、遠赤外線透過膜31の膜応力を緩和し、基材30と遠赤外線透過膜31との結合力を高め、膜剥がれを抑制しやすくなる点から好ましい。
 基材30は、Si、Ge、ZnS、及びカルコゲナイトガラスの群より選ばれる少なくとも1種の材料を含むことが好ましい。基材30の材料をこのようにすることで、遠赤外線を適切に透過できる。
 遠赤外線透過部材20は、車両に搭載されることが好ましい。遠赤外線透過部材20は、遠赤外線を適切に透過可能であるため、車両に適切に搭載可能となる。
 遠赤外線透過部材20は、車両の窓部材に配置されてよい。遠赤外線透過部材20は、遠赤外線を適切に透過可能であるため、車両に適切に搭載可能となる。
 遠赤外線透過部材20は、車両のピラー用外装部材に配置されてよい。遠赤外線透過部材20は、遠赤外線を適切に透過可能であるため、車両に適切に搭載可能となる。
 遠赤外線透過部材20は、車両用外装部材の遮光領域A2内に配置されてよい。遠赤外線透過部材20は、遠赤外線を適切に透過可能であるため、車両に適切に搭載可能となる。
 (実施例)
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。表1は、実施例を示している。表1において、遠赤外線透過膜の膜構成は基板の片面のみを示しているが、基板の逆面にも同様の遠赤外線透過膜を形成している。
Figure JPOXMLDOC01-appb-T000001
 (例1)
 例1においては、基材そのものを遠赤外線透過部材として、遠赤外線透過膜は形成しなかった。例1においては、基材として両面が鏡面研磨されたSi(100配向、CZグレード、P型、松崎製作所製)を用いた。基材の厚みは、0.525mm±0.025mmとした。
 (例2)
 例2においては、基材の両面上に、それぞれマグネトロンスパッタリングによって酸化ニッケル層を形成し、遠赤外線透過膜とした。例2では、基材として例1と同じSiを用い、基材の厚みは、例1と同じであり、酸化ニッケル層の厚みを1.2μmとした。基材および酸化ニッケル層の厚みは触針式プロファイリングシステム(Dektak XT-S、BRUKER社製)により評価した。
 成膜原料としては、NiOとNiの混合ターゲット(高純度化学研究所製)を使用した。混合ターゲット中のNiOの質量比率は70%、Niの質量比率を30%であった。成膜装置内に上記の混合ターゲットと基材とを対向配置した。この時、ターゲットと基板の距離は150mmとした。次に、装置内全体を真空に排気した。そして、装置内の圧力が5×10-4Paに到達した時点で、Arガスと酸素ガスの混合雰囲気を合計150SCCM(standard cc/min、1atm(25℃))流した。混合雰囲気中の酸素ガスの体積流量比率は20%とし、装置内の圧力が0.3Paになるように、排気速度を調整した。その後、ターゲット表面に3000Wの直流パルス電流(20kHz)を印加し、ターゲットの前方で基材を回転させながら、基材の表面に酸化ニッケル層を形成し、遠赤外線透過部材を作製した。
 (例3)
 得られた酸化ニッケル層の表面を、大気雰囲気下150℃で1時間のアニール処理を施した点以外は、例2と同様の方法で遠赤外線透過部材を作製した。
 (例4)
 Si基板を250℃で加熱しながら酸化ニッケル層を形成した以外は、例2と同様の方法で遠赤外線透過部材を作製した。
 (例5)
 例2とは異なる成膜装置を用い、例2と同様の基材と、純ニッケルターゲット(高純度化学研究所製)とを対向配置した。このとき、ターゲットと基板の距離は90mmとした。例2と同様に装置全体を真空排気した後、Arガスと酸素ガスの混合雰囲気を合計15SCCM流した。このとき、混合雰囲気中の酸素ガスの体積流量比率は27%とし、装置内の圧力が0.3Paになるように、排気速度を調整した。その後、ターゲット表面に400Wの直流パルス電流(20kHz)を印加し、ターゲットの前方で基材を回転させながら、基材の表面に酸化ニッケル層を形成し、遠赤外線透過部材を作製した。
 (例6)
 混合雰囲気中の酸素ガスの体積流量比率を33%とした点以外は、例2と同様の方法で遠赤外線透過部材を作製した。
 (例7)
 混合雰囲気中の酸素ガスの体積流量比率を50%とした点以外は、例2と同様の方法で遠赤外線透過部材を作製した。
 (例8)
 混合雰囲気中の酸素ガスの体積流量比率を100%とした点以外は、例2と同様の方法で遠赤外線透過部材を作製した。
 (例9)
 非特許文献2のTable3のデータを準用して遠赤外線透過部材を作製した。両面が鏡面研磨されたSi(100配向、P型)からなる基材の両面上に、それぞれRFマグネトロンスパッタ法によって酸化ニッケル層を形成し、遠赤外線透過部材とした。基材の厚みは0.525mmとし、酸化ニッケル層の厚みを1.2μmとした。
 成膜原料として、例5と同様の純Niターゲットを使用した。成膜装置全体を真空に排気し、装置内の圧力が3×10-6Torrに到達した時点で、Arガスと酸素ガスの混合雰囲気を流した。この時、装置内の圧力が、3.5mTorrになるように排気速度を調整した。その後、ターゲット表面にRF電流を印加し、基材の表面に酸化ニッケル層を形成して、遠赤外線透過部材を作製した。
 (例10)
 非特許文献2のデータを準用し、得られた酸化ニッケル層の表面を、大気雰囲気下600℃で1時間のアニール処理を施した点以外は、例10と同様の方法で遠赤外線透過部材を作製した。
 (遠赤外線透過性能の評価)
 例1から例8のサンプルについて、遠赤外線透過性能の評価を行った。遠赤外線透過性能は、サンプルの平均透過率で評価した。ここでの平均透過率は、8μm~12μmのそれぞれの波長の光の透過率の平均値である。例1から例8においては、8μm~12μmのそれぞれの波長の光の透過率を、フーリエ変換型赤外分光装置(ThermoScientific社製、商品名:Nicolet iS10)を用いて測定し、測定した透過率から、算術平均透過率を算出した。測定範囲は400cm-1から4000cm-1とし、測定間隔は2cm-1とした。遠赤外線透過性能の評価においては、平均透過率が、78%以上を二重丸とし、75%以上であり78%より低い場合を丸とし、75%より低い場合をバツとし、丸、二重丸を合格とした。
 次に、例9および例10のサンプルについては、非特許文献2のTable3の記載を準用して、遠赤外線透過性能の評価を行った。遠赤外線透過性能は、フーリエ変換型赤外分光装置(FT―IR)を用いて測定した平均透過率で評価した。遠赤外線透過性能の評価においては、平均透過率が、78%以上を二重丸とし、75%以上であり78%より低い場合を丸とし、75%より低い場合をバツとし、丸、二重丸を合格とした。
 表1は、例1から例10のサンプルの遠赤外線透過性能を示している。また、図8は、例2、例6、例7、例8のサンプルの赤外線透過性能を示している。表1により、例2、例3、例4、例6、例10は良好な透過性能が確認されたが、例1、例5、例7、例8、例9は透過性能が不十分であった。また、図8により、例2、例6は良好な透過性能が確認されたが、例7、例8は透過性能が不十分であった。
 例2、例3、例4、例6はNiOとNiの混合ターゲットを用いて、成膜時の酸素ガスの体積流量比率が50%未満の条件で作製されたサンプルであり、前記条件では酸化ニッケル層中のニッケルと酸素の元素比率(O/Ni)が適切に制御され、300℃以上の高温プロセスを必要とせず、遠赤外線透過率の高い酸化膜を得られることが分かる。例7、例8は酸化ニッケルとニッケルの混合ターゲットを用いて、成膜時の酸素ガスの体積流量比率が50%以上の条件で作製されたサンプルであり、前記条件では酸化ニッケル層中のニッケルと酸素の元素比率(O/Ni)が不適切であり、遠赤外線透過率が減衰したと考えられる。
 例10はNiOを含まない純Niターゲットを使用し、600℃もの高温で1時間のアニール処理を行ったことで、欠陥の密度が減少し、遠赤外線透過率の高い酸化ニッケル層を得られたと推察される。例5、例9はNiOの質量比率を含まない純Niターゲットを用いて作製されたサンプルであり、前記条件では酸化ニッケル層中の酸素元素比が不適切であり、遠赤外線透過率が減衰したと考えられる。
 (耐水性の評価)
 さらに、例1から例10のサンプルに対し、耐水性の評価を行った。耐水性能の評価においては、煮沸試験を実行し、煮沸試験に合格したものをマルとし、煮沸試験に不合格となったものをバツとした。煮沸試験は、成膜基板を100℃±3℃の純水中で10分間保持し行った。煮沸試験後は、膜剥がれが生じたもの、もしくは8μmから12μmの平均透過率変化が5%以上生じたものを不合格とした。例3、例4に示すように、酸化ニッケル層を100℃以上加熱することで、煮沸試験の耐久性を向上でき、より好ましいといえる。
 (酸化ニッケル層の評価)
 さらに、例2および例9のサンプルに対し、ペレトロンタンデム加速器システム3SDH(National Electrostatics Corporation製)を用い、ラザフォード後方散乱分析法により、酸化ニッケル層の元素比率(O/Ni)および膜密度の評価を行った。
 加えて、例2、例6、例7および例8のサンプルに対し、赤外分光エリプソメーター(J.A.ウーラム社製、IR-VASE-UT)により得られる偏光情報から、光学フィッティングを行って、10μmの波長の光に対する消衰係数の評価を行った。結果を表2に示す。表2に示すとおり、例2では、酸化ニッケル層の元素比率(O/Ni)が1.3以下、膜密度が6.0g/cm以下の酸化ニッケル層が得られた。
 図9は、例2、例6、例7、例8のサンプルの波長8μm~12μmの光に対する平均透過率と、酸化ニッケル層の10μmの波長の光に対する消衰係数との関係を示している。図9により、10μmの波長の光に対する消衰係数が小さいほど、遠赤外線性能に優れた酸化ニッケル層が得られることが確認され、例2および例6では、10μmの波長の光に対する消衰係数が0.025以下と、遠赤外線透過性能に優れた酸化ニッケル層が得られた。
 (酸化ニッケル層のXANES評価)
 さらに、例2、例6、例7、および例8のサンプルに対し、ニッケルのK吸収端のXAFS測定を実施し、XANESの評価を行った。
 測定は、あいちシンクロトロン光センターのビームラインBL5S1を用いて、硬X線によるXAFS分析を行った。分光器はSi(111)とした。検出は蛍光収量と電子収量を同時に実施した。測定範囲はプレエッジおよびポストエッジのラインが精度よく引けるよう広範囲とし、具体的には8100~8800[eV]より広範囲で測定した。スペクトルが急激に変化するエッジ領域においては、違いが識別できるように測定間隔を細かくした。具体的には、少なくとも8320~8360[eV]の範囲について、0.18[eV]よりも小さい間隔で測定した。
 得られたデータを解析ソフトAthenaを用いて規格化した後、ホワイトラインピークエネルギー値を読み取り、この値をEm(S)[eV]とした。また、横軸エネルギー値の校正の目的で、Ni箔の透過XAFSを、上記と同様の測定範囲および測定間隔で測定した。得られたデータを解析ソフトAthenaを用いて規格化した後、エッジジャンプが0.5となるエネルギー値を読み取り、この値をEm(M)[eV]とした。式(2)に基づき計算し、各試料の吸収端エネルギー値E(S)[eV]すなわちXANESスペクトルのピークトップエネルギー値を得た。
 E(S)= Em(S)- Em(M)+ 8337.9  ・・・(2)
 表2に示すとおり、例2および例6では、E(S)が8347.1eV以下と、遠赤外線透過性能に優れた酸化ニッケル層が得られた。
Figure JPOXMLDOC01-appb-T000002
 図10は、例2、例6、例7、例8のサンプルの波長8μm~12μmの光に対する平均透過率と、E(S)との関係を示している。図10により、E(S)が小さいほど、遠赤外線透過性能に優れた酸化ニッケル層が得られることが確認され、例2および例6では、E(S)が8347.1eV以下と、遠赤外線性能に優れた酸化ニッケル層が得られた。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 1 車両用ガラス
 10、12、14 ガラス基体
 16 中間層
 18 遮光層
 20 遠赤外線透過部材
 30 基材
 31 遠赤外線透過膜
 32 酸化ニッケル層
 34 保護膜
 36 高屈折率層
 38 低屈折率層
 40 密着膜

Claims (15)

  1.  遠赤外線を透過する基材上に、NiOとNiとの混合ターゲットを用い、Arガスと酸素ガスの混合雰囲気下でスパッタリングして酸化ニッケル層を1層以上含む遠赤外線透過膜を形成する、遠赤外線透過部材の製造方法において、
     前記混合ターゲット中のNiOの含有率が、前記混合ターゲットの全体に対して30質量%以上100質量%未満であり、前記混合雰囲気中の酸素ガスの体積流量比率が、Arガスと酸素ガスの合計体積流量に対して1%以上50%未満である、遠赤外線透過部材の製造方法。
  2.  前記混合ターゲット中のNiOの含有率が、前記混合ターゲットの全体に対して、50質量%以上95%質量%以下である、請求項1記載の遠赤外線透過部材の製造方法。
  3.  前記混合ターゲット中のNiOの含有率が、前記混合ターゲットの全体に対して、70質量%以上90質量%以下である、請求項1又は請求項2に記載の遠赤外線透過部材の製造方法。
  4.  前記スパッタリングがDCパルススパッタ法、ACスパッタ法、又はBi-polarパルススパッタ法である、請求項1から請求項3いずれか1項に記載の遠赤外線透過部材の製造方法。
  5.  前記基材を100℃以上300℃未満の温度に加熱する、請求項1から請求項4のいずれか1項に記載の遠赤外線透過部材の製造方法。
  6.  前記遠赤外線透過膜の基材と反対側の表面を、100℃以上300℃未満の温度でアニール処理する、請求項1から請求項5のいずれか1項に記載の遠赤外線透過部材の製造方法。
  7.  前記基材は、Si、Ge、ZnS、及びカルコゲナイトガラスの群より選ばれる少なくとも1種の材料を含む、請求項1から請求項6のいずれか1項に記載の遠赤外線透過部材の製造方法。
  8.  前記遠赤外線透過部材は、車両に搭載される、請求項1から請求項7のいずれか1項に記載の遠赤外線透過部材の製造方法。
  9.  前記遠赤外線透過部材は、車両の窓部材に配置される、請求項8に記載の遠赤外線透過部材の製造方法。
  10.  前記遠赤外線透過部材は、車両のピラー用外装部材に配置される、請求項8又は9に記載の遠赤外線透過部材の製造方法。
  11.  前記遠赤外線透過部材は、車両用外装部材の遮光領域内に配置される、請求項8から請求項10のいずれか1項に記載の遠赤外線透過部材の製造方法。
  12.  遠赤外線を透過する基材と、前記基材上に形成された機能膜とを含み、
     前記機能膜が、ニッケルのK吸収端のX線吸収微細構造(XANES)スペクトルのピークトップエネルギーが8347.1eV以下である酸化ニッケル層を1層以上含む
     ことを特徴とする、遠赤外線透過部材。
  13.  遠赤外線を透過する基材と、前記基材上に形成された機能膜とを含み、
     前記機能膜が、10μmの波長の光に対する消衰係数が、0.025以下である酸化ニッケル層を1層以上含む
     ことを特徴とする、遠赤外線透過部材。
  14.  前記酸化ニッケル層のニッケルと酸素の元素比率(O/Ni)が1.0以上1.3未満である、請求項12又は請求項13に記載の遠赤外線透過部材。
  15.  前記酸化ニッケル層の膜密度が5.0g/cm以上6.0g/cm以下である、請求項12~14のいずれか1項に記載の遠赤外線透過部材。
PCT/JP2022/020170 2021-05-20 2022-05-13 遠赤外線透過部材の製造方法及び遠赤外線透過部材 WO2022244686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22804599.3A EP4343392A1 (en) 2021-05-20 2022-05-13 Method for producing far-infrared transmission member, and far-infrared transmission member
JP2023522628A JPWO2022244686A5 (ja) 2022-05-13 遠赤外線透過部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085528 2021-05-20
JP2021085528 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244686A1 true WO2022244686A1 (ja) 2022-11-24

Family

ID=84140430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020170 WO2022244686A1 (ja) 2021-05-20 2022-05-13 遠赤外線透過部材の製造方法及び遠赤外線透過部材

Country Status (2)

Country Link
EP (1) EP4343392A1 (ja)
WO (1) WO2022244686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171313A1 (ja) * 2022-03-07 2023-09-14 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法
WO2023171309A1 (ja) * 2022-03-07 2023-09-14 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504484A (ja) * 2012-10-23 2016-02-12 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG 高吸収性層系、この層系の製造方法及びこのために適したスパッタターゲット
JP2018036325A (ja) * 2016-08-29 2018-03-08 東海光学株式会社 Ndフィルタ及びその製造方法
WO2022065000A1 (ja) * 2020-09-23 2022-03-31 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504484A (ja) * 2012-10-23 2016-02-12 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテルハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG 高吸収性層系、この層系の製造方法及びこのために適したスパッタターゲット
JP2018036325A (ja) * 2016-08-29 2018-03-08 東海光学株式会社 Ndフィルタ及びその製造方法
WO2022065000A1 (ja) * 2020-09-23 2022-03-31 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYUN BIN SHIM ET AL.: "Controlling the infrared optical properties of rf-sputtered NiO films for application of infrared window", INFRARED PHYSICS AND TECHNOLOGY, vol. 72, 2015, pages 135 - 139
HYUN BIN SHIM ET AL.: "Nickel oxide film as an AR coating of Si window for IRsensor packaging, Infrared Technology and Applications XXXIX", PROC. OF SPIE, vol. 8704, pages 870420 - 1
SHIM HYUNBIN, KIM DONGSOO, KANG INGU, KIM JINKWAN, LEE HEE CHUL: "Nickel oxide film as an AR coating of Si window for IR sensor packaging", SPIE SMART STRUCTURES AND MATERIALS + NONDESTRUCTIVE EVALUATION AND HEALTH MONITORING, 2005, SAN DIEGO, CALIFORNIA, UNITED STATES, SPIE, US, vol. 8704, 18 June 2013 (2013-06-18), US, pages 1 - 6, XP055915667, ISSN: 0277-786X, ISBN: 978-1-5106-4548-6, DOI: 10.1117/12.2013929 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171313A1 (ja) * 2022-03-07 2023-09-14 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法
WO2023171309A1 (ja) * 2022-03-07 2023-09-14 Agc株式会社 遠赤外線透過部材及び遠赤外線透過部材の製造方法

Also Published As

Publication number Publication date
JPWO2022244686A1 (ja) 2022-11-24
EP4343392A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2022244686A1 (ja) 遠赤外線透過部材の製造方法及び遠赤外線透過部材
US11214514B2 (en) Optical film exhibiting improved light to solar gain heat ratio
JP6196980B2 (ja) 太陽光制御板ガラスユニット
CN111051958B (zh) 夹层窗玻璃
JP5076896B2 (ja) 車両窓用合わせガラス
JP5489824B2 (ja) 反射防止膜及び赤外線用光学素子
BE1019346A3 (fr) Vitrage de controle solaire.
JP4824254B2 (ja) 反射防止コーティングを有する透明基材
EA017637B1 (ru) Остекление
CA2800252A1 (fr) Vitrage de controle solaire a faible facteur solaire.
WO2007020792A1 (ja) 赤外線反射ガラス板および車両窓用合わせガラス
WO2020017495A1 (ja) 光学部材
JP2008201633A (ja) 反射防止膜付きガラス板および窓用合わせガラス
CN109716180B (zh) 日照遮蔽构件
US20230194759A1 (en) Far-infrared ray transmission member and method for manufacturing far-infrared ray transmission member
US20230228925A1 (en) Far-infrared ray transmission member and method for manufacturing far-infrared ray transmission member
CN116330767A (zh) 一种局部高红外线透过的夹层隔热玻璃及包含其的车辆
WO2023171309A1 (ja) 遠赤外線透過部材及び遠赤外線透過部材の製造方法
WO2023171313A1 (ja) 遠赤外線透過部材及び遠赤外線透過部材の製造方法
WO2023195524A1 (ja) 透過部材
WO2022149583A1 (ja) 車両用ガラス
WO2023153242A1 (ja) 遠赤外線透過部材、遠赤外線センサ、車載用センサ、スマートフォン搭載用センサ、及びウェアラブル端末用センサ
EP4410756A1 (en) Vehicle window assembly and vehicle
CN111886212B (zh) 带层叠膜的透明基板
JP2024007005A (ja) 接着層付き機能性フィルムおよびガラス積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522628

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022804599

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804599

Country of ref document: EP

Effective date: 20231220